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Abstract 
RNA-Seq is a powerful technique to provide quantitative information on gene expression. 

While many applications focus on estimated expression levels, it is also important to determine 

which genes are actively transcribed, and which are not. The problem can be viewed as simply 

setting a biologically meaningful threshold for calling a gene expressed. We propose to define 

this threshold per sample relative to the background level for non-expressed genomic features, 

inferred by the amount of reads mapped to intergenic regions of the genome. To this aim, we 

first define a stringent set of reference intergenic regions, based on available bulk RNA-Seq 

libraries for each species. We provide predefined regions selected for different animal species 

with varying genome annotation quality through the Bgee database. We then call genes 

expressed if their level of expression is significantly higher than the background noise. This 

approach can be applied to bulk as well as single-cell RNA-Seq, on a single library as well as 

on a combination of libraries over one condition. We show that the estimated proportion of 

expressed genes is biologically meaningful and stable between libraries originating from the 

same tissue, in both model and non-model organisms.  
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Introduction 
A typical biological sample contains genes which are actively transcribed, above technical and 

biological noise, and others which are inactive. Thus a qualitative description of the 

transcriptome as genes being “present” or “absent” is of wide interest in many fields. Indeed, 

it is at the core of the link between the genome and the phenotype. Such gene expression calls 

are also routinely used in genomics studies as a filter before downstream analyses [1] [2], to 

allow the annotation of genes to sampling conditions, and to facilitate integration across 

datasets or even data types [3]. 

Expression is typically measured by the amount of RNA molecules present in samples. A 

difficulty in identifying active and inactive genes in a biological sample is that the latter still 

potentially produce RNA molecules through various processes [4]. Indeed transcription is a 

noisy phenomenon [5]–[7], with contributions from active gene regulation but also border 

effects from active genes, stochastic binding of RNA polymerase [8]–[10] or permissive 

chromatin states allowing leaky transcription [11]–[14]. In addition, different technical factors 

introduce additional noise in gene expression measurements, e.g., sample contamination, RNA 

isolation, library amplification, or allelic variants.  

RNA-Seq is generally accepted as one of the most accurate technologies to quantify expression 

as a relative measurement. The number of RNA-seq reads mapped to a gene is often normalized 

by library size, for example in expression level units such as CPM (counts per million mapped 

reads). CPM does not normalize for gene length, with the important consequence that within-

sample expression levels comparison across genes is not possible, except for 3’ or 5’ end biased 

protocols (e.g., CAGE). Additional gene length normalization is performed when using units 

such as RPKM (reads per kilobase of transcript per million reads mapped), FPKM (fragments 

per kilobase of transcript per million fragments mapped), or TPM (transcripts per million) [15], 

allowing the comparison of expression levels between genes. Arbitrary thresholds of these units 

are often used in transcriptomics studies to call genes active or inactive, yet there is little 

consensus on the exact value to use. Values as low as 0.1 RPKM [16] or as high as 3 TPM [17] 

(based on [18]) are used. The Expression Atlas Baseline [19] uses a threshold of 0.5 TPM or 

0.5 FPKM to report expression (https://www.ebi.ac.uk/gxa/FAQ.html#blResults). Many RNA-

seq studies consider a gene expressed if at least one read is mapped to a gene [1], [20]. Yet 

given the relative nature of expression levels measured by RNA-Seq, one fixed threshold 

cannot be expected to fit a variety of transcriptomic samples from different tissues and 
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conditions. Moreover, the sensitivity or specificity of calls at different thresholds has rarely 

been evaluated. 

In an effort to define sample-specific thresholds, Hebenstreit et al. [4] showed that cultured 

murine Th2 cells displayed two classes of genes, active and inactive, the latter contributing a 

clear left shoulder on the distribution of log-transformed RPKMs across genes. The genes 

classes were identified by deconvoluting this distribution into two Gaussians, and the status of 

genes was validated by RT-PCR and measurements of histone modifications. Wagner and 

Lynch [18] proposed to fit a model to the raw TPM values, aiming at deconvoluting a mixture 

of an exponential distribution for inactive genes, and a negative binomial distribution for active 

genes. Hart et al. [21] proposed an approach based on the distribution of RPKMs in genes to 

model the most expressed genes as a simple Gaussian, and measure the distance to this 

distribution with a Z-score (zFPKM [21]).  

Recently, Thompson et al [22] proposed a Bayesian mixture model (implemented in the method 

“zigzag”) to infer active expression, formalizing the logic of Hebenstreit et al. [4]. Briefly, their 

model fits to the log-transformed TPM values a mixture of a Gaussian for inactive expression, 

one or more Gaussians for active expression (e.g., low and high expression), and a 

compartment of genes with no detected reads. They then infer posterior probabilities for genes 

to belong to an inactive or an active component. This represents to our knowledge the most 

advanced method available to call genes actively transcribed or not from RNA-Seq. However 

this approach presents some practical limitations, such as the requirement of at least two 

libraries to perform the inferences, as well as convergence problems when there is high 

discrepancy in variance between samples (see Results). 

All these methods rely on the reads mapped to annotated genes only. We propose  that other 

genomic regions could also be informative, notably to define a background expectation for the 

class of inactive genes. Intergenic regions are genomic features rarely actively transcribed, yet 

libraries contain reads mapped to them, because of the technical and biological noise sources 

described above.  

We thus propose a new approach for objective expression calls using the level of spurious 

intergenic expression – due to other factors than active expression – to estimate per sample the 

transcriptomic noise, and thus to detect genes actively expressed above it. This allows us to 

define a sample-specific false positive threshold for calling active expression.  We define a set 

of reference intergenic regions based on the compendium of curated RNA-Seq libraries in our 

database Bgee [3], allowing us to exclude actively expressed regions such as false negatives of 
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gene annotation pipelines. Our method is used for calls in Bgee, and can be applied to any bulk 

or single-cell RNA-Seq library through the BgeeCall R package  [23]. 

Results 
A clean model organism: application to mouse data in Bgee 
Bgee release 15.0 includes 566 RNA-Seq libraries for the house mouse Mus musculus, from 

36 experiments, covering 164 healthy wild-type conditions (combinations of 71 anatomical 

structures and of 32 developmental stages – from zygote to >20 months old). The mouse 

genome is one of the best assembled and annotated among animals (all genomes information 

versions in Supplementary table 1), and one of the species with the highest amount of RNA-

Seq data in Bgee (Supplementary table 2). Thus it presents a best case scenario. Mapping reads 

from all mouse libraries to intergenic regions, the distribution of log2(TPM)  is deconvoluted 

into three Gaussians (Figure 1A): one very large but with low density, and two narrower which 

account for most of the TPM density. Considering the low overlap of each intergenic Gaussian 

with the log2(TPM) distribution from reads of all mouse libraries mapped to protein-coding 

genes (Figure 1B), we consider the right-most narrow Gaussian as representing the maximal 

transcription level of intergenic regions with no active expression in any condition sampled 

across mouse libraries. Thus we define the set of reference intergenic regions as all those with 

log2(TPM) lower than the MITTmouse for a region attributed to this Gaussian (MITTmouse 

log2(TPM) = -1.558037). Importantly, the selection of reference intergenic regions is quite 

consistent if only a subset of samples is used (Supplementary figure 1).  
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Figure 1: Deconvolution of log2(TPM) density distributions of intergenic regions, for mapped reads from all 
mouse libraries in Bgee release 15. (A) Gaussians from the deconvolution of log2(TPM). (B) Density profile of 
regions assigned to each Gaussian. In blue, all intergenic; in green, orange and light blue the density of regions 
assigned to each Gaussian. Dash red line all coding regions and dash line in gray MITTmouse. 
 

Using this set of reference intergenic regions to call actively expressed genes in each individual 

mouse library, we obtain a median of 68.11% of coding genes expressed, narrowly distributed 

across libraries, with an interquartile range of 62.97% to 70.51% (with 𝛼 = 0.05; Table 1). The 

minimum proportion is 37.96% of genes called expressed in a liver sample from Theiler stage 

19 (library SRX1603153 [24]), while the maximum is 77.19% in an adult testis sample (library 

SRX1038931 [25]). The proportion of coding genes called expressed is rather stable using 

different p-value thresholds (Table 1). Without the deconvolution step used to define reference 

intergenic regions, slightly less coding genes are called actively expressed. Using a fixed 

threshold of 2 TPM, we obtain not only less calls of expression, but a much wider range of 

results depending on libraries. Unsurprisingly, the different intergenic-based methods correlate 

very well with each other (Pearson r of 0.90 to 0.99), while the fixed TPM method correlates 

more poorly (r = 0.70). This especially affects the set of libraries with the less expression calls, 

where there appears to be no correlation (Supplementary figure 2). Finally, expression calls 

with microarrays have larger variation between samples than any RNA-Seq based method. 
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Data & method  Threshold  Sample 
number 

Median  Minimum  Maximum  Interquartile range 

RNA-Seq 
deconvolution 

p ≤ 0.001 566 56.98 %  10.31 % 65.51 % 51.23% - 59.90 % 

 
p ≤ 0.01 566 63.38% 26.03% 71.12% 57.70% - 65.81% 

 
p ≤ 0.05 566 68.11% 37.96% 77.19% 62.97% - 70.51% 

RNA-Seq no 
deconvolution 

p ≤ 0.05 566 66.31% 37.66% 75.48% 61.08% - 68.78% 

RNA-Seq fixed 
threshold 

TPM ≥ 2 566 52.95% 19.30% 61.95%  45.74% - 57.80%  

Microarray gcRMA Present or 
marginal calls 

5358 56.59% 11.14% 85.30% 49.50 % - 63.38% 

Microarray MAS5 Present or 
marginal calls 

737 56.86% 23.24% 74.91% 45.23% - 62.63 % 

Table 1: Distribution of calls of expressed (“present”) coding genes over mouse RNA-Seq libraries and 
Affymetrix microarrays in Bgee. 
 

We evaluated the performance of these different methods using a mouse liver Ribo-Seq dataset. 

We use 89 libraries annotated in the Bgee database to the anatomical entity liver (Figure 2). 

The median true positive rate (TPR) differs only slightly with or without deconvolution; there 

is more difference when small p-values are used (p ≤ 1e-5), and then the deconvolution method 

performs slightly better. Using fixed TPM thresholds, we have less power (TPR) with the same 

level of specificity (FPR). The nominal p-values here could be affected by multiple testing, 

thus we also evaluated using a BH correction over all genes per library; this had very little 

impact (Supplementary figure 3). We also obtain consistent results with other benchmark data 

(Supplementary figure 4). 
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Figure 2: True discovery rate and false discovery rate for calls of gene expression, based on mouse Ribo-Seq. (A) 
Rates calculated per library using reference intergenic regions (deconvolution method) or without deconvolution; 
(B) Rate calculated based on TPM threshold. Colors correspond to different cutoffs (from p ≤ 0.05 to p ≤ 0.00001 
and from TPM ≥ 0.5 to TPM ≥ 10) applied to each approach (deconvolution, without deconvolution or TPM 
threshold) and different line type (solid and dotted) correspond to the TPR or FPR.  

Northern Pike: a non-model organism  
The Northern pike Esox lucius is an Esociformes fish, studied as an outgroup to Salmoniformes 

[26] In contrast to Mus musculus, Esox luciu has few libraries in Bgee 15.0 (24 libraries from 

24 conditions, from 16 anatomical structures and 2 developmental stages). We thus examined 

expression calls in such a case. Note that (Supplementary figure 5) we report results for all 52 

species in Bgee 15.0. 

One notable difference between non model and  model species genomes is the annotation of 

non coding genes. If not annotated, these appear as actively expressed “intergenic” regions. In 

Ensembl release 102, the human genome GRCh38.p13 and mouse genome 

GRCm38.p6  include 23,982 and 16,060 annotated non coding genes, of which 16,896 and 

9,972 are long non coding (lncRNA) genes. In the Northern pike genome Eluc_v4 there are 

6,291 non coding genes, of which only 915 are lncRNA genes. It is thus probable that this 

annotation misses potentially expressed non coding genes. 

Accordingly, we observe that the log2(TPM) distribution of intergenic regions is broader, and 

that it overlaps largely with the log2(TPM) distribution of protein-coding genes. This intergenic 

distribution is deconvoluted into four Gaussians (Figure 3A-B), and we define the MITTpike on 

the right of Gaussian 2 (log2(TPM) = -2.334883). As in mouse, our method produces consistent 

proportions of calls between libraries, with a median of 67.62% and an interquartile range of 

65.40% - 72.16% of genes expressed at an 𝛼 of 0.05. Using an 𝛼 of 0.01 or 0.001 of intergenic 
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among expressed genes reduces the median of expression as expected (Figure 3C). Here, using 

the whole set of intergenic regions without deconvolution has a huge effect, with the median 

number of protein coding genes called expressed at 𝛼 = 0.05 falling to 37.70%. The calls with 

a fixed threshold at 2 TPM are more variable with an interquartile range of 48.60% - 62.43%, 

and a median of 56.26%. In conclusion, the analysis on a  species with less well annotated 

genome highlights the importance of the deconvolution of intergenic regions, allowing to 

define a cleaner set of reference intergenic regions to call genes expressed (also see 

Supplementary figure 6). 

 

 
Figure 3: Expression of Northern pike genes. (A) Gaussians from the deconvolution of log2(TPM) density 
distributions for Northern pike libraries in Bgee 15.0. (B) density profile of regions assigned to each Gaussian. In 
blue, all intergenic; in green,orange, light blue and violet the density of regions assigned to each Gaussian. Dash 
red line all coding regions and dash line in gray MITTspecies. (log2(TPM) = -2.334883). (C) Distribution of calls 
of expressed (“present”) coding genes over 24 Northern pike libraries. From left to right, results using thresholds 
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from reference (deconvoluted) intergenic with a 𝛼 = 0.001, 0.01, 0.05, using a fixed 2 TPM threshold, and 𝛼 = 
0.05 without deconvolution. 

Application to 52 species in Bgee: stable calls of expression 
In the release 15.0 of the Bgee database, we used the pValue method with reference intergenic 

regions to classify genes as actively expressed or not across 15,516 curated RNA-Seq libraries 

from 52 animal species. As a comparison, we also applied both the method without 

deconvolution of intergenic regions and the fixed TPM cutoff method to call genes expressed 

or not in the same libraries (Figure 4). Of these, 4,847 are from human GTEx data, with a 

median of 57 libraries for the other species. 

Consistent with the results on mouse and pike, a fixed threshold on TPM values led to large 

variation in the proportion of genes called expressed between samples of the same species 

(Figure 4A). Using all intergenic regions to estimate background expression led to very large 

differences between model and non model organisms, probably reflecting genome annotation 

quality (Figure 4B). For H. sapiens, D. melanogaster, C. elegans, and M. musculus the 

proportion of calls of expression was above 65%, with relatively little variation across samples 

for these species. For G. aculeatus, A. calliptera, N. brichardi, and B. lanceolatum a minority 

of genes are called present. 

Our method provides calls of expression that were largely consistent across species, and among 

samples within a species (Figure 4C). A median proportion of  60% to 83% of genes are called 

expressed across species using 𝛼 = 0.05. Only four non-model species stand out, Astatotilapia 

calliptera, Neolamprologus brichardi, Branchiostoma lanceolatum and Latimeria chalumnae. 

The low median proportion of protein coding genes could be explained by the low numbers of 

biological replicates over a few organs, where some anatomical entities are represented by just 

one sample.  
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A 

 
B 

 
C 

 
Figure 4: Proportion of genes called present per species for all RNA-Seq libraries in Bgee release 15. The boxplots 
are ordered by the median proportion of protein coding genes using our reference intergenic method. (A) Using a 
threshold of 2 TPM. (B) Using a background of all intergenic regions. (C) Using our reference intergenic method.  
 

We used the proportion of non coding genes to check the role of annotation in detecting 

reference intergenic regions. Over all samples, the median proportion of genes called present 

using intergenic regions without deconvolution was strongly linked to the proportion of non-

coding genes (Table 2). For other methods, the correlation was much weaker, confirming that 

our deconvolution method corrected the false negative calls issue (i.e., genes actively expressed 

but called absent because misannotated intergenic regions were detected at similar or higher 

expression levels). 
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Expression call method Pearson r Spearman ρ 

Fixed TPM 0.198 0.111 

Intergenic, no deconvolution 0.760 0.723 

Intergenic, deconvolution 0.399 0.333 
Table 2: Correlation between the median proportion of genes called present and the proportion of non-coding 
genes in the genome annotation, over all species and samples (15516 libraries). Thresholds used: ≥ 2 TPM or 𝛼 = 
0.05. 

A large experiment across anatomy: application to GTEx 
GTEx [27] is the largest experiment in Bgee 15, with 4847 libraries in 75 human anatomical 

structures (curated subset of GTEx v6), which we will call “organs” here for simplicity. Bgee 

only includes libraries which were curated for healthy samples (e.g., no obesity, no disease, 

etc) [3], thus we expect a good consistency between samples. With a fixed threshold of 2 TPM 

there is large variation between organs, and a large variation between samples within organs 

(Figure 5A). On the other hand, our method provides very consistent call proportions between 

samples and also to some extent between organs (Figure 5B). Importantly, the differences 

between organs are consistent to expectations, e.g., testis has the highest proportion of genes 

actively expressed [28]–[30]. 
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A 

 
B 

 
C 

 
Figure 5: Distribution of calls of expressed (“present”) coding genes over GTEx libraries in Bgee, per anatomical 
structure. In red, samples from blood. (A) Distribution on calls based on a fixed 2 TPM threshold. (B) Distribution 
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on calls based the p-value approach (𝛼 = 0.05, reference intergenic).  (A-B) The organs are ordered by the median 
proportion of calls using the p-value approach. (C) Relation between present calls by p-value, and by fixed TPM 
threshold; in the corner, Pearson correlation. 
 

Finally, across all GTEx samples we observe a poor correlation between the proportion of 

genes called expressed with a fixed threshold compared to our method (Pearson r = 0.56) 

(Figure 5C). The correlation is even weaker after excluding blood samples (Pearson r = 0.43) 

(Supplementary figure 7). This shows that the method used to call expression can have a large 

impact on results. 

Application to single cell RNA-Seq 
The method that we present can also be applied to single-cell RNA-Seq with minor adaptations. 

For full length protocols we applied the method to two mouse experiments with a total of 1323 

cells (from Smart-seq and Smart-seq2 protocols), and to two human experiments with a total 

of 158 cells. Compared to bulk data, the median proportion of coding genes called present was 

much lower, at 28% in human and 34% in mouse (Figure 6). This decrease in the proportion 

of genes called expressed can be explained by the high proportion of zero read count [32] per 

transcript in scRNA-Seq data, relative to bulk RNA-Seq (Table 3).  

 

 
Figure 6: Proportion of protein coding genes expressed on full-length single cell vs. bulk RNA-Seq for human 
and mouse data. Here “scRNA-Seq” denotes full-length single cell RNA-Seq. 
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 1, 2022. ; https://doi.org/10.1101/2022.03.31.486555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.31.486555
http://creativecommons.org/licenses/by/4.0/


 14 

Species Data type Library Reference Reads Protein coding genes with 0 
reads 

Mus musculus bulk RNA-Seq ERX1174321 [33] 232 M 11.1% 

Mus musculus scRNA-Seq SRX259131 [34] 28 M 58.7% 

Homo sapiens bulk RNA-Seq SRX618352 [27] 236 M 4.6% 

Homo sapiens scRNA-Seq SRX2416177 [35] 14 M 68.3% 

Table 3: Proportion of genes Ids with zero read counts for the libraries with more reads for RNA-Seq and scRNA-
Seq integrated in Bgee 15 for mouse and human data. Here “scRNA-Seq” denotes full-length single cell RNA-
Seq. 
 

For droplet-based protocols, we focused on the  10X genomics platform and used 6 human 

testis libraries, 12 mouse spleen libraries, and 8 mouse blood libraries. These libraries provide 

expression information for 6,008 cells in human and 67,895 cells in mouse, after quality 

filtering [36]. Given the low average number of reads per cell relative to full length single-cell 

and bulk protocols [37], at the individual cell level we have no power, with extremely low 

CPMs and almost no distinction between genic and intergenic distributions (Figure 7A). We 

thus performed expression calls at the level of cell population rather than of individual cells. 

This is similar to bulk RNA-Seq samples resulting from an aggregation of a large population 

of cells. This allows us to recover satisfactory statistical power, with a clear difference between 

CPM levels of genic and intergenic regions  (Figure 7B). In order to also provide information 

at the individual cell level, similar to the approach in [38], we propose that once a gene is called 

expressed in a cell population, it is called expressed in each cell of this population if the gene 

has at least one UMI count.  
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Figure 7: Density distribution of genic and intergenic regions from 10X single-cell RNA-Seq. (A) using the CPM 
of only one randomly picked B-cell; a zoom in panel A is performed in order to show the densities of the high 
expressed regions. (B) Density calculated using the counts per million (CPM) of a population of B-cells (cell 
ontology id: CL-0000236); Data from library SRX6060813 [39].  
 

Overall, applying the reference intergenic method to these two different types of single-cell 

protocols yielded the same scale of expressed protein coding genes (Figure 8; Table 4), despite 

covering different cell types. The droplet-based protocols provided less dispersed results 

compared with full length protocols. In general, the use of our intergenic-based method 

provides stable results in calling expressed genes for different single-cell protocols.  

 
Data & protocol Species Median  Minimum  Maximum  Interquartile range 

scRNA-Seq full-length Homo 
sapiens 

28.293 %  2.59 % 61.633 % 12.50% - 32.962 % 

scRNA-Seq full-length Mus 
musculus 

34.231 %  3.469 % 47.415 % 31.27% - 36.253 % 

scRNA-Seq droplet-based Homo 
sapiens 

39.41 % 32.7 % 50.40% 35.79% - 41.33% 

scRNA-Seq droplet-based Mus 
musculus 

30.22 % 23.43 % 34.39 % 27.80% - 32.02% 

Table 4: Distribution of calls of expressed (“present”) coding genes over human and mouse single cell RNA-Seq 
libraries for different protocols. 
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Figure 8: Comparison of proportion of expression calls in single cell RNA-Seq data using different protocols. 
 

Using a simple CPM threshold (CPM ≥ 1) in droplet-based protocols (after summing the UMIs 

across cells that belongs to the same cell type and are from the same sample) to call expression 

genes we obtain an increase in the median expression (Supplementary figure 8), to 65.26% for 

human and 45.72% for mouse. 

Performing functional enrichment on genes called expressed in the B-cell population identified 

(Figure 9) important and specific functional categories, such as: Hypoxia response via HIF 

activation – the transcription factor HIF has a fundamental role to help immune cells adapting 

to hypoxic environments [40]; the FAS signaling pathway, which plays an important role in 

the maintenance of immunological tolerance [41]; the oxidative stress response (ROS), which 

affects the maturation, activation and differentiation of B cells [42]; the toll receptor signaling 

pathway, which provides a mechanism for adaptive immune response in B cells, as well as 

activation and differentiation [43]; the transcription regulation by bZip transcription factors, 

which are regulators of B cell differentiation [44]. In summary, genes classified present by our 

method were clearly enriched for genes important for B cell biology, whereas a simple CPM 

threshold misses important pathways.  
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Figure 9: Enrichment test of functional pathways for genes called present in the B-cell population.The graphics 
represent the over and underrepresented pathways using (A) the genes called present using CPM ≥ 1 and (B) the 
genes called present by the reference intergenic method. All pathways shown have p < 4.35e-3. 

Calls over multiple libraries 
When  multiple RNA-Seq libraries describe the same condition (e.g. the same organ), either 

from one experiment or several, it can be useful to make gene expression calls taking all of the 

available libraries into account (i.e., to obtain one call per gene and per condition). We applied 

three quantitative methods (see methods section), two derived from our reference intergenic 

approach, and one recently published Bayesian method [22], zigzag, which necessitates 

multiple libraries to make expression calls. We first evaluated method performance based on 

the reference datasets used in the zigzag publication [22], i.e. a set of genes known to be 

expressed in human lung based on epigenetic markers and in fly testis based on developmental 

genetic studies. The RNA-Seq data used are from Bgee samples matching the conditions of 

these benchmark datasets. 

For human lung RNA-Seq, three samples were not included in the zigzag analysis because of 

their high variance (Supplementary figure 9). Indeed, when all 26 samples were used (Figure 

10A) we detected a problem likely associated with how the variance of genes across samples 

is initialized. The high discrepancy in variance between samples impacted the convergence of 

the MCMC. Zigzag was designed for the initial values of variances for genes to be small, and 

in these libraries that is not the case. Given that, we could either remove from the zigzag 

analysis the libraries with the highest variance between genes, or the genes with the highest 

variance between libraries. We chose to remove libraries (Figure 10B). The high variance 

between samples is not a problem for the intergenic-based methods, because they are based on 

p-value or q-value computed in each sample independently. Hence, all samples can be included 

for the intergenic-based methods (Figure 10A). 
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Figure 10: Comparison of the performance of three different methods to call active expression on a combination 
of libraries for human lung data. (A) Calls of expression using all 26 libraries. (B) Calls of expression restricted 
to 23 libraries for which zigzag could be run.  True positive rates (TPR) as a function of False positive rates (FPR). 
The blue and red lines show the performance of the intergenic-based methods (FDR inverse and BH method) and 
the gray line shows the performance of zigzag. For each method we estimated the inflection point (black dots) 
and we show the standard thresholds for each method as colored dots. 
 

All three methods perform very well based on AUC, with the top score for the Bayesian 

method, with an AUC of 0.97 (Figure 10) when just a subset of 23 samples is included in the 

analysis. On the other hand, the intergenic-based methods perform very well in both situations, 

with all 26 samples or just a subset of samples. For each method, we report two thresholds: the 

Extremum Distance Estimator (EDE) for inflection point calculated by using the coordinates 

of the TPR/FPR curve (black dots in Figure 10); and standard thresholds, i.e. for the Bayesian 

method a posterior probability PP ≥ 0.95 and for the intergenic based methods q ≤ 0.05 or p ≤ 

0.05. With the inflection point thresholds, the false positive rates are low for all methods, with 

true positive rates of at least 75% (Table 5), but such thresholds will rarely be used in practice. 

On the other hand, with a standard threshold the true positive rate is much lower for the 

Bayesian method, while the false positive rates are much higher for the intergenic-based 

methods. 
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Method Threshold Number 
samples 

TP FP TN FN TPR FPR 

BH inflection point 
(p ≤ 3.28e-13) 

26 5408 323 4058 1812 0.749 0.074 

FDR inverse inflection point 
(q ≤ 3.54 e-11) 

26 5536 256 4179 1684 0.767 0.058 

zigzag inflection point 
(PP ≥ 0.707) 

23 6097 179 4256 1123 0.844 0.040 

BH p ≤ 0.05 26 7219 2925 1456 1 0.999 0.668 

FDR inverse q ≤ 0.05 26 7210 1954 2481 10 0.998 0.440 

zigzag PP ≥ 0.95 23 3566 63 4372 3654 0.493 0.014 
Table 5: Benchmark of combining multiple libraries for human lung data. Abbreviations: True positive (TP), False 
positive (FP), True negative (TN), False negative (FN), True positive rate (TPR), False positive rate (FPR). 
 
We performed similar analyses with the fly testis benchmark. Surprisingly, with zigzag no true 

positive was found with PP ≥ 0.95 (Figure 11A). That can be explained by the difference in the 

log TPM distribution across the six samples, where 2 samples show high variance 

(Supplementary figure 10). In this method it is necessary to set thresholds in order to have 

identifiability constraints. For these samples we set the threshold 𝛼 (not to be confused with 

the threshold of p-value testing) between 1 and 4 (Supplementary figure 10). The first threshold 

is important to catch the upper boundary for the inactive mean prior distribution that is also the 

lower boundary for the first active mean prior distribution, and the second threshold is 

important to define the lower boundary for a possible additional component of very highly 

expressed genes [22]. To set these thresholds using all the testis samples is difficult, given the 

dispersed density distribution of the data. Given that, and even if we were able to make an 

initial estimation using all samples, that estimation can be biologically misleading. To get a 

better estimation from zigzag we chose to remove these 2 samples with high variance for fly 

testis. After removing these two samples from the Bayesian analysis, all the approaches again 

perform quite similarly in terms of AUC, ranging from 0.98 for BH to 0.99 with the FDR 

inverse method (Figure 11B). 
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Figure 11: Comparison of the performance of three different methods to call active expression on a combination 
of libraries for fly testis data. (A) Calls of expression using all 6 libraries. (B) Calls of expression restricted to 4 
libraries. True positive rates (TPR) as a function of False positive rates (FPR). The gray line shows the 
performance of zigzag, the blue and red lines show the performance of the intergenic-based methods (FDR inverse 
and BH method). For each method we estimated the inflection point (black dots) and we show the standard 
thresholds for each method as colored dots. 
 
Using the inflection point thresholds again provides a very low false positive rate in all methods 

(Table 6), with a lower true positive rate for the BH method. Using the standard thresholds the 

Bayesian method again has a low true positive rate, while the BH method has a relatively high 

false positive rate compared with other methods. The FDR inverse method performs well on 

both criteria. 

 

Method Threshold Number 
samples 

TP FP TN FN TPR FPR 

BH inflection point 
(p ≤ 0.0016) 

6 28 3 107 9 0.757 0.027 

FDR inverse inflection point 
(q ≤ 0.0086) 

6 35 4 116 2 0.946 0.033 

zigzag inflection point 
(PP ≥ 0.635) 

4 35 6 114 2 0.946 0.05 

BH p ≤ 0.05 6 37 20 90 0 1 0.182 

FDR inverse q ≤ 0.05 6 34 3 117 3 0.919 0.025 

zigzag PP ≥ 0.95 4 21 2 118 16 0.568 0.017 
Table 6: Benchmark of combining multiple libraries for fly testis data. Abbreviations: True positive (TP), False 
positive (FP), True negative (TN), False negative (FN), True positive rate (TPR), False positive rate (FPR). 
 
Finally, we used mouse liver Ribo-Seq as an additional benchmark, since active translation by 

ribosomes provides a clear signal of activity of protein-coding genes that should only be seen 

in actively transcribed genes. Once again, all three methods display very good AUC values 

(Figure 12), from 0.94 for BH to 0.97 for zigzag. The Bayesian method performed very well 
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using the inflection point threshold (Table 7). However with a standard threshold it had a very 

low true positive rate, while the BH method had a very high rate of false positives, and again 

the FDR inverse performs well. 

 

 
Figure 12: Comparison of the performance of three different methods to call active expression on a combination 
of libraries for mouse liver data. True positive rates (TPR) as a function of False positive rates (FPR). The gray 
line shows the performance of zigzag, the blue and red lines show the performance of the intergenic-based 
methods (FDR inverse and BH method). For each method we estimated the inflection point (black dots) and we 
show the standard thresholds for each method as colored dots. 
 

Method Threshold Number 
samples 

TP FP TN FN TPR FPR 

BH inflection point 
(p ≤ 1.24e-7) 

89 6476 1160 11166 2083 0.757 0.094 

FDR inverse inflection point 
(q ≤ 0.00066) 

89 6768 1147 12230 1791 0.791 0.086 

zigzag inflection point 
(PP ≥ 0.428) 

89 7104 661 12716 1455 0.83 0.05 

BH p ≤ 0.05 89 8555 7657 4669 4 0.999 0.62 

FDR inverse q ≤ 0.05 89 6474 976 12401 2085 0.756 0.07 

zigzag PP ≥ 0.95 89 370 10 13367 8189 0.043 0.0007 
Table 7: Benchmark of combining multiple libraries for mouse liver data. Abbreviations: True positive (TP), False 
positive (FP), True negative (TN), False negative (FN), True positive rate (TPR), False positive rate (FPR). 
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Over the three datasets, the FDR inverse approach provides a relatively high recovery of true 

positives while controlling the false discovery rate, especially relative to the other methods 

using a standard threshold, which is the expected usage of methods in practice. On the other 

hand, the BH approach can keep a high true positive rate even with much more stringent 

thresholds (Supplementary table 3). The FDR inverse approach is based on the q-value, which 

has the drawback of increased variation between individual samples (Figure 13). Zigzag 

performs well on the AUC criterion, but with a standard threshold has low sensitivity, and 

cannot be applied to all sets of libraries. 

 

 
Figure 13: Proportion of protein coding genes called present using two different methods: p ≤ 0.05 and q ≤ 0.05. 
The data used for the analysis/plotting are the data used to benchmark combining multiple libraries: Drosophila 
testis samples, Human lung samples and Mouse liver samples.  

Discussion 
Determining when and where a gene is expressed is a fundamental level of information on gene 

function. To study this, we need to determine whether a gene is expressed or not in a given 

condition. Moreover, it is good practice to restrict quantitative analyses such as differential 

expression to analyzing the signal from expressed genes, not background transcriptional noise. 

Thus it is important to be able to infer reliably gene expression calls from quantitative RNA-

Seq data. Ideally such a method should be robust to skewed expression among genes, poor 

genome annotation, and low numbers of replicates. As noted by Thompson et al. [22]: 

“Inferring the expression state (active or inactive) of a given gene from transcriptomic datasets 

is surprisingly difficult”. 

Several methods have been proposed based on modeling  the distribution of expression levels 

of genes [18] [21], [22]. In this work we propose an empirical approach to estimate background 
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noise of RNA libraries, which can be applied even to a single library. We propose to use a set 

of reference intergenic regions to perform a call of expression per gene in a sample.  

We are not the first to compare RNA-Seq counts mapping to exonic and other genome regions. 

Hebenstreit et al. [4] showed that intronic regions had intermediary expression levels, in-

between those of intergenic regions and exonic regions. This is consistent with the expectation 

that extracted RNA will contain immature or partially mature mRNAs, as well as unannotated 

exons or exon boundaries within known genes. While this observation is in principle interesting 

[45], it is not helpful to estimate background transcriptional noise and call genes actively 

expressed. Hebenstreit et al. [4] reported the 90% quantile of the distribution of intergenic TPM 

values as a threshold above which genes could be called expressed with strong confidence. Of 

note, their intergenic regions had very low expression levels overall, spreading on the right-

end of the TPM spectrum to overlap with exonic sequences. This is probably due to the 

inclusion of non-coding genes which were absent from the annotation version used: annotated 

non-coding RNA genes have increased from 9240 to 19291 [46], of which 13186 long non-

coding RNA genes (from 3845). A later study explored the use of different thresholds on 

intergenic or intronic expression to call genes present [47], but it was based on only one RNA-

Seq experiment, and did not provide any guidelines. The first study to our knowledge to use 

intergenic transcription to define gene expression established a 0.4 RPKM threshold balancing 

the numbers of false positives and false negatives, to define a set of human house-keeping 

genes [48]. Again, the distribution of RPKM values for intergenic regions spread was very 

large. These results and our own show that the use of intergenic regions to estimate false 

discovery rates in gene expression is promising, but that it is important to define reference 

intergenic sequences which are truly not actively expressed, thus excluding unannotated genes 

or other potentially transcribed regions. 

To define these reference intergenic regions, we rely here on the curated healthy wild-type 

libraries in the Bgee database [3]. We propose that it is important to exclude tumor samples 

and immortalized cell lines from this step, since transcription can be deregulated in such cells, 

which could lead to wrong attributions of intergenic regions. It is also important in principle to 

include as diverse samples as possible, representing different cell states and types. Yet the 

method already works well in species with as few as two different anatomical structures, such 

as Poecilia reticulata with 45 libraries, as well as in some species with few libraries, such as 

Drosophila pseudoobscura with 10 libraries and just four anatomical structures 

(Supplementary figure 5). Our method is also robust to the use of different mapping or pseudo-
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mapping for quantification, as shown by comparing results between pseudo-aligners Kallisto 

[49] or Salmon [50] and the aligner HISAT2 [51] (see Methods section). 

A median of 73% of all intergenic regions are selected as reference intergenic over all species 

(Supplementary figure 11). While there is a positive relation between this proportion and the 

proportion of non-coding genes in the genomes (Pearson r = 0.55), even for the less well 

annotated genomes we are able to recover >50% of intergenic regions in the reference. The 

intergenic regions that are not classified as reference present in general a higher GC content 

(Supplementary figure 12). On the other hand, it is consistent with known higher GC of genic 

regions [52], which might be missannotated as intergenic. There is no apparent chromosomal 

pattern of distribution of the reference intergenic regions.  

For species present in Bgee we provide reference intergenic regions predefined, but it is 

straightforward to extend the approach to other species. In practice, we have only tested animal 

genomes. Other large eukaryotic genomes with large intergenic regions should behave 

similarly. We did not explore applicability to more compact genomes, such as yeasts or 

bacteria, but the lack of large intergenic regions might limit our power to define background 

expression. 

The method which we propose appears robust to low coverage samples and to high variance 

between samples when combining libraries, and has much shorter computation times than the 

Bayesian method proposed by Thompson et al. [22]). Importantly, our method can be applied 

to single cell RNA-Seq data from different protocols with no change. Moreover, once the 

reference set of intergenic regions are defined for a species they can be applied to any existing 

or new libraries from this species; no posterior controls such as MCMC convergence or 

sampling are needed. Interestingly, the reference intergenic regions which we compute can be 

used as reference for other data, for example providing a baseline for promoter histone marks 

[53]. 

The two intergenic-based methods (pValue and qValue) presented in the library combination 

section can both be useful according to scientific questions, according to use cases. Given that 

the Bgee database annotates individual samples we use the p-value method, which has low 

variance between samples (Figure 13). Consequently, we use the BH method to combine 

libraries in Bgee. Relative to the Bayesian approach implemented in zigzag, this method can 

also be applied to samples with high variance, from different RNA-Seq experiments, and even 

from different anatomical entities (e.g. combine different brain parts to provide a “brain” call) 

or other sampling variables.  
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In conclusion, the approach that we present provides a robust, versatile, computationally 

efficient, and easy to scale method to distinguish genes which are actively expressed. It can be 

applied to single libraries as well as to sets, from one or several experiments, and to different 

bulk or single-cell protocols. 

Methods 
General approach 
For a species under consideration we need an annotated reference genome sequence and a set 

of RNA-Seq libraries (Figure 14, in blue). In practice, we use curated healthy wild-type 

libraries from the Bgee database [3], but other sources can be used. From this genome we 

extract two sets of genomic regions for mapping of RNA-Seq reads: exons (coding and non 

coding), i.e., genic regions, and putative intergenic regions. The latter are defined as regions of 

DNA which are at least 0.5 kb from a gene annotation, and are at least 1 kb long. For regions 

which are longer than 20 kb, we keep only the 20 kb at the center of the region (i.e., 10 kb on 

each side of the center). These choices can be adapted to the structure and compactness of 

different genomes; here we focused on animal genomes. The definition of these putative 

intergenic regions is dependent on the quality of the genome annotation at this stage.  

Reads from each library are mapped to the genic and putative intergenic regions, and the counts 

per region are recovered. In practice we use Kallisto (version 0.46.0) [54] to quantify the 

abundance of transcripts from RNA-Seq data using pseudo-mapping, but the principle would 

be similar for other read mapping tools (e.g., HISAT2 (version 2.2.0)) (Figure 15); we sum 

over transcripts per gene. We sum read counts over all libraries for a given species, followed 

by TPM normalization [15] to obtain the distributions of log2(TPM) for the genic and 

intergenic regions. Note that for log transformation we add a small pseudo-count to the read 

counts (1e-06). Within the genic regions we further distinguish the distribution of TPMs of 

protein-coding genes, which are usually reasonably well-annotated, even in non-model species. 

Intergenic region selection 
Publicly available genomes contain a variable proportion of ambiguous bases, coded as ‘N’. 

For the 52 species present in Bgee 15 this varies from 0% in Caenorhabditis elegans to 35.5% 

in Gadus morhua (Supplementary table 4). These Ns are often present in blocks of up to 

thousands of bases, and mostly affect intergenic regions. As absence of genome annotation is 
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the only criterion to generate candidate intergenic regions, and reads will map poorly to regions 

with high proportion of N, such regions could bias downstream abundance quantifications. For 

instance, Kallisto pseudorandomly transforms all N bases to A, T, C, or G bases during the 

pseudo-mapping step. We thus generated a version of the intergenic regions from which we 

removed blocks of N longer than 31 bp (default k-mer size of Kallisto index) and all sequences 

containing more than 5% of N, as well as those smaller than 1 kb after N removal. This set is 

available at https://bgee.org/ftp/intergenic/1.0/ref_intergenic/; it contains a median of 

0.000973% of Ns per region. We recommend performing a similar filtering for any new 

genome to analyze. 

While some well-annotated species (e.g., human, mouse, fruit fly) have only a very small 

fraction of intergenic regions with high expression levels, other species, often non-model, 

present large fractions of “intergenic regions” with high expression levels (Supplementary 

figure 6). This is likely due to the poor annotation of various transcribed elements, such as non 

coding genes or very short coding genes. To define a strict set of intergenic regions, excluding 

these actively expressed regions, we deconvolute the summed intergenic log2(TPM) 

distribution into a set of Gaussian distributions, following the concept from Hebenstreit et al. 

[4]. We use Mclust [55] for deconvolution, fitting a Gaussian mixture with the number of 

components chosen by a Bayesian Information Criterion. 

To define which of the Gaussians represent truly reference – i.e., non-expressed – intergenic 

regions, we use manual curation, although this could be automated in the future. For each 

species, the overlap of the intergenic log2(TPM) Gaussians to the summed log2(TPM) 

distribution of protein-coding regions is considered. The latter are used as a reference set of 

genes, which should be overall actively expressed in at least some conditions, and which should 

show little overlap of expression levels with true intergenic regions. From the deconvoluted 

Gaussian of these non expressed intergenic regions, we recover a threshold in TPM unit, 

namely the highest TPM value of any region classified as originating from this Gaussian, 

referred to in this paper as the species-specific maximum inactively transcribed threshold, or 

MITTspecies. The final set of reference intergenic regions are defined as all intergenic regions 

with a lower TPM than MITTspecies (Figure 14A in blue and Figure 14B and C). Note that other 

intergenic regions are no longer used for the rest of the procedure. 
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Figure 14: Flow chart of information for calls of expression from RNA-Seq. A) In blue, steps done once per 
species; in black, steps done for each library separately. The figure uses “TPM” for simplicity, but any measure 
of normalized read counts can be used (e.g., FPKM, or CPM of UMI counts). B-D) illustrative examples of the 
distributions of TPMs: B) deconvolution of TPMs computed from all intergenic regions and from all libraries; C) 
using TPMs of coding genes from all libraries (dashed line), Gaussians of “non expressed intergenic” regions are 
defined (in red) and MITTspecies represented by a vertical green line; D) for one library, the distributions of TPMs 
for reference intergenic (full line), are used to define a minimum actively transcribed threshold (MATTlibrary), 
represented by a vertical red line, of expression for non coding genes (dashed line, blue), and coding genes (dashed 
line, black). In B and C we compute the density of log(TPM) for genes and intergenic, and normalize the two 
density curves for the number of genes and of intergenic regions, so that the two curves are directly comparable. 
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Figure 15: Classification of reference intergenic regions using alignment-based (HISAT2) or pseudo-mapping 
(Kallisto or Salmon) methods. Applied to 24 pike (Esox lucius) libraries integrated in Bgee 15.0. The match of 
reference intergenic regions selected from Salmon and Kallisto is 97%, between Salmon and HISAT2 the match 
is 74% and between Kallisto and HISAT2 the match is 73% of intergenic regions classified as reference 
intergenic.  

Sample-specific expression threshold 
In this work we introduce two methods, pValue and qValue (based on the corresponding 

concepts), to detect genes actively expressed in any standalone RNA-Seq library. The steps of 

either method are performed for each library separately in order to define a sample-specific 

threshold, or minimum actively transcribed threshold MATTlibrary, to classify active and 

inactive genes (Figure 14A, in black). We map reads both to transcripts and to the reference 

intergenic regions, and compute TPMs per gene (summing over transcripts) and per intergenic 

region – again using Kallisto in practice. The two reference intergenic methods for the single 

library are implemented in the BgeeCall R package [23]. 

pValue method 
For each gene i in the library, we compute a Z-score in terms of standard deviations from the 

mean of reference intergenic regions. 
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Then for gene i in this library we calculate a p-value based on a null hypothesis of expression 

at a similar level to reference intergenic, estimated as a Normal distribution. In practice we 

use the pnorm() function in R: 

 
pValue = pnorm(zScore,lower.tail=FALSE) 

 
 
The library-specific TPM limit to call genes expressed is the minimum value of TPM where p-

value ≤ 𝛼; in the Results we will use 𝛼 = 0.05 unless otherwise specified. 

qValue method 
We propose a q-value based approach as an alternative to the p-value presented above. The 

idea is that the distribution of TPM values from intergenic regions can be used to estimate the 

false positive rate at each TPM threshold. We calculate for each log2(TPM) value the area 

under the density distribution curve for the genic and intergenic regions. Based on that, the 

qValue parameter, for a corresponding log2(TPM) value, is the ratio between the numerical 

integration value to the background noise on non expressed regions and the sum of the 

numerical integration value to the background noise with the numerical integration value of 

the genic region.  

In detail, for each individual sample, a numerical integration by linear interpolation is 

calculated from all density distribution of log2(TPM) values of genic and intergenic regions, 

as shown in the formula below: 

 

 
 
where f(x) is a linear interpolated function of the density of the region, and the mindr and maxdr 

are the limits across which the area is calculated taking into consideration the density of the 

region (dr); regions can be either genic or intergenic regions.  

Then for each unique log2(TPM) value we calculate the numerical integration from the genic 

and intergenic density distribution curves. The integration is calculated from the log2(TPM) 

value until the maximum of the density distribution of each region. 
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The integrated value is then scaled by the numerical integration of the all density regions. 

 
 
Finally, the q-valuei of each gene i is calculated following the formula: 

 
 
The library-specific TPM limit to call genes expressed is the minimum value of TPM where q-

value ≤ 𝛼. 

Combining multiple libraries  
For some applications it can be of interest to determine genes which are actively expressed 

over a set of libraries. In order to combine information from multiple libraries, we tested three 

different methods (Table 8). The combination methods developed in this work (BH and FDR 

inverse) are implemented in the BgeeCall R package. We compared the performance of our 

two combination methods with the Bayesian method “zigzag” of Thompson et al. [22] (R 

Package version: zigzag_0.1.0 , and repository: https://github.com/ammonthompson/zigzag), 

across different conditions, such as developmental stages, sexes or strains. Indeed  by design 

zigzag requires multiple libraries to infer gene expression state. 

To validate these approaches and calculate true and false positive rates, we  used the same 

datasets  as in Thompson et al. [22], i.e. active/inactive genes defined from epigenomic data 

from Homo sapiens (human) lung [22] and genetic evidence from Drosophila melanogaster 

(fly) testis [22]. We also used a ribosome footprint from Mus musculus (mouse) liver [56] (see 

below).  
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Method Calls per 
library 

Approach used to combine 
libraries 

Reference Availability 

pValue Yes BH this work BgeeCall 
package 

qValue Yes FDR inverse this work BgeeCall 
package 

zigzag No Bayesian inference Thompson et 
al.[22] 

zigzag package 

Table 8: Two methods proposed in this work to call expressed genes at individual sample level then combine 
information from multiple libraries, and a third method from the literature to combine libraries. The two 
approaches proposed in this work use the reference set of intergenic regions to call expressed genes.  
 
In the first approach, pValue, we simply combine information from multiple libraries by 

applying the Benjamini-Hochberg procedure (BH) [57] on the p-value computed per library as 

described above. In the second approach, to combine libraries based on the qValue computed 

per library (qlibrary) as described above, we propose an “FDR inverse” approach to control the 

false discovery rate. We define a q-value threshold taking into consideration the number N of 

libraries to combine and the qlibrary threshold 𝛼 used in single libraries: 

 

Mouse liver benchmark 
We use a processed mouse liver Ribo-Seq dataset downloaded from GEO (GSE67305) to 

benchmark methods both at individual library level and in the  process of combining multiple 

libraries to call genes present and absent. Active translation by ribosomes provides a clear 

signal of activity of protein-coding genes, so true positives were defined as the union of protein-

coding genes detected in all samples with ≥ 1 RPKM and of protein-coding genes detected in 

at least one sample with ≥ 5 RPKM. True negatives were defined as protein-coding genes which 

matched neither condition. 

Analysis of  scRNA-Seq data (droplet-based protocols) 
For droplet-based protocols dataset using the 10X Genomics technology,  each sample was 

pseudo-mapped using Kallisto software and the output files were treated with the bustools [58] 

software (version 0.40.0). The bustools output was read into R with the BUSpaRse R package 

(version 1.3.1) and data analysis was performed in R. 

The annotation  of cells to cell types was based on the mapping provided by the original 

publication (using the barcodes information). To perform calls of expression per gene and cell 
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type we used a “pseudo-bulk” approach [59] whereby the read counts of cells belonging to the 

same cell type and sample were summed before CPM normalization.  

Functional enrichment analysis 
We performed overrepresentation tests for PANTHER pathways [60] by using the annotation 

from the PANTHER database [61] http://pantherdb.org/ (PANTHER version 16.0 released on 

2020-12-01). The Gene List Analysis tool was used with Fisher’s exact test and FDR 

correction. 

HISAT2  
The mapping of RNA-Seq libraries from pike samples was performed using HISAT2 version 

2.2.0. We used the default commands to build the index and to perform the mapping (scripts 

available on github repository).  The sam output files generated by HISAT2 were converted 

into bam files and then we used salmon software to make the alignments quantification. 

Salmon 
The pseudo-mapping of RNA-Seq libraries from pike samples was performed using Salmon 

version 0.12.0. The index was built with k-mers of length 31, since all pike libraries have read 

lengths higher than 75bp. The commands to build and to make the pseudo-alignment were used 

by default (scripts available on github repository). 

CG content 
The CG content of the intergenic regions were quantified separately for regions classified as 

reference intergenic and other intergenic regions for all species using the SeqKit software [62] 

version 2.0.0 with following command:  
seqkit fx2tab --name --gc species_X_Refintergenic.fa > species_X_Refintergenic_CG.tsv 

seqkit fx2tab --name --gc species_X_other_intergenic.fa > species_X_other_intergenic_CG.tsv 

Data access 
All empirical data used in this work for RNA-Seq and single cell full-length protocols were 

obtained from Bgee 15.0 and are accessible through the BgeeDB R package [63]. The empirical 

data for droplet-based protocols (data not inserted in Bgee 15.0) are from the experiments 

SRP135999 [64] and SRP201320 [39]. 
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All input files and specific code to reproduce the figures or statistical files of this paper are 

available at https://github.com/BgeeDB/Methods_RNASeq_expression_calls . The full Bgee 

pipeline for RNA-Seq is available at 

https://github.com/BgeeDB/bgee_pipeline/tree/master/pipeline/RNA_Seq, the pipeline for 

scRNA-Seq using full-length protocols is available at 

https://github.com/BgeeDB/bgee_pipeline/tree/develop/pipeline/scRNA_Seq/Full_Length_Pr

otocols and the full droplet-based pipeline is available at 

(https://github.com/BgeeDB/bgee_pipeline/tree/develop/pipeline/scRNA_Seq/Droplet_based

_Protocols). The BgeeCall R package used for methods in this work can be found linked to a 

specific tag  (https://github.com/BgeeDB/BgeeCall/tree/calls_paper). 
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