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Developing novel cancer treatments is a challenging task that can
benefit from computational techniques matching transcriptional
signatures to large-scale drug response data. Here, we present
‘retriever,’ a tool that extracts robust disease-specific transcrip-
tional drug response profiles based on cellular response profiles
to hundreds of compounds from the LINCS-L1000 project. We
used retriever to extract transcriptional drug response signatures of
triple-negative breast cancer (TNBC) cell lines and combined these
with a single-cell RNA-seq breast cancer atlas to predict drug com-
binations that antagonize TNBC-specific disease signatures. After
systematically testing 152 drug response profiles and 11,476 drug
combinations, we identified the combination of kinase inhibitors
QL-XII-47 and GSK-690693 as the topmost promising candidate
for TNBC treatment. Our new computational approach allows the
identification of drugs and drug combinations targeting specific
tumor cell types and subpopulations in individual patients. It is,
therefore, highly suitable for the development of new personalized
cancer treatment strategies.
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Introduction
Developing new drugs and pharmacological regimens to treat
complex diseases such as cancer is an expensive and challenging
task (1). Several computational techniques that use structural
interactions (2), transcriptional signatures (3–5), biological net-
works perturbations (6, 7), and data mining (8) are available to
aid in the discovery of new treatment regimens which could im-
prove patient management (9). Methods based on transcriptional
signatures use the observed changes in gene expression profiles
between samples from patients affected with the disease under
study compared to samples from control subjects, and match
these to the response profiles of cell lines that act as surrogates
for the disease to different compounds. These data can be com-
bined to identify compounds that may antagonize the disease’s
transcriptional changes, returning it to a more healthy-like state
(5). Finding specific transcriptional response profiles to drug
candidates, as well as robust disease-associated transcriptional
alterations, is therefore crucial for such approaches to produce
reliable predictions.

To obtain precise disease-specific transcriptional signatures
that can be targeted by pharmacological compounds, one needs
to account for transcriptional variability between patients by
including samples from multiple individuals (10). This allows
for the identification of a target set of genes that is constitu-

tively expressed with the same magnitude and pattern across
patients/cells. Targeting such a consistently expressed set of
genes is thought to increase the effectiveness and safety of
the treatment (11). Transcriptional signatures are measurable
at a variety of resolutions, ranging from low resolution, as in
the complex mixture of cells present within tissues, to high
resolution, such as single-cells (12). The Cancer Genome Atlas
(TCGA) project provides RNA-sequencing (RNA-seq) data for
tumors and adjacent tissues (13). While such tissue-level data
have been useful in the identification of cancer subtypes and
prognostic signatures, the identification of accurate transcrip-
tional signatures between disease and healthy states has been
hindered by the wide heterogeneity of cell types found in tumor
tissues (14).

This issue can be overcome by using single-cell RNA-seq data
(15). A drawback of single-cell RNA-seq experiments is that,
due to the higher cost of profiling of single cells, often fewer
biological replicates are available. However, by combining
multiple experiments, sample sizes of cells with a desired molec-
ular phenotype can be increased, improving characterization
of the transcriptional changes observed in disease (16). In
addition, the construction of pseudo-bulk profiles (the sum of
the expression values of a gene across all cells obtained from
the same individual) from single-cell data makes it possible to
account for gene expression variability among patients (17, 18).

The LINCS-L1000 project published transcriptional profiles of
several cell lines, treated with hundreds of compounds at various
concentrations and time points of drug exposure (4). These
profiles have previously been used to identify potential drugs that
can be repurposed to treat a variety of diseases, including cancer
(3). Additionally, the project provides an interactive portal in
which users can interrogate whether an up- or down-regulated
gene set of interest overlaps with transcriptional drug response
signatures. The portal then returns a ranked list of compounds
that are likely to have an inverse effect on disease-associated
gene expression levels (19). However, these predictions are not
based on robust tissue- or disease-specific transcriptional profiles
and may therefore over- or underestimate the potential effect
of drugs on specific diseases. Additionally, the LINCS-L1000
web portal returns an exhaustive list of independent experiments
with matching inverse patterns, rendering it difficult to identify
compounds that induce stable transcriptional responses in cell
lines derived from the same disease across multiple time points
and drug concentrations. Thus, being able to extract robust
disease-specific transcriptional drug response signatures that are
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consistent at different time points, drug concentration, or cell line
from the profiles provided by the LINCS-L1000 project would
significantly improve drug prioritization and accelerate the
identification of new pharmacological options for personalized
treatment of cancer (20).

Once both the disease profile and the disease-specific response
to multiple compounds are available, rank-based correlation
analysis can be used to quantitatively identify compounds that
can revert the transcriptional changes that distinguish diseased
samples from healthy ones (5, 9). Nonetheless, monotherapy
in cancer is highly susceptible to the development of resistance
following an initial response to treatment (21). Combination
therapy, or the simultaneous administration of multiple drugs to
treat a disease, has evolved into the standard pharmacological
regimen for treating complex diseases such as cancer. Com-
bination therapy prevent tumor evolution and help inhibit the
development of drug resistance in cancer, thereby improving
patient survival (22).

The in silico prediction of responses to drug combinations is
an active topic of research in computational biology (23–25).
Recently, Pickering (2021) found that the transcriptional re-
sponse signatures to 856,086 unique two-drug combinations
could be predicted based on the 1,309 drug response profiles
to compounds tested by the Connectivity Map Build 2 project
(parent of the LINCS-L1000 project) (26). After analyzing
148 independent studies involving 257 treatment combinations
from the Gene Expression Omnibus (GEO) database, it was
discovered that averaging the expression profiles of individual
treatments provides 78.96 percent accuracy in predicting the
direction of differential expression for the combined treatment
(27). However, different from the Connectivity Map project—
where the generation of combinatorial response profiles is
possible thanks to the availability of single response profiles for
each individual compound (28)—the LINCS-L1000 project does
not provide robust single drug response profiles, making the
generation of meaningful combinatorial profiles not yet possible.

Here, we present retriever, a tool that uses correlation analy-
sis and hierarchical collapsing to extract robust disease-specific
transcriptional drug response signature profiles that are consis-
tent across time, concentration, and cell line, from data provided
by the LINCS-L1000 project. We integrated these transcriptional
drug response profiles with a single-cell RNA-seq signature rep-
resenting the transcriptional changes observed in triple-negative
breast cancer cells compared to healthy breast epithelial cells.
We used these two signatures—the transcriptional changes in-
duced by the disease and the cellular responses to drugs—to pri-
oritize drugs and to predict novel drug combinations suitable for
the treatment of triple-negative breast cancer. The transcriptional
changes associated with TNBC were computed from a single-cell
breast cancer RNA-seq atlas built by us after compiling single-
cell RNA-seq data obtained from 36 publicly available healthy
breast and breast cancer samples. After systematically testing
drug response profiles and drug combinations, we identified the
combination of kinase inhibitors QL-XII-47 and GSK-690693 as

the topmost promising treatment for TNBC. In addition to rec-
ommending drug combinations, the profiles returned by retriever
allow for the characterization of possible mechanisms of action
of the identified compound(s) to reverse the disease’s transcrip-
tional profile towards a healthy-like state.

Methods

Single-cell RNA-seq datasets. We collected publicly available
single-cell RNA-seq count matrices for healthy breast tissues and
breast cancer samples from multiple sources (see Data Availabil-
ity). Each sample’s gene identifiers (IDs) were translated into
current gene symbols using the dictionary of gene ID synonyms
provided by ENSEMBL (29). Datasets were loaded into R and
integrated into a single ‘Seurat’ object (30). Data were then sub-
jected to quality control keeping only cells with a library size of at
least 1,000 counts and within the 95 percent confidence interval
of the prediction of the mitochondrial content ratio and detected
genes in proportion to the cell’s library size. We also removed all
cells that had mitochondrial proportions greater than 10% (31).
We then normalized, scaled, and reduced the dimensionality of
the data through Principal Component Analysis (PCA) using the
default functions and parameters included in Seurat. Data in-
tegration was performed using Harmony (32). UMAP projec-
tions of the data were extracted using the top 20 dimensions re-
turned by Harmony (33). Cell clustering was performed using the
functions included in Seurat for this purpose, with a resolution
of 0.01, using UMAP embeddings as the source for the nearest
neighbor network construction.

Cell type assignation. Assignation of cell types was performed
based on the expression of the marker genes reported by Wu
et al. (34, 35). Epithelial cell subtypes were assigned using the
Nebulosa package by querying cells expressing ESR1, PGR, and
ERBB2 receptors (36).

Single-cell RNA-seq differential expression analysis. Tran-
scriptional signatures of triple-negative breast cancer epithelial
cells compared to healthy epithelial cells were quantified by dif-
ferential expression using MAST (37). We compared (Supple-
mentary Fig. S1 and Fig. S2) all epithelial cells from cancer
patients (5,730 cells, 31,73%) against those from healthy donors
(12,323 cells, 68.26%). In addition, we compared the cluster of
patient-derived epithelial cells depleted of hormone and growth
factor receptor expression (enrichment for ESR1−, PGR−, and
ERBB2− cells—2,998 cells, 16.6%) against all healthy epithelial
cells (12,323 cells, 68.3%), against the cluster of epithelial cells
depleted of hormone and growth factor expression (6117 cells,
33.9%) derived from healthy individuals, and against the clus-
ter of epithelial cells enriched for triple-positive cells (ESR1+,
PGR+, and ERBB2+) from healthy individuals (6,206 cells,
34.4%). We selected the comparison of the cluster enriched with
triple-negative cancer cells with the cluster enriched for triple-
positive healthy epithelial cells as the disease-specific transcrip-
tional profile, as this profile showed the highest Spearman Corre-
lation Coefficient (ρ̂) with tissue-level fold-changes computed on
TCGA breast cancer data.
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Pseudo-bulk analyses. Pseudo-bulk profiles were computed
by summing up all expression values for the same gene across
cells of the same individual. We applied this procedure to the
triple-negative epithelial cells derived from patients against the
triple-positive epithelial cells from healthy individuals. The com-
puted pseudo-bulk profiles from diseased and healthy individuals
were then compared using DESeq2 (38).

TCGA breast cancer dataset analysis. Upper-quantile
FPKM-transformed RNA-seq data at the tissue level as well as
the associated metadata were downloaded from the TCGA breast
cancer (TCGA-BRCA) project using the ‘TCGAbiolinks’ Bio-
conductor package (39). Samples labeled as ‘healthy’ and ‘basal’
were collected and differential expression between these groups
was evaluated using DESeq2 (38).

Comparisons between data-types. The log2 fold-changes of
expression between cancer and control samples at the single-cell
level, pseudo-bulk level and tissue level were used to validate
the computed signatures describing the transcriptional changes in
triple-negative breast cancer compared to healthy epithelial cells
using the Spearman correlation coefficient (40).

Application of retriever to triple-negative breast cancer.
The transcriptional response profiles of triple-negative breast
cancer cell lines that were treated with different concentrations
and treatment lengths of different compounds available in the
LINCS-L1000 project were collected using the ‘ccdata’ Biocon-
ductor package (28). The LINCS-L1000 project provides these
profiles for three different TNBC cell lines (BT20, HS578T,
and MDAMB231). We used these data to compute the disease-
specific transcriptional response profiles.

Generation of drug combination transcriptional response
profiles. All possible two-drug combinations were generated by
averaging the computed disease-specific transcriptional response
profiles.

Drug repurposing analysis. Using the set of overlapping
genes between the LINCS-L1000 project and differential ex-
pression analysis from single-cell RNA-seq data, we performed
Spearman correlation analyses with the independent disease-
specific drug response profiles, as well as with the drug combina-
tion profiles. Ninety-five percent confidence intervals, p-values,
and false-discovery rates (FDR) (41) were also computed. Com-
pounds were ranked based on the computed correlation coeffi-
cients, from negative to positive.

Mechanisms of action prediction. To identify possible mech-
anisms of action for drugs or drug combinations, we took the
disease-specific transcriptional response profiles and used these
as input for GSEA, with the MSigDB Hallmarks gene set as ref-
erence to compute the enrichment of pathways as well as the di-
rectionality of the effect (42). Pathways with FDR < 0.05 were
considered significant.
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Fig. 1. Overview of the retriever algorithm. retriever generates disease-specific tran-
scriptional drug response signatures by merging transcriptional signatures over time,
concentration, and cell-type. These signatures can then be matched to single-cell or bulk
expression profiles to predict drugs and drug combinations most likely to be effective in
treating a disease.

Results
The retriever algorithm. The retriever algorithm extracts
disease-specific drug response profiles using three steps (Figure
1). The first step summarizes the cellular responses at different
time points after the application of the drug, the second step
summarizes the responses at different concentrations, and the
third step summarizes the responses across different cell lines.
This provides robust, disease-specific transcriptional response
profiles based on the responses observed in all cell lines used as
surrogates of a specific disease.

In the first step, retriever takes the response profiles of a given
cell line to the same compound under the same concentration, but
at different time points, and averages these. Then, the descriptive
power of the extracted profile to represent the transcriptional
response to a drug at a given concentration in the cell line,
consistent across time, is evaluated using Spearman’s correlation
coefficient.

The averaged profile is returned if the correlation with the
computed profile is larger than a user-defined threshold (default
ρ = 0.6). This threshold can take values between 0 and 1,
representing the percentage of agreement between the cellular
responses to the same compound. If the threshold is too close
to one, very few averaged profiles will be returned due to
strong filtering, and if it is defined to close to zero, very noisy
profiles (similar to simply averaging all the available profiles)
will be returned. The original drug response profiles that do
not reach this threshold are removed. The averaged profile is
then recomputed using all response profiles that reached the
threshold. This procedure ensures the removal of aberrant or
insufficient cellular responses. Only averaged signatures of at
least two profiles are used in the second step.

In the second step, retriever takes the stable time-consistent
signature profiles of a compound at a particular concentration
in the same cell line. To summarize the response at different
concentrations, it applies the same procedure described in the
first step over the averaged profiles. The profiles returned by the
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second step are stable transcriptional response profiles that are
consistent across time and drug concentration in a specific cell
line.

The last step extracts disease-specific drug response profiles
by again applying the procedure described in step 1 to the
stable response profiles to the compound in all disease-specific
cell lines available in the LINCS-L1000 project. The profiles
returned by the third step are robust disease-specific response
signatures representing transcriptional changes to a specific
compound.

Single-cell RNA-seq atlas of breast samples. To showcase
how retriever can be used to prioritize drugs, we applied it to
single-cell data from breast cancer and healthy breast tissues.
For this, we compiled 36 publicly available single-cell RNA-seq
count matrices from breast samples (26 diseased and 10 healthy).
In total, we combined 109,097 cells into a single Seurat object,
maintaining the sample of origin metadata. Following quality
control (see Methods section), 77,384 cells were retained for fur-
ther analysis (Figure 2A), of which 30,790 were derived from
healthy (left panel in Figure 2B) and 46,594 from cancer sam-
ples (middle panel in Figure 2B). Cell types were assigned to
the nine identified clusters in the low dimensional representation
(Figures 2C, S3) using markers reported by Wu et al. (34, 35).

Transcriptional signatures associated with triple-negative
breast cancer at the single-cell level. To identify the tran-
scriptional signature that best represents the changes associated
with triple-negative breast cancer, we first identified the single
cells with a triple-negative phenotype within the epithelial cluster
of cells. To do so, we queried cells expressing ESR1, PGR, and
ERBB2 receptors, which allowed us to assign a cluster of cells
enriched for the expression of the three receptors (Right panel
in Figure 2B); cells belonging to the cluster enriched for triple-
positive cells will be further referred as “triple-positive-like"
cells in the remainder of this work. While cells belonging to the
other cluster will be referred to as “triple-negative-like" cells.

We compared the triple-negative-like breast cancer cells with
different healthy epithelial cell subpopulations, including all
epithelial cells, cells belonging to the triple-negative cluster, and
cells belonging to the triple-positive cluster of epithelial cells.
We then compared fold changes to those derived from the pop-
ulation level-data from TCGA (see Methods section). The most
representative profile was the one comparing triple-negative-like
epithelial cancer cells with healthy triple-positive-like epithelial
cells. Note that, while approximately half of all healthy epithelial
cells are assigned to the triple-positive cluster, these receptors
are expressed in only 20% of these cells, and at lower levels
compared to breast cancer cells (Supplementary Fig. S1).

As a result, we used MAST to perform differential expression
analysis at the single cell level between triple-negative-like
epithelial cancer cells (n = 2,998) and healthy triple-positive-
like epithelial cells (n = 6,206), identifying 205 differentially
expressed genes (106 upregulated and 99 downregulated) with

absolute log2 fold-changes larger than 1 and false discovery rate
lower than 0.05 (Figure 3A).

After testing using both the hypergeometric test through Enrichr
(43) and gene set enrichment analysis (GSEA) using the Hall-
mark MSigDB signatures as reference gene sets (42), we found
that the differentially expressed genes were associated with the
activation of Oxidative Phosphorylation Pathway, Interferon
Alpha Response, as well as Myc Targets, and the downregu-
lation of TNFα Signaling via NF-κB, Estrogen Response, UV
Response Up, Apoptosis, Hypoxia, Unfolded Protein Response,
IL-6/JAK/STAT3 Signaling, Inflammatory Response, and the
Androgen Response pathway (Figure 3C, Supplementary Table
S1). Many of these pathways are known to be highly associated
with TNBC molecular phenotype. For example, activation of
both the oxidative phosphorylation pathway and of Myc targets
is associated with a worse outcome of the disease (44, 45), and
the crosstalk between the interferon alpha response pathway and
NF-κB is associated with drug resistance and tumor progression
in this malignancy (46). The downregulation of the estrogen
response pathway as well as apoptosis and hypoxia are markers
of TNBC (47). In addition, downregulation of androgen and
inflammatory responses is associated with worse prognosis and
higher chemotherapy responsiveness respectively (48, 49).

We found 6,149 genes expressed in both the single-cell RNA-
seq datasets and the bulk RNA-seq from the TCGA-BRCA
project. Spearman correlation coefficients between the expres-
sion changes computed at the single-cell level (Left panel in Fig-
ure 3A), pseudo-bulk level (Middle panel in Figure 3A) and tissue
level (Right panel in Figure 3A), revealed a monotonic positive
association between these different levels (Figure 3B), support-
ing the descriptive power of the computed differential single-cell
expression signature to describe transcriptional changes associ-
ated with TNBC, and ensuring that the selected cell type as well
as the pseudo-bulk samples are high-resolution descriptors of the
diseased tissues.

Applying retriever to extract TNBC-specific transcrip-
tional drug-response signatures. We collected 4,899 re-
sponse profiles measured in TNBC cell lines from the LINCS-
L1000 project using the ‘ccdata’ package available in Biocon-
ductor (28). These profiles correspond to the expression change
of 1000 genes in response to 205 compounds on average at four
different concentrations (0.08µM, 0.4µM, 2µM, and 10µM), and
at two time points (6 and 24 hours), in three different TNBC cell
lines (BT20, HS578T, and MDAMB231).
An illustration of the step-by-step process of constructing a gen-
eralized response profile to a compound across three TNBC cell
lines is presented in Figure 4 using the QL-XII-47 compound as
a case example.

1. Computing time-consistent generalized response profiles:
In the first step (Figure 4A), we computed time-consistent
generalized response profiles. To achieve this, we took the
response profile of the MDAMB231 cell line to QL-XII-47
under the same concentration at two different time points
(6 and 24 hours) and averaged them. When we compared
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Fig. 2. Single-cell atlas of breast samples. (A) UMAP projection of the integrated 77,384 cells from 36 breast samples. (B) UMAP projection of the healthy (left) and cancer (center)
cells, and visualization of triple-positive epithelial cells in the cancer samples. (C) Dotplot representing the normalized expression level and percentage of cells expressing the top five
differentially expressed genes for each cell type.

the transcriptomes of the cell line exposed at two different
time points, we found little or no correlation (large boxes
labeled in gray) for each concentration (0.08µ M, 0.4µ M,
2µ M, and 10µ M). However, we found that their averaged
profile displays high predictive power (Spearman Correla-
tion Coefficient (ρ̂) > 0.65 in all cases) of the cellular re-
sponse to the compound, independent of the time of treat-
ment. When present, we removed the profiles that did not
correlate with the averaged profile above 0.6 (A total of
19.72% of the profiles). This procedure allows to identify

concentrations in which the compounds induces a differ-
ent, aberrant or insufficient cellular responses to the drug
and also allows us to compute a single robust response pro-
file to the compound.

2. Computing time- and concentration-consistent response
profiles: In the second step (Figure 4B), we extract time
and concentration-consistent responses. For this purpose,
we averaged the time-consistent profiles computed in the
first step. As before, we removed the profiles that did
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Fig. 3. Transcriptional changes identified in TNBC cells. (A) Volcano plots report the difference between TNBC and healthy samples, on the left based on single-cell RNA-seq count
data computed using MAST, in the middle using the pseudo bulk measures in each single-cell RNA-seq sample, and on the right using the bulk RNA-seq data from the BRCA-TCGA
project. Each dot represents a gene. Dots are color coded, in red if the log2 fold-change is larger than 1 and in blue if the log2 fold-change is smaller than -1. (B) Comparisons of the
transcriptional changes associated with TNBC at the single-cell, pseudo bulk and tissue level. Each dot represents a gene. Dots are color coded as in Figure 2A. (C) Single-sample
GSEA Enrichment Score (ES) for the transcriptional changes between TNBC and healthy cells at different levels of resolution. Labeled pathways are those that show same trend
(positive or negative ES) in the three data types.

not correlate with the averaged profile above 0.6, such as
the profile present in the first panel of Figure 4B, which
showed a different cellular response at the concentration
(A total of 16.91% of the profiles computed in Step 1).
We then recomputed the profile for the compound in the
MDAMB231 cell line with all profiles that had correlation
coefficients above the threshold.

3. Generating disease-specific drug response profiles: In the
last step (Figure 4C), we processed the outputs of the sec-
ond step to extract a generalized response profile to a com-
pound across the three TNBC cell lines. To do this, we per-
formed independently steps 1 and 2 for QL-XII-47 in the
other two TNBC cell lines available in the LINCS-L1000
project (BT20, HS578T) and averaged these profiles.

After summarizing the time points, concentrations, and cell lines
for all the 205 compounds tested in TNBC cell lines, we ended
with robust transcriptional response profiles of 152 (74.14%)
compounds (Supplementary Table 1) that are specific for TNBC.
The remaining 53 compounds were removed, as they did not
show a stable response across time points, concentrations, and
cell lines.

Having a single generalized disease-specific response profile
for each compound allowed us to (1) generate compound
combinations in-silico as candidates for the treatment of TNBC
(Supplementary Table 2), (2) to rank compounds and compound
combinations based on their predicted potential to reverse the
disease state towards a healthy-like state (Supplementary Table
3 and 4), and to (3) interrogate the computed profiles using
rank-based gene set enrichment analysis (GSEA) to predict
possible mechanisms of action of the compounds when used to
treat TNBC.

Our method to extract disease-specific drug response profiles is
implemented in the ‘retriever’ R package (see Data Availability
section) and allows the computation of disease-specific transcrip-
tional drug response signatures for different cancer types avail-
able in the LINCS-L1000 project.

Ranking compound candidates for the treatment of TNBC.
We used the 152 TNBC-specific transcriptional response profiles
extracted with retriever to compute 11,476 response profiles
to nonredundant drug combinations. To do so, we calculated
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Fig. 4. Case example showing the construction of a single transcriptional response profile to a compound across three TNBC cell lines. Frames of the scatterplots displaying the
relationship between the profiles and the averaged profiles are color coded, in black if the computed Spearman correlation coefficient (ρ̂) is larger than 0.6 or in gray otherwise. (A)
Generation of a time-consistent response profile. (B) Generation of a time and concentration-consistent response profile. (C) Generation of a time, concentration, and cell-line-consistent
response profile.

the averaged effect sizes of Spearman correlation between the
response profiles and the differential single-cell transcriptional
signatures, and then ranked the compounds and compound com-
binations likely to specifically antagonize the TNBC-specific
transcriptional signatures. Since Spearman correlation is a
rank-based approach, this method can quantitatively identify
inverse effects induced by drugs using the response profiles
and disease-associated transcriptional signatures. Thus, we
computed the Spearman coefficients, 95% confidence intervals,
and p-values corrected for multiple testing (FDR) for all 11,628
profiles (Supplementary Table 3 and 4). We then ranked the drug
combinations by their correlation coefficients, from negative
to positive. A negative value represents the expected inverse

effect of the drug against the expression changes observed in the
disease towards a healthy-like state.

We identified QL-XII-47 as the most promising compound to
reverse the transcriptional profile of TNBC back to a healthy-like
state, followed by Torin-2, Torin-1, QL-X-138, and WYE-
125132. QL-XII-47 is a highly effective and selective Bruton
tyrosine kinase (BTK) inhibitor that covalently modifies Cys481
of the protein. QL-XII-47 has an IC50 of 7 nM for inhibiting
BTK kinase activity and induces a G1 cell cycle arrest in
Ramos cells (B lymphocytes from Burkitt lymphoma), which
is associated with significant degradation of the BTK protein.
It was also shown that, at sub micromolar concentrations, QL-
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Fig. 5. Correlation analysis and mechanism of action prediction for the disease-specific drug response profiles in TNBC. (A) Spearman correlation analysis between the expression
changes associated with TNBC and the disease-specific drug response signature of QL-XII-47. Each dot represents a gene. Dots are color coded, in red if they are expected to be
upregulated by the drug, in blue if they are expected to be downregulated by the drug, and in gray if no significant change is expected. The red line represents the perfect match between
both profiles. Density lines reflect the number of dots in each section of the plot. (B) Mechanisms of action predicted for QL-XII-47 in TNBC based on the enrichment of biological
pathways in the disease-specific transcriptional drug response signature. (C) Independent sensitivity evaluation of the effect of QL-XII-47 in two other TNBC cell lines. (D) Spearman
correlation analysis between the expression changes associated with TNBC and the combination signature of QL-XII-47 and GSK-690693. Each dot represents a gene. Dots are color
coded as in (A). The red line represents the perfect match between both profiles. Density lines reflect the number of dots in each section of the plot. (E) Mechanisms of action predicted
for the mixture of QL-XII-47 and GSK-690693 based on the enrichment of their combination drug response signature.

XII-47 inhibits the proliferation of B-cell lymphoma cell lines
(50). Furthermore, other BTK inhibitors have shown to reduce
TNBC cell viability (51). In addition, independent validation
of sensitivity to QL-XII-47 has been tested before in two other
TNBC cell lines (HC70 and HCC1806) that were not included
in the LINCS-L1000 project. Low toxicity (lower than Torin-2)
and more than 50% reduction of the growth rate (GRmax) was
found for both cell lines (52).

Through enrichment analysis, we found that QL-XII-47 may
act in TNBC through activation of the TNF-alpha Signaling via
NF-κB, Hypoxia-associated genes, the Inflammatory Response,
the IL-2/STAT5 Signaling pathway, and by deactivating genes

involved in Fatty Acid Metabolism (FDR < 0.05 in all cases,
Fig 5A).

Ranking compound combination candidates for the
treatment of TNBC. After testing the combinations of the
disease-specific drug response profiles, we found that a com-
bination of QL-XII-47 and GSK-690693—a pan-AKT kinase
inhibitor that reduces tumor cell proliferation and induces
tumor cell apoptosis (53, 54)—was the best performing drug
combination to revert TNBC signatures, with an increase of 10%
compared to monotherapy with QL-XII-47.

Gene set enrichment analysis predicted that this combination may
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Fig. 6. Cancer hallmark signatures identified in triple-negative cells from individual breast cancer samples and triple-positive-like epithelial cells from control samples. Single-sample
GSEA Enrichment Score (ES) of the pseudo-bulk profile computed for each donor included in the study. Labeled pathways are those that show a similar trend (either positive or negative
ES) in the three data types. Dn: downregulation; Up: upregulation.

act through the activation of TNF-alpha signaling via NF-κB
and Myogenesis, and the deactivation of Fatty Acid Metabolism,
mTORC1 Signaling, E2F targets, and the Unfolded Protein Re-
sponse (FDR < 0.05 in all cases). These pathways have previ-
ously been associated with the inhibition of triple-negative breast
cancer growth and metastasis (55–57), and thus highlight the po-
tential of our computational approach to prioritize drugs by inte-
grating cell-type specific profiles obtained from single-cell RNA-
seq data sets with disease-specific transcriptional drug response
profiles.

Signatures impacted by QL-XII-47 and GSK-690693 in in-
dividual patients. Finally, we evaluated how combination treat-
ment with QL-XII-47 and GSK-690693 might impact transcrip-
tional profiles of triple-negative cancer cells at the individual pa-
tient level. We found that, for most patients, the signatures ex-
pected to be impacted by the drug combination were inversely
correlated between healthy samples and cancer samples (Fig-
ure 6). For example, TNF-alpha signaling via NF-κB shows
an inverse association in 84% (22 of 26) of patients, while Hy-
poxia shows an inverse association in 73% (19 of 26) patients.
Note that, while we focused on triple-negative cells in this study,
the breast cancer atlas we analyzed also included samples from
receptor-positive cancers. However, we specifically applied re-
triever to triple-negative cells from these samples, aiming to
identify drug combinations that would target the tumor’s most
difficult-to-treat cells. Interestingly, signatures in triple-negative
cells from all of the included non-TNBC samples (8 of 8) showed
strong inverse correlations to those from healthy samples. For
the TNBC samples, 7 of 18 had strong inverse associations with
the healthy sample cluster. This indicates that, when applied to

single-cell data derived from a specific tumor type, the candidate
drug combinations predicted by retriever are likely to benefit a
relatively large number of patients.

Discussion
Single-cell RNA-seq provides an unprecedented resolution to
characterize cellular heterogeneity in cancer. Compared with
cell lines, the cells from tumors characterized by single-cell
RNA-seq do not exhibit metabolic adaptation due to culturing. In
advantage to bulk RNA-seq, single-cell RNA-seq can provide a
more accurate signature of the changes observed in specific cells
relevant to the disease under study(14, 58). Thus, leveraging
the information provided by this new technology is important to
accelerate the identification of new personalized treatments that
target specific subpopulations of cells in a tissue (59).

However, just as important as characterizing the signatures of
the disease in affected cells at the highest possible resolution
is to characterize the response profiles of drugs that may help
to reverse disease-associated transcriptional changes towards
a healthy state. Large consortia including the LINCS-L1000
project provide transcriptional phenotypes at different time
points after applying hundreds of compounds to multiple types
of cell lines at different concentrations. Even though this infor-
mation is valuable, its direct application to pathophysiological
scenarios is limited due to the difficulty to extract robust re-
sponse profile in these large data sets (60). Here, we introduced
retriever, a tool to extract robust disease-specific drug response
profiles from the LINCS-L1000 project. retriever mines the
information associated to each cell line in the project to select
subsets of cell lines that are surrogates of a defined disease, after
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which it extracts disease-specific response profiles. By doing
this, retriever maximizes the robustness of the transcriptional
signatures that are used to rank candidate compounds for the
identification of new treatment strategies. With retriever, we
hypothesize that if a signature is robust across multiple cell lines
representing the same disease, it will likely also be more robust
across individuals, as cell lines exhibit genetic and metabolic
differences.

We showcased retriever’s strength by retrieving time-, dose-,
and cell-type consistent transcriptional drug response signatures
of TNBC cells from the LINCS-L1000 project and combining
it with single-cell RNA transcriptome profiles obtained from a
large single-cell breast cancer atlas, which we used to predict
novel drug combinations against TNBC. This identified a combi-
nation of two kinase inhibitors predicted to be effective through
together acting on important biological pathways in breast
cancer, and thereby antagonize the TNBC-specific signature.

The prediction of drug combinations with retriever that we
present here, although it is relatively simple and relies on
the hypothesis of independent mechanisms of action for each
compound, has been established as accurate (predicting the right
directionality of the change) in analyses performed on profiles
from the Connectivity Map project (28). Nevertheless, our
computational approach only allows us to rank compounds and
compounds combinations that are suitable for the development of
treatments based on the negative correlation of the drug response
profiles and the disease signatures. The topmost promising
compounds and drug combinations still need to be validated
experimentally to define the right concentration and evaluate if
they indeed exhibit a synergistic mechanism of action. Their
toxicity across cell lines and, after preclinical tests, potential
adverse events in in-vivo models and cancer patients also need to
be evaluated.

Thanks to the multiple cell lines available in the LINCS-L1000
project, our approach can be replicated in at least 13 other
cancer types, including: adult acute monocytic leukemia,
adult acute myeloid leukemia, cecum adenocarcinoma, colon
(adeno)carcinoma, endometrial adenocarcinoma, lung adeno-
carcinoma, large cell lung carcinoma, small cell lung carcinoma,
melanoma, ovarian mucinous adenocarcinoma, prostate carci-
noma, and triple-negative breast cancer among other variants
(such as local or metastatic tumors for some cancer types), as
soon as single-cell RNA-seq data for those cancer types and
healthy tissues become available. Considering the increase in
single-cell RNA-seq studies being published since the develop-
ment of the technique, we expect this to be possible for most
cancer types represented in the LINCS-L1000 project in the near
future (61).

Finally, our approach can also be applied to disease profiles de-
rived from a single patient to recommend personalized treatment
strategies. We envision this to be one of the potentially most
impactful applications of retriever in computationally-informed
precision medicine once single-cell transcriptional profiles be-

come a standard in the clinic. In addition, while we have show-
cased retriever’s strength in predicting drug combinations for
TNBC in general, the method can be applied to single-cell RNA-
seq data derived from individual tumors, opening up the road for
applications in precision medicine.

Data Availability
All the data and code required to replicate the analy-
sis as well as the figures and tables are available at
https://github.com/dosorio/L1000-TNBC. The retriever package
is available at https://github.com/kuijjerlab/retriever. The fol-
lowing datasets were used to construct the single-cell RNA-seq
breast atlas used in this study:

1. Tabula sapiens wild-type mammary gland. Data from
(62) Quake, Stephen R., and Tabula Sapiens Consortium.
"The Tabula Sapiens: a single cell transcriptomic at-
las of multiple organs from individual human donors."
bioRxiv (2021). Accessed through: https://tabula-sapiens-
portal.ds.czbiohub.org/

2. Wild-type data from seven individuals reported by (63)
Nguyen, Quy H., et al. "Profiling human breast epithe-
lial cells using single cell RNA sequencing identifies cell
diversity." Nature communications 9.1 (2018): 1-12. GEO
accession code: GSE113197.

3. Wild-type data from five individuals reported by (64) Bhat-
Nakshatri, Poornima, et al. "A single-cell atlas of the
healthy breast tissues reveals clinically relevant clusters of
breast epithelial cells." Cell Reports Medicine 2.3 (2021):
10021955. GEO accession code: GSE164898.

4. Triple-negative breast cancer data from 9 individuals from
(34) Wu SZ, Al-Eryani G, Roden DL, Junankar S et al.
A single-cell and spatially resolved atlas of human breast
cancers. Nat Genet 2021 Sep;53(9):1334-134756. GEO
accession code: GSE176078

5. Breast cancer data from 17 individuals from the Array-
Express database accession code: E-MTAB-8107. De-
scribed in (65) Qian, Junbin, et al. "A pan-cancer blueprint
of the heterogeneous tumor microenvironment revealed
by single-cell profiling." Cell research 30.9 (2020): 745-
76257.
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Supplementary Material:

Supplementary Figures:

Fig. S1. Comparisons of ESR1, PGR, and ERBB2 expression levels across epithelial cells in cancer and healthy tissues. TP stands for Triple-Positive, and TN for Triple-Negative.

Fig. S2. Comparisons of the transcriptional changes associated with TNBC at the single-cell and tissue level across different subpopulations of cells. Each dot represents a gene. Dots
are color coded, in red if the log2 fold-change is larger than 1 and in blue if the log2 fold-change is smaller than -1. TP = Triple-Positive, TN = Triple-Negative.
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Fig. S3. Expression of markers for epithelial cells (EPCAM), proliferating cells (MKI67 ), T cells (CD3D), myeloid cells (CD68), B cells (MS4A1), plasmablasts (JCHAIN), endothelial
cells (PECAM1), mesenchymal cells (fibroblasts/perivascular-like cells; PDGFRB), and muscular cells (ACTA2).

Supplementary Tables:
Table S2: (CSV File) Computed robust disease-specific response profiles to 152 compounds across three triple-negative breast cancer cell lines (TNBC)

Table S3: (CSV File) Computed 11,476 compound combinations response profiles across three triple-negative breast cancer cell lines (TNBC)

Table S4: (CSV File) Ranked compounds based on their predicted potential to reverse the disease state (TNBC) towards a healthy state

Table S5: (CSV File) Ranked compound combinations based on their predicted potential to reverse the disease state (TNBC) towards a healthy state
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Cancer Hallmark FDR Leading Genes
Oxidative Phosphorylation 1.76×10−4 LDHB, IDH2, SLC25A5, ATP5F1C, COX6C, PHB2, ATP6V0C, and UQCRH
Interferon Alpha Response 6.10×10−3 CD74, IFITM1, IFI27, and LY6E
Myc Targets 4.24×10−2 RPLP0, PABPC1, PHB2, and PPIA
TNFα Signaling via NF-κB 2.95×10−19 EDN1, BTG1, GADD45B, TSC22D1, CEBPD, CXCL1, SOD2, AREG, CXCL2,

NFKBIA, MARCKS, KLF6, MAFF, CCL2, FOSB, CCN1, IL6ST, IER5, ATF3,
and IER3

Estrogen Response 6.54×10−8 UGCG, KRT18, ELOVL5, STC2, HSPB8, SLC39A6, TFF3, PMAIP1, TFF1,
IL6ST, and AREG

UV Response Up 6.54×10−8 NFKBIA, BTG1, HNRNPU, HMOX1, FOSB, TMBIM6, IL6ST, SOD2, CXCL2,
and ATF3

Apoptosis 6.54×10−8 WEE1, KRT18, GADD45B, TNFRSF12A, PMAIP1, HMOX1, EMP1, SOD2,
ATF3, and IER3

Hypoxia 3.45×10−7 KLF6, BTG1, HSPA5, STC2, MAFF, HMOX1, ADM, CCN1, ATF3, and IER3
Unfolded Protein Response 9.36×10−5 HSPA5, STC2, DNAJB9, CCL2, ATF3, and ATF4
IL-6/JAK/STAT3 Signaling 2.59×10−4 TNFRSF12A, HMOX1, CXCL1, CXCL13, and IL6ST
Inflammatory Response 1.57×10−3 NFKBIA, EDN1, KLF6, CXCL8, CCL2, and ADM
Androgen Response 4.62×10−3 TSC22D1, ELOVL5, DNAJB9, and SLC38A2

Table S1. Hallmark MSigDB signatures associated with the differentially expressed genes observed in triple-negative breast cancer (TNBC). False Discovery Rate (FDR) computed
using Gene Set Enrichment Analysis (GSEA).
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