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Abstract 

The 5-year prognosis of late-stage epithelial ovarian cancer (EOC) remains poor, thus the discovery of early-stage EOC 
biomarkers is of paramount importance. Extracellular vesicles (EVs) circulating in blood are thought to contain proteomic 
cargo originating from an EOC microenvironment and are thus amenable for clinical biomarker discovery. We profiled the 
proteome of EVs purified from patient blood plasma, ascites and cell lines using strong cation exchange peptide fractionation 
and Orbitrap-based tandem mass spectrometry. To further increase sensitivity and specificity of the method, CD9-affinity 
purification and ultracentrifugation were used to purify EVs.  Using parallel reaction monitoring we identified a compendum 
of 240 proteins that were differentially enrirched in EVs derived from EOC (n=10) patients versus women with non-
cancerous gynecological conditions (n=9). Support vector machines were optimized using leave-one-out cross-validation and 
this methodology was implemented on a test set of malignant (n=4) and control (n=3) donors. Using the relative levels of 
>450 EV-associated peptides in a cohort of plasma-derived EVs, we identified several combinatorial peptides capable of 
discriminating high-grade serous EOC with up to 100% accuracy in Stage I, II, and III donors. This study demonstrates an 
adaptable biomarker discovery pipeline and provides pinoeering evidence of EV-associated biomarkers for the detection of 
early-stage EOC. 
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1. Introduction 

Despite an increasing understanding of epithelial ovarian 
cancer (EOC) etiology and biology, EOC remains the most 
lethal gynecological cancer in developed countries1. It is 
estimated that >200,000 women per year will be diagnosed 
worldwide, and 5-year survival rates below 50% will lead to 
>100,000 deaths2. Early detection of EOC is crucial to 
improving survival, with 92% and 29% of patients surviving 
following early versus late-stage detection, respectively3. 
Unfortunately, 75% of women remain asymptomatic until 
diagnosis in late stages and experience non-specific 

symptoms (e.g. abdominal discomfort) that may lead to the 
identification of pelvic masses by transvaginal ultrasound 
(TVUS) imaging. If abnormal masses are identified, invasive 
surgical procedures, tissue debulking, and pathohistological 
analyses are then required to discriminate between benign 
and malignant disease1. High-grade serous carcinoma 
(HGSC) is the most lethal and aggresive form of EOC, 
accounting for >75% of EOC cases. The extracellular epitope 
of MUC16 (CA-125) can be used to monitor the progression 
of EOC and response to chemotherapeutics in combination 
with TVUS4-6. Unfortunately, tests for CA-125 are not 
sensitive nor specific enough for early diagnosis of 
malignant EOC7. For example, although ~20% of patients 
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with late-stage EOC exhibited elevated CA-125 levels (>35 
U/mL), increased CA-125 was also observed in women with 
alternative gynecological conditions7. Thus, there remains a 
dire need to discover alternative biomarkers to aid in the 
early detection of EOC. 

Algorithms, such as the Risk of Malignancy Index (RMI), 
aim to incorporate menopausal status, CA-125 levels and 
TVUS imaging8, 9. Alternatively, the Risk of Ovarian Cancer 
Algorithm (ROCA) monitors CA-125 levels over time to 
assess the risk of developing ovarian cancer. Unfortunately, 
large randomized control trials (US Prostate, Lung, 
Colorectal and Ovarian Cancer Screening Trial and UK 
Collaborative Trial of Ovarian Cancer Screening) involving 
thousands of females found no significant survival benefit 
for multimodal screening strategies over standard of care4-6. 
Alternative biomarkers to CA-125 have been proposed for 
estimating EOC risk. For example, the risk of ovarian 
malignancy algorithm (ROMA) monitors human epididymis 
protein 4 (HE4 or WFDC2) in addition to CA-125 10. The 
FDA-approved OVA1 in vitro diagnostic multivariate index 
assay measures five biomarkers (CA-125-II, transferrin [TF], 
transthyretin (prealbumin), apolipoprotein A1 [APOA1], and 
beta-2 microglobulin [B2M]) and demonstrates improved 
prediction accuracy of malignancy risk compared to a 
physician's pre-operative assessment or CA-125 alone11. 
Moreover, Yip et al. screened 259 serum biomarkers from 
EOC patients and identified nine combinatorial biomarkers 
with greater specificity than OVA1 (88.9 versus 63.4%)12. 
Høgdall et al. screened serum from 150 EOC patients and 
found B2M, TF, and inter-alpha-trypsin inhibitor heavy 
chain H4 (ITIH4) robustly predicted overall survival and 
progression-free survival13. These approaches improve 
cancer classification and monitoring strategies; however, 
viable biomarkers that are capable of detecting early-stage 
HGSC are still unavailable. 

 Blood plasma remains an ideal source for biomarker 
discovery due to the easy acquisition of patient samples for 
high-throughput immunoassays. Mass spectrometry (MS)-
based proteomics is a medium-throughput technique for 

biomarker discovery; however, the detection of low 
abundance proteins in plasma is technically complicated by 
the presence of high abundance proteins (HAPs) 14-16. 
Keshishian et al. detected ~5300 plasma proteins by 
depleting the 14 most abundant plasma proteins as well as 
~50 moderately abundant proteins in tandem with high-pH 
reversed phase fractionation17. Alternatively, N-glycopeptide 
enrichment was recently shown to identify plasma proteins 
for detecting early ovarian cancer and relapse18. It remains to 
be determined what the optimal strategy is for segregating 
biomarkers from HAP in primary tissue samples. 
Extracellular vesicles (EVs), 40-1000nm in diameter, carry 
bioactive lipid, nucleic acid and proteomic cargo in a lipid 
membrane that allows for transport through systemic 
circulation to distant tissues19. EVs carry bioactive cargo 
from or towards a metastatic cancer microenvironment20, 
thus the enrichment of EVs may segregate potential 
biomarkers from HAPs or other liable plasma proteins21. A 
limited number of investigations have attempted to 
characterize EOC-EV proteomes using biofluids22. 

Herein, we provide evidence of potential biomarkers 
identified from plasma EVs from donors with malignant 
EOC (HGSC) using targeted label-free proteomics and 
support vector machine (SVM) optimization for the 
classification of HSGC vs non-cancerous donors with 
clinical presenation of gyneological ailments related to 
HGSC (e.g. abdominal pain). EV proteomes obtained from 
cell lines, plasma and ascites fluid samples identified >200 
perspective biomarkers associated with plasma EVs in a 
proof-of-principle study. Label-free parallel reaction 
monitoring (PRM) proteomics, leave-one-out cross 
validation (LOOCV) and SVM identified nine peptide 
combinations that classified malignant EOC vs non-
cancerous gynecological conditions with 100% accuracy on a 
test-set (n=4) containing FIGO stage I, II, III EOC donors. 
Collectively, this data confirms EV habour prospective 
biomarkers for early-stage malignant EOC detection. 
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Figure 1. EVs released from 
established and primary ovarian 
cancer cell lines harbour disease 
relevant cargo. (A) EVs were 
enriched from conditioned media of 
established or primary cell lines. 
Alternatively, EVs were enriched from 
blood plasma or ascites fluid using UC 
or CD9AP. (B) The number of unique 
proteins identified was elevated in 
EVs derived from cell lines compared 
to EVs enriched from primary sources. 
Data represented as box plot quartiles 
(C) Principal component analysis 
illustrating distinct proteomic 
‘fingerprints’ within cell line-derived 
EVs and comparisons between EV 
source or enrichment technique. 
Biofluid EVs (highlighted by red oval) 
contain distinct proteomes based on 
source and method of purification 
demonstrated by embedded PCA plot. 
(D)  Overlap of EV-proteomes 
compared to Vesiclepedia database 
filtered by ovarian cancer cell lines.  
(E)  Overlap of EV proteome of hIOSE 
cells, cancer cell lines, and 
Vesiclepedia database filtered for 
ascites from donors with malignant 
cancer. (F) Overlapping proteins were 
enriched with components of 
neutrophil degranulation according to 
Reactome database. Size of circles 
indicate number of proteins identified 
in each term.  (G) Cancer cell lines 
were compared to primary ascites EVs 
enriched by UC or CD9AP and 
overlapping proteins were cross-
referenced to (H) Canonical Pathway 
database. Specifically, cell line and 
ascites EVs contained more than 20 
proteins were identified for Integrin 
,E-Cadherin, VEGFR1/2, CXCR4, and 
PDGFRB signaling axes. 

 

 

2. Results 

2.1 Integrative Proteomic Analysis of Ovarian Cancer 
Extracellular Vesicles. We first undertook an MS-based 
approach to characterize EV proteomes from cancer cell 
lines, healthy donor plasma, and donor ascites fluid for 
biomarker discovery.  Primary (EOC18, EOC6) and 
established (OVCAR3, OV-90) cell lines were used to model 
EOC, and a non-malignant ovarian surface epithelial cell line 
(hIOSE) was also analysed. Plasma from 6 donors (plas 6, 7, 
9, 10, 14, 17) and ascites from 3 donors (EOC24, EOC26, 
EOC29) were also used. EVs were primarily obtained by 

UC; however, CD9 affinity purification (CD9AP) was also 
performed on donor plasma and ascites to enrich for smaller 
EVs (Fig 1A). Notably, EVs derived with CD9 versus UC 
were matched for the ascites samples. While one may expect 
that EOC cell lines can not entirely recapitulate the milieu of 
a tumour microenvironment, EVs derived from cell lines 
have not yet been compared to patient-derived EVs23, 24. SCX 
fractionation was employed to increase proteomic depth prior 
LC-MS/MS in all samples. Using this approach, the number 
of proteins identified in cell line EVs was increased 
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Figure 2. CD9-affinity purification enriches for 
small subsets of EVs from ascites fluid. (A) 
Dynamic light scattering of ascites EVs purified by UC 
or CD9AP demonstrates a subset of EVs is enriched 
with CD9AP. The distribution of CD9AP-EVs were 
primarily distributed around <150nm in diameter, 
whereas UC samples were comprised of a 
heterogenous mixture of EVs that were primarily 
distributed around ~200nm, albeit subpopulations of 
EVs were detectable up to 900nm (see Appendix 
Table 3). (B) Heatmap of identified proteins and 
dendrogram demonstrate increased proteomic 
depth obtained by UC, albeit variability of UC-
enrichment of ascites EVs was also observable. (C) 
Ectosome and large EV components, such as actin, 
were depleted using CD9AP, further validating the 
specified enrichment of small EVs. (D) 148 and 2001 
proteins were exclusive to EVs enriched by CD9AP or 
UC (>1 replicate), whereas 457 proteins were 
common to both CD9AP and UC-enriched EVs (>2 
replicates in each condition). (E)  Volcano plot of 
common proteins to CD9AP and UC identified 64 and 
84 proteins significantly enriched in either CD9AP- or 
UC-enriched ascites EVs, respectively. (F) Overlap of 
exclusively detected proteins with Vesiclepedia 
database filtered for ascites EVs. (G) The 509 
proteins detected in UC-enriched EVs and 
overlapped with Vesiclepedia were enriched with 
members of canonical PDGFB, CXCR4, E-Cadherin 
and Integrin signalling pathways.  

 
compared to primary sources (Fig 1B). Furthermore, PCA 
analysis confirmed that the proteomes of EVs isolated from 
biofluids taken from patients was distinct from those derived 
from cells in culture (Fig 1C). Interestingly, for plasma 
samples CD9-derived EVs clustered closely to CD9-derived 
ascites EVs than plasma EVs isolated by UC. Furthermore, 
the ascites EV samples acquired with UC clustered more 
closely with ovarian cancer cells grown in culture. Primary 
cell lines were derived from ascites fluid of patients with 
low-grade serous (LG/EOC18) and high-grade (HG/EOC6) 
ovarian cancer. The proteomes of these cell lines reflected an 
intersect of the ascites microenvironment and EV proteome 
generated by established cell lines. Similar to proteomic 
analyses of ovarian cancer cell lysates25 and in support of our 
recent characterization26, cell line EVs harboured unique 
proteomic cargo compared to each other but primary cell 
lines cluster along principal components (Appendix Fig 
S1A). Of note, when we filtered the Vesiclepedia database 
for EV signatures from EOC cell lines, a 35.1 – 43% overlap 
was observed with our data (Fig 1D). Overlapping proteins 
were significantly associated with GO Cellular Component 
(GOCC) annotations indicative of EV-enrichment 

(Appendix Fig S1B). hIOSE was separated from cell lines 
EOC6/18, OV-90 and OVCAR3 and compared to the 
Vesiclepedia filtered for ascites EVs (Fig 1E). Common 
proteins (red) were associated with neutrophil degranulation 
and adaptive immunity (Fig 1F). Only three proteins from 
EOC cell line EVs exclusively overlapped with 
Vesiclepedia-ascites (Appendix Fig S1C). These included 
SLC34A2, a solute transporter upregulated within ovarian 
cancer tumours 27. Moreover, 1515 proteins overlapped with 
primary ascites EVs in our hands and were associated with 
adaptive immunity and members of the PDGFB, CXCR and 
VEGF signalling pathways (Fig 1G and H, Appendix Fig 
SID). These results clearly demonstrate that the proteomic 
‘fingerprint’ of EOC cell line-derived EVs is distinct from 
those contained within biofluid EVs, but that EVs from all 
sources reflect biological hallmarks of cancer. Moreover, 
EVs derived from UC are better able to identify a cancer-
specific proteome. 

2.2 CD9AP increases EV specificity at the expense of 
proteomic depth. Over the last decade, efforts have been 
made to compare strategies that enrich EVs from conditioned 
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Figure 3. Identification of potential 
biomarker candidates in the ascites and 
blood plasma. CD9AP- and UC-enriched EVs 
from ascites fluid were compared to EVs 
isolated from blood plasma. (A) 181 
proteins were significant enriched within 
ascites EVs compared to blood plasma EVs 
collected by UC. (B) 55 proteins were 
significantly enriched using CD9AP on 
ascites EVs compared to blood plasma EVs. 
(C) Proteins significantly enriched in ascites 
versus plasma were cross-referenced to the 
Reactome database. (D) Enriched ascites 
proteins were assessed for evidence of 
detection in blood plasma samples from 
donors with malignant EOC. 204 proteins 
were common to both EV sources and (E) 
were significantly associated with GO 
Biological Processes, such as response to 
wounding and activation of immune 
response. Size of circles indicates relative 
number of proteins identified in each term. 

 

media or biological fluids28-30. Optimizing EV purity is ideal 
to identify true EV cargo and elucidate the biological 
mechanisms dependent on EV biogenesis or uptake. EVs 
represent a large range of biological vesicles that may reflect 
anything from  ‘cellular debris’ during apoptotic processes to 
systematically packaged messages that are able to prime 
distant microenvironments for cancer metastasis20, 31. With 
these properties in mind, we hypothesized that obtaining high 
EV purity would uncover additional biomarkers undetected 
within UC-enriched EV preparations due to EV 
heterogeneity or residual HAPs. We selected CD9AP to 
segregate small EVs from large EVs and residual cellular 
debris in ascites derived from donors with HGSC. Indeed, 
small EV purity was increased with CD9AP compared to UC 
when measured by dynamic light scattering (Fig 2A-C, 
Appendix Table S3); however, this occurred at the expense 
of proteomic depth or number of proteins identified (Fig 
2C,D). 148 proteins were exclusively detected in CD9AP-
EVs and were enriched with effectors of blood vessel and 
cancer development, such as TGFB1, BMP2, VEGFC and 
WNT11 (Appendix Fig S2A). On the other hand, >2000 

additional proteins were exclusively detected using UC, 
albeit protein identification across UC-EVs was variable (Fig 
2C,D). Notable mediators of cancer biology exclusively 
detected in UC-EVs included Aldehyde Dehydrogenase 1A1 
(ALDH1A1) and epidermal growth factor receptor (EGFR) 
amongst additional factors associated with wounding or 
cellular activation during immune response (Appendix Fig 
S2B). 457 proteins were comparatively detected in UC- and 
CD9AP-EVs, although differential enrichment was observed 
between the two isolation methods (Fig 2E). For example, 
CD9AP-EVs were enriched for 64 proteins such as tissue 
plasminogen activator (PLAT) and angiopoietin-like 6 
(ANGPTL6). Alternatively, UC-EVs were enriched with 84 
proteins, such as Annexin1/2 (ANXA1/2) and myosin heavy 
chain-9 (MYH9). Although both UC- and CD9AP-EVs 
contain proteins associated with EV biology, several 
‘classical’ EV markers (i.e. CD63) were exclusive to UC-
EVs (Appendix Fig S3). These results were not surprising 
considering CD9 and C63 may represent EVs of distinct 
biogenic processes32. CD9 and integrins are often 
incorporated into the membrane of EVs and facilitate uptake 
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into recipient cells33. Several integrin isoforms were 
exclusively detected in UC-EVs, supporting the enrichment 
of EVs subsets likely derived from the plasma membrane 
using UC. Proteins exclusive to UC or CDAP-EVs accounted 
for >50% of proteins contained with Vesiclepedia-ascites 
(Fig 2F). Interestingly, only PARP1 overlapped between 
CD9AP-EVs and Vesiclepedia-ascites. On the other hand, 
509 UC-EV proteins that overlapped with Vesiclepedia-
ascites were enriched for growth factors and cytokines in 
wound response and neutrophil degranulation (Fig 2G). 
Collectively, our results support previous reports which 
demonstrate that increased EV purity with CD9AP is likely 
to identify additional candidates for biomarker analyses34, 
albeit putative biomarkers may be lost during this process. 

2.3 Quantitative proteomics unveils a large reservoir of 
putative biomarkers. In an effort to increase the likelihood 
that selected EOC biomarkers could be used to detect early 
disease, we next focused our analyses towards proteins that 
were enriched in ascites EVs or absent in EVs derived from 
the plasma of healthy donors. We speculated that ascites EVs 
derived from the tumour microenvironment would harbour 
proteomic cargo which may be useful for the detection of 
EOC and that this proteomic cargo may be released into 
systemic circulation. Moreover, if absent in healthy controls, 
these EVs could be specifically detected in EOC patients 
even when disease burden is low. Like ascites, we employed 
parallel purification strategies, UC and CD9AP, to increase 
proteomic depth for biomarker discovery in blood plasma. In 
the UC group, 185 proteins were significantly elevated (2-
fold,p<0.05) in ascites compared to healthy plasma (Fig 3A). 
These included proteins associated with cancer cell biology 
and/or metastasis, such as LRP1, HSP90AA1/AB1, FTH1, 
CRP, and MUC1. On the other hand, 55 differentially 
expressed proteins (2-fold, p<0.05) were detected between 
healthy plasma and ascites using CD9AP (Fig 3B). These 
included cancer-relevant proteins such as FBLN1, MMP14, 
ANGPTL2, IGBP2, CD14, PLAT. Hence while CD9 may 
enable the discovery of specific analytes, it is likely that 
CD9-negative vesicles harbour biomarkers lost during 
selective enrichment strategies.  However, some factors were 
retained. For example, ascites EV proteins enriched by UC 
and CD9AP were significantly associated with effectors of 
neutrophil degranulation (Appendix Fig S4). Next, we 
sought to determine whether ascites-specific EV proteins 
could also be detected in the plasma of EOC patients. Several 
proteins were exclusively detected in EVs from ascites 
compared to plasma samples. These were considered as 
potential tumor-specific biomarkers during PRM method 
development. Over 200 proteins that were enriched within 
ascites were also detected in plasma samples from donors 
with EOC and included mediators of immune response and 
regulated exocytosis (Fig 3C,D). HE4 was not detected in 

any EV proteomes, which suggested potential EV-
independence, similar to that reported in Zhao et al35. 
Collectively, these results support the parallel application of 
UC and CD9AP to ‘mine’ prospective biomarkers; 
moreover, they suggest that ascites may be an excellent bio-
fluid with which to discover biomarkers and that 
incorporation into EVs likely enables the presence of these 
factors in the blood of EOC patients.  

2.4 Targeted proteomics of EV-enriched plasma and 
machine learning classification optimization identify 
biomarker combinations for the early detection of EOC. 
Given the large number of proteins significantly enriched in 
ascites EVs, we next asked whether the abundance of these 
proteins would be elevated in an independent cohort of 
plasma EV samples from patients diagnosed with malignant 
EOC (n=10) versus controls with non-cancerous 
gynaecological conditions (n=9). We chose this cohort to 
serve as our control in order to account for markers that may 
be associated with pathologies or inflammation in general as 
opposed to ovarian-cancer-specific analytes which may be 
released from tumour cells or upregulated within the 
microenvironment of EOC. To enable more accurate, relative 
label-free quantitative comparisons, a manually curated list 
of 471 peptides (240 proteins selected from the previous 
analysis as present in ascites and patient serum) was 
subsequently targeted in the entire cohort of plasma EVs 
using a PRM method built in PEAKS36 and Skyline37 (Fig 4).  
Peak areas were normalized to the TIC to correct for 
technical variability, and additionally normalized to the CD9 
peptide EVQEFYK (extracellular region, AAs 120-126) to 
control for EV purity. Data scaling, support vector machine 
(SVM) optimization and validation were performed in a 
Python language environment. A total of 21 peptides were 
significantly enriched in malignant and non-malignant 
samples, respectively (Wilcoxon rank-sum test, p<0.05) (Fig 
5A; Table 1.). Of note, one peptide from CA-125 (MUC16) 
was included in our PRM method (ELGPYTLDR). Using the 
Wilcoxon rank-sum test, this peptide achieved p=0.060 for 
an AUC of 0.76 and log2 fold-change 2.12. Despite the 
selection of these 22 peptides, malignant and non-malignant 
samples could not be completely segregated using PCA and 
unsupervised k-means classification (Fig 5B). Machine 
learning classification models, such as SVMs, have 
demonstrated immense utility for identifying novel 
biomarkers for an array of diseases38. This is due to their 
ability to provide high-accuracy classification using high-
dimensionality data when sample numbers are limited. 
Indeed, this is an extremely beneficial and attractive feature 
of SVMs for biomarker discovery studies where the 
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acquisition of large donor number is extremely difficult or 
impossible to obtain. Data features were scaled using z-
scores, and randomly split into 10 independent training 
(70%) and test (30%) sets in a stratified fashion to ensure a 
comparable number of control and malignant samples were 
reserved. Donor status, such as FIGO stage, remained 
blinded until final validations were performed using the 
reserved test set. As proof-of-principle and for the figures 
within this manuscript, we retrospectively chose 
random_state=6 which contained all FIGO stages in both 
training and test data sets, thus allowing us to speculate on 

the ability of prospective biomarkers to identify early-stage 
HGSC. SVM optimization was executed with the GridSearch 
library that allowed for permutations of feature selection, 
SVM kernels (linear, poly, rbf) and hyperparameters (i.e. 
cost/C) to be scored. The optimal kernel and 
hyperparameter(s) were determined by LOOCV to dampen 
‘noise' often obtained with low complexity data sets by 
reserving a single sample for validation39 (Fig 4). 14,784 
total fits or permutations of kernel, principal components, 
cost or gamma were used to calculate a mean accuracy score. 

Figure 4. Overview of Leave-One-Out Cross 
Validation (LOOCV) for the Optimization of Support 
Vector Classification. Overview of biomarker 
discovery pipeline utilized within this study. Plasma 
EVs were isolated from malignant EOC (n=10) or 
control donors (n=9) using ultracentrifugation and 
subjected to proteolysis to generate tryptic peptides 
for label-free PRM. Peptides were selected from 
proteins either exclusively detected or significantly 
enriched within ascites compared to blood plasma, 
see Figure 3. Label-free PRM was quantified in 
Skyline by normalizing both total ion current (TIC) 
and CD9 intensity levels. Peptide features were 
narrowed to those that demonstrated a >2-fold 
change in HGSC EVs versus control EVs (i.e. 21 (+1) 
peptides were selected within our study). 
Normalized intensities of peptide features were 
scaled by z-scores and a stratified split of donors 
was performed to generated a training set (~70% of 
donors) and a test set (~30% of donors). SVMs were 
optimized using LOOCV to score model 
hyperparameters and principal components (PC) by 
removing a single donor from the training pool for 
to obtain a mean accuracy of model predictions. 
The ‘optimized’ hyperparameters are further 
refined by assess all permutations of features using 
the reserve test set for model validation and 
scoring, see Appendix Fig S5. Scoring was performed 
using a combination of ROC-AUC and Matthew’s 
Correlation Coefficient 
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From these analyses, we identified eight linear SVMs 
(C=0.025-2) that provided a mean accuracy score >90% 

(Fig 5C). Next, we optimized feature selection based on 
classification accuracy using the reserved test set. The SVM 
(PC=2, C=0.025) was tested 231 times with paired 
permutations of all 22 peptides (Appendix Fig 5). 
Interestingly, nine combinations of peptides were able to 
classify malignant (n=4) versus non-malignant (n=3) samples 
with an accuracy score = 1.0 (Fig 5D, E). For example, the 
combination of CFHR4 and MUC1 was able to accurately 
classify Stage I, II, and III donors (Fig 5F). Additional 
peptide combinations provided accuracy scores = 1.0, 
however GPX3, MUC1, and CFHR4 were represented in the 
majority of models (Table 1) and considered strong drivers 
of the EOC classification, according to SHapley Additive 
exPlanations (SHAP) analysis40 (Fig 6A). For example, 
CFHR4 and GPX3 were not detected in cell line EVs and 
were strong drivers of Stage 1 EOC classification (Fig 6B, 
Appendix Fig S6). Alternatively, MUC1 was not detected 
within CD9AP-EVs and was a strong driver of Stage III 
EOC (Fig 6C) and control donor classification (Fig 6D).  

It should be considered that the selected C hyperparameter 
(0.025-2) would provide “soft” margins for SVM and high 
accuracy on the peptide combinations selected during 
optimization (Appendix Fig S7A-C). SVMs with more 
conservative margins (C=10) also generated several distinct 
peptide combinations with high accuracy when optimized 
using the test set (Appendix Fig S7 D, E). Nonetheless, we 
demonstrate the robustness of our approach and discovered 
additional biomarker combinations in EV-depleted plasma 
(Appendix Fig S8, Appendix Table S4). Interestingly, 
CFHR4 was considered a strong driver of SVM accuracy in 
EV-depleted plasma (Appendix Fig S9) and was speculated 
to be constituent of the EV corona41. Using a limited number 
of donor samples, we highlight the use of label-free PRM, 
SVM optimization using LOOCV and parallel enrichment of 
EVs to identify combinatorial biomarkers that may be used 
to detect all stages of EOC. 

 

Figure 5. Target Proteomics and Support Vector 
Classification Identifies Novel Biomarkers for 
Malignant Ovarian Cancer.  471 peptides 
corresponding to 240 proteins were analysed in 
EV-enriched blood plasma from malignant 
(n=10) versus control (n=9) donors using label-
free LC-MS/MS and parallel reaction monitoring. 
(A) Volcano plot highlights peptides that were 
significantly different between malignant and 
control donor samples. 21 peptides (p-value 
<0.05) and EOC antigen MUC16 (red) were 
selected for further analyses. (B) Heatmap of 
principal component variance ratios of potential 
biomarkers. (C-D) Unsupervised PCA and k-
means clustering of pooled samples. Predicted 
labels (red and black) partially overlapped with 
true labels (blue = control and orange = 
malignant). (E) Hyperparameter tuning of the 
linear SVM was performed by LOOCV, leading to 
hyperparameters C=0.025 and two principal 
components selected as the ‘optimized’ SVM 
based on mean accuracy score (>0.90). Each 
point of triangulation indicates an SVM 
combination/fit that was scored using the 
training set. (F) Feature selection was 
performed using 231 combinations of peptides 
and test data. From this analysis, nine 
combinations of peptides provided an accuracy 
score of 1.0 on the (G) test data set. (H) For 
example, the combination of (I) CFHR4 and (J) 
MUC1 provided a Receiver Operating 
Characteristic-Area Under the Curve (ROC-AUC) 
score of 1.0. Training (red) and test samples 
(white) were represented by women with Stage 
I, II, and III EOC.  
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Figure 6. SHAP analysis of EV-enriched biomarkers used for SVM classification. (A) SHAP post-model analyses determined that MUC1 
(NYG/QGG), CFHR4 (FCD), ADH5 (AGD) and GPX3 (MDI/NSC) are the most dominant drivers and high value features of EOC classification 
using the selected SVM (linear, PC=2, C=0.025). Letters inside brackets represent the first 3 amino acids for the associated protein. (B) For 
example, CFHR4 was a strong driver of SVM for early-stage EOC. Alternatively, MUC1 and ADH5 were strong drivers of SVM for (C) late-
stage EOC or (D) non-malignant samples. f(x) = classification score, ∑(ŷ) = average predicted score. Number associated with peptides are 
SHAP values and indicate the strength of the peptide in determing the classification score f(x) against the average classification score ∑(ŷ).   
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3. Discussion 

In this study, we characterized EV proteomes derived from 
primary and immortalized cell lines, ascites and plasma using 
two distinct enrichment strategies (UC and CD9AP) in order 
to maximize proteomic depth and increase the number of 
biomarker candidates. Our findings expand upon previous 
work by several other groups that also utilized mass 
spectrometry to characterize EVs derived from ascites or cell 
lines. Significantly and in stark contrast to the previous 
studies, we were able to build SVM models capable of 
accurately identifying Stage I, II and III EOC from plasma 
EVs.  

Our comparisons of EV proteomes from ovarian (cancer) cell 
lines supports previous reports of  intercellular heterogeneity, 
which may reflect differences in tissue of origin or stages of 
ovarian cancer progression42. For example, three distinct 
proteomic expression profiles were identified during a recent 
large-scale proteomic analysis of cell lines and primary 
tumors43. We found the EV proteomes of cell lines may 
reflect the pathophysiology of early-stage EOC, such as 
inflammation44, ECM remodeling45 and angiogenesis46. 
However, many similarities were noted between cancer cells 
and the non-malignant hIOSE, pointing to potential 
confounders associated with propagation in tissue culture. 
Building off the proteome of EOC cell line EVs, we 
expanded our focus to the proteomic profiling of EVs from 
primary sources. We executed an in-depth characterization of 
ascites-EV proteomes using parallel purification strategies, 
the ‘match-between-runs’ feature in MaxQuant47, SCX 
StageTip fractionation technology48, and Orbitrap-based 
instrumentation49. Over the last decade, a wave of efforts 
have attempted to deplete HAPs from biofluids to improve 
the detection low-abundancy biomarkers50, 51. To better 
delineate proteins specific to EOC, Shender et al. compared 
ascites from patients with ovarian cancer to those with 
alcohol-induced cirrhosis and identified 424 proteins 
associated with malignant ascites52. More recently, Sinha et 
al. have developed an EOC xenograft model in combination 
with N-glycopeptide enrichment and PRM to identity 
potential biomarker candidates in primary patient samples53. 
Considering the proteomic complexity of biofluids, it is 
unlikely that a single proteomic approach will be able to 
identify all biomarkers for detecting metastatic EOC.  

Within this study, we developed and validated a unique 
pipeline incorporating EV purification, PRM proteomics, 
LOOCV and SVM that is tailored for the identification of 
novel biomarker combinations for early EOC detection. 
While MUC16 was higher in malignant samples, it was not 
considered an impactful biomarker using a soft-margin 
SVM. Combinations of MUC16 and additional peptides were 
able to provide high accuracy using more conservative SVM 

margins; however, subsequent investigations with larger 
cohorts will be necessary to understand the impact of 
hyperparameter tuning for EOC detection. SHAP analysis 
can provide additional insight into which peptides drive 
prediction outcomes within a SVM40. Using these analyses, 
CFHR4 provided high SHAP values in both EV-enriched 
and EV-depleted models and was exclusively detected in 
CD9AP-enriched ascites EVs. Two isoforms of CFHR4 have 
been identified to enhance C-reactive protein (CRP) binding 
to necrotic cells and tumour tissue, leading to complement 
activation and opsonisation54. The functional role of CFHR4 
in EOC progression has not undergone thorough 
investigation; however, Pedersen et al. demonstrated elevated 
CFHR4 in small-cell lung cancer using quantitative 
proteomics55. Interestingly, CHFR4 was exclusive to small 
EVs and was not detected on “microvesicles” in their study, 
aligned with our results that CHFR4 is likely specific to a 
subset of EVs. Nonetheless, MUC1 and GPX3 were also 
relevant to EOC classification and have established roles in 
cancer progression and metastasis56-58. Ultimately, we 
provide evidence of combinatorial biomarkers that are 
capable of detecting early stages of EOC. These findings will 
lead to the development of improved clinical diagnostics for 
early-stage EOC, in hopes of providing earlier treatment 
interventions. 

3.1 Ideas and Speculation. Despite our efforts, several 
limitations of this study will need to be addressed by future 
analyses Our future studies will aim to decomplexify 
biofluids and isolate extracellular vesicles by integration of 
size-exclusion chromatography (SEC) into our biomarker 
discovery pipeline. The integration of SEC will allow us to 
1) achieve greater purity of EVs without immunopurification 
and 2) prospectively identify EV-independent proteins which 
may be useful for EOC classification. Nonetheless, our future 
studies will explore the incorporation of heavy-isotope 
standards during PRM to allow for absolute quantification of 
biomarkers in plasma.  These refined methods should be 
used to test the diagnostic power of EV biomarkers using an 
expanded number of control and patient samples, leading 
eventually to prospective trials. 

Within this study, we determined that complement cascade 
component CFHR4 provided value as a feature for SVM 
model classification using both EV-enriched and EV-
depleted samples. Tóth et al. identified complement cascade 
factors are common components of the EV protein “corona” 
which may be a result of secondary interactions of EVs and 
plasma components41. Alternatively, the work conducted by 
Papp et al. suggests that complement components may be 
directly released from the plasma membrane of B-cells and 
macrophages59. This supports the idea that elevated CHFR4 
detected in EOC donors may be a reflection of the malignant 
EOC microenvironment produced by immune and/or tumor 
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cells60. Indeed, Bonavita et al. observed complement-
dampened mice were protected against epithelial 
carcinoma61. Speculating based off our data and others, 
enhanced complement activation via CFHR4 may be a 
distinguishable hallmark of malignant EOC/HGSC.  
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4. Methodology and Data Analysis 

4.1 Cell Culture. OV-90 (ATCC® CRL-11732) and 
NIH:OVCAR3 (ATCC® HTB-161) were obtained from the 
ATCC. Human immortalized surface epithelial cells hIOSE 
(OSE364) were obtained from the Canadian Ovarian Tissue 
Bank at the BC Cancer Agency and kindly provided by Dr. 
Ronny Drapkin (Department of Obstetrics and Gynecology, 
University of Pennsylvania).  Primary cell lines EOC6 and 
EOC18 were isolated from the ascites of patients with high-
grade and low-grade serous ovarian cancer, respectively. All 
cell lines, except OVCAR3, were maintained in 
M199+MCDB105 supplemented with 5-15% FBS. 
NIH:OVCAR3 cells were cultured in RPMI-1640 
supplemented with 20% FBS and 5µg/mL insulin. Media 
was exchanged with serum free media for 20-30 hours to 
generate conditioned media (CM) for EV purification. All 
work involving the use of patient samples (cell lines, plasma 
and ascites) was approved by the Health Research Ethics 
Board of Alberta-Cancer Committee. 

4.2 Ultracentrifugation (UC). CM, plasma and ascites 
samples were first centrifuged at 200-300 x g at 4°C to pellet 
cells. Supernatants were diluted 1:10 in PBS (except CM) 
and centrifuged at 3,000 x g for 20 minutes at 4°C to remove 
cell debris. To remove large membrane fragments, 
supernatants were spun at 10,000 x g for an additional 20 
minutes at 4°C. Lastly, supernatants were ultracentrifuged at 
120,000 to 140,000 x g (SW-28 rotor) for 2 hours at 4°C to 
pellet EVs on an OptimaTM L-100 XP ultracentrifuge 
(Beckman Coulter). The supernatant was removed and EVs 
were resuspended in 100-300µL of PBS and stored at -80°C 
until further use. 

4.3 CD9-affinity Purification (CD9AP). Hydrophilic 
streptavidin magnetic beads (120mg) were washed three 
times with PBS then resuspended in 5mL PBS (New England 
Biosystems, S1421S, 20mg/5ml). Beads were mixed with 
650µg biotin conjugated anti-CD9 antibody (Abcam, 
ab28094) at room temperature for 30 minutes and then 
washed twice with PBS to remove unbound antibody. Beads 
were resuspended in 6mL PBS and 1mL (~20mg) was added 
to 10mL plasma or ascites (diluted 1:1 in PBS). Samples 
were placed on a rotary mixer overnight at 4°C and then 
rinsed three times with PBS. EVs were eluted from beads 
with three-500 µl glycine-HCl (0.1M, pH 2.39) washes. A 
small volume (75µL) of Tris-HCl (1.8M, pH 8.54) was used 
to neutralize each eluent. 

4.4 Western Blotting. EVs were lysed in RIPA buffer. 10 
µg protein was loaded onto a 10% SDS-PAGE gel under 
reducing conditions. Proteins were transferred to PVDF and 
the membranes were blocked with LI-COR Intercept 

Blocking solution. Membranes were incubated with anti-
CD9 rabbit antibody [CD9 (D8O1A) Rabbit mAb, Cell 
signaling Tech; #13174S, dilution 1:2000] and an anti-actin 
mouse antibody [Anti-β-Actin Antibody (C4), Santa Cruz 
Biotech, sc-47778, dilution 1:1000] overnight at 4°C. 
Membranes were washed then incubated with IRDye 800CW 
donkey anti-rabbit (LI-COR# 926-32213, dilution 1:20000) 
and IRDye-680RD donkey anti-mouse (LI-COR# 926-
68072, dilution 1:20000) for 1 hour at room temperature. 
Membranes were then scanned with the Odyssey Infrared 
Imager (LI-COR). 

4.5 Nanoparticle Tracking Analysis. Samples were diluted 
25-fold using filtered 0.2x phosphate buffered saline and 
then were analyzed using the Nanosight LM10 (405nm laser, 
60mW, software version 3.00064). Samples were analyzed 
for 60 seconds (count range of 20-100 particles per frame). 
All measurements were done in triplicate. 

4.6 EV Protein Extraction and Digestion. To prepare EVs 
for LC-MS/MS, ~25μg protein quantified by BCA were 
lyophilized to dryness and reconstituted in 8M Urea, 50mM 
ammonium bicarbonate (ABC), 10mM dithiothreitol (DTT), 
2% SDS lysis buffer. EV proteins were sonicated with a 
probe sonicator (3 X 0.5s pulses; Level 1) (Fisher Scientific, 
Waltham, MA), reduced in 10mM DTT for 30 minutes at 
room temperature (RT), alkylated in 100mM iodoacetamide 
for 30 minutes at RT in the dark, and  precipitated in 
chloroform/methanol62. On-pellet in-solution protein 
digestion was performed in 100µL 50mM ABC (pH 8) by 
adding Trypsin/LysC (Promega, 1:50 ratio) to precipitated 
EV proteins.  EV proteins were incubated at 37°C overnight 
(~18h) in a ThermoMixer C (Eppendorf) at 300 rpm. An 
additional volume of trypsin (Promega, 1:100 ratio) was 
added for ~4 hours before acidifying to pH 3-4 with 10% FA. 

4.7 SCX Peptide Fractionation and LC-MS/MS. Tryptic 
peptides were fractionated using strong cation exchange 
(SCX) StageTips similarly to Kulak et al 63.. Briefly, 
peptides were acidified with 1% TFA and loaded onto a pre-
rinsed 12-plug SCX StageTips (Empore™ Supelco, 
Bellefonte, PA, USA). In total, 6 SCX fractions were 
collected by eluting in 75, 125, 200, 250, 300 mM 
ammonium acetate/20% ACN followed by a final elution in 
5% ammonium hydroxide/80% ACN. SCX fractions were 
dried in a SpeedVac (ThermoFisher), re-suspended in 
ddH2O, and dried again to evaporate residual ammonium 
acetate. All samples were re-suspended in 0.1% FA prior to 
LC-MS analysis. 

SCX fractions were analyzed using a nanoAquity UHPLC 
M-class system (Waters) connected to a Q Exactive mass 
spectrometer (Thermo Scientific) using a nonlinear gradient. 
Buffer A consisted of water/0.1% FA and Buffer B consisted 
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of ACN/0.1%FA. Peptides (~1µg estimated by BCA) were 
initially loaded onto an ACQUITY UPLC M-Class 
Symmetry C18 Trap Column, 5 µm, 180 µm x 20 mm and 
trapped for 4 minutes at a flow rate of 5 µl/min at 99% A/1% 
B. Peptides were separated on an ACQUITY UPLC M-Class 
Peptide BEH C18 Column (130Å, 1.7µm, 75µm X 250mm) 
operating at a flow rate of 300 nL/min at 35°C using a non-
linear gradient consisting of 1-7% B over 3.5 minutes, 7-19% 
B over 86.5 minutes and 19-30% B over 30 minutes before 
increasing to 95% B and washing. Settings for data 
acquisition on the Q Exactive and Q Exactive Plus are 
outlined in Supplemental Table 1. 

4.8 LC-MS/MS Data Analysis. MS raw files were searched 
in MaxQuant (1.5.2.8) using the Human Uniprot database 
(reviewed only, updated May 2014 with 40,550 entries). 
Missed cleavages were set to 3 and I=L. Cysteine 
carbamidomethylation was set as a fixed modification. 
Oxidation (M), N-terminal acetylation (protein), and 
deamidation (NQ) were set as variable modifications (max. 
number of modifications per peptide = 5) and all other 
setting were left as default. Precursor mass deviation was left 
at 20 ppm and 4.5 ppm for first and main search, 
respectively. Fragment mass deviation was left at 20 ppm. 
Protein and peptide FDR was set to 0.01 (1%) and the decoy 
database was set to revert. The match-between-runs feature 
was utilized across all sample types to maximize proteome 
coverage and quantitation. Datasets were loaded into Perseus 
(1.6.14) and proteins identified by site; reverse and potential 
contaminants were removed47. Protein identifications with 
quantitative values in >50% samples in each group (cells, 
plasma or ascites) were retained for downstream analysis 
unless specified elsewhere. Missing values were imputed 
using a width of 0.3 and down shift of 1.8 to enable 
statistical comparisons. 

4.9 Label-free Parallel Reaction Monitoring (PRM). 
25µg plasma EVs and 50µg EV-depleted plasma from 
malignant (Supplemental Table 2) and age-matched control 
donors were digested overnight with Trypsin/LysC (1:50 
ratio) and LysC (Wako; 1:100 ratio). To remove large 
species, digests were filtered through pre-rinsed (100µL 
25mM ABC/50% ACN) 10 kDa MWCO YM-10 centrifugal 
filter units (Millipore) at 14,000xg for 20 min. Centrifugal 
filter units were washed with an additional 50µL 25 mM 
ABC/50% ACN for 15 min at 14,000 x g to help recover 
additional peptides. Filtered samples were dried in a 
SpeedVac, reconstituted in 0.1% FA and quantified by BCA. 
To generate spectral data for biomarker candidate (peptides), 
several unfractionated plasma EV digests (~1µg/sample) 
were initially analyzed on a Q Exactive Plus using a non-
linear 2.5h gradient consisting of 1-7% B over 1 minute, 7-
23% B over 134 minutes and 23-35% B over 45 minutes 
before increasing to 95% B and washing. Raw files were 

searched against the human Uniprot databased (20, 274 
entries) using the de novo search engine PEAKS® (version 
8)36. Parent and fragment mass error tolerances were set to 
20 ppm and 0.05 Da, respectively. Maximum missed 
cleavages were set to 3 and 1 non-specific cleavage was 
allowed. Carbamidomethylation was set as a fixed 
modification, and deamidation, oxidation and acetylation 
(protein N-term) were included as variable modifications 
with a maximum of 3 PTMs per peptide allowed. pepXML 
peptide information and mzXML spectral data were next 
exported from PEAKS® generate a PRM method in 
Skyline37. Peptides with missed cleavages or containing 
tryptophan were removed and up to 3 peptides/protein, 7-18 
amino acids in length, were chosen for monitoring. In 
Skyline, the top 5 most intense transitions (b and y ions) 
were used for quantification and an 8-minute window was 
chosen to account for deviations in chromatography and 
minimize the chance of truncation while maximizing the 
number of MS/MS scans. EV and EV-depleted samples were 
subsequently analysed using the same gradient but with a 
targeted PRM method in a randomized fashion. A minimum 
of 3 transitions were required to measure peak areas, and 
targets with dotp scores <0.8 or ppm exceeding 20 were 
assumed to contain interference and initially assigned a peak 
area of 0. To correct for sample loading and technical 
variability, peak areas for each peptide were normalized to 
the total ion current (TIC). Peak areas were additionally 
normalized to the CD9 peptide EVQEFYK (extracellular 
region, AAs 120-126) to correct for EV recovery. 
Normalized peak areas of 0 were assumed to be missing not 
at random and imputed with the lowest ratio detected for the 
given peptide. 

4.10 Proteomic Data Availability. Proteomics data have 
been deposited to the ProteomeXchange Consortium via the 
PRIDE partner repository with the dataset identifier 
PXD023723. 

4.11 Data Handling and Statistical Analysis. Differential 
protein abundance between conditions were determined 
using a two-tailed Welch’s t-test (p<0.05) in Perseus (version 
1.6.14). Graphing was performed using Python or Prism 
version 6.01 (GraphPad Software, San Diego, CA). Mann-
Whitney rank sum statistical tests were calculated in R 
(version 3.60) or in RStudio (version 1.2.1335). Data 
handling and machine learning optimization pipelines were 
built in Python. Pathway and annotation enrichment analyses 
were performed using Metascape (metascape.org) using the 
default settings. 
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Table 1. EV-enriched Blood Plasma Peptides Selected for Targeted Proteomics and SVM model optimization. 

Peptide Gene 
Log2 Fold 
Change 

 (M vs. C) 

-Log10 

(p-value) 

SVM Model Relevance 

(% of SVM Model) 

MDILSYMR GPX3 1.31 2.25 33% 

QGGFLGLSNIK MUC1 2.57 2.03 33% 

FCDMPVFENSR CHFR4 1.06 1.89 33% 

YVPPSSTDR MUC1 3.11 2.70 22% 

AGDTVIPLYIPQCGECK ADH5 -1.20 1.40 22% 

DVLETFTVK CD9 -0.24 1.34 22% 

NSCPPTSELLGTSDR GPX3 0.98 1.61 11% 

ELGPYTLDR MUC16 2.12 1.22 11% 

VAPEEHPTLLTEAPLNPK ACTC1 -0.98 2.21 0% 

NYGQLDIFPAR MUC1 1.98 2.08 0% 

IISIMDEK PZP 1.80 2.04 0% 

AYAAGFGDR TNC 1.74 1.76 0% 

LDAPSQIEVK TNC 1.61 1.76 0% 

VISQIAMNDEK SLC34A2 2.29 1.66 0% 

FEIENCLANK PZP 1.47 1.66 0% 

ASSFLGEK C4B 1.89 1.65 0% 

AYSLFSYNTQGR APCS 0.89 1.56 0% 

EDSPFALK PZP 1.66 1.55 0% 

ATAQMLEVMFK LBP 0.91 1.46 0% 

SIPQVSPVR CPN1 0.60 1.45 0% 

VATYLPAPEGLK TNC 1.61 1.36 0% 

DNELLVYK APCS 0.83 1.34 0% 

M = Malignant, C=Control, SVM= Support Vector Machine, *Linear SVM (C=0.025) 
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