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Abstract: The identification of essential genes, i.e. those that impair cell survival when deleted, requires large
growth assays of knock-out strains. The complexity and cost of such experiments has triggered a growing
interest in computational methods for gene essentiality prediction. In the case of metabolic genes, Flux
Balance Analysis (FBA) is widely employed to predict essentiality under the assumption that cells maximize
their growth rate. However, this approach implicitly assumes that knock-out strains optimize the same
objectives as the wild-type, which excludes cases in which deletions cause large changes in cell physiology to
meet other objectives for survival. Here we resolve this limitation with a novel machine learning approach that
predicts essentiality directly from wild-type flux distributions. We first project the wild-type FBA solution
onto a mass flow graph, a digraph with reactions as nodes and edge weights proportional to the mass transfer
between reactions, and then train binary classifiers on the connectivity of graph nodes. We demonstrate
the efficacy of this approach using the most complete metabolic model of Escherichia coli, achieving near
state-of-the art prediction accuracy for essential genes. Our approach suggests that wild-type FBA solutions
contain enough information to predict essentiality, without the need to assume optimality of deletion strains.
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I. INTRODUCTION

The identification of essential genes can reveal the min-
imal functional modules that allow an organism to sur-
vive. Gene essentiality is of paramount importance in
biomedicine and biotechnology, e.g. for identifying thera-
peutic targets1,2 or improving yield in strains engineered
for chemical production3. The identification of essen-
tial genes requires screening assays with high-throughput
techniques such as RNA interference or CRISPR-based
screens4. Due to the cost of such screens, there is
substantial interest in computational methods that can
rapidly explore the impact of gene deletions and com-
plement current experimental efforts to determine gene
essentiality. Such approaches typically employ machine
learning in combination with various properties such as
sequence homology and gene-function ontologies5,6.

In the case of metabolic genes, i.e. those that code for
metabolic enzymes, the most popular approach for essen-
tiality prediction is Flux Balance Analysis (FBA), which
computes genome-wide metabolic flux distributions on
the basis of an optimization principle7. This approach al-
lows to rapidly simulate deletions and has shown promis-
ing results in some model prokaryotes; for example, the
most complete FBA model of Escherichia coli predicts
essential genes with up to 93% accuracy8.
Although various studies have reported encouraging re-

sults beyond the prokaryotic world9, the ability of FBA
to predict gene essentiality is much more limited in eu-
karyotes and higher order organisms10. This limitation
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is partly due to the varied quality of current genome-
scale metabolic models, as well as the sensitivity of FBA
predictions to the choice of objective function to be op-
timised. A common objective function is growth rate
maximization11, but it is unclear if deletion strains still
attempt to maximize growth, or if instead gene deletions
alter cell physiology to meet other objectives for survival.
Most recently, there is the growing realization that the
integration of FBA and machine learning offers substan-
tial promise to overcome some of the inherent limitations
of genome-scale metabolic models12.
In this paper we present a machine learning approach

to predict gene essentiality with minimal assumptions on
the underlying optimality of the metabolic network. Cru-
cially, our method does not require the computation of
FBA solutions for deletion strains, but predicts essen-
tiality directly from the wild-type flux distribution. The
method works by first projecting the flux distribution
onto a mass flow graph13, i.e. a directed graph with reac-
tions as nodes and edge weights as chemical mass flows,
and then using the connectivity of graph nodes to train
machine learning predictors of gene essentiality. Using
data from a large growth assay in Escherichia coli8, we
trained a range of binary classifiers and demonstrate that
our method allows to predict essential genes with near
state-of-the-art accuracy. We conclude with a discussion
of limitations of the method and directions for future im-
provement.
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II. PRELIMINARIES

A. Flux balance analysis

Flux balance analysis (FBA) is a widely-adopted ap-
proach to study cellular metabolism7. Assuming that a
metabolic network with n metabolites and m reactions
is in steady state, the vector of reaction fluxes v satisfies
the mass balance equation:

Sv = 0, (1)

where S is an n × m integer matrix, and its Sij entry
corresponds to the net number of Xi molecules produced
(Sij > 0) or consumed (Sij < 0) by reaction Rj . In its
simplest form, FBA finds the solution vector v∗ to the
following constrained optimization problem:

max
v

c′v

subject to

{
Sv = 0,

vlb ≤ v ≤ vub,

(2)

where c is a vector of flux weights, and (vlb, vub) are
lower and upper bounds on reaction fluxes, respectively.
A common use case is to employ the flux bounds for pre-
dicting flux distributions in various genetic backgrounds
or environmental conditions. For example, deletions of
the gene encoding for reaction vj can be simulated by
setting vlb, j = vub, j = 0, while specific growth condi-
tions can be modelled by manipulating the bounds of
nutrient uptake reactions.

B. Construction of mass flow graphs

Mass flow graphs (MFGs) were originally introduced
by13 as a method to map flux vectors onto a directed
graph that can be analysed with tools from network sci-
ence. In these graphs, nodes correspond to metabolic
reactions and two nodes are connected if they share
metabolites either as reactants or products. A key ad-
vantage of such reaction-centric graphs is that they avoid
the need to prune pool metabolites, i.e. enzymatic co-
factors, ions and others, that appear in many metabolic
reactions. In other graph constructions, pool metabolites
are manually removed so as to avoid the spurious connec-
tions produced by their high connectivity, which tend to
dominate the topology of the resulting graph. In the
MFG construction, pool metabolites are kept as-is and
they map onto weak connections between graph nodes,
thus reducing their impact on the overall connectivity.

To construct an MFG, we define the weight of the con-
nection between reactions Ri and Rj as the total flux
of metabolites produced by Ri that are consumed by Rj

(Figure 1A). Mathematically, the adjacency matrix for
an MFG can be directly constructed from the stoichio-
metric matrix S and any FBA solution vector v∗. We

first unfold the flux vector into 2m forward and reverse
reactions:

v∗
2m =

[
v∗+

v∗−

]
=

1

2

[
abs(v∗) + v∗

abs(v∗)− v∗

]
, (3)

and define the corresponding stoichiometric matrix as:

S2m = [S− S]

[
Im 0
0 diag(r)

]
,

where r is the m-dimensional reversibility vector such
that

rj =

{
1 if reaction j is reversible,

0 otherwise.
(4)

The adjacency matrix of the MFG is then given by:

M(v∗) = (S+
2mV∗)′J†

v(S
−
2mV∗), (5)

where † denotes the matrix pseudoinverse, and the matri-
ces are defined as V∗ = diag(v∗

2m), Jv = diag(S+
2mv∗

2m),
with

S+
2m =

1

2
(abs(S2m) + S2m), (6)

S−
2m =

1

2
(abs(S2m)− S2m). (7)

As explained in detail in13, the edge weights in the adja-
cency matrix M(v∗) have units of mass per unit of time,
and represent the strength of connectivity between re-
actions in terms of the chemical mass flow they share.
As an illustration, Figure 1B shows the MFG for the
most complete metabolic reconstruction of Escherichia
coli iML1515 described in8, for cells growing aerobically
in glucose; Table I shows a summary of the reaction flux
bounds.

C. Binary classification

Binary classification is one of the core problems in su-
pervised machine learning. The goal is to extract pat-
terns from observations of two classes of objects, and use
these patterns to automatically determine the class of
a new, unseen, object. In our case, we are interested
in using growth measurements from knock-out screens
to build automated classifiers that determine whether a
gene is essential or non-essential. More specifically, as-
sume we have N pairs:

(x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N)), (8)

where x(i) ∈ Rp is a p-dimensional vector of features as-
sociated with the ith gene, and y(i) ∈ {0, 1} is the label
or class of the ith gene. Without loss of generality, we
denote non-essential and essential genes as the negative
class (0) and positive class (1), respectively.
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FIG. 1. Construction of mass flow graphs. (A) Mass flow graphs (MFG) can be directly built from the stoichiometric
matrix and a flux vector13. The MFG is a directed graph with reactions as nodes, and edge weights corresponding to the
total mass flow between two reactions, defined by the adjacency matrix in Eq. (5). (B) Mass flow graph of Escherichia coli
under aerobic growth with glucose as sole carbon source; the graph contains k = 444 reaction nodes and 14,459 edges, and was
computed from the most complete genome-scale reconstruction (iML1515) by8.

The feature vectors and labels are assembled into a
feature matrix X and a vector of class labels y:

X = [x(1),x(2), ...,x(J)]′,

y = [y(1), y(2), ..., y(J)]′,
(9)

that are employed to train a classification algorithm to
learn the patterns in X required to predict the labels in
y. Once trained, the algorithm can automatically assign
labels to new samples on the basis of their feature vectors.
Given the feature vector of a new sample x̂, the binary
classifier predicts the corresponding class label ŷ based
on the learned classification rules.

There are various types of classification models, typi-
cally based on different assumptions on the shape of the
feature space. Common model include logistic regres-
sion, decision trees, neural networks, and support vec-
tor machines14. The choice of specific models depends
largely on the task and dataset at hand, and in a typical
machine learning pipeline model training is accompanied
by cross-validation analyses to prevent overfitting and
perform model selection.

III. BINARY CLASSIFIERS TRAINED ON THE MASS
FLOW GRAPHS

We built a machine learning pipeline (Figure 2) to train
binary classifiers that predict the essentiality labels from
features extracted from the mass flow graphs. Next we
detail each step of our approach.

A. Feature extraction

We first featurize each gene using the connectivity of
the corresponding reaction node in the MFG. To con-
struct a feature matrix from the adjacency matrix M of

the MFG, we note that FBA solution vectors tend to be
sparse, i.e. they contain many reactions that carry zero
flux. Such reactions map onto disconnected nodes in the
MFG, and thus correspond to non-essential genes. If the
ith node is disconnected, the corresponding ith row and
column in M contain only zeros. We removed such dis-
connected nodes, so that if the connected component of
the MFG contains k nodes, we compute a reduced ad-
jancency matrix Mk where all (m − k) zero rows and
columns have been removed. We then define a feature
matrix as

X = [Mk M′
k] ∈ Zk×2k. (10)

The feature matrix has been augmented to include the
weights of incoming and outgoing edges as features for
each reaction node. In other words, the ith row of X
contains both the outgoing and incoming edge weights of
reaction Rj in the MFG. We also note that the feature
matrix tends to be sparse, because reactions typically
share a reduced number of metabolites and thus feature
vectors have a large number of zero entries.

B. Data normalization and labelling

Many classification algorithms are based on distances
between feature vectors that can be sensitive to scaling;
the Euclidean or cosine distances are classic examples of
such scale sensitive distance functions. To avoid prob-
lems with feature scaling, we normalized the feature ma-
trix X prior to model training. This is usually achieved
by subtracting the feature mean and scaling to unit vari-
ance. However, in our case we only scale features to unit
variance so as to preserve the sparsity structure of the
feature matrix:

x̃ij =
xij

σj
, (11)
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FIG. 2. Training binary classification algorithms on mass flow graphs. (A) The node feature matrix X is computed
from the adjacency matrix of a mass flow graph M. Binary classifiers are trained using X and measured essentiality labels
y. For hyperparameter optimization, different performance metrics were employed to account for the imbalanced number of
essential and non-essential genes.(B) Confusion matrix to assess the performance of a binary classifier.

where x̃ij is the normalized entry of the feature matrix
X, and σj is the standard deviation of feature j. The nor-
malization factors are computed from the training data
and stored to transform future inputs accordingly.

To obtain essentiality labels for each gene, we employ
growth assay data that quantify the impact of a sin-
gle deletion on cellular growth. If gWT is the measured
growth rate of the wild-type, and gi is the growth rate
of a strain with the ith gene knocked-out, the essentiality
score is:

ei = 1− gi
gWT

. (12)

In practice, most genes have essentiality scores close to
0 or 1, so we binarize them to obtain the class label for
each gene:

yi =

{
0, if ei < 0.5,

1, otherwise.
(13)

C. Model training and hyperparameter optimization

We considered a number of classification algorithms,
including logistic regression, support vector machines,
neural networks and ensemble classifiers based on deci-
sion trees. These models were trained using optimization
routines available in the scikit-learn Python package, us-
ing suitably defined loss functions representing the qual-
ity of the classification performance; the loss function
employed depends on the model under consideration, and
common examples include cross-entropy loss, logistic loss
and hinge loss15. All models were trained on a fixed frac-
tion of the k connected nodes of the MFG, and we held
out a subset of the graph nodes to test model perfor-
mance on unseen data; the data were split using strati-
fied sampling to account for the imbalance between the
number of essential and non-essential reactions. From
the classification results on the test set, we compute the

confusion matrix illustrated in Figure 2B to compare per-
formance across different models. Performance was quan-
tified using five classification scores:

accuracy = (TP + TN)/k,

precision = TP/(TP + FP),

recall (TPR) = TP/(TP + FN),

specificity (TNR) = TN/(TN + FP),

F1-score =
2 · precision · recall
precision + recall

,

(14)

which are calculated from the number of true positives
(TP), true negatives (TN), false positives (FP) and false
negatives (FN) in the confusion matrix (Figure 2B).
In addition to the learned parameters, each classifi-

cation algorithm has a number of hyperparameters that
define various properties and settings of the model. In
a typical machine learning pipeline, the hyperparame-
ters are not fitted directly to data, but instead employed
to perform model selection or decide between several
competing classifiers according to a performance met-
ric. The process of choosing suitable hyperparameters
can quickly become computationally expensive since it
requires training the model for each combination of hy-
perparameters across a large grid. We instead employed
Bayesian optimization16, a global, gradient-free, opti-
mization method purposely designed to reduce computa-
tional costs in problems with expensive objective func-
tions. In this approach, the objective function is as-
sumed to be a random variable. After a number of
function evaluations, a prior on the objective function
is updated to compute a posterior distribution over the
objective function, typically using a Gaussian Process re-
gressor. The posterior is then employed to determine the
next combinations of hyperparameters for model training
using a suitable acquisition function that balances ex-
ploration and exploitation of the hyperparameter space.
The Bayesian optimization strategy provides an efficient
alternative to methods based on grid search or gradient
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ascent.

IV. APPLICATION TO ESCHERICHIA COLI
METABOLIC NETWORK

To illustrate our approach, we applied our pipeline to
predict gene essentiality using the metabolic reconstruc-
tion iML1515 of E. coli MG1655 strain, described by8.
That work also provides growth assay data for strain
BW25113 that can be compared with predictions from
our machine learning algorithm.

We computed the MFG of the iML1515 model assum-
ing aerobic growth with glucose as sole carbon source.
Since E. coli BW25113 lacks several genes from MG1655,
we set flux bounds of the associated reactions to zero.
Additionally, we adjusted the oxygen exchange reaction
bounds to simulate aerobic growth and the glucose up-
take reaction bounds as glucose was used as primary car-
bon source. The employed flux bounds are summarised
in Table I.

Reactions Bounds

L-arabinose isomerase (ARAI),

L-ribulokinase (RBK L1),

Rhamnulose-1-phosphate aldolase (RMPA),

Lyxose isomerase (LYXI), vlb = vub = 0

L-rhamnose isomerase (RMI),

Rhamnulokinase (RMK), and

B-galactosidase (LACZ)

Oxygen exchange (EX o2 e) vlb = −20

Glucose uptake (EX glc D e) vlb = −10

TABLE I. Reaction flux bounds of E. coli model
iML1515. Values were modified to simulate aerobic growth
using glucose as sole carbon source. The resulting MFG is
shown in Figure 1B.

Since growth assay data contains deletions of genes,
not reactions, the essentiality labels must be converted
from the space of genes onto the space of reactions. To
this end, we employed the gene-protein-reaction (GPR)
boolean rules included in the iML1515 genome-scale
model. These rules describe the dependency of metabolic
reactions on metabolic genes included in the genome-
scale model. We found that iML1515 contains only 155
reactions that map one-to-one from genes to reactions
(Figure 3A). To resolve this limitation and expand the
number of reactions for model training, we also included
reactions that are deactivated upon deletion of a specific
gene, even if that deletion also deactivates other reac-
tions. Under this definition, we could assign essential-
ity labels to a total of 255 reactions in the MFG, which
amounts to a coverage of ∼57% of all active reactions
(Figure 3A). Reactions that cannot be deactivated by
a single knockout were excluded from model training be-
cause their essentiality labels cannot be inferred from the
available growth data.

We first trained four different models for binary classi-
fication and used 5-fold cross-validation to optimize hy-
perparameters, compare model performance, and check
for overfitting. Hyperparameters were determined with
Bayesian optimization using the macro-averaged F1-
score as objective function (F1,macro); this score is the
arithmetic mean of the F1-scores computed for essential
and non-essential genes separately, as otherwise the im-
balance between both classes can cause the optimizer to
converge to classifiers that are unable to classify the mi-
nority class (non-essential reactions in our case). The
results in Table II summarize the performance of models
with optimized hyperparameters when trained on 80% of
reactions and tested on a held-out set with the remaining
20% of reactions.
We found the best model to be a Random Forest clas-

sifier consisting of 300 trees with a maximum depth of
50, and using information gain as criterion and log2(2k)
features to determine optimal tree splits. In cross-
validation, the RF model had 82% precision, 86% recall
and an F1-score of 83%. Evaluated on the test set, the
model had an overall accuracy of 76% with a precision
of 82.5% and a recall of 86.8% (see Figure 3B–C). For
comparison, the FBA predictions8 on the same set of
genes have 84.3% accuracy, and both precision and recall
of 89.5%. Despite the small amount of data available
to train our classifiers, our predictions are promisingly
close to those given by FBA; since our approach does
not assume optimality of the knockout strains, these re-
sults suggest that wild-type flux distributions may con-
tain sufficient information to predict the essentiality of
knockouts. Examination of the confusion matrix (Fig-
ure 3B) suggests that our classifier is comparatively poor
at predicting the non-essential reactions, but shows near
state-of-the-art accuracy for essential genes.

model accuracy precision recall F1 F1, macro

RF 0.76 0.82 0.87 0.85 0.67

MLP 0.73 0.80 0.84 0.82 0.62

LogReg 0.67 0.76 0.82 0.78 0.52

SVC 0.61 0.74 0.74 0.74 0.48

TABLE II. Classification performance of four binary
classifiers. Results show performance metrics for Random
Forest (RF), Multi-Layer Perceptron (MLP), Logistic Regres-
sion (LogReg), and C-Support Vector Machine (SVC). Models
were trained on 80% of the nodes of the MFG; the reported
performance metrics were computed on a held-out dataset
with 20% of nodes.

V. CONCLUSION

In this paper we have described a new computational
method for predicting essentiality of metabolic genes.
Our approach combines flux balance analysis (FBA) with
machine learning algorithms trained on growth assay
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FIG. 3. Prediction of gene essentiality in Escherichia coli iML1515. (A) Reaction and gene counts in iML1515.
Shown are the total number of genes, total number of reactions, and the number of reactions that are deactivated by single
knockouts that do not deactivate any other reactions (“1-to-1”) and that deactivate one or more reactions (“1-to-X”). (B)
Normalized confusion matrix of the best performing model: a random forest classifier with hyperparameters tuned to maximize
the macro-averaged F1-score. (C) Precision-recall curve of the Random Forest model. Panels B and C were computed on a
test set with 20% of graph nodes. We note that an unskilled classifier has a precision of ∼75%, which corresponds to the class
imbalance between essential and non essential genes.

data. By projecting flux vectors onto a directed graph,
we recast the problem as a binary classification task on
the graph nodes. Test results on a reduced gene set in
Escherichia coli suggest that the method can deliver pre-
dictions that are close to those delivered by FBA. Unlike
such methods, however, our approach does not require
the computation of FBA solutions for deletion strains
and relies solely on the wild-type flux distribution. This
is important because it assumes optimality of the wild-
type, but not of the deletion strains, and thus can account
for scenarios in which deletions cause changes in cellular
objectives.

Despite an increased interest in machine learning for
essentiality prediction, current methods still suffer from
limitations in their accuracy and ability to generalize
across environmental conditions or species6. This is
partly due to the lack of gene featurization strategies
that are predictive of essentiality. Here we have employed
graph connectivity as features to train our models, and
our results show some promise for their wider applicabil-
ity in other organisms.

Our aim in this paper was to provide the method-
ological foundations for a new strategy that combines
elements of machine learning and flux balance analysis,
two of the leading approaches in the field. There are
several important points for improvement that deserve
further exploration. For example, we have only tested
the method in a single growth condition for Escherichia
coli (aerobic growth in glucose), and further tests should
be carried out to establish the validity of the method
across other conditions. This is particularly relevant for
conditionally essential genes, i.e. those on which survival
depends on the specific environmental conditions. We
also observed comparatively poor prediction accuracy for
non-essential genes; this is likely because these tend to
be underrepresented in FBA solutions, which produces

imbalanced datasets for the binary classification prob-
lem. Solutions to this caveat will likely require strategies
to mitigate the impact of imbalanced datasets, such as
under- and over-sampling, or the use of different penalties
for misclassification errors in the loss function.
The identification of essential genes is of fundamental

importance in basic science, biomedicine, biotechnology
and a number of other disciplines. In this paper, we de-
veloped a novel method for essentiality prediction which
we hope will prove a catalyst for further exploration of
machine learning methods in the field.

APPENDIX

List of genes in the test set. We evaluated the
performance of our machine learning algorithm on a test
set with 51 genes, corresponding to 20% of all nodes in
the MFG. All these genes were held out when training
the models in Table II: adk, argA, argH, aroB, bioB,
bioF, dapB, dapF, deoB, dxr, eno, fabG, fabZ, fadE, folE,
glmM, glmS, glmU, gltX, glyA, gmk, gnd, gsk, hemD,
hisA, hisD, iscU, ispU, lpxC, ltaE, murC, nadB, nadC,
panD, pssA, purA, purC, purM, purN, ribE, serA, tesB,
thiE, thiG, thiL, tnaA, trpD, ubiD, waaA, yrbG, zupT.
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