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Abstract— Inference of gene regulatory networks from single-
cell expression data, such as single-cell RNA sequencing, is
a popular problem in computational biology. Despite diverse
methods spanning information theory, machine learning, and
statistics, it is unsolved. This shortcoming can be attributed to
measurement errors, lack of perturbation data, or difficulty in
causal inference. Yet, it is not known if kinetic properties of
gene expression also cause an issue. We show how the relative
stability of mRNA and protein hampers inference. Available
inference methods perform benchmarking on synthetic data
lacking protein species, which is biologically incorrect. We use
a simple model of gene expression, incorporating both mRNA
and protein, to show that a more stable protein than mRNA can
cause loss in correlation between the mRNA of a transcription
factor and its target gene. This can also happen when mRNA
and protein are on the same timescale. The relative difference
in timescales affects true interactions more strongly than false
positives, which may not be suppressed. Besides correlation,
we find that information-theoretic nonlinear measures are also
prone to this problem. Finally, we demonstrate these principles
in real single-cell RNA sequencing data for over 170017001700 yeast
genes.

I. INTRODUCTION

According to the “central dogma” of molecular biology
[1], genes on DNA are transcribed into messenger RNA
(mRNA), which are translated into proteins. The proteins
carry out various functions within the cell including regula-
tion of expression of other genes. These regulatory relation-
ships form gene regulatory networks (GRNs), which control
the complexity of cellular life [2], [3], and malfunctions in
GRNs can lead to diseases like cancer [4].

Understanding GRN function and structure is essential for
cell biologists, and the inference of their topology from static
transcriptomic data is important [5]. Researchers have used
statistical relationships between levels of mRNA to identify
the underlying GRN. These statistical methods include cor-
relation [6], regression [7]–[9], information-theoretic tech-
niques [10]–[14], Bayesian techniques [15], [16], and more
[17]–[23]. Benchmarking studies have assessed the compar-
ative performance of different methods [24]. An excellent
review of GRN inference methods can be found in [25].
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Many GRN inference techniques make the assumption
that mRNA and protein counts for a given gene are cor-
related, and use mRNA transcript abundance as a proxy for
protein abundance, which is difficult to measure in a high-
throughput manner. However, in experiments the correlation
between mRNA and corresponding protein counts can be
weak [26]. In this paper, we use a model of gene expression
to explore the impact of relative stability of mRNA and
protein on the correlation between their abundances. We
also explore information-theoretic measures–mutual infor-
mation (MI) [27] and the phi-mixing coefficient [28]–using
stochastic simulations [29]. MI quantifies the uncertainty in
individual and joint distributions of random variables [27].
The phi-mixing coefficient is a measure of the statistical
dependence of two random variables based on the differ-
ence between their conditional and unconditional probability
distributions [28]. Both MI ( [10]–[14]) and the phi-mixing
coefficient ( [30]) have been used for GRN inference. Finally,
we demonstrate the established principles on a real single-
cell RNA sequencing (scRNA-seq) dataset for yeast, S.
cerevisiae.

We show that when protein is more stable than mRNA,
GRN cannot be reliably inferred at the single-cell mRNA
level. Even when the true GRN edges are identifiable, the
false positive edges will dominate in correlation values. Col-
lectively, this establishes a protein-mRNA lifetime-dependent
loss in GRN signature in single-cell data.

II. A SIMPLE MODEL OF GENE EXPRESSION

We start with a simple model of gene expression. mRNA
M is produced and degraded via a 1-dimensional Poisson
birth-death process. Uppercase and lowercase letters repre-
sent a species and its molecular count, respectively; M and
m are the mRNA and its count, respectively. Production of
M is a Poisson birth process with rate kmF(β ), and each
event creates mRNA in bursts of size β , which is distributed
according to any arbitrary positive-valued probability dis-
tribution F(β ). Protein P is created and degraded in a 1-
dimensional conditional Poisson birth-death process. Each M
molecule is translated into a molecule of P via a conditional
Poisson birth process at a rate kp. M and P are degraded
as Poisson processes at rates 1/τm and 1/τp, respectively.
τm and τp are the respective average lifetimes of M and P.
For the rest of the paper, we assume that τm is constant, and
τp = τ τm. This allows us to change τp/τm by varying only
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τ . The chemical reaction network for this system is

∅ kmF(β )−−−−→ β ×M, M
1/τm−−→∅

M
kp−−→M+P, P

1/(τ τm)−−−−→∅.
(1)

The time evolution of the joint probability distribution for
m and p in (1) is given by the following chemical master
equation (CME) [31]:

∂P(m, p; t)
∂ t

=

(
∑
β

F (β ) km P(m−β , p; t)

+
m+1

τm
P(m+1, p; t)

)
+

(
kp mP(m, p−1; t)

+
p+1
τ τm

P(m, p+1; t)
)
−
(

km +
m
τm

+ kp m+
p

τ τm

)
P(m, p; t),

(2)
where P(m, p; t) is the joint probability distribution for m
and p at time t. (2) can be solved exactly for the steady-
state moments [31]–[33]. The first order moments are given
by

〈m〉= 〈β 〉km τm, 〈p〉= 〈m〉kp τp = 〈m〉kp τ τm, (3)

where the angle brackets represent statistical expectation.
The second order moments involving only one species can
be written as

η
2
m︸︷︷︸

total noise

:=
〈m2〉−〈m〉2

〈m〉2
=

(
〈β 2〉/〈β 〉+1

)
/2

〈m〉︸ ︷︷ ︸
intrinsic noise

,
(4)

η
2
p︸︷︷︸

total noise

:=
〈p2〉−〈p〉2

〈p〉2
=

1
〈p〉︸︷︷︸

intrinsic noise

+
1

1+ τ
η

2
m︸ ︷︷ ︸

extrinsic noise

,
(5)

where η2
m and η2

p are the total noise or expression fluctuation,
for M and P, respectively [32], [33]. Intrinsic noise is the
fluctuation in m or p caused by the discrete birth-death
events for M or P, respectively. Intrinsic noise for any mRNA
species is given by (4) [32], [33]. Intrinsic noise for any
protein species is given by the first term on the right-hand
size (RHS) in (5) [32], [33]. Extrinsic noise in (5) is the noise
propagated from m to p. The decomposition of total noise
into intrinsic and extrinsic in (5) is fairly standard in noisy
expression research [32]–[36]. The numerator for intrinsic
noise in (4),

B :=
〈β 2〉/〈β 〉+1

2
, (6)

is the average contribution to noise from birth and death
events for M [34], [35]. We propose that

B ∝ 〈β 〉+o(1), (7)

where o is the Little-o notation. If β is deterministic, B =
(〈β 〉+1)/2. If β is distributed geometrically, as is known
for many genes in different species [37], [38], B = 〈β 〉. B is
an estimate of mean-independent intrinsic noise for mRNA,
and we modulate noise by varying B. We vary B by changing
〈β 〉 ((7)). Whenever 〈β 〉 is increased/decreased by a factor,

we decrease/increase km by the same factor to keep first order
moments constant at fixed τ .

We are interested in the dependence of steady-state species
correlations on B, and τ . Since the moments in (3)- (5)
are dependent on B and τ , we obtain the expression for
correlation between m and p, cor (m, p), as a function of
these moments.

Proposition 1 (mRNA-protein correlation in a single gene)
For a single gene (1), steady-state correlation between m and
p is

cor (m, p) =
1

1+ τ

√
η2

m

η2
p
. (8)

(8) is obtained by solving (2) [31]–[33]. We examine the
behavior of cor (m, p) when τ is fixed, and B is variable, and
establish the following upper bound:

Theorem 2 (Upper bound on mRNA-protein correlation
in a single gene) For a single gene (1), steady-state corre-
lation between m and p is bounded from above by

cor (m, p) =
1√

1+ τ
, for B� 1+ τ

τ

1
kpτm

(9)

cor (m, p) is an increasing function of η2
m, which is an

increasing function of B (see (4) and (6)). Consequently,
cor (m, p) is an increasing function of B, and reaches its
maximum value in (9) when the second term on the right
hand side (RHS) in (5) is much larger than the first term.
This gives us the constraint on B in (9) while using (3)-(4).
(9) is depicted by the green curve in Fig. 1b. There is a τ-
mediated loss in correlation as protein becomes more stable
than mRNA. For extremely stable proteins, cor (m, p) might
completely vanish. Actual cor (m, p) values will always be
lower than (9). The gap between the upper bound and the true
cor (m, p) is governed by the relative amounts of intrinsic
and extrinsic noises in p. This is evident from (8) and (9).
cor (m, p) reaches the upper bound only when B is large
enough. However, if B is low or moderate, cor (m, p) can
deviate significantly. cor (m, p)’s dependence on τ and B
is shown in Fig. 1b. Further, we have also validated the
analytical result using exact stochastic simulations in Fig. 1c.
Dependence of cor (m, p) on τ and B motivates the central
theme of the paper. We next explore whether this dependence
propagates to downstream genes in small GRN topologies.

III. LOSS OF CORRELATION FOR SIMPLE GRNS

Count correlations in a two-gene cascade

For a two-gene cascade (Fig. (2)a), gene 1 has mRNA M1
and protein P1, and gene 2 has mRNA M2 and protein P2.
P1 regulates the production of M2. All kinetic parameters are
identical for the two genes. M1 is created and degraded via
a 1-dimensional Poisson birth-death process. All the other
species are created and degraded via 1-dimensional condi-
tional Poisson birth-death processes. The chemical reaction
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Fig. 1: Plot of mRNA-protein correlation, cor (m, p)cor (m, p)cor (m, p), for a single gene in
(1) as a function of B, and τ . (a) GRN being considered–a single gene with
its mRNA, M, and protein, P. (b) Analytical curves (black curves) obtained
from (8) (one curve per B value). Nine different values were used for B:
B ∝ 〈β 〉 ∈ 4×{20,21, . . . ,28}. The upper bound in (9) is depicted by the
green curve. (c) cor (m, p) as a function of B and τ using exact stochastic
simulations [29]. B was varied over the same range as before. The other
kinetic parameters are: km = 0.0282, τm = 1/0.0025, kp = 1.2/τm. km and
τm are for the nanog gene from mouse embryonic stem cells ( [39]). We
assume that β is deterministic. Error bars show one standard deviation.

network is

{1}∅ km F(β1)−−−−−→ β 1 ×M1, {2}M1
1/τm−−→∅

{3}M1
kp−−→M1 +P1, {4} P1

1/(τ τm)−−−−→∅.

{5}∅ km F(β2)h(p1)−−−−−−−−→ β 2 ×M2, {6}M2
1/τm−−→∅

{7}M2
kp−−→M2 +P2, {8} P2

(τ τm)−−−→∅,

(10)

where β1 and β2 are the respective burst sizes for M1 and
M2, P1 regulates M2 via h(p1), and numbers (in curly braces)
represent an ordering on the reactions. The CME for (10) in
compact form is [31]

∂P(xxx; t)
∂ t

=
R

∑
r=1

∑
β1,β2

F (β1)F (β2)

(
fr (xxx−dddr)P(xxx−dddr; t)

− fr (xxx)P(xxx; t)
)
,

(11)
where R = 8 is the total number of reactions in (10), xxx =
(m1, p1,m2, p2)

T , fr (xxx) is the propensity for reaction r, dddr =
(∆mr

1,∆pr
1,∆mr

2,∆pr
2)

T is a vector containing the jump in
species count because of reaction r, and P(xxx; t) is the joint
probability distribution for xxx. β1 and β2 independent. We
define

B1 :=
〈β 2

1 〉/〈β1〉+1
2

, B2 :=
〈β 2

2 〉/〈β2〉+1
2

. (12)

as the average contributions to noise from birth and death
processes for M1 and M2, respectively ( [32]–[35]):

(11) can be solved exactly for steady-state moments if
h(p1) is a linear function [31]–[33]. For nonlinear h(p1),
we solve (11) approximately using the linear noise approxi-
mation (LNA) approach [31]–[35], [40], [41]. For LNA, we
linearize h(p1) around a deterministic concentration [32],
[33], [41]. Then, evolution of the first-order moments is
obtained using the extended moment generator from [42]:

d〈xxx〉/dt =−S〈xxx〉+ggg,

where S is a diagonal matrix of inverse lifetimes, and ggg
is the vector of species production rates. Time evolution
of the mean-normalized covariance matrix Σ, with entries
Σi j = (〈xix j〉− 〈xi〉〈x j〉)/(〈xi〉〈x j〉) is given by ( [31], [34],
[35], [40], [41])

dΣ

dt
= AΣ+ΣAT +D, (13)

where A and D are the mean-normalized jacobian and
diffusion matrices, respectively. Ordering for the rows and
columns of S, A, D and Σ corresponds to the species order
in xxx. The non-zero entries of A encode the structure of the
expanded GRN including both mRNA and protein; there
exists a regulation edge from species j to i iff Ai j 6= 0 (
[31]–[35], [40], [41]). At steady state, first-order moments
are given by

S〈xxx〉= ggg, (14)

and the Σ is given by the following Lyapunov equation (
[31]–[35]):

AΣ+ΣAT +D = 0. (15)

(15) gives all the second order moments ( [31]–[35], [41]).
We are interested in the dependence of steady-state correla-
tion between m1 and m2, cor (m1, m2), on B1, B2 and τ .
Proposition 3 (mRNA-mRNA correlation in a two-gene
cascade) For the two-gene cascade in (10), correlation
between m1 and m2 is

cor (m1, m2) =
θm2 p1

2(1+ τ)

√
η2

m1

η2
m2

, (16)

where η2
m1

and η2
m2

are the total noises in m1 and m2,
respectively, which are obtained from (15) ( [31]–[35], [41]).
θm2 p1 is the log-sensitivity of m2 to changes in p1 at steady
state ( [32]–[35]). Assume that h(p1) is saturating and
h(〈p1〉) is independent of 〈p1〉. Then, θm2 p1 is also inde-
pendent of 〈p1〉 at steady-state [32]–[35]. (16) is obtained
by solving (15) ( [31]–[33], [41]). We next establish the
following upper bound on cor(m1, m2):
Theorem 4 (Upper bound on mRNA-mRNA correlation
in a two-gene cascade) For the two-gene cascade in (10),
correlation between m1 and m2 is bounded from above by

cor (m1, m2) =
1√

2(1+2τ)
, (17)

when

θ 2
m2 p1

(1+2τ)

2(1+ τ)2 B1� B2
〈m1〉
〈m2〉

+
θ 2

m2 p1
τ

(1+ τ)

〈m1〉
〈p1〉

, (18)
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Fig. 2: Plot of mRNA-mRNA, cor (m1, m2)cor (m1, m2)cor (m1, m2), and protein-protein, cor (p1, p2)cor (p1, p2)cor (p1, p2), correlation, for a two-gene cascade in (10) as a function of B1, B2, and
τ . (a) GRN being considered–a two gene cascade. Analytical curves (black (one curve per value of B1, while B2 ∝ 〈β2〉= 4) and yellow (one curve per
value of B2, while B1 ∝ 〈β1〉 = 4) curves) for cor (m1, m2) and cor (p1, p2) are shown in (b) and (c), respectively. The upper bounds in (17) and (22)
are depicted by the green curves in (b) and (c), respectively. cor (m1, m2) and cor (p1, p2) as functions of B1 and τ using exact stochastic simulations
[29] are shown in (d) and (e), respectively. B1 was varied while B2 was held constant (both in the same ranges as before). The values of other kinetic
parameters are the same as mentioned in the caption for Fig. 1. Further, we assume that h(p1) = p4

1/
(

p4
1 + k4

h

)
, where kh was selected such that at steady

state h(〈p1〉) = 0.5 for all values of the kinetic parameters. Error bars show one standard deviation.

From (15), we obtain ( [32], [33]),

η
2
m2

= Σ33 =
〈m2

2〉−〈m2〉2

〈m2〉2
= η

2
m2 ◦︸︷︷︸

intrinsic noise, m2

+

θ 2
m2 p1

τ

1+ τ
η

2
p1 ◦︸︷︷︸

intrinsic noise, p1

+
θ 2

m2 p1
(1+2τ)

2(1+ τ)2 η
2
m1 ◦︸︷︷︸

intrinsic noise, m1︸ ︷︷ ︸
extrinsic noise, m2

.

(19)
From (16), (19) and η2

m1
= η2

m1 ◦, cor (m1, m2) is an in-
creasing function of η2

m1 ◦, and achieves the upper bound
in (17) when the third term on the RHS in (19) is much
larger than the first two terms. (17) is depicted by the green
curve in Fig. 2b. There is a τ-mediated loss in cor (m1, m2).
As protein becomes more stable than mRNA, cor (m1, m2)
decays much faster than cor (m1, p1). For extremely sta-
ble proteins, cor (m1, m2) will completely vanish. Actual
cor (m1, p1) could be much less than (17) (Fig. 2).

(18) defines a tug-of-war between B1 and B2. Their relative
magintudes dictate the gap between (17) and the actual
cor (m1, m2). If B1 is much higher than B2, (18), then
cor (m1, m2) will reach its upper bound (17) (see the black
curves in Fig. 2b). However, if B1 is much smaller than B2,
cor (m1, m2) can vanish even when mRNA is more stable
than protein, and τ < 1 (check the yellow curves in Fig. 2b).
We also performed exact stochastic simulations ( [29]) to
verify (16) and (17), Fig. 2d. Next, we examine the steady-
state correlation between p1 and p2.

Proposition 5 (protein-protein correlation in a two-gene
cascade) For the two-gene cascade (10), correlation be-
tween p1 and p2 is

cor (p1, p2) =
θm2 p1

2(1+ τ)

√√√√(η2
m1 ◦+ τ η2

p1 ◦
)2

η2
p1

η2
p2

, (20)

η2
p1

is obtained from (5) by replacing η2
p and η2

m with η2
p1

and η2
m1

, respectively, and from (15) ( [32], [33])

η
2
p2
= Σ44 =

〈p2
2〉−〈p2〉2

〈p2〉2
= η

2
p2 ◦︸︷︷︸

intrinsic noise, p2

+

1
1+ τ

η
2
m2 ◦+

θ 2
m2 p1

τ (τ +2)

2 (1+ τ)2 η
2
p1 ◦+

θ 2
m2 p1

(
τ2 +3τ +1

)
2(1+ τ)3 η

2
m1 ◦︸ ︷︷ ︸

extrinsic noise, p2

.

(21)
(20) is obtained from (15) [31]–[33]. cor (p1, p2) is an
increasing function of η2

m1 ◦. Consequently, cor (p1, p2) is an
increasing function of B1, which establishes the following
upper bound on cor(p1, p2):
Theorem 6 (Upper bound on protein-protein correlation
in a two-gene cascade) For the two-gene cascade (10),
correlation between p1 and p2 is bounded from above by

cor (p1, p2) =

√
(τ +1)2

2 (τ2 +3τ +1)
, (22)

when

B2�
θ 2

m2 p1

2
B1
〈m2〉
〈m1〉

+o(1) . (23)

Theorem 6 can be proved by substituting intrinsic noise
terms in (20) to show that the upper bound is reached when
the fourth term in the RHS of (21) is much larger than the
first three terms. When B1 is large to satisfy (23), cor (p1, p2)
will reach its upper bound in (22) (see the black curves in
Fig. 2c). For all values of τ , cor (p1, p2) is greater than or
equal to 80% of its maximum of 1/

√
2 (green curve in Fig.

2c). This is in contadiction to (17) where the upper bound
was a monotonically decreasing function of τ . The upper
bound for cor (p1, p2) does not exhibit a τ-mediated loss in
correlation. cor (p1, p2) also exhibits a tug-of-war between
B1 and B2 (yellow curves in Fig. 2c). This is evident from
(23) and the fact that (20) is a decreasing function of B2.

We also performed stochastic simulations [29] to demon-
strate the dependence of cor (p1, p2) on B1, and τ (Fig. 2e).
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Count correlations in a three-gene fanout motif

Next, we show that the false positive correlation between
two genes having a common upstream TF, but not regulating
each other, is less susceptible to a τ-mediated loss of
correlation. This false positive correlation is most of the
time greater than the true positive correlation in a two-gene
cascade. For this, we study a fanout network, which has
three genes. Genes 1 and 2 satisfy (10). Gene 3 satistifes
the following additional reaction channels:

{9}∅ kmF(β3)h(p1)−−−−−−−−→ β 3 ×M3, {10}M3
1/τm−−→∅

{11}M3
kp−−→M3 +P3, {12} P3

1/(τ τm)−−−−→∅,
(24)

where reaction numbering has been continued from (24), M3
and P3 are the mRNA and protein for gene 3, respectively,
β3 is the burst size for m3. We assume that β2 and β3 are
identically distributed. We also define

B3 = B2, (25)

where B2 is given in (12), as the average contribution of the
birth and death events in (24) to noise in m3. Genes 2 and
3 are identical, and do not regulate each other. They have
a common regulator, P1. Correlation between the species of
genes 2 and 3 defines false positive correlation (cor (m2, m3)
and cor (p2, p3)). Now, xxx = (m1, p1,m2, p2,m3, p3)

T . All mo-
ments upto the second-order can be obtained by solving (14)
and (15) with additional species, M3 and P3. All moments
for m3 amd p3 can be obtained from the moments of m2 and
p2, respectively. Consequently, θm3 p1 = θm2 p1 . Next, we find
cor(m2, m3).
Proposition 7 (mRNA-mRNA correlation in a three-gene
fanout) For the three-gene fanout (10) and (24), correlation
between m2 and m3 is given by

cor (m2, m3) =
θ 2

m2 p1
τ

τ+1 η2
p1 ◦+θ 2

m2 p1
2τ+1

2(τ+1)2 η2
m1 ◦

η2
m2

(26)

θm2 p1 and η2
m2

in (26) are interchangeable with θm3 p1

and η2
m3

, respectively. Proposition 7 is proved by solving
(15) [32], [33]. On substituting (19) in (26), we see that
cor (m2, m3) is an increasing function of B1, and establish
the following upper bound on cor(m2, m3):
Theorem 8 (Upper bound on mRNA-mRNA correlation
in a three-gene fanout) For the three-gene fanout (10) and
(24), correlation between m2 and m3 is bounded from above
by

cor (m2, m3) = 1

for B1�
2 (τ +1)2

θ 2
m2 p1

(2τ +1)
B2
〈m1〉
〈m3〉

+
2τ (τ +1)
(2τ +1)

〈m1〉
〈p1〉

.
(27)

cor (m2, m3) depends on B1 through η2
m1 ◦. For η2

m2
in

the denominator in (26), substituting (19), we get (27).
Interestingly, the upper bound (27) is independent of τ .
This is in contrast to cor (m1, m2), where (17) which decays
with τ . This implies that cor (m2, m3) will always dominate
cor (m1, m2) and cor (m1, m3) when protein is more stable

than mRNA, and can even dominate when mRNA is more
stable (Fig. (3)b). Next, we directly compare cor (m1, m2) to
cor (m2, m3).

Theorem 9 (mRNA-mRNA correlation in two-gene cas-
cade vs three-gene fanout) For the three-gene fanout (10)
and (24)

B2 <
θ 2

m2 p1

2
B1
〈m2〉
〈m1〉

=⇒ cor (m2, m3) > cor (m1, m2).

(28)

On comparing (16) and (26), while using (19), we get
(28). (28) demonstrates a tug-of-war between B1 and B2,
where their relative magintudes dictate whether cor (m1, m2)
or cor (m2, m3) will dominate. The relative magnitudes of B1
and B2 also determine whether cor (m1, m2) and cor (m1, m3)
will achieve their upper bounds (see Theorems 4 and 8).
When (18) and (27) are true, cor (m1, m2) and cor (m2, m3)
achieve their upper bounds. However, at the same time,
cor (m2, m3) will begin to dominate cor (m1, m2). This im-
plies that kinetic conditions which allow inference of the
GRN also confound inference via the false positive edges.

The dependence of cor (m2, m3) on B1 (cyan curves), B2
(dark-green curves) and τ based on (26) is shown in Fig. 3b.
We have also shown the respective curves for cor (m1, m2)
based on (16) there for the sake of comparison. We also
performed exact stochastic simulation to verify these results
as shown in Figs. 3d. Next, we study the correlation between
p2 and p3, cor (p2, p3).

Proposition 10 (protein-protein correlation in a three-
-gene fanout) For the three-gene fanout (10) and (24),
correlation between p2 and p3 is

cor (p2, p3) =
θ 2

m2 p1
τ (τ+2)
2(τ+1)2 η2

p1 ◦+θ 2
m2 p1

τ2+3τ+1
2(τ+1)3 η2

m1 ◦

η2
p2

(29)

θm2 p1 and η2
p2

in (29) are interchangeable with θm3 p1

and η2
p3

, respectively. Proposition 10, is proved by solving
(15) [32], [33]. Like before, we assume that B1, B2 and
B3 are varied in a manner which preserves the first order
moments at fixed τ . On substituting (21) in (29), we see
that cor (p2, p3) is an increasing function of B1. Now, we
establish the following upper bound on cor(p2, p3):

Theorem 11 (Upper bound on protein-protein correlation
in a three-gene fanout) For the three-gene fanout (10) and
(24), correlation between p2 and p3 is bounded from above
by

cor (p2, p3) = 1, for B2�
θ 2

m2 p1

2
B1
〈m2〉
〈m1〉

, (30)

cor (p2, p3) depends on B1 through η2
m1 ◦. For η2

p2
in

the denominator in (29), substituting (21), we get (30)
for reaching the upper bound. Similar to cor (m2, m3), the
upper bound for cor (p2, p3) is independent of τ . Therefore,
it is possible that cor (p2, p3) might dominate cor (p1, p2)
and cor (p1, p3). Next, we directly compare cor (p2, p3) to
cor (p1, p2):
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Fig. 3: Plot of mRNA-mRNA, cor (m2, m3)cor (m2, m3)cor (m2, m3), and protein-protein, cor (p2, p3)cor (p2, p3)cor (p2, p3), correlation, for a three-gene fanout in (10) and (24) jointly as a function
of B1, B2, and τ . (a) GRN being considered–a three-gene fanout Analytical curves (cyan (one curve per value of B1, while B2 ∝ 〈β2〉= 4) and dark-green
(one curve per value of B2, while B1 ∝ 〈β1〉 = 4) curves) for cor (m2, m3) and cor (p2, p3) are shown in (b) and (c), respectively. The analytical curves
from Figs. 2a and 2b are also shown in black and yellow curves in (b) and (c), respectively, for comparison. The upper bound of 1 is shown in green
curves in (b) and (c). cor (m2, m3) and cor (p2, p3) as functions of B1 and τ using exact stochastic simulations [29] are shown in (d) and (e), respectively.
B1 was varied while B2 was held constant (both in the same ranges as before). The values of other kinetic parameters are the same as mentioned in the
caption for Fig. 1. The values of other kinetic parameters are the same as before (see caption of Fig. 1). For details on the regulation function h(p1), see
caption of Fig. 2. Error bars show one standard deviation.

Theorem 12 (Protein-protein correlation in two-gene
cascade vs three-gene fanout) For the three-gene fanout
(10) and (24),

B2 <
θ 2

m2 p1

2
B1
〈m2〉
〈m1〉

=⇒ cor (p2, p3) > cor (p1, p2). (31)

On comparing (20) and (29), while using (19), we get
(31). Similar to Theorem 9, Theorem 12 demonstrates a tug-
of-war between B1 and B2, where their relative magintudes
dictate whether the true positive correlation cor (p1, p2)
(cor (p1, p3)) or the false positive correlation cor (p2, p3)
will dominate in single-cell protein measurements. Strong
bursting in M1 relative to M2 can make cor(p2, p3) dominate.

The kinetic regime which allows cor (p1, p2) and
cor (p1, p3) to achieve their upper bounds also allows
cor (p2, p3) to reach its upper bound (compare the constraints
in Theorem 6 and Theorem 11). However, the upper bound of
cor (p2, p3) is larger than that of cor (p1, p2) and cor (p1, p3):
1 vs 1/

√
2. Even though protein-protein correlations are

not subject to τ-mediated loss in correlation, yet the rel-
ative gap between the upper bounds for cor (p2, p3) and
cor (p1, p2) or cor (p1, p3) will cause the false positive corre-
lation cor (p2, p3) to dominate the true positive correlations
cor (p1, p2) and cor (p1, p3). For GRN inference from single-
cell protein measurements, this implies that true positive and
false positives will always be observed together. Again, the
kinetic conditions which allow inference of the network also
confound inference via the false positive edges.

The dependence of cor (p2, p3) on B1 (cyan curves), B2
(dark-green curves) and τ based on (29) is shown in Fig. 3c.
We have also shown the respective curves for cor (p1, p2)
based on (20) there for the sake of comparison. We also
performed exact stochastic simulation to verify these results
as shown in Figs. 3e.

IV. LOSS OF INFORMATION-THEORETIC MEASURES FOR
SIMPLE GRNS

We also study the behavior of MI and the phi-mixing co-
efficient as a function of mRNA bursting and τ for the single
gene and the two-gene cascade topologies using stochastic
simulations ( [29]). For a single-gene, like correlation, we
observe a τ-mediated loss in MI between m1 and p1 (Fig. 4,
top). For the two-gene cascade, there is τ-mediated loss in
MI between m1 and m2 as well (Fig. 4, middle). Similar to
correlation, MI between m1 and p1 appears to be larger in
magnitude compared to m1 and m2. Finally, MI between p1
and p2 for the two-gene cascade in (10) exhibits an opposite
trend to MI between m1 and m2, and has a τ-mediated loss
when τ decreases rather than increasing (Fig. 4, bottom). The
phi-mixing coefficient exhibited a similar behavior (Fig. 4b).

V. LOSS OF INFERENCE ACCURACY FOR REAL YEAST
GRN IN SINGLE-CELL RNA SEQUENCING DATA

We collected the experimentally inferred GRN for S.
cerevisiae from the yeastract database [43]. We collected
transcriptome- and proteome-wide mRNA and protein degra-
dation rates from [44] and [45], respectively. We used
scRNA-seq data generated in [46]. We only retained cells
grown under complete medium conditions as degradation
rate measurements were made under these conditions [44],
[45]. Further, the scRNA-seq data has 12 different genotypes,
including the wildtype, and we used all the genotypes.

From the GRN, we extracted edges between master regula-
tors (TFs without any incoming regulation), and their target
genes. For these edges, we computed correlation between
the mRNA counts of the TF and its target. These values are
shown in red in Fig. 5a. We find that these true positive edges
do not violate the upper bound on such correlations. Since
the TF and the target genes can have different lifetimes, we
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Fig. 4: Plot of mutual information and phi-mixing coefficient for a
single-gene and the two-gene cascade as functions of B (B1), and τ . (a)
and (b) show results for mutual information (MI) and phi-mixing coefficient,
respectively. (top) MI/phi-mixing coefficient between m1 and p1 for the
single gene in (1) computed using exact stochastic simulations [29] for two
values of B–one low ∝ 〈β 〉= 4 (red), and one high ∝ 〈β 〉= 1024 (blue), and
four different values of τ . (middle) MI/phi-mixing coefficient between m1
and m2 for the two-gene cascade in (10). (bottom) MI/phi-mixing coefficient
between p1 and p2 for the two-gene cascade in (10). The values of other
kinetic parameters are the same as before (see caption of Fig. 1). For details
on the regulation function h(p1), see caption of Fig. 2. Error bars show one
standard deviation.

recompute the upper bound in (4), which becomes

cor (m1, m2)≤ 1√
(1+ τ)

(32)

Interestingly, allowing different lifetimes, enables the upper
bound to reach the maximum possible value of 1 when M1
is much more stable than M2. The upper bound in (32) is
shown by the green curve in Figs. (5)a and (5)b.

Within the limit of statistical variability, the true positive
correlations from yeast scRNA-seq data do not violate (32),
and consequently face a τ-mediated loss (Fig. (5)a). The false
positive edges (blue spheres in Fig. (5)a) are not constrained
by the upper bound. For false positive edges, we calculate
correlation between genes which do not regulate each other,
but are regulated by the master regulators. This observation
shows that the insights generated from small network topolo-
gies are valid for larger GRNs as well. Further, we observed
a similar behavior when we calculated normalized mutual
information [47] instead of correlation for the true positive
and false positive edges in Fig. (5)b.

DISCUSSION

We have established fundamental limits on inferrability
of GRN topology from static single-cell mRNA and protein

a) b)

Fig. 5: Loss in correlation and mutual information for yeast in single-
cell RNA sequencing data. (a) Comparision of correlation and normalized
mutual information (NMI) between a TF and its target gene (red spheres)
against correlation and normalized mutual information (NMI) between two
genes with common regulators but no edge between them (blue spheres)
are shown in (a) and (b), respectively. The green curves represent the upper
bound on correlation between a TF and its target gene given in (32)

measurements. We find a relative stability-mediated loss in
correlation and information-theoretic measures for mRNA
species; when protein is more stable than mRNA, steady-
state mRNA counts are not enough to infer the underlying
GRN. This is exacerbated by the robustness of false positive
correlations to this loss. The kinetic conditions which allow
discovery of true positive correlations between a TF and its
target gene also hinder GRN inference by amplification of
false positive correlations.

We also found these constraints to be true for scRNA-
seq data for yeast, S. cerevisiae, suggesting that the relative
stability issue is true for real systems. This raises an im-
portant question on the limits of identifiability from static
data. What about the dependence of other inference tasks,
such as kinetic estimation, trajectory inference, clustering
and differential expression, on relative stability of mRNA
and protein and its propagation over GRN?

We used a simple model of gene expression, which
does not incorporate complex processes such as post-
transcriptional and post-transcriptional modifications. A fu-
ture research direction is the establishment of constraints on
GRN inferrability in more general settings.

scRNA-seq is not a static snapshot. Cells can be present in
multiples states, and not not steady-state prior to sequencing.
Can this be leveraged to circumvent the issues we have
raised? This is an interesting problem to unpack.

GRN is essential for cellular functioning [2]–[4]. Conse-
quently, a knowledge of its topology is important for un-
derstanding and controlling cellular functions. Experimental
and computational efforts have been spent over the last
two decades to unravel GRN topology for different species.
However, the computational problem still remains unsolved.
We have provided one explanation for this difficulty. This
will motivate development of methods to circumvent the
limitations we have unraveled.
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