
MicroRNA-eQTLs in the developing human neocortex link miR-4707-3p 
expression to brain size 

 
 
Michael J. Lafferty (1,2) 
Nil Aygün (1,2) 
Oleh Krupa (1,2) 
Dan Liang (1,2) 
Justin M. Wolter (1,2,3,4) 
Daniel H. Geschwind (5,6,7,8) 
Luis de la Torre-Ubieta (8) 
Jason L. Stein (1,2,4) 
 
1. Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, 

USA 
2. UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 

27599, USA 
3. Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, 

Chapel Hill, NC 27599, USA 
4. Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel 

Hill, Chapel Hill, NC 27599, USA 
5. Neurogenetics Program, Department of Neurology, David Geffen School of Medicine, 

University of California, Los Angeles, Los Angeles, CA 90095, USA 
6. Center for Autism Research and Treatment, Semel Institute, David Geffen School of 

Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA 
7. Department of Human Genetics, David Geffen School of Medicine, University of California, 

Los Angeles, Los Angeles, CA 90095, USA 
8. Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School 

of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA 
 
Correspondence should be addressed to: Jason L. Stein, jason_stein@med.unc.edu 
 
 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2022. ; https://doi.org/10.1101/2022.03.31.486585doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.31.486585
http://creativecommons.org/licenses/by/4.0/


Abstract 
Expression quantitative trait loci (eQTL) data have proven important for linking non-coding loci 
to protein-coding genes. But eQTL studies rarely measure microRNAs (miRNAs), small non-
coding RNA known to play a role in human brain development and neurogenesis. Here, we 
perform small-RNA sequencing across 212 mid-gestation human neocortical tissue samples, 
profiled 907 miRNAs, discovering 111 novel early brain-expressed miRNAs, and identified 85 
local-miRNA-eQTLs. Colocalization of miRNA-eQTLs with GWAS summary statistics yielded 
one robust colocalization of miR-4707-3p expression with educational attainment and head size 
phenotypes, where the miRNA expression increasing allele was associated with decreased 
head size. Exogenous expression of miR-4707-3p in primary human neural progenitor cells led 
to increased proliferative and neurogenic gene markers, indicating miR-4707-3p modulates 
progenitor proliferation. Integrating miRNA-eQTLs with existing GWAS yielded discovery of a 
miRNA modulating developmental fate decisions that alter human brain size.  
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Introduction 
Genome-wide association studies (GWAS) have identified many genetic loci influencing human 
behavior, cognition, and brain structure1–5. Expression quantitative trait loci (eQTL) data is often 
used to link non-coding brain-trait associated loci with genes that putatively mediate their 
effects6–8. Brain eQTL studies are most often conducted in bulk adult post-mortem tissue and 
are focused on measuring mRNA expression levels from protein-coding genes. Though these 
methods have been successful in linking a subset of non-coding brain-trait associated loci to 
genes, there may be multiple mechanisms by which a single locus influences a complex trait 
and many loci are still unlinked to genes9–14. This suggests other types of RNAs, unmeasured in 
previous eQTL studies, may be mediating the genetic associations. 
 
MicroRNAs (miRNAs) are poorly measured in standard eQTL studies because the library 
preparation methods effectively remove small RNAs. Library preparation methods have been 
developed that specifically measure small RNAs and allow measurement of miRNA expression 
in large sample sizes necessary for miRNA-eQTL studies. To date, relatively few miRNA-eQTL 
studies have been published, and those that have, are often underpowered or in tissues not 
directly implicated in brain-related phenotypes15–19. Given evidence that miRNAs are strongly 
involved in fate decisions during neurogenesis and brain development, there is an increasing 
need to understand the genetic basis by which miRNAs are regulated20–23. 
 
Previous studies have found enrichment of brain structure and cognition GWAS heritability 
within regulatory elements active during mid-fetal development1,24,25. Mapping mRNA-eQTLs in 
human mid-gestation cortical tissue or neural progenitor cells derived from that tissue has 
revealed novel developmentally-specific colocalizations with brain structure and cognitive 
traits8,9. These findings are consistent with the radial unit hypothesis, which posits that increases 
in size of the neural progenitor pool, present only in mid-gestation, leads to increases in the size 
of the cortex26,27. The discovery of miRNA-eQTLs during prenatal cortical development may 
highlight additional molecular mechanisms by which non-coding loci influence brain-related 
traits. 
 
In this study, we performed a local-miRNA-eQTL analysis in 212 mid-gestation human cortical 
tissue donors to discover the common genetic variation associated with expression of nearby 
miRNAs (Figure 1A). We identified 85 local-miRNA-eQTLs (variant - miRNA pairs) associated 
with expression of 70 miRNAs. These miRNAs were often found within host mRNAs (49 of 70 
miRNAs), but the genetic signal associated with miRNA expression was seldom colocalized with 
a signal associated with mRNA expression (observed only in 3 of 49 loci). One robust 
colocalization was detected between a miRNA-eQTL for miR-4707-3p expression and GWAS 
signals for educational attainment and head size phenotypes. Experimental manipulation of 
miR-4707-3p expression within primary human neural progenitors during proliferation showed 
miR-4707-3p increased the number of proliferating cells. This example confirms the utility of 
miRNA-eQTLs in understanding how genetic variation may influence brain-related traits through 
regulation of miRNA expression. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2022. ; https://doi.org/10.1101/2022.03.31.486585doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.31.486585
http://creativecommons.org/licenses/by/4.0/


Results 

MicroRNA expression profiling 
We profiled the expression of miRNAs across 223 fetal cortical tissue samples from donors 
between 14 and 21 gestation weeks using high-throughput small-RNA-sequencing. We used a 
specialized miRNA quantification algorithm, implemented in the miRge 2.0 package28, to 
measure the expression of known miRNAs cataloged in miRBase release 22 (March 2018)29. 
Combined with total-RNA-sequencing using an rRNA depletion based library preparation in 
these same samples, collected in a previous study9, we used rigorous quality control criteria 
(Methods) to eliminate 11 samples that were possible swaps, mixtures, or expression outliers 
(Extended Data Figure 1A-C). Following batch effect correction for known technical confounding 
variables (Extended Dat Fig 1A-B), a principal component analysis (PCA) on miRNA expression 
across the 212 remaining samples revealed the primary variation between samples was driven 
by gestation week at time of sample collection (Figure 1B). This finding is consistent with tissue 
composition differences between tissue from early gestation, composed of a greater proportion 
of neural progenitor cells, and late gestation, composed of a greater proportion of neurons30,31. 
This analysis shows that after controlling for known technical variation, miRNA expression 
captures expected biological variability across these samples. 
 
We conducted a differential expression analysis to identify the miRNAs changing across 
gestation weeks (Figure 1C). We found 269 miRNAs positively correlated and 246 miRNAs 
negatively correlated with gestation week (false discovery rate (FDR) < 10%, Supplementary 
Table 2). Examples include miR-92b, which has known roles in maintaining stem cell 
proliferation and is higher expressed in neural progenitors relative to differentiated neurons32,33. 
By contrast, miR-124 is known to be higher expressed in post-mitotic neurons relative to neural 
progenitors and plays a role in promoting neuronal differentiation34,35. Consistent with these 
roles, we observed miR-92b was significantly upregulated in early gestation week samples, and 
miR-124 was significantly upregulated in late gestation week samples (Figure 1D and 1F). 
Furthermore, validated mRNA targets of miR-92b (SMAD7, TSC1, PER2, and CDKN1C) show 
differential expression between early and late gestation week samples consistent with targeting 
and downregulation of mRNA by a miRNA (Figure 1E)36–41. Validated mRNA targets of miR-124 
(RHOA, PTBP1, ACTL6A, and SP1) also show consistent expression patterns in early and late 
gestation week samples (Figure 1G)34,42–45.This differential expression analysis and the 
expression patterns of known miRNA and mRNAs are expected given known cell-type 
compositions of cortical tissue during neuronal differentiation over developmental time. 
 
In addition to quantifying the expression of known miRNAs in miRBase release 22, we 
quantified the expression of recently discovered miRNAs from studies by Friedländer et al46 (72 
miRNAs from the Friedländer dataset were detected in this study) and Nowakowski et al20 (7 
miRNAs from the Nowakowski dataset were detected in this study). Finally, using two 
annotation packages, miRge 2.028 and miRDeep247, we discovered 111 putatively novel 
miRNAs that were not previously annotated in miRBase release 22, Friedländer et al, nor 
Nowakowski et al (Supplementary Table 1). Novel miRNAs discovered in this study showed 
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sequencing read coverage plots consistent with known miRNAs and many were differentially 
expressed between early and late gestation week samples (Extended Data Figure 2). This 
represents a novel resource of miRNAs that may not have been previously detected due to 
unique expression of these miRNAs in developing brain tissue or lower read depth and sample 
size obtained in previous studies. Though these novel miRNAs have characteristic sequencing 
read patterns consistent with known miRNAs, they require validation to demonstrate they 
function as miRNAs48. 

Local-miRNA-eQTLs 
Genotyping information from each of the 212 remaining donors revealed a sample of diverse 
ancestry (Extended Data Figure 1E). Following TOPMed mixed-ancestry imputation, 12.4 
million genetic variants were combined with the expression of 907 known and novel miRNAs 
across 212 fetal cortical tissue samples to perform a local-miRNA-eQTL analysis (Figure 
1A)49,50. To control for population stratification in our association testing, we used a mixed-
effects linear model which included a kinship matrix as a random effect and 10 genotype 
principal components (PCs) as fixed effects51,52. We included 10 miRNA-expression PCs, 
technical variables such as sequencing-pool and RNA integrity number (RIN score), and the 
biological variables of sex and gestation week as additional fixed effect covariates in the model. 
 
Following stringent local and global multiple testing correction (Methods), we identified 70 
miRNAs with a local-eQTL, hereafter referred to as emiRs, using a hierarchical multiple 
comparisons threshold (FDR <5%, see Methods). Of these primary eQTLs, we identified an 
additional 14 loci with secondary eQTLs and one tertiary eQTL for a total of 85 conditionally-
independent local-miRNA-eQTLs (Figure 2A). Of the 70 emiRs, one miRNA was cataloged in 
Friedländer et al, two in Nowakowski et al, and eight were novel miRNAs discovered within this 
fetal tissue dataset (Supplementary Table 3). To assess enrichments in functionally annotated 
genomic regions, we also used a relaxed, global-only, multiple testing correction threshold (see 
Methods) which increased the number of local-miRNA-eQTLs to 200 across 153 emiRs (153, 
30, 13, 3, and 1 eQTLs of degree primary, secondary, tertiary, quaternary, and quinary 
respectively). Discovery of these local-miRNA-eQTLs shows that genetic variation influences 
miRNA expression in the developing cortex, including the expression of previously unannotated 
miRNAs. 
 
To characterize whether these miRNA-eQTLs are found in functionally annotated regions of the 
genome, we assessed whether eQTL signals were enriched in chromatin annotations that were 
from fetal tissue that were previously separated into male and female sexes53.  We identified 
significant enrichments of miRNA-eQTLs within active transcription start sites (TssA) and 
chromatin associated with strong transcription (Tx), weak transcription (TxWk), enhancers 
(Enh), and ZNF genes and repeats (ZNF/Rpts). There was also a significant depletion of 
miRNA-eQTLs within quiescent chromatin (Quies) (Figure 2B). These enrichments were robust 
to either stringent or relaxed multiple testing correction methods used to declare significant 
eQTLs (Extended Data Figure 3). Enrichment of miRNA-eQTL signals within transcribed 
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chromatin is expected given that most miRNAs are found within hosts or immediately adjacent 
to genes54.  

Colocalization of miRNA-eQTLs with mRNA-e/sQTLs 
Since over 50% of miRNAs are found within host genes, we classified the miRNA-eQTLs based 
on whether the emiR is located within a host gene or intergenically54. Of the 70 emiRs at the 
stringent significance threshold, 49 are located within a host gene (100 of 153 emiRs are within 
hosts using the relaxed threshold). We found that miRNA-eQTLs are often close to their emiRs, 
and this trend is consistent whether or not the emiR is within a host gene (Figure 3A). 
 
To further character these miRNA-eQTLs, we conducted a colocalization analysis to discover if 
the same genetic variants regulating miRNA expression also regulate mRNA expression and 
splicing. mRNA-eQTLs and mRNA-sQTLs were discovered in an expanded set of fetal tissue 
samples largely overlapping with those samples used in our miRNA-eQTL analysis8,9. We found 
17 and 12 colocalizations with eQTL and sQTLs, respectively (Supplementary Table 4). For 
emiRs within a host mRNA, we observed that miRNA expression was often positively correlated 
with mRNA expression (Figure 3B). Of these emiRs within hosts, we found 3 with mRNA-eQTL 
colocalizations and 4 with mRNA-sQTL colocalizations. Interestingly, expression of the few 
emiRs with a co-localized mRNA-eQTL were positively correlated with expression of their 
mRNA hosts, while expression of the few emiRs with a co-localized mRNA-sQTL were 
negatively correlated with their host mRNA expression. 
 
This phenomenon is highlighted by a colocalization between a miRNA-eQTL of hsa-miR-1307-
5p with an mRNA-sQTL for ATP5MK (Figure 3C). Hsa-mir-1307 sits within exon three of the 5’ 
UTR of ATP5MK. In our dataset, we found evidence for five distinct intron excisions within the 5’ 
UTR of ATP5MK (labeled SpliceA-SpliceE). Intron excision was quantified as percent spliced in 
(PSI) and normalized across all junctions in this cluster. Among these splice sites, we observed 
an association between genotypes (rs7911488 genotypes A and G) and splice site utilization at 
SpliceA and SpliceD. This same variant was associated with expression of miR-1307-5p (Figure 
3D). The G allele was associated with an increased utilization of SpliceA and SpliceD, while 
these same samples showed a decreased expression of miR-1307-5p. These data are 
consistent with biogenesis of miR-1307-5p from an exon of its host gene, ATP5MK. Removal of 
exon three of ATP5MK results in more miR-1307-5p. In this case, common genetic variation 
influences on both splicing and miRNA expression led to an understanding of the miRNA 
biogenesis.  

miRNA-eQTL tissue specificity 
We next sought to quantify the degree to which our fetal cortical tissue miRNA-eQTLs are 
distinct from miRNA-eQTLs discovered in other tissues. We compared our brain miRNA-eQTLs 
(70 emiRs at the stringent testing correction threshold) to those of a large eQTL analysis in 
blood15. Of the 76 and 70 total emiRs in blood and brain tissue respectively, most are unique to 
a given tissue (65 and 54 are unique to blood and brain respectively; Figure 4A). There are only 
11 miRNAs that are emiRs in both blood and brain tissue. Of these emiRs present in both blood 
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and brain, only three of these eQTLs have a colocalized genetic signal, implying the same 
causal variants affect miRNA expression in both tissues. The remaining eight emiRs found in 
both tissues do not share causal variants and therefore have tissue-specific genetic 
mechanisms regulating expression of these miRNAs. This shows that miRNA-eQTLs between 
blood and brain are highly tissue-specific, and the genetic variants regulating expression of 
shared emiRs can also be tissue-specific. 
 
To further characterize the tissue-specificity of miRNA-eQTLs, we calculated the fraction of 
brain variant/miRNA pairs that are true associations within blood miRNA-eQTLs (𝜋1)55. Of the 76 
blood emiRs, 52 were expressed at sufficient levels within our brain samples to test for genetic 
association. The fraction of blood associations also found in brain was 0.23 (+/- 0.2 95% conf. 
int.) (Figure 4B). By comparison, the fraction of mRNA-eQTLs from blood tissue that are true 
associations in brain was 0.51 (+/- 0.04 95% conf. int.)56. This provides further evidence that 
miRNA-eQTLs have stronger tissue specificity as compared to mRNA-eQTLs. 

miR-4707-3p is implicated in brain size and cognitive ability 
To determine if our miRNA-eQTLs may explain molecular mechanisms underlying disease risk 
imparted via GWAS loci associated with brain disorders or inter-individual differences in brain 
traits, we performed colocalization analyses between our 85 stringently-defined local-miRNA-
eQTLs and 21 GWAS summary statistics (Supplementary Table 4). We discovered one robust 
colocalization between an eQTL for miR-4707-3p and multiple brain phenotypes, including 
educational attainment, head size, and a subthreshold association for cortical surface area 
(Figure 5A). The eQTL for miR-4707-3p expression (rs4981455, alleles A/G) also co-localizes 
with an mRNA-eQTL for HAUS4 expression. Hsa-mir-4707 is located within the 5’ UTR of the 
HAUS4 gene. Despite this, and in contrast to the above example for mir-1307, the allele 
associated with increased expression of miR-4707-3p is also associated with increased 
expression of its host gene, HAUS4 (Figure 5B and 5C). The index variant, rs4981455, is in 
high linkage disequilibrium (LD; r2 > 0.99) with another variant (rs2273626, alleles C/A) which is 
within the “seed” sequence of miR-4707-3p (Extended Data Figure 4). The A allele at 
rs2273626, corresponding to index variant allele G, would most likely change miR-4707-3p 
targeting. However, we did not detect any miR-4707-3p expression in samples with the G/G 
genotype at the index variant, therefore we did not study altered targeting of miR-4707-3p-G as 
it is not expressed (Figure 5B, Extended Data Figure 4B). This finding is unlikely to be caused 
by reference mapping bias, because the miRNA quantification algorithm we used, miRge 2.0, 
accounts for common genetic variants within mature miRNA sequences (Methods)28. We also 
performed an allele specific expression analysis for donors that were heterozygous at 
rs2273626 (Extended Data Figure 4C). rs2273636-A showed consistently lower expression, 
providing further support for the detected miRNA-eQTL (p=3.63x10-14, using a paired, two-sided 
t-test). We detected only one read containing the A allele in three rs2273626 heterozygote 
donors. This indicates that miR-4707-3p is either expressed at levels too low for detection or not 
at all in chromosomes harboring the rs4981455 G allele.  
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In addition to the HAUS4 mRNA-eQTL colocalization, the miRNA-eQTL for miR-4707-3p 
expression is also co-localized with a locus associated with educational attainment (Figure 5A)2. 
In this case, the alleles associated with increased expression of miR-4707-3p are also 
associated with decreased educational attainment. We also highlight here associations to global 
cortical surface area (GSA)1. Although this locus does not have any genome-wide significant 
associations to GSA, a pattern of decreased p-values within the same LD block associated with 
miR-4707-3p expression implies that this locus may hold a significant association in future GSA 
GWAS with increased sample size. Variants associated with increased expression of miR-4707-
3p are associated with decreased GSA. Supporting the association to cortical surface area, 
variants associated with increased miR-4707-3p expression are also co-localized with variants 
associated with decreased head size, a phenotype highly correlated with cortical surface area 
(data not shown from a publication in-preparation)4. This evidence suggests that the genetic risk 
for decreased head size and decreased cognitive abilities may be mediated through increased 
expression of miR-4707-3p in developing human cortex. Few publications imply a known 
function for miR-4707-3p, however, HAUS4 is known to play a role in mitotic spindle assembly 
during cell division and a potent regulator of proliferation57–59. Unifying these observations lead 
us to a hypothesis, consistent with the radial unit hypothesis26, whereby increased expression of 
miR-4707-3p may influence neural progenitor fate decisions during fetal cortical development 
ultimately leading to a decreased cortical surface area. 

miR-4707-3p modulates proliferation in phNPCs 
Given the genetic evidence implicating miR-4707-3p in cortical development and size, we next 
asked whether increased expression of miR-4707-3p in primary human neural progenitor cells 
(phNPCs), which model neurogenesis, influenced proliferation or cell fate decisions (Figure 
6A)60. Using lentiviral transduction, we exogenously expressed mir-4707 in phNPCs derived 
from two genetically distinct donors. The cells were cultured in media with growth factors that 
retain the phNPCs in a proliferative state25. After confirming over-expression of miR-4707-3p 
(Figure 6C), we measured proliferation using an EdU pulse to label cells in S-phase of the cell 
cycle. At eight days post-transduction, we observed an increase in the number of EdU positive 
nuclei in samples which over-expressed miR-4707-3p, which indicates this miRNA causes an 
increased rate of proliferation (Figure 6C). Increases in proliferation could be due to either more 
neurogenic or more self-renewal fate decisions. Investigating further, we measured gene 
expression for a set of proliferation markers, progenitor markers, and neuronal markers in a time 
course experiment in phNPCs transduced with our expression construct (Figure 6D). At four, 
six, and eight days post transduction, we observed increased expression of the proliferation 
markers, KI67 and CCND1, which corroborate our findings using the EdU assay. We also 
observed an increase in the progenitor markers, PAX6 and SOX2, as well as the neuronal 
markers, DCX and TUJ1 (Beta-Tubulin III). 

Discussion 
Using small-RNA-sequencing, we reveal robust miRNA expression across cortical tissue during 
mid-gestation, a stage and tissue which has not previously been captured in previous eQTL 
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studies using standard RNA-sequencing techniques. In addition to the known roles of miR-92b 
and miR-124 on progenitor proliferation and neurogenesis, our differential expression analysis 
shows many other miRNAs likely play crucial roles in cortical development33,34. We were also 
able to find greater than 100 likely novel miRNAs and further evidence of recently discovered 
miRNAs within these tissue samples. These novel miRNAs have sequencing read coverage 
characteristic of known miRNAs, and they are differentially expressed across gestation weeks 
like miRNAs with known roles in neurogenesis. Investigating how these known and novel 
miRNAs function during neuronal differentiation may yield new gene regulatory mechanisms 
involved in human neurogenesis. 
 
We also discovered 85 local-miRNA-eQTLs in a tissue-type and at a developmental time point 
with known influence on brain structure and cognitive traits. Despite many emiRs residing within 
host genes, miRNA-eQTLs seldom colocalize with mRNA-eQTLs for their host mRNAs. This 
implies a regulatory mechanism by which miRNA expression is largely independent of that 
which governs host mRNA expression, highlighting the unique information gained from miRNA-
eQTLs that would otherwise be missed in standard mRNA-eQTL analyses. We found that the 
small subset of miRNA-eQTLs which colocalize with their host mRNA eQTLs have positively 
correlated expression, which would indicate a common genetic regulatory mechanism governing 
expression of both RNAs. While miRNA-eQTLs which colocalize with a host mRNA-sQTL have 
negatively correlated expression. The genetic regulatory mechanisms governing miRNA 
biogenesis and expression uncovered by our eQTL analysis provides mostly unique 
mechanisms when compared to current mRNA-eQTL datasets. These miRNA-eQTLs will be a 
continued resource in the pursuit of describing the genetic risk loci uncovered by current and 
future GWAS for brain traits and disorders. 
 
In contrast to mRNA based eQTLs, miRNA-based eQTLs appear to map less frequently to 
known brain disease loci. The lack of colocalizations are highlighted when compared to mRNA-
eQTLs in the same tissue where 844 colocalizations with brain-trait and disorders were 
discovered across 18,667 mRNA-eQTLs despite a similar sample size (n=235 for mRNA-eQTLs 
vs n=212 for miRNA-eQTLs)8,9. This suggests that genetically regulated miRNAs either may not 
be a major contributor to neuropsychiatric disorders or current GWAS are underpowered to 
detect loci mediated through miRNA expression. We suspect that this may reflect the effect of 
purifying selection on miRNAs. MiRNAs are known to have broad downstream regulatory effects 
across hundreds or thousands of targeted mRNAs, and therefore the genetic mechanisms 
regulating miRNA expression may be more tightly regulated than for mRNA expression, as has 
previously been shown for transcription factors61,62. Rare variants, less subject to the influences 
of selective pressure, may be governing miRNA expression which this study did not have the 
power or methodology (i.e., whole genome or exome sequencing) to detect.  
 
Nevertheless, we did find one colocalization between a miRNA-eQTL for miR-4707-3p 
expression and GWAS signals for head size phenotypes and educational attainment. This 
revealed a possible molecular mechanism by which expression differences in this miRNA may 
influence brain size and cognition. Experimental over-expression of miR-4707-3p in proliferating 
phNPCs showed an increase in both proliferative and neurogenic gene markers. These findings 
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are consistent with the radial-unit hypothesis which would explain a decreased cortical surface 
area by depletion of the neural progenitor pool of cells through increased neurogenesis26,27 
(Figure 6E). 
 
An interesting feature of this genomic locus is the presence of both a miRNA-eQTL, for miR-
4707-3p, and a mRNA-eQTL, for HAUS4. Although yet to be experimentally tested, the known 
effects on cell proliferation by the HAUS4 gene implies that increased expression of HAUS4 in 
neural progenitors would most likely lead to increased proliferation58,59. It is not yet known 
whether miR-4707-3p and HAUS4 have similar or opposing influences on fate decisions during 
neurogenesis. Furthermore, we did not detect expression of miR-4707-3p in samples with the 
genotype G/G at the eQTL index variant rs4981455. This implies that the presence of the A 
allele turns on miR-4707-3p expression and individuals with the G/G genotype have no miR-
4707-3p expression in developing cortical tissue. This further highlights the utility of studying 
miRNA-eQTLs, as uncovering only the mRNA-eQTL at this locus would not reveal the full 
genetic mechanism leading to inter-individual differences in the head size and cognitive 
phenotypes. 
 
Here we highlight one example of how miRNA expression leads to differences in brain size and 
cognition through altered neurogenesis during cortical development. We have yet to uncover the 
specific regulatory effects of miR-4707-3p (which genes are targeted or which pathways 
disrupted), but the effect on cellular behavior is clear. The lengthening of neurogenesis and 
associated expansion of the brain are hallmarks of the evolutionary differences between 
humans and other mammals63–66. Comparative genomic studies have revealed that human-
specific gene regulatory differences in developing neocortex are associated with neurogenesis, 
brain complexity, and disease, and that primate-specific miRNAs have been shown to play a 
role in post transcriptionally regulating gene expression associated with these developmental 
processes67–71. Here, we show that miRNAs also play a role in differences in brain size between 
humans. Continued work on predictive miRNA targeting algorithms and on experimental 
methods to uncover miRNA regulatory networks will be crucial to further understanding the 
molecular pathways that lead to brain size or cognitive differences between individuals. 
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Methods 

Tissue Procurement 
Human prenatal cortical tissues samples were obtained from the UCLA Gene and Cell Therapy 
Core following IRB regulations for 223 genetically distinct donors (96 females, 127 males, 14-21 
gestation weeks) following voluntary termination of pregnancy. Tissue samples were flash 
frozen after collection and stored at -80C. These tissue samples overlapped with those used in 
a previous mRNA-eQTL study. Cortical tissue samples from an additional 3 donors were 
microdissected into germinal zone and cortical plate sections as previously described28 yielding 
17 more tissue samples which were used for novel miRNA discovery but withheld from the 
miRNA-eQTL analysis. 

Library Preparation and Sequencing 
Total RNA was extracted using miRNeasy-mini (QIAGEN 217004) kits or was extracted using 
trizol with glycogen followed by column purification. Library preparation for small-RNA was 
conducted using TruSeq Small RNA Library Prep Kits (Illumina RS-200). RNA libraries were 
randomized into eight pools and run across eight lanes of an Illumina HiSeq2500 sequencer at 
50 base-pair, single-end reads to a mean sequencing depth of 11.7 million reads per sample. 
mRNA library preparation and sequencing was previously described9. Briefly, library preparation 
for total RNA was conducted via TruSeq Stranded RNA Library Prep Kits (Illumina 20020597) 
with Ribozero Gold ribosomal RNA depletion. Libraries were sequenced with 50 base-pair, 
paired-end reads to a mean read depth of 60 million reads per sample.  

MicroRNA Expression Analysis 
Small RNA-sequencing FASTQ files were used as input to the miRge 2.028 annotation workflow 
to quantify expression of known miRNAs from miRBase release 22 (March 2018)29. Briefly, 
sequencing reads were first quality controlled, adaptors removed, and collapsed into unique 
reads. The reads were then annotated against libraries of mature miRNA, hairpin miRNA, tRNA, 
snoRNA, rRNA, and mRNA. The miRge 2.0 workflow protects against reference mapping bias 
by incorporating common genetic variants into the mature miRNA sequence library and allowing 
zero mismatched bases on the first pass of read annotation. A second pass of unannotated 
reads allows for mismatched bases to identify isomiRs. Unmapped reads were then used as 
input to a second annotation pipeline to quantify expression of recently discovered novel 
miRNAs from Friedländer et al46 and Nowakowski et al20. Bowtie v1.2.272 was used to map 
reads to the UCSC hg38 reference genome using the following options: -v 2 -5 1 -3 2 --norc -a --
best -S --chunkmbs 512. Mapped reads were then counted using featureCounts73 against a 
custom GTF file including the Friedländer and Nowakowski novel miRNAs using the following 
options: -s 0 -M -f -O. 
 
To test for allele-specific expression of miR-4707-3p containing variants at rs2273626, we used 
Bowtie with a modified reference genome which only included miR-4707-3p mature sequence. 
Sequencing reads were allowed to map to either AGCCCGCCCCAGCCGAGGTTCT (reference 
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allele C, complementary strand G) or AGCCCTCCCCAGCCGAGGTTCT (alternate allele A, 
complementary strand T) with no mismatches using the Bowtie options: -n 0 --norc --all -S. 
Mapped reads were then counted with featureCounts as above. Read counts, specific to each 
genotype, from samples heterozygous at rs2273626 were plotted in Extended Data Figure 4C. 
 
We also defined an additional set of novel miRNAs discovered within our 240 sample dataset 
using miRge 2.0 and miRDeep247 prediction pipelines. Putatively novel miRNAs predicted using 
miRge 2.0 (all predictions) and miRDeep2 (predictions with a score greater than zero) were 
removed if they overlapped with each other, known miRNAs from miRBase release 22, or 
recently discovered miRNAs from the Friedländer and Nowakowski datasets. Sequencing read 
coverage plots for each novel miRNA annotation were also created to visually inspect each 
annotation. Putatively novel miRNAs without a characteristic 5’ and 3’ mapping pattern 
(Extended Data Figure 2) were removed. Uniquely novel annotations, which passed visual 
inspection, were compiled and used to create a custom GTF file for use in the above annotation 
pipeline to quantify novel miRNA expression. Read counts of miRNAs from miRBase release 
22, Friedländer et al, Nowakowski et al, and putatively novel annotations from this study were 
combined into one count matrix for use in downstream analyses. 

mRNA Expression Analysis 
Total RNA-sequencing FASTQ files were first filtered and adapter trimmed using trim_galore 
and the following options: --length 20 --stringency 5. Filtered and trimmed reads were mapped 
to GRCh38 using STAR v2.5.4b74. Mapped reads were counted using featureCounts73 against 
the Ensembl GRch38.p7 human gene annotations using the following options: -T 4 -p -t exon. 
Count data for each sample was combined into a count matrix for downstream analyses. 

Genotyping 
Genomic DNA was isolated using DNeasy Blood and Tissue Kit (QIAGEN 69504), and 
genotyping was performed on either HumanOmni2.5 or HumanOmni2.5Exome (Illumina) 
platforms in eight batches. SNP genotypes were exported and processed into PLINK format 
using PLINK v1.975. Quality control and pre-processing of genotypes was also done using 
PLINK v1.9 as previously described25. Briefly, SNPs were filtered based on Hardy-Weinberg 
equilibrium, minor allele frequency, individual missing genotype rate, and variant missing 
genotype rate (plink --hwe 1e-6 --maf 0.01 --mind 0.1 --geno 0.05) yielding a total of 1,760,704 
genotyped SNPs. 

Imputation 
Sample genotypes were prepared for imputation using the McCarthy Group’s HRC-1000G 
imputation preparation tool (https://www.well.ox.ac.uk/~wrayner/tools/): perl HRC-1000G-check-
bim.pl -b AllSamplesQC.bim -f AllSamplesQC.frq -r 1000GP_Phase3_combined.legend -g -p 
ALL. This tool produces a script to separate genotype files by chromosome, filter variants to 
include only reference SNPs, and convert the Plink filesets into VCF files. Compressed VCF 
files were then uploaded to the Michigan Imputation Server for use in the Minimac4 imputation 
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pipeline49,76. TOPMed Freeze5 was used as the reference panel for imputation50. Imputed 
genotypes were filtered for an imputation quality score (R2) greater than 0.3, Hardy-Weinberg 
equilibrium p-value greater than 1e-6, and a minor allele frequency greater than 0.01. 

Sample Quality Control 
Sample sex was called from the genotype data using PLINK v1.9 based on X chromosome 
heterozygosity. Sex was confirmed by checking expression of XIST within the mRNA-
sequencing data. Of the 223 samples, two were declared female using the genotype data but 
male by XIST expression and were excluded from downstream analysis. We further sought to 
detect sample swaps or mixtures by evaluating the consistency of genotypes called via 
genotyping and those that can be detected by RNA-sequencing using VerifyBamID v1.1.377. We 
detected four samples that were mixtures or possible sample swaps with their assigned 
genotype data (FREEMIX > 0.04 or CHIPMIX > 0.04). Finally, five samples were identified as 
outliers via PCA analysis after accounting for known technical confounders (Extended Data 
Figure 1C). A total of 212 samples (93 females, 119 males, 14-21 gestation weeks) were used 
in the miRNA-eQTL analysis. 

PCA and Differential miRNA Expression Analysis 
Principal component analysis (PCA) was performed using the prcomp() function within the stats 
package of the R software language78. Only miRBase release 22 expressed miRNAs with at 
least 10 counts across at least 10 samples were included when doing PCA. MiRNA expression 
was first normalized using the variance-stabilizing transformation (VST) function within 
DESeq279. To correct for known batch effects (sequencing-pool and RNA-purification method; 
Extended Data Figure 1), we used the removeBatchEffect() function within the limma package 
on the VST transformed expression matrix80. While removing batch effects, we preserved the 
effect of gestation week using the design option within removeBatchEffect(). After known batch 
effects were removed, PCA was repeated to confirm removal of technical variation across 
samples and to identify expression outliers (Extended Data Figure 1C). 
 
Differential expression analysis was conducted on the 212 samples which survived quality 
control filtering using DESeq279. Expression of all known and novel miRNAs, which survived the 
above expression threshold, were used in the analysis. Gestation week was used as the 
treatment variable while controlling for technical confounding variables: sequencing-pool, RNA-
purification method, RNA-integrity number (RIN), and RNA concentration after extraction. 
Differentially expressed miRNAs with a Benjamini-Hochberg adjusted p-value < 0.1 were 
deemed significant (false discovery rate (FDR) < 10%). For visualization of differentially 
expressed miRNAs (Figure 1C) log2(fold change) values were shrunk using the apeglm 
method81. 

local-miRNA-eQTL Mapping 
We conducted local-eQTL mapping using tissue samples from 212 donors. A total of 866 
miRNAs with an expression of at least 10 counts across at least 10 samples were included in 
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this analysis. Since expressed miRNAs can originate from more than one genomic locus, 
associations were conducted at a total of 907 genomic loci. MiRNA counts were normalized 
using a variance-stabilizing transformation function within DESeq279. Normalized expression 
values were adjusted using a linear model accounting for population stratification as well as 
known and unknown confounders. Known confounders included: sequencing pool, rna 
purification method, rna integrity score (RIN), sex, and donor gestation week. Unobserved 
confounding variables on miRNA expression were controlled using the first 10 principal 
components from a PCA. Population stratification was controlled using the first 10 principal 
components from a genotype PCA using PLINK v1.9. 
 
Association testing between variants and residual miRNA expression (after adjusting for 
confounders) was done using a linear mixed-effects model as implemented in the EMMAX 
package51. To further control for cryptic relatedness and population stratification, we included an 
identity-by-state kinship matrix, also constructed using EMMAX (emmax-kin -v -h -s -d 10) by 
excluding variants located on the same chromosome as the variants tested in the association 
analysis (MLMe method52). In order to prevent a single outlier from driving the association 
results, variants were filtered before association testing to include only those which did not have 
exactly one homozygous minor sample and the number of heterozygous samples were greater 
than one. Variants within 1 Mb upstream of the mature miRNA start position or 1Mb 
downstream of the mature miRNA end position were tested for association. Using EMMAX, 
imputed variant dosages were used for association testing (emmax -v -d 10 -Z -t 
[variant_doages] -k [kinship_mat] -o [output_file] -p [expression_file]). 
 
For multiple-testing adjustment we employed a two-stage analysis which accounts for linkage-
disequilibrium between the variants tested (local adjustment) and the total number of miRNAs 
tested (global adjustment). First, p-values were adjusted locally using the eigenMT package82. 
Locally adjusted p-values were then further adjusted using the Benjamini-Hochberg multiple 
testing correction for a 5% false discovery rate (FDR < 0.05) across the 907 genomic loci 
tested. This yielded a nominal p-value of 1.434x10-6 as the stringent threshold for which variants 
were declared significantly associated with miRNA expression. We also declared a relaxed 
threshold using only global adjustment with a 5% FDR across the 6.3 million independent 
association tests which yielded a nominal p-value threshold of 2.804x10-5. 
 
To declare conditionally independent local-miRNA-eQTLs, primary eQTLs were first defined as 
the most significant variant/miRNA pair for each expressed miRNA with at least one variant 
below the given nominal p-value threshold. An emiR was defined as a miRNA that has at least 
one variant associated with it. For each emiR, variant association testing was repeated for 
variants within the original 2 Mb window with the genotypes of the primary eQTL added to the 
association equation. The most significant variants below the original nominal p-value threshold 
(1.434x10-6 for stringent or 2.804x10-5 for relaxed) within this secondary analysis (if any) were 
defined as secondary eQTLs. The process was repeated (with the inclusion of primary and 
secondary genotypes in the association equation to find tertiary eQTLs, primary, secondary, and 
tertiary to find quaternary eQTLs, etc.) until no variants remained below the nominal p-value 
threshold. 
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Colocalization Analysis 
Colocalization of local-miRNA-eQTLs with brain-relevant trait GWAS summary statistics 
(Supplementary Table 4), blood local-miRNA-eQTLs15, and fetal brain local-mRNA-e/sQTLs 
from a largely overlapping sample9 was done by first finding overlapping variants with LD r2 >= 
0.8 of each local-miRNA-eQTL index variant and the set of variants within LD r2 >= 0.8 of each 
trait GWAS, disorder GWAS, eQTL, or sQTL index variant. LD for local-miRNA-eQTL, local-
mRNA-eQTL, and local-mRNA-sQTL variants were calculated using the genotypes of the 
mixed-ancestry samples within each study. LD for GWAS and blood cis-miRNA-eQTL variants 
were calculated from 1000 Genomes phase 3 European genotypes83. After overlaps were 
detected, colocalization was confirmed by conditional analysis which incorporated the 
genotypes for a given overlapping index variant into the local-miRNA-eQTL association 
equation. A resultant increase in p-value beyond the stringent or relaxed p-value threshold 
confirmed a colocalization between the local-miRNA-eQTL index variant and the given trait 
GWAS, disorder GWAS, or QTL index variant. 

eQTL Enrichment Analysis 
Enrichment of local-miRNA-eQTLs within functionally annotated genomic regions was done 
using GARFIELD v284 in order to control for the distance to transcription start sites, LD, minor 
allele frequency (MAF) of the tested variants, and the number of effective tests across multiple 
annotations. Functional annotations were derived from the Roadmap Epigenomics Project53 for 
male and female fetal brain (E081 and E082), using the ChromHMM Core 15-state model85. 
MAF and LD for the variants were derived from the 212, mixed-ancestry samples in this study 
using PLINK v1.9. Minimum local-miRNA-eQTL p-values were used in cases where multiple 
association tests to different miRNAs were performed at a given variant. Only p-values surviving 
the stringent significance threshold were used for Figure 2, while other thresholds, including the 
relaxed threshold, can be seen in Extended Data Figure 3. 

Comparison to Blood miRNA-eQTLs 
To assess the cell-type specificity of miRNA-eQTLs we calculated the 𝜋1 statistic55. Blood 
miRNA-eQTLs were first defined as the emiR-variant pair with the lowest p-value for the 76 
emiRs found in the blood miRNA-eQTL analysis15. Of the 76 emiRs, 52 of these miRNA were 
expressed in brain tissue (at least 10 counts in at least 10 samples). At the 52 blood miRNA-
eQTLs, nominal p-values from brain miRNA-eQTL association analysis were used to compute 
the 𝜋0 value using the qvalue() function in the qvalue package86. The 𝜋1 statistic was then 
defined as 1 - 𝜋0. To estimate the standard error, we did 100 bootstrap samplings and computed 
a 95% confidence interval for each 𝜋1 statistic. An analogous calculation was done using 
mRNA-eQTLs from an overlapping cortical tissue dataset9 and whole blood mRNA-eQTLs 
reported by GTEx56. 
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Lentiviral Vector Cloning and Virus Production 
To create the miR-4707 expression vector, the tetracycline-inducible, lentiviral expression vector 
pTRIPZ (ThermoFisher RHS4750) was modified by replacing the sequence for red fluorescent 
protein (RFP) with the sequence for enhanced green fluorescent protein (EGFP) between the 
AgeI and ClaI restriction enzyme cut sites. The stem-loop sequence for hsa-mir-4707 (miRbase 
release 22) was inserted into the multiple cloning site of pTRIPZ-EGFP using XhoI and EcoRI 
restriction enzymes. 
 
pTRIPZ-mir-4707-EGFP lentivirus was produced in HEK293 cells. HEK293 cells were cultured 
to 90-95% confluency in DMEM (Life Technologies 11995081) supplemented with 10% FBS 
(Sigma-Aldrich F2442) and 1x Antibiotic-Antimycotic (Life Technologies 15240096) in 10cm 
tissue culture treated plates. Cells were triple transfected with 10 μg transfer plasmid, 7.5 μg 
PAX2 (Addgene plasmid #12260), and 2.5 μg pMD2.G (Addgene plasmid #12259) using 
FUGENE HD (Promega E2311). After 24 hours, media was replaced with 12 mL of 1x 
proliferation base media without the growth factors EGF, FGF, LIF, and PDGF (see progenitor 
cell culture protocol below). At 24 hours post media change, culture supernatant was filtered 
through a 0.45 μm syringe filter, aliquoted, and stored at -80°C in single-use aliquots. Lentivirus 
was titered using the qPCR Lentivirus Titration Kit (Applied Biological Materials LV900). 

Primary Human Neural Progenitor Cell Culture 
Primary human Neural Progenitor Cells (phNPCs) derived from developing cortical tissue were 
cultured, as described previously8,25,60. Two donor phNPC lines were used: Donor 54 (D54, 
gestation week 15.5, male, genotype G/G at rs4981455) and Donor 88 (D88, gestation week 14, 
male, genotype A/A at rs4981455). PhNPCs were grown on tissue culture treated plates that 
were coated with Growth Factor Reduced Matrigel (Corning 354230) at 50 μg/mL in 1xPBS at 
37°C for 1 hr. To maintain phNPCs in a proliferative state, they were cultured in 1x proliferation 
media consisting of Neurobasal A (Life Technologies 10888-022) with 100 μg/ml primocin 
(Invivogen, ant-pm-2), 10% BIT 9500 (Stemcell Technologies 09500), 1x glutamax (Life 
Technologies 35050061), 1 μg/ml heparin (Sigma-Aldrich, H3393-10KU), 20 ng/ml EGF (Life 
Technologies PHG0313), 20 ng/ml FGF (Life Technologies PHG0023), 2 ng/ml LIF (Life 
Technologies PHC9481), and 10 ng/ml PDGF (Life Technologies PHG1034). phNPCs lines 
were split once per week using 0.05% Trypsin-EDTA (Life Technologies 25300062) into 1x 
proliferation media. Every two or three days, half of the culture media was replaced with 2x 
proliferation media: Neurobasal A with 100 μg/ml primocin, 10% BIT 9500, 1x glutamax, 1 μg/ml 
heparin, 40 ng/ml EGF, 40 ng/ml FGF, 4 ng/ml LIF, and 20 ng/ml PDGF. 
 
For phNPC proliferation experiments (Figure 6), cells were plated at 4x105 and 2x104 cells/well 
in Matrigel-coated 6-well (for RNA extractions: Corning 3516) and 96-well (for 
immunocytochemistry: Corning 3598) plates respectively with 1x proliferation media. At 24 hrs 
post plating, cells were transduced with pTRIPZ-mir-4707-EGFP or control (pTRIPZ-EGFP) at 
20 IU/cell in 1x proliferation media with 1 μg/ml doxycycline to express the miRNA (Sigma-
Aldrich D9891). Media was changed at 24 hrs post transduction with 1x proliferation media with 
doxycycline, and plates were fed every two days by changing half of the culture media with 2x 
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proliferation media with 2 μg/ml doxycycline. At 8 days post transduction, 6-well plates were 
used for RNA extraction, and 96-well plates were EdU labeled and fixed for 
immunofluorescence staining. 

RNA Extraction and qPCR for miRNA and mRNA Expression 
RNA was extracted from 6-well plates using miRNeasy Mini Kits (QIAGEN 217004) with the 
inclusion of an on-column DNase digestion (QIAGEN 79254). Following elution with RNase-
Free water, RNA concentration and quality was assessed with a NanoDrop ND-1000 
Spectrophotometer. For cDNA synthesis of mRNA, iScript cDNA Synthesis Kits (Bio-Rad 
1708891) were used with an input of 200 ng of total RNA. For cDNA synthesis of miRNA, 
TaqMan Advanced miRNA cDNA Synthesis Kits (ThermoFisher Scientific A28007) were used 
with 10 ng of total RNA input. Delta cycle threshold values (ΔCt) were calculated using the 
housekeeping gene EIF4A2, and fold change was calculated using control samples: 

𝛥𝐶𝑡 = 𝐶𝑡!"#$%!	$%'% − 𝐶𝑡()*+%,%%-.'$	$%'% 
𝛥𝛥𝐶𝑡 = 𝛥𝐶𝑡+"/-0% − 𝛥𝐶𝑡1)'!#)0 

𝐹𝑜𝑙𝑑	𝐶ℎ𝑎𝑛𝑔𝑒 = 22334! 
 
To assay expression of mRNA, SsoAdvanced Universal SYBR Green Supermix (Bio-Rad 
1725271) was used in 10 μL reactions on a 385-well plate. Reactions contained 2 μL of 
template cDNA (iScript reaction diluted 1:5 with water) and 500 nM of each forward and reverse 
primer (Supplementary Table 5). Primers were chosen from the PrimerBank database87. 
Reactions were placed in a QuantStudio 5 (Applied Biosystems) thermocycler and cycled for 40 
cycles according to the SsoAdvanced protocol. To assay expression of miRNA, TaqMan 
Advanced miRNA Assays (ThermoFisher A25576) were used with probes against hsa-miR-361-
5p as a housekeeping control and hsa-miR-4707-3p (Assay ID: 478056 and 479946). Reactions 
consisted of 2.5 μL of template cDNA (miRNA cDNA synthesis reaction diluted 1:10 with water), 
0.5 μL of prob, and 5 μL of Taqman Fast Advanced Master Mix (ThermoFisher 4444557) in a 10 
μL reaction. Reactions were placed in a QuantStudio 5 thermocycler and cycled for 45 cycles 
according to the TaqMan Advanced miRNA Assay protocol. Delta cycle threshold values were 
calculated using hsa-miR-361-5p expression as the housekeeping gene, and fold change was 
calculated using control samples with the above equations. Technical replicates were defined as 
independent wells on a 6-well plate. Technical replicates ranged from three to six; see figure 
legends for the number of technical replicates in each experiment. Significant differences were 
defined as a p-value < 0.05 from a two-sided t-test. 

EdU Assay, Immunofluorescence Labeling and Imaging 
To measure proliferating phNPCs we measured incorporation of 5-ethynyl-2’-deoxyuridine 
(EdU) into newly synthesized DNA using a Click-iT EdU Imaging Kit with Alexa Fluor 647 
(Invitrogen C10340). At 8 days post transduction, phNPCs in 1x proliferation media in 96-well 
plates were labeled with the addition of 10 μM EdU at 37 °C for 2 hours. After the 2 hour 
incubation, cells were immediately fixed with 3.7% Paraformaldehyde (PFA) in PBS 
(FisherScientific 50-980-487) for 15 minutes. Fixed cells were then permeabilized with 0.5% 
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Triton X-100 (Sigma-Aldrich T8787) for 20 minutes. Staining with Alexa Fluor 647 was 
conducted using the Click-iT EdU Imaging Kit protocol.  
 
Fixed and permeabilized phNPCs in 96-well plates were blocked with 10% goat serum (MP 
Biomedicals 0219135680) in PBST: 0.02% Tween-20 (FisherScientific BP337500) in 1x PBS, 
for 1 hr at room temperature. Cells were labeled with primary antibody in 3% goat serum/PBST 
at 4 °C overnight using 1:500 chicken-anti-GFP (FisherScientific AB16901). After overnight 
incubation, plates were washed three times for 5 minutes each with PBST. Secondary antibody 
labeling was done at 1:1000 dilution in 3% goat serum/PBST at room temperature for 1 hr using 
goat-anti-chicken-AF488 (ThermoFisher A11011). After 1 hr incubation, a 1:1000 dilution of 
DAPI (ThermoFisher 62248) in PBST was added to the secondary antibody solution for 10 min 
at room temperature. Plates were then washed three times for 5 minutes each with PBST. 
Plates were stored at 4°C in 0.04% sodium azide (Sigma-Aldrich S2002) in PBS until imaging. 
 
Plates were imaged using a Nikon Eclipse Ti2 microscope set up for high content image 
acquisition. Each well was imaged with 4 non-overlapping fields of view using 10x magnification 
and a 0.3 numerical aperture using 3 filter sets: DAPI (ex: 325-375, em: 435-485), GFP (ex: 
450-490, em: 500-550), and AF647 (ex: 625-655, em: 665-715). Image sets were fed through 
an automated CellProfiler 88 pipeline to quantify the number of nuclei, GFP positive, and AF647 
(EdU) positive nuclei in each image. Technical replicates were defined as independent wells of 
a 96-well plate. Replicates of 14 wells per condition. Significant differences were defined as a p-
value < 0.05 from a two-sided t-test. 
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Figure 1: Study Design and miRNA Expression Analysis 

A. Small-RNA sequencing was used on a total of 212 cortical tissue samples between 14 and 21 gestation weeks to look for novel miRNAs 
and quantify expression of known and novel miRNAs. Combined with imputed genotypes, a genetic association analysis was performed to 
discover local-miRNA-eQTLs. 

B. Principal component analysis (PCA) on miRNA expression (miRBase release 22) after correcting for the known technical batch effects of 
sequencing pool and RNA purification method and removal of outlier samples (Extended Data Figure 1). 

C. Differential miRNA expression analysis using gestation week as the comparison variable. MiR-124, with known roles in neurogenesis, is 
upregulated among late gestation week samples, miR-92b, with known roles in progenitor proliferation, is upregulated among early 
gestation week samples. 

D. Coverage plot of mean small-RNA sequencing read counts at the miR-92b locus on chromosome 1 for a set of early gestation week 
samples (gest. week 14, n=20) and a set of late gestation week samples (gest. week 20, n=17). 

E. Known miR-92b targets exhibit expression patterns consistent with down-regulation by a miRNA when separated between early and late 
gestation week samples. P-values using a two-sided t-test between early and late gestation week samples. 

F. Coverage plot, as in D, but for the miR-124 locus on chromosome 20. 
G. Known miR-124 targets expression patterns as in E. P-values comparing mean expression as in E. 
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Figure 2. Local-miRNA-eQTLs and their Enrichment in Functional Chromatin 

A. Manhattan plot showing -Log10(p-values) for variants in a 2Mb window around each expressed miRNA. Index variants for 70 primary, 14 
secondary, and 1 tertiary eQTL denoted by triangles and colored by degree by which the eQTL is conditionally-independent. Dotted line 
represents a stringent p-value significance threshold of 1.434x10-6 after local and global multiple testing correction at FDR < 5%. 

B. Enrichment of local-miRNA-eQTLs within functionally annotated chromatin states. Local-miRNA-eQTLs passing the stringent p-value 
significance threshold were used for enrichment analysis. For other p-value significance thresholds, see Extended Data Figure 3. 
Chromatin states were predicted using ChromHMM for both male and female fetal brain tissue. Left, log odds ratio and 95% confidence 
interval for significant enrichments are in solid colors. Non-significant enrichments in faded color outlines. Right, -Log10(p-values) for each 
enrichment test. Dotted line represents a multiple testing corrected p-value threshold of 1.83x10-3 (Bonferroni correction at 𝛼 < 0.05). 
miRNA-eQTLs are significantly enriched within active transcription start sites (TssA) and chromatin associated with strong transcription 
(Tx), weak transcription (TxWk), enhancers (Enh), and ZNF genes and repeats (ZNF/Rpts). There is also a significant depletion of miRNA-
eQTLs within quiescent chromatin (Quies). Other abbreviations: flanking active tss (TssAFlnk), transcription at gene 5’ and 3’ (TxFlnk), 
genic enhancers (EnhG), heterochromatin (Het), bivalent/poised TSS (TssBiv), flanking TssBiv (BivFlnk), bivalent enhancer (EnhBiv), 
repressed polycomb (ReprPC), and weak repressed polycomb (ReprPCWk). 
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Figure 3. Colocalization of miRNA-eQTLs and mRNA-e/sQTLs 

A. Histogram of distances from miRNA-eQTL to its significantly associated miRNA (eSNP to emiR distance in base pairs) for each of the 85 
miRNA-eQTLs across 70 emiRs. Colored by whether the emiR resides within a host mRNA or intergenic. 

B. For emiRs that resign within a host mRNA, histogram of expression correlation between miRNA and mRNA host. Colors represent 
correlations for miRNA-eQTLs that colocalize with mRNA-eQTLs or mRNA-sQTLs. 

C. Example of a miRNA-eQTL, for miR-1307-5p expression, which colocalizes with a mRNA-sQTL for splice variants in the 5’ UTR of 
ATP5MK. Top locus dot-plot indicates -Log10(p-values) on variant associations to miR-1307-5p expression. Bottom locus dot-plot shows -
Log10(p-values) for SpliceA utilization measured as inverse normal transformed (INT) percent spliced in (PSI). Variants are colored by 
pairwise linkage disequilibrium (LD, r2) to the index variant, rs7911488. Zoom-in shows the 5’ UTR of ATP5MK and the INT normalized 
PSI for each of five splice sites, labeled A-E, separated by genotype at rs7911488. Lines representing splice junctions at SpliceA and 
SpliceD are colored and weighted for relative PSI at the indicated genotypes. The line representing mir-1307 is shaded based on relative 
miR-1307-5p expression at the indicated genotypes. 

D. Residualized expression (after removal of known and unknown confounders) of miR-1307-5p at rs7911488 genotypes. INT normalized 
PSI values for SpliceA and SpliceD at rs7911488 genotypes. 
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Figure 4. Comparison of Brain and Blood miRNA-eQTLs 

A. MiRNAs with significant associations, emiRs, separated by unique to blood, unique to brain, or shared. Three of 11 shared emiRs have 
co-localized genetic signals in the blood and brain datasets. Cartoon locus dot-plot shows a representation of a colocalized genetic signal 
or a non-colocalized signal for a miRNA-eQTL that is present in both tissues. 

B. The fraction of brain eQTL associations that are estimated true associations within the blood eQTL dataset (𝜋1) separated by miRNA-
eQTLs and mRNA-eQTLs. Error bars represent 95% upper and lower confidence intervals after 100 bootstrap samplings. 
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Figure 5. A miRNA-eQTL for miR-4707-3p Colocalizes with Multiple Brain Traits 

A. A locus dot-plot surrounding hsa-mir-4707 on chromosome 14 showing -Log10(p-value) for various associations. Top track shows 
associations for expression of miR-4707-3p with the index variant, rs4981455. The second track shows associations surrounding a 
significant mRNA-eQTL to HAUS4 expression. The third track shows associations at this locus for a GWAS to educational attainment. The 
fourth track shows variant associations to global cortical surface area (GSA). Variants are colored by pairwise linkage disequilibrium (LD, 
r2) to rs4981455 in each of the four tracks. Dotted line in the first and second tracks represents a stringent p-value significance threshold 
of 1.43x10-6 and 8.17x10-4 respectively after local and global multiple testing correction at FDR < 5%. Dotted lines in bottom two tracks 
represents the global genome-wide significance threshold of 5x10-8. 

B. Boxplot showing variance stabilizing transformed (VST) expression of miR-4707-3p for samples with the indicated genotype at rs4981455. 
Samples with the G/G genotype show no expression of miR-4707-3p. 

C. Boxplot showing VST expression of HAUS4, the host gene for mir-4707, at rs4981455. 
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Figure 6. MiR-4707-3p Over-expression in Proliferating phNPCs 

A. Experiment overview. Primary human neural progenitor cells (phNPCs) from two donor lines (D54 and D88) were maintained in 
proliferation media with growth factors that retain the phNPCs in a proliferative state and prevent differentiation into neurons. At day -1, 
cells were plated into 6-well and 96-well plates. The next day, day zero, cells are transduced with pTRIPZ-mir-4707-EGFP (pTRIPZ-4707) 
or a control pTRIPZ-EGFP (pTRIPZ-Control). Addition of doxycycline in the proliferation media turns on mir-4707 and EGFP expression. 
Cells were assayed at eight days post transduction. 

B. At eight days post transduction, D54 and D88 transduced with pTRIPZ-4707 showed an increase of miR-4707-3p expression over cells 
transduced with control virus. P-values from a two-sided t-test on 6 samples per condition. 

C. GFP signal in both pTRIPZ-mir-4707 and pTRIPZ-Control at eight days post transduction. EdU pulse labeled nuclei also at eight days post 
transduction. Nuclei in all four images are also stained with DAPI (blue signal). Scale bars 200μm.  
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D. Proliferation assay using EdU pulse labeled cells. Both D54 and D88 cells transduced with pTRIPZ-4707 showed an increased number of 
nuclei stained with both EdU and GFP. Each well was normalized for the total number of GFP positive nuclei. P-values from a two-sided t-
test on 14 technical replicates (wells) per condition. 

E. Time course experiment using D88 cells transduced with pTRIPZ-4707 or control virus as in A, but assayed at four, six, and eight days 
post transduction. Gene expression measured with qPCR shows increased miR-4707-3p in cells transduced with pTRIPZ-4707 over 
pTRIPZ-Control. Increased expression is also seen in the proliferation markers (Ki67, CCND1, and HAUS4), the progenitor markers 
(PAX6 and SOX2), and the neuronal markers (DCX and TUJ1). P-values from a two-sided t-test on fold changes between samples 
transduced with pTRIPZ-4707 and pTRIPZ-Control at eight days post transduction for three samples in each condition. 

F. Hypothesis of how genetic variation at a locus significantly associated with multiple brain traits may be explained by a miRNA-eQTL. 
Genetic variation at rs4981455 influences expression of miR-4707-3p. Increased expression of miR-4707-3p leads to increased progenitor 
neurogenic divisions. Based on the radial unit hypothesis, increased neurogenic divisions may lead to decreased global cortical surface 
area, which would in turn lead to decreased head size and decreased educational attainment. 
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Extended Data Figure 1. Tissue Sample miRNA Expression and Sample Ancestry 

A. Principal component analysis (PCA) for uncorrected miRBase miRNA expression across the 217 quality controlled tissue samples shows 
sequencing-pool influences global miRNA expression and the primary driver of variation in PC1. 

B. After correcting for sequencing-pool on miRNA expression using a linear model, PCA shows further influence by RNA purification method. 
C. After correcting for sequencing-pool and purification method using a linear model, five samples remain as outliers in PCA and were 

removed from the study. 
D. Small-RNA sequencing read depth across the 223 mid-gestation cortical wall samples used to discover novel miRNAs. Small-RNA 

sequencing data from 17 microdissected cortical plate and germinal zone samples were also included when detecting novel miRNAs. 
E. Sample genotypes show diverse ancestry when overlaid on HapMap3 population samples. African ancestry in Southwest USA (ASW), 

Utah residents with Northern and Western European (CEU), Han Chinese in Beijing, China (CHB), Chinese in Metropolitan Denver, 
Colorado (CHD), Gujarati Indians in Houston, Texas (GIH), Japanese in Tokyo, Japan (JPT), Luhya in Webuye, Kenya (LWK), Mexican 
ancestry in Los Angeles, California (MXL), Maasai in Kinyawa, Kenya (MKK), Toscani in Italia (TSI), Yoruba in Ibadan, Nigeria (YRI) 
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Extended Data Figure 2. Evidence for Novel miRNAs 

A. Small-RNA sequencing read coverage for a putatively novel miRNA, detected using the miRDeep2 package, on chromosome 19 shows 
the characteristic read pile-up often seen from known miRNAs (Figure 1D and 1F). 

B. Differential miRNA-expression analysis, as shown in Figure 1C, with miRNAs highlighted from Friedländer et al, Nowakowski et al, or 
novel miRNAs discovered in this study by either miRDeep2 or miRge2.0 packages. 
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Extended Data Figure 3. Enrichment of local-miRNA-eQTLs within functionally annotated chromatin states as in Figure 2B at multiple miRNA-eQTL 
p-value significance thresholds. The stringent p-value significance threshold of 1.434x10-6 and the relaxed p-value threshold of 2.804x10-5 show 
similar enrichments. Abbreviations: active transcription start sites (TssA), chromatin associated with strong transcription (Tx), chromatin associated 
with weak transcription (TxWk), enhancers (Enh), ZNF genes and repeats (ZNF/Rpts), quiescent chromatin (Quies), flanking active tss (TssAFlnk), 
transcription at gene 5’ and 3’ (TxFlnk), genic enhancers (EnhG), heterochromatin (Het), bivalent/poised TSS (TssBiv), flanking TssBiv (BivFlnk), 
bivalent enhancer (EnhBiv), repressed polycomb (ReprPC), and weak repressed polycomb (ReprPCWk). 
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Extended Data Figure 4. MiR-4707-3p alternate allele expression 

A. The primary sequence for hsa-mir-4707 is located within the 5’ UTR of the HAUS4 gene on chromosome 14. MiR-4707-3p contains a 
variant, rs2273626 (reference allele C, alternate allele A), within the seed sequence in high LD with the index variant, rs4981455 (r2 > 
0.99). 

B. Sequencing read counts per million, as quantified by miRge 2.0, across the three genotypes for both the index variant and seed variant. 
All samples with index variant G/G showed zero reads. 

C. Allele specific expression for heterozygous samples at the seed variant, rs2273626. A total of three reads across three independent 
donors were observed with the A allele. P-value=3.23x10-14 when using a paired, two-sided t-test. 
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Supplementary Tables 
Supplementary Table 1: Expressed known and novel miRNAs 

UNIQUE_NAME: combination of primary-miRNA and mature-miRNA name to create a 
unique identifier for miRNAs with the same sequence that originate from multiple 
genomic loci. 
ID: miRBase ID, NAME for non-miRBase miRNAs. 
ALIAS: miRBase alias, NAME for non-miRBase miRNAs. 
NAME: miRBase name, for non-miRBase miRNAs the identifier given in the respective 
publications or identifier given by miRge2.0 or miRDeep2 packages. 
DERIVES_FROM: ID of primary-miRNA. 
DERIVES_FROM_NAME: NAME of primary-miRNA. 
SOURCE: miRBase_v22 for known miRNAs cataloged in miRBase release 22. 
Friedlander2014 or Nowakowski2018 for novel miRNAs reported in those respective 
publications. miRge or miRDeep2 for novel miRNAs discovered in this study. 
TYPE: miRNA for mature miRNAs in miRBase, miRNA_putative_mature or 
miRNA_putative_star for novel miRNAs. 
SCORE: NA for miRBase and Nowakowski2018 miRNAs. Friedlander2014 miRNAs 
reported a confidence score 1-4. miRge quality scores 0-1. miRDeep2 scores >= 0. 
CHR: chromosome where the mature miRNA is located. 
START_hg38: start base-pair position for mature miRNA using hg38. 
END_hg38: end base-pair position for the mature miRNA using hg38. 
WIDTH: base-pair width of the mature miRNA. 
STRAND: genomic strand of the mature miRNA. 
SEQUENCE: miRNA sequence. 
MEAN_VST_EXPRESSION: mean variance-stabilizing transformation expression. 

 
Supplementary Table 2: Differentially expressed known and novel miRNAs. 

BASE_MEAN: mean expression as reported by DESeq2. 
LOG2_FOLD_CHANGE: log2 transformed fold-change as reported by DESeq2 on the 
treatment variable, gestation week. Positive values indicate enrichment within late 
gestation week tissues. Negative values indicate enrichment within early gestation week 
tissue. 
LFC_SE: standard error on fold change as reported by DESeq2. 
PVALUE: p-value as reported by DESeq2. 
PADJ: Benjamini-Hochberg adjusted p-value as reported by DESeq2. 
SIGNIFICANT: logical, TRUE if PADJ is below 0.1. 
NAME: same as in Supplementary Table 1. 
ID: same as in Supplementary Table 1. 
ALIAS: same as in Supplementary Table 1. 
DERIVES_FROM: same as in Supplementary Table 1. 
SOURCE: same as in Supplementary Table 1. 
TYPE: same as in Supplementary Table 1. 
SCORE: same as in Supplementary Table 1. 
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SEQUENCE: same as in Supplementary Table 1. 
 
Supplementary Table 3: Mid-gestation cortical tissue miRNA-eQTLs. 

eQTL: unique eQTL identifier, combination of emiR and eSNP. 
emiR: same as UNIQUE_NAME in Supplementary Table 1. 
eSNP: unique variant identifier, combination of chromosome, base-pair position, and 
variants. 
BETA: eQTL association effect size after fitting to the linear mixed model using EMMAX. 
P: nominal p-value on linear mixed model fitting using EMMAX. 
DEGREE: degree to which the eQTL is conditionally-independent. 
SNP_CHR: variant chromosome. 
SNP_BP_hg38: variant base-pair position using hg38. 
EFFECT_ALLELE: effect allele used in the linear mixed model association by EMMAX. 
REF: reference allele using hg38. 
ALT: alternate allele using hg38. 
ALT_CTS: alternate allele counts. Summed allelic dosage across all samples in the 
analysis. 
OBS_CT: total allele counts. Number of samples x2. 
A1: A1 allele as defined by plink1.9, usually minor allele. 
A2: A2 allele as defined by plink1.9, usually major allele. 
A1_HOM_COUNT: number of homozygous A1 samples. 
HET_COUNT: number of heterozygous samples. 
A2_HOM_COUNT: number of homozygous A2 samples. 
miR_CHR: miRNA chromosome. 
miR_START_hg38: miRNA start position using hg38. 
miR_END_hg38: miRNA end position using hg38. 
miR_WIDTH: miRNA width in base pairs. 
miR_STRAND: miRNA genomic strand. 
SOURCE: same as in Supplementary Table 1. 
TYPE: same as in Supplementary Table 1. 
ID: same as in Supplementary Table 1. 
ALIAS: same as in Supplementary Table 1. 
NAME: same as in Supplementary Table 1. 
DERIVES_FROM: same as in Supplementary Table 1. 
DERIVES_FROM_NAME: same as in Supplementary Table 1. 
SEQUENCE: same as in Supplementary Table 1. 
SIGNIFICANCE: label for significance threshold used to define significant eQTLs, 
eigenMT_fdr5percent is the stringent threshold and fdr5percent is the relaxed threshold, 
see Methods. 
NOM_P_VALUE_THRESHOLD: nominal p-value threshold used to define significant 
eQTLs. 
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Supplementary Table 4: Colocalizations 
Sheet1: miRNA-eQTL/mRNA-eQTL colocalizations. Columns with .mirQTL suffix refer 
to the miRNA-eQTL analysis while .mQTL refer to the mRNA-eQTL analysis8,9. 

eQTL.mirQTL: unique miRNA-eQTL identifier, combination of emiR and eSNP. 
emiR.mirQTL: same as UNIQUE_NAME in Supplementary Table 1. 
eSNP.mirQTL: unique variant identifier, combination of chromosome, base-pair 
position, and variants. 
BETA.mirQTL: eQTL association effect size after fitting to the linear mixed model 
using EMMAX. 
P.mirQTL: nominal p-value on linear mixed model fitting using EMMAX. 
DEGREE.mirQTL: degree to which the eQTL is conditionally-independent. 
SNP.CHR.mirQTL: variant chromosome. 
SNP.BP.hg38.mirQTL: variant base-pair position using hg38. 
EFFECT.ALLELE.mirQTL: effect allele used in the linear mixed model 
association by EMMAX. 
REF.mirQTL: reference allele using hg38. 
ALT.mirQTL: alternate allele using hg38. 
SIGNIFICANCE.mirQTL: label for significance threshold used to define 
significant eQTLs, eigenMT_fdr5percent is the stringent threshold and 
fdr5percent is the relaxed threshold, see Methods. 
SNP.mQTL: variant identifier. 
ENSG.mQTL: Ensembl gene ID. 
BETA.mQTL: mRNA-eQTL beta value. 
P.mQTL: mRNA-eQTL p-value. 
CHR.mQTL: variant chromosome. 
BP.mQTL: variant base-pair position on hg38. 
RANK.mQTL: conditional analysis rank. 
BETA.CONDITIONAL.mQTL: beta after conditioning. 
P.CONDITIONAL.mQTL: p-value after conditioning. 
ALLELE_MINOR.mQTL: minor allele in the mRNA-eQTL dataset. 
ALLELE_MAJOR_EFFECT.mQTL: effect allele. Major allele in the mRNA-eQTL 
dataset. 
eQTL.mQTL: unique mRNA-eQTL identifier, combination of SNP.mQTL and 
ENSG.mQTL. 

Sheet2: miRNA-eQTL/mRNA-sQTL colocalizations. Columns with .mirQTL suffix refer 
to the miRNA-eQTL analysis while .mQTL refer to the mRNA-sQTL analysis8,9. 

eQTL.mirQTL: see Supplementary Table 4, Sheet 1. 
emiR.mirQTL: see Supplementary Table 4, Sheet 1. 
eSNP.mirQTL: see Supplementary Table 4, Sheet 1. 
BETA.mirQTL: see Supplementary Table 4, Sheet 1. 
P.mirQTL: see Supplementary Table 4, Sheet 1. 
DEGREE.mirQTL: see Supplementary Table 4, Sheet 1. 
SNP.CHR.mirQTL: see Supplementary Table 4, Sheet 1. 
SNP.BP.hg38.mirQTL: see Supplementary Table 4, Sheet 1. 
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EFFECT.ALLELE.mirQTL: see Supplementary Table 4, Sheet 1. 
REF.mirQTL: see Supplementary Table 4, Sheet 1. 
ALT.mirQTL: see Supplementary Table 4, Sheet 1. 
SIGNIFICANCE.mirQTL: see Supplementary Table 4, Sheet 1. 
snp.mQTL: unique variant identifier, combination of chromosome, base-pair 
position, and variants. 
intron.mQTL: unique intron identifier, combination of chromosome, base-pair 
start and end positions, and cluster identifier. 
beta.mQTL: mRNA-sQTL beta value. 
pvalue.mQTL: mRNA-sQTL p-value. 
chr.mQTL: sQTL chromosome. 
rank.mQTL: degree to which the sQTL is conditionally independent. 
cond.beta.mQTL: mRNA-sQTL beta value at conditional rank. 
cond.pval.mQTL: mRNA-sQTL p-value at conditional rank. 
clusterID.mQTL: unique cluster identifier. 
gene.mQTL: gene symbol. 
ensemblID.mQTL: Ensembl gene ID. 
transcripts.mQTL: Ensembl transcript ID. 
BP.mQTL: sQTL base-pair. 
rsid.mQTL: rsid of sQTL. 

Sheet3: miRNA-eQTL brain/blood colocalizations 
eQTL.mirQTL: see Supplementary Table 4, Sheet 1. 
emiR.mirQTL: see Supplementary Table 4, Sheet 1. 
eSNP.mirQTL: see Supplementary Table 4, Sheet 1. 
BETA.mirQTL: see Supplementary Table 4, Sheet 1. 
P.mirQTL: see Supplementary Table 4, Sheet 1. 
DEGREE.mirQTL: see Supplementary Table 4, Sheet 1. 
SNP.CHR.mirQTL: see Supplementary Table 4, Sheet 1. 
SNP.BP.hg38.mirQTL: see Supplementary Table 4, Sheet 1. 
EFFECT.ALLELE.mirQTL: see Supplementary Table 4, Sheet 1. 
REF.mirQTL: see Supplementary Table 4, Sheet 1. 
ALT.mirQTL: see Supplementary Table 4, Sheet 1. 
SIGNIFICANCE.mirQTL: see Supplementary Table 4, Sheet 1. 
NOM.P.VALUE.THRESH.mirQTL: see Supplementary Table 4, Sheet 1. 
snpID.bloodQTL: rsid for blood eQTL. 
Estimate.bloodQTL: blood eQTL beta. 
Pval.bloodQTL: blood eQTL p-value. 
hsa_miR_name.bloodQTL: miRBase miRNA name. 
effect.bloodQTL: effect variant for blood eQTL. 
noneffect.bloodQTL: non-effect variant for blood eQTL. 

Sheet4: GWAS data sources 
TRAIT: trait or disorder name. 
PMID: PubMed ID for published article associated with each dataset. 
DATA_LINK: link to data download site. 
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Supplementary Table 5: qPCR primers 

GENE: gene name. 
NCBI_GENE_ID: NCBI gene ID. 
PRIMER_BANK_ID: primer bank ID. 
AMPLICON_SIZE: distance between forward and reverse primer on gene transcript. 
FORWARD_PRIMER: forward primer. 
REVERSE_PRIMER: reverse primer. 
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