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Abstract 19 

Canonical distance and dissimilarity measures can fail to capture important relationships 20 

in high-throughput sequencing datasets since these measurements are unable to represent feature 21 

interactions. By learning a dissimilarity using decision tree ensembles, we can avoid this 22 

important pitfall. We used 16S rRNA data from the lumen and mucosa of the distal and proximal 23 

human colon and the stool of patients suffering from immune-mediated inflammatory diseases 24 

and compared how well the Jaccard and Aitchison metrics preserve the pairwise relationships 25 

between samples to dissimilarities learned using Random Forests, Extremely Randomized Trees, 26 

and LANDMark. We found that dissimilarities learned by unsupervised LANDMark models 27 

were better at capturing differences between communities in each set dataset. For example, 28 

differences in the microbial communities of colon’s distal lumen and mucosa were better 29 

reflected using LANDMark dissimilarity (p ≤ 0.001, R2 = 0.476) than using the Jaccard distance 30 

(p ≤ 0.001, R2 = 0.313) or Random Forest dissimilarity (p ≤ 0.001, R2 = 0.237). In addition, 31 

applying Uniform Manifold Approximation and Projection to dissimilarity matrices and 32 

transforming the result using principal components analysis created two-dimensional projections 33 

that captured the main axes of variation while also preserving the pairwise distances between 34 

samples (eg: ρ = 0.8804, p ≤ 0.001 for the distal colon dissimilarities). Finally, supervised 35 

LANDMark models tend to outperform both Random Forest and Extremely Randomized Tree 36 

classifiers. Models employing multivariate splits can improve the analysis of complex high-37 

throughput sequencing datasets. The improvements observed in this work likely result from the 38 

ability of these models to reduce noise from uninformative features. In an unsupervised setting, 39 

LANDMark models can preserve pairwise relationships between samples. When used in a 40 
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supervised manner, these methods tend to learn a decision boundary that is more reflective of the 41 

biological variation within the dataset. 42 

Author Summary 43 

Distance and dissimilarity measures are often used to investigate the structure of 44 

biological communities. However, our investigation into two commonly used distance measures, 45 

the Jaccard and Aitchison distances, demonstrates that these measures can fail to capture 46 

important relationships in microbiome communities. This is likely due to their inability to 47 

identify dependencies between features. For example, both the Jaccard and Aitchison metrics are 48 

unable to identify subsets of samples where the presence of one feature depends on another. 49 

Previous research has found that Random Forest embeddings can be used to create an alternative 50 

dissimilarity measure for dimensionality reduction in genomic datasets. We show that 51 

dissimilarities learned by decision tree ensembles, especially those using base-estimators capable 52 

of partitioning data using oblique and non-linear cuts, can be superior since these approaches 53 

naturally model these interactions. 54 

Keywords 55 

Metric learning, amplicon sequencing, 16S rRNA, metabarcoding, ordination, biomarker 56 

discovery, machine learning 57 

Introduction 58 

Biomarkers are objectively measurable characteristics of biological systems which can 59 

identify and provide evidence in favor or against a biological process or condition (1,2). For 60 

example, organisms that are present or absent in patients suffering from a disease, such as 61 

Crohn’s Disease, could be considered a biomarker if they can be used to predict the condition 62 
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(3). Machine learning (ML) algorithms are being increasingly applied to a wide array of 63 

genomic, metagenomic, and transcriptomic data sets to identify relevant biomarkers and create 64 

predictive models of these datasets. When analyzing amplicon sequencing data one typical goal 65 

is to discover amplicon sequence variants (ASVs) associated with each of the biological 66 

communities being studied. For example, a recent study identified how impaired dopamine 67 

signaling in mice with a defective dopamine transporter gene alters the activity of metabolic 68 

pathways and the composition of the gut microbiome (4). Unlike approaches such as DESeq2 69 

and MetagenomeSeq, ML models tend not to assume anything about the underlying distribution 70 

of each co-variate (5,6). Furthermore, many ML models, such as neural networks and Random 71 

Forests, can naturally model interactions between covariates (7,8). For these reasons, ML 72 

represents a potentially powerful way to identify biomarkers in high-throughput sequencing 73 

(HTS) data. Out of the myriad of available machine learning methods, Random Forests (RFs) 74 

and other decision tree ensembles have become very popular due to their good overall 75 

performance when working with high-throughput sequencing data. Furthermore, extensive tools 76 

and approaches have been designed which are starting to peel back the “black-box” veneer of 77 

these and other machine learning models (9). For example, RFs have been recently applied to 78 

study and identify operational taxonomic units (OTU), which can be considered a class of 79 

biomarkers, from the microbiomes of patients suffering from cardiovascular disease, chronic 80 

obstructive pulmonary disease, and various immune-mediated inflammatory diseases (3,10,11). 81 

These models, which are not linearly constrained, have been shown to generalize well to unseen 82 

data in more recent amplicon sequencing studies (12).  83 

While machine learning has become incredibly popular and has led to important 84 

discoveries, biomarker selection using RFs and other commonly used approaches can be 85 
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problematic due to the various algorithmic assumptions. For example, each decision tree in a RF 86 

uses a recursive series of axis-orthogonal splits to approximate the underlying data generating 87 

function (13,14). However, more complex oblique or non-linear splits often result in more 88 

appropriate representations of the data generating function (12,14). Another classification 89 

algorithm, k-nearest neighbors, is sensitive to the number of neighbors and the distance metric 90 

(15). Logistic regression, ridge regression, and linear support vector classifiers can only learn 91 

linear decision boundaries (12). while neural networks can require a large amount of data and 92 

time to learn appropriate weights for each parameter.  93 

One aspect of RFs which have not been extensively explored is their ability to learn a 94 

dissimilarity measure when working in an unsupervised setting. Unsupervised RFs have 95 

previously been used to discover similar cell populations in single-cell RNAseq data, identify 96 

different classes of renal cell carcinomas tumors, study the underlying structure of a population 97 

using shared genetic variations (16–18). This body of work has demonstrated that unsupervised 98 

RFs can identify important sources of variation between samples while still being robust to noise 99 

and problems stemming from the high dimensionality of high-throughput sequencing datasets. 100 

While these results lay the groundwork and demonstrate the utility of unsupervised RFs, they do 101 

not investigate the potential of multivariate decision trees in learning a similarity function. In this 102 

study, we investigate multivariate decision trees. Specifically, we will investigate their ability to 103 

learn a similarity measure and how this similarity measure compares with distance measures. 104 

Finally, we will examine how successful multivariate trees are at classifying and identifying 105 

biomarkers in two medically important human microbiome datasets. 106 

Methods 107 

Dataset Selection 108 
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Two human microbiome datasets were selected for inclusion in this study. The first was 109 

derived from the colons of healthy individuals (19) using 16S rRNA amplicon sequencing. This 110 

dataset collected samples from the unprepared colons of healthy individuals and was chosen 111 

since we could divide the dataset into four sets of comparisons (19). These comparisons 112 

examined differences in the abundance of OTUs between the microbial communities of the 113 

proximal lumen (RS) and mucosa (RB), the distal lumen (LS) and mucosa (LB), between the RS 114 

and the LS, and finally between the RB and the LB. The second dataset was chosen since it 115 

contains samples from patients who suffer from immune-mediated inflammatory diseases 116 

(IMID) (3). Differences between the microbiomes of patients suffering from Chron’s disease 117 

(CD), ulcerative colitis (UC), multiple sclerosis (MS), and rheumatoid arthritis (RA) were 118 

compared to healthy controls. Specifically, the work by Forbes et al. (2018) investigated if 119 

disease-specific taxonomic biomarkers, OTUs, could be identified in each patient’s stool. In both 120 

studies, the authors used differential abundance testing and Random Forests to identify potential 121 

OTU biomarkers (3,13).  122 

Bioinformatic Processing of Raw Reads 123 

Raw sequences from two previously published datasets were obtained from the Sequence 124 

Read Archive (PRJNA450340 and PRJNA418115) (3,19). All bioinformatic processing of the raw 125 

reads was prepared using the MetaWorks v1.8.0 pipeline (available online at: 126 

https://githib.com/terrimporter/MetaWorks) (20). The default settings for merging reads were 127 

used except for the parameter controlling the minimum fraction of matching bases, which was 128 

increased from 0.90 to 0.95. This was done to remove a larger fraction of potentially erroneous 129 

reads. Merged reads were then trimmed using the default settings MetaWorks passes to 130 

CutAdapt. Since reads from PRJNA418115 were pre-processed and the primers removed 131 
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(Personal Communication with Kaitlin Flynn, Ph.D. (kjflynn06@gmail.com) in January 2019), 132 

no reads were discarded during trimming. The remaining quality-controlled sequences were then 133 

de-replicated and denoised using VSEARCH 2.15.2 to remove putative chimeric sequences (21). 134 

Finally, VSEARCH was used to construct a matrix where each row is a sample and each column 135 

an Amplicon Sequence Variant (ASV). Taxonomic assignment was conducted using the RDP 136 

Classifier (version 2.13) and the built-in reference set (22). 137 

ASVs which are likely to be contaminants, specifically those likely belonging to 138 

chloroplasts and mitochondria, were removed. From the remaining sequences, only those 139 

belonging to the domain Bacteria and Archaea were retained for further analysis. In the IMID 140 

dataset, only sequences assigned to Firmicutes, Actinobacteria, and Tenericutes were retained. 141 

This was done since the original study found that operational taxonomic units assigned to other 142 

bacterial groups were underrepresented (3). Following the initial processing steps, ASVs with a 143 

bootstrap support of 0.8 or higher were chosen for further analysis. The cutoff of 0.8 for the V4 144 

rRNA region sequenced in the 16S dataset was chosen because fragments of ~ 200 bp in length 145 

are likely to be assigned to the correct genus 95.7% of the time (23). A site by ASV count 146 

matrix, where each row is a sample and each column an ASV, was created using this data. The 147 

matrix was filtered to retain only ASVs found in three or more samples. This filtration step was 148 

taken since reducing the size of the feature space can often lead to a more generalizable model 149 

(24–26).  150 

The filtered matrix must be transformed in such a way to minimize the impact of various 151 

technical factors, such as differences in library size (27). Our unsupervised and supervised 152 

analyses examined two transformations of the filtered matrix. The first transformation we 153 

investigated was the presence-absence transformation. This transformation is useful since it 154 
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reflects if ASVs are present or absent in the sample and the impact of technical errors, such as 155 

differences in library size and the uneven amplification of DNA can be minimized. The second 156 

transformation, the centered-log-ratio (CLR) transformation, was used since it effectively 157 

addresses the fact that amplicon-sequencing data is compositional (24,28). independent. When 158 

searching for biomarkers, the transformation which resulted in the best generalization 159 

performance was used. 160 

Training of Unsupervised Models 161 

 Tree-based models are an effective means of capturing the similarity between samples. 162 

The similarity matrix, 𝑆, can be constructed by calculating how often samples co-occur in the 163 

terminal leaves of each decision tree. This co-occurrence, 𝑆(𝑥𝑖 , 𝑥𝑗), is a similarity and can be 164 

found using the following equation: 165 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑂𝑛𝑒: 𝑆(𝑥𝑖, 𝑥𝑗) =  
𝑥𝑖𝑥𝑗

𝑇

𝑁
 166 

Where 𝑥𝑖 and 𝑥𝑗 is the vector representation of all terminal node positions of samples xi and xj in 167 

the forest, and N is the total number of trees in the forest. The similarity matrix, S, is then 168 

converted into a dissimilarity matrix, D (Equation Two) (17). This dissimilarity measure, while 169 

not a metric such as the Jaccard distance (29), can be used to investigate beta-diversity and can 170 

be constructed using either a supervised or an unsupervised approach (17). 171 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑇𝑤𝑜: 𝐷 =  √1 −  𝑆 172 

 To use decision tree ensembles in an unsupervised manner a second dataset is created 173 

such that the columns (ASVs) are randomly permuted. In the case of the CLR-transformed data, 174 

the original counts were permuted before the CLR transformation. The samples in the permuted 175 
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dataset are assigned a label of “0” while samples in the original dataset are assigned a label of 176 

“1”. The classifier s is then tasked to find the difference between the permuted and original data. 177 

RF and ET classifiers were used at their default settings, except for the number of trees which 178 

was set to 128 (30). LANDMark (Oracle) models were trained using 128 trees and with the 179 

number of features set to √𝑛, where n is the number of features in the filtered dataset. This was 180 

done to generate a more diverse set of trees. To avoid generating proximity matrices that are 181 

biased due to a lucky permutation, we created 100 different unsupervised proximity matrices 182 

using equation one and combined them using equation two to create a dissimilarity matrix.  183 

Analysis of Beta-Diversity 184 

Dissimilarity and distance matrices were used as input for PerMANOVA and a principal 185 

coordinates analysis (PCoA). A Uniform Manifold Approximation and Projection (UMAP) using 186 

the dissimilarity and distance matrices was also conducted (31). The UMAP algorithm was 187 

chosen since it projects a high-dimensional graph of the input data into a lower-dimensional 188 

Euclidean space. This algorithm can create potentially better representations of the sampling 189 

space since high-throughput sequencing data can lie on a complex high-dimensional manifold 190 

(31). Finally, the pairwise distances between samples in the UMAP embedding were calculated 191 

and used by PCoA to embed the UMAP projection into a two-dimensional space (32). 192 

Spearman’s rho was used to measure the distortion between the embeddings and the original 193 

distances/dissimilarities. 194 

Assessment of Supervised Model Generalization Performance 195 

Following our investigation of beta-diversity using similarity measures derived from 196 

unsupervised models, we assessed the generalization and feature selection performance of the 197 
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LANDMark (Oracle), ET, and RF classifiers (33,34). Thirty different train-test splits, with the 198 

classes in each set being proportional to those in the original, were created for each 199 

metabarcoding data set. 50% of the original data was used to construct each training set and the 200 

random state used to create each train-test split was set to the iteration number for the split for 201 

reproducibility. RF and ET classifiers were used at their default settings, apart from the number 202 

of trees which was set to 128 (30). LANDMark (Oracle) models were also trained using 128 203 

trees and, as in the unsupervised learning, the number of features considered at each node was set 204 

to √𝑛. The remaining 50% of the data were used to calculate the balanced accuracy score using 205 

Scikit-Learn (33). This process was repeated for presence-absence and CLR-transformed data. 206 

Unless otherwise stated, the analysis of the IMID data was conducted using the first time point. 207 

This was done to avoid inflating the balanced accuracy scores since the microbiomes across time 208 

were found to be highly similar.  209 

The transform (presence-absence or CLR) resulting in the best generalization 210 

performance and was used during feature selection. ASV features were selected using a 211 

combination of recursive feature elimination (RFE) followed by RFE with 5-fold stratified cross-212 

validation. RFE was used to find a set of 200 predictive features. This step aimed to remove 213 

ASVs with little predictive value. Following this, RFE with 5-fold stratified cross-validation was 214 

used to create a more distilled subset of at least 20 predictive ASVs. The step size for each round 215 

of feature elimination was set to 5%. Each iteration’s test set was used to evaluate the predictive 216 

balanced accuracy of the final model. The subsets of ASVs from the best performing iteration 217 

were chosen for further analysis and display. Shapley scores, calculated using the ‘Explainer’ 218 

function of the Python ‘shap’ package was used to identify the ASVs which strongly impacted 219 

the prediction of each sample (35). The ‘shap’ package was also used to generate decision 220 
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heatmaps which display the impact on prediction for each ASV. When this process was used to 221 

analyze IMID data only samples from the first time point were used as input into RFE. However, 222 

Shapley scores were calculated twice. The first set of scores was calculated using each iteration’s 223 

test data. The second set of scores was calculated using the first time point as the background 224 

dataset and the second time point as the testing data. A Bayesian analysis, using Nadeau and 225 

Bengio’s corrected t-test implemented in the Python ‘baycomp’ package, was used to compare 226 

the generalization performance of models before feature selection and after feature selection 227 

(36). The region of practical equivalence (ROPE), the probability of two models having 228 

equivalent performance, was defined as a difference in score within ±0.025. Although the choice 229 

for the size of this region is arbitrary, this size was chosen since it represents the impact of two 230 

classification errors. Finally, the structure of the decision space will be investigated to ascertain 231 

how well each model learns an appropriate decision boundary (14,37). 232 

Results 233 

The Choice of Transformation and Dissimilarity Measure Can Result in Different 234 

Interpretations of Amplicon Sequencing Data 235 

 When LANDMark (Oracle), ET, and RF classifiers were trained to differentiate between 236 

real and randomized samples, statistically significant differences between sampling locations 237 

were detected when using each model’s dissimilarity matrix (Table 1). These tests demonstrated 238 

that the most suitable choice of transformation depends on the dataset. For example, the main 239 

effect (sampling location) clearly explained a greater fraction of the variance when using the 240 

presence-absence transformation in each subset of the healthy gut data. For the IMID data, the 241 

CLR transformation was the better choice. These tests also demonstrate that unsupervised 242 

models, such as LANDMark (Oracle), can capture information that distinguishes samples, 243 
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especially when trained using appropriately transformed data. To test if the number of features 244 

used has an impact on the explanatory ability of the main effect, we created multiple 245 

dissimilarity matrices where the number of features considered at each node was N, 2N, 4N, 8N, 246 

and 16N. Here N is equal to the square root of the number of ASVs. This investigation revealed 247 

that the explanatory ability of the main effect in each dataset appears to be sensitive to the 248 

number of features explored at each node (Figure 1). Interestingly, there appears to be an inverse 249 

relationship between LANDMark and the RF and ET models. Finally, the amount of explained 250 

variance along the first principal coordinate tended to be greater when using LANDMark 251 

(Oracle) dissimilarities. The spread of samples along this axis also tended to reflect differences 252 

in sampling location/disease phenotype (Figures 2 and 3). These results are particularly 253 

surprising since these matrices were created without using any of the metadata. 254 

 255 
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Table 1: PerMANOVA results for each transform on each subset of the healthy gut and 265 

IMID data. PerMANOVA results using the LANDMark dissimilarity measure are highlighted in 266 

bold. 267 

   Presence – Absence Centered Log Ratio 

Dataset Subset Dissimilarity  

Measure 

Pseudo-F p-value R2 Pseudo-F p-value R2 

Healthy Gut 

LB-LS 

Distance 4.05 0.001 0.313 2.48 0.001 0.146 

LANDMark 5.72 0.001 0.476 2.50 0.001 0.147 

Extra Trees 3.26 0.001 0.228 2.43 0.001 0.141 

Random Forest 3.35 0.001 0.237 2.41 0.001 0.139 

LB-RB 

Distance 2.31 0.001 0.130 2.13 0.001 0.113 

LANDMark 2.52 0.001 0.150 2.12 0.001 0.111 

Extra Trees 2.01 0.003 0.101 1.74 0.007 0.077 

Random Forest 2.03 0.002 0.103 1.60 0.011 0.066 

RB-RS 

Distance 1.68 0.005 0.073 0.855 0.785 0.020 

LANDMark 1.93 0.004 0.094 0.903 0.708 0.022 

Extra Trees 1.47 0.013 0.056 1.21 0.089 0.039 

Random Forest 1.51 0.010 0.060 1.25 0.072 0.042 

LS-RS 

Distance 0.692 0.968 0.013 0.460 0.999 0.006 

LANDMark 0.760 0.992 0.016 0.540 1.0 0.008 

Extra Trees 0.819 0.946 0.018 0.714 0.994 0.014 

Random Forest 0.801 0.950 0.018 0.836 0.895 0.019 

Immune 

Modulated 

Inflammatory 

Disease 

CD-HC 

Distance 3.23 0.001 0.220 5.61 0.001 0.460 

LANDMark 4.03 0.001 0.305 6.46 0.001 0.530 

Extra Trees 4.49 0.001 0.353 6.38 0.001 0.523 

Random Forest 4.55 0.001 0.359 4.66 0.001 0.370 

MS-HC 

Distance 1.42 0.028 0.049 2.12 0.001 0.103 

LANDMark 1.37 0.071 0.046 1.93 0.001 0.087 

Extra Trees 1.46 0.013 0.052 1.68 0.001 0.067 

Random Forest 1.46 0.021 0.052 1.55 0.013 0.058 

RA-HC 

Distance 1.69 0.005 0.065 2.89 0.001 0.169 

LANDMark 1.50 0.027 0.052 2.74 0.001 0.155 

Extra Trees 1.49 0.025 0.051 2.30 0.001 0.114 

Random Forest 1.52 0.011 0.054 1.79 0.001 0.073 

UC-HC 

Distance 1.47 0.019 0.053 2.15 0.001 0.106 

LANDMark 1.50 0.037 0.054 1.93 0.001 0.088 

Extra Trees 1.46 0.015 0.052 1.91 0.001 0.0086 

Random Forest 1.45 0.02 0.051 1.67 0.003 0.067 
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Figure 1: Distribution of the PerMANOVA effect sizes (R2) for each type of dissimilarity 273 
matrix. Each learned dissimilarity matrix is constructed using an ensemble of decision trees. The 274 

internal nodes of each decision tree examine (or use in the case of LANDMark) a subset of all 275 
ASVs while Aitchison Distances were constructed using all ASVs. The minimum number of 276 
ASVs considered, N, is the square root of the total number of ASVs. This data was generated 277 
using the Crohn’s Disease subset of the IMID data. 278 
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Figure 2: UMAP followed by PCoA and PCoA ordinations of the distal lumen and mucosa 303 
dataset. When only using PCoA projections of distance and dissimilarity matrices, each axis 304 

explains only a fraction of the total variation in the dataset. However, projections of the UMAP 305 
space using PCoA are more informative. In these projections, the first PCoA axis explains the 306 
vast majority of the variation in the distance and dissimilarity matrices. Furthermore, in these 307 
projections, the variation along the first axis appears to be strongly related to differences in 308 
community structure. The coloring of points serves as a visual aid and it does not affect the 309 

result. LB are samples taken from the distal mucosa while LS are samples taken from the distal 310 
lumen. 311 

 312 
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Figure 3: UMAP followed by PCoA and PCoA ordinations of the Crohn’s disease subset. 313 
When only using PCoA projections of distance and dissimilarity matrices, each axis explains 314 

only a fraction of the total variation in the dataset. However, projections of the UMAP space 315 
using PCoA are more informative. In these projections, the first PCoA axis explains the vast 316 
majority of the variation in the distance and dissimilarity matrices. Furthermore, in these 317 
projections, the variation along the first axis appears to be strongly related to differences in 318 
community structure. The coloring of points serves as a visual aid and it does not affect the 319 

result. HC indicates healthy controls while CD indicates patients suffering from Crohn’s Disease. 320 

 321 
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UMAP followed by PCoA is Effective at Creating Ordinations of the Investigated 16S rRNA 323 

Datasets 324 

In PCoA projections of the original dissimilarity matrices, little to no correlation between 325 

distances in the original and projected spaces was observed (Figures 4 and 5 A, D, G, J). 326 

However, there is a trend where the most dissimilar pairs of samples could be found on the right 327 

side of each PCoA plot. Projections of each original dissimilarity matrix by UMAP, however, 328 

appear to better reflect the topology of the input space since distances between samples in the 329 

original and projected space appear to be correlated (Figures 4 and 5 B, E, H, K). Simply, this 330 

means that if the distance between two samples was large in the original space it also tended to 331 

be large in the UMAP space. Furthermore, Spearman’s rho tended to be highest in the UMAP 332 

projections of LANDMark (Oracle) dissimilarities, suggesting that this approach is particularly 333 

effective at preserving relationships between samples (Figure 4 and 5 E). In one dataset (LB vs 334 

LS), the projection of the samples, pairwise comparisons between samples from the original 335 

LANDMark (Oracle) dissimilarities the projected distances resulted in the formation of two 336 

distinct groups (Figure 1). This can be easily explained as inter-class variation being greater than 337 

the intra-class variation in this subset, an observation supported by the PerMANOVA results 338 

(See Table 1). This was also observed in other subsets, though not to such an extreme degree. 339 

Finally, unlike the PCoA projections of the original dissimilarities, a two-dimensional PCoA 340 

embedding of the UMAP distances does not result in a notable difference in the pairwise 341 

dissimilarities between samples (Figure 4 and 5 C, F, I, L). 342 

 343 
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Figure 4: A visualization of how each type of projection preserves the pairwise distances 345 
between the projected and original distances in the LS-LB subset of the healthy gut data. 346 

The coloring of points serves as a visual aid and it does not affect the result. The first row 347 
visualizes the pairwise relationships between projections of the Jaccard distances into the PCoA 348 
(A), UMAP (B), and UMAP followed by PCoA space (C). The meaning of columns is the same 349 
in subsequent rows. The second (D-F), third (G-I), and fourth (J-L) visualize how each 350 
projection preserves the pairwise distances when dissimilarity matrices are constructed using 351 

LANDMark (Oracle), Extremely Randomized Trees, and Random Forests, respectively.352 

 353 
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Figure 5: A visualization of how each type of projection preserves the pairwise distances 356 
between the projected and original distances in the Crohn’s Disease subset of the IMID 357 

data. The coloring of points serves as a visual aid and it does not affect the result. The first row 358 
visualizes the pairwise relationships between projections of the Aitchison distances into the 359 
PCoA (A), UMAP (B), and UMAP followed by PCoA space (C). The meaning of columns is the 360 
same in subsequent rows. The second (D-F), third (G-I), and fourth (J-L) visualize how each 361 
projection preserves the pairwise distances when dissimilarity matrices are constructed using 362 

LANDMark (Oracle), Extremely Randomized Trees, and Random Forests, respectively. 363 
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The Choice in Data Transformation Could Impact Generalization Performance 367 

 When training using all features, generalization performance in the different subsets of 368 

the healthy gut dataset differed depending on the transformation. When training LANDMark 369 

(Oracle), ET, and RF models on the healthy-gut dataset, a Bayesian analysis showed that the 370 

presence-absence transformation is more likely to yield a model with better generalization 371 

performance in nearly all subsets of the data (Table 2). ET and RF models did perform better 372 

when trained on CLR transformed data in the RS-LS subset. However, this is unlikely to matter 373 

since no model was able to learn a way to classify RS samples from LS samples regardless of 374 

transformation. Since the PA transformed data was more likely to generate better models, we 375 

investigated if there would be any practical difference between models. In the IMID datasets, 376 

generalization performance appeared to depend on both the choice of transformation and 377 

classification model. For example, RF and ET models performed better when trained presence-378 

absence transformed data in the MS-HC and the performance of these models are likely to be 379 

equivalent in the RA-HC and UC-HC subsets regardless of transformation (Table 2). However, 380 

the performance of LANDMark (Oracle) was best on CLR-transformed data across all subsets. 381 

 382 
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Table 2: Reporting of results investigating the effect of transformation on generalization 388 
performance. A Bayesian analysis using Nadeau and Bengio’s corrected t-test was performed 389 

using each pair of transformations for each classifier. These results were obtained after training 390 
each model on all ASVs. 391 

Dataset Subset Model 
Mean ± Std 

Dev (PA) 

Mean ± Std 

Dev (CLR) 

Probability 

PA > CLR 

Probability 

PA = CLR 

Probability 

PA < CLR 

Healthy Gut 

LS-LB 

LANDMark 0.87 ± 0.05 0.73 ± 0.08 1.0 0.0 0.0 

Extra Trees 0.86 ± 0.05 0.64 ± 0.13 1.0 0.0 0.0 

Random Forest 0.85 ± 0.05 0.51 ± 0.04 1.0 0.0 0.0 

RS-RB 

LANDMark 0.64 ± 0.10 0.45 ± 0.08 1.0 0.0 0.0 

Extra Trees 0.66 ± 0.11 0.52 ± 0.04 1.0 0.0 0.0 

Random Forest 0.65 ± 0.10 0.49 ± 0.03 1.0 0.0 0.0 

RB-LB 

LANDMark 0.75 ± 0.07 0.72 ± 0.06 0.58 0.42 0.002 

Extra Trees 0.74 ± 0.08 0.54 ± 0.09 1.0 0.0 0.0 

Random Forest 0.74 ± 0.08 0.51 ± 0.03 1.0 0.0 0.0 

RS-LS 

LANDMark 0.39 ± 0.09 0.30 ± 0.08 0.99 0.01 0.0 

Extra Trees 0.37 ± 0.08 0.46 ± 0.07 0.0002 0.02 0.98 

Random Forest 0.39 ± 0.09 0.50 ± 0.02 0.0 0.001 0.99 

Immune 

Modulated 

Inflammatory 

Disease 

CD-HC 

LANDMark 0.83 ± 0.07 0.88 ± 0.06 0.0 0.08 0.92 

Extra Trees 0.81 ± 0.08 0.82 ± 0.08 0.007 0.80 0.019 

Random Forest 0.82 ± 0.08 0.81 ± 0.09 0.09 0.90 0.003 

MS-HC 

LANDMark 0.67 ± 0.08 0.72 ± 0.09 0.0003 0.07 0.93 

Extra Trees 0.65 ± 0.09 0.60 ± 0.12 0.76 0.23 0.02 

Random Forest 0.63 ± 0.07 0.57 ± 0.09 0.95 0.05 0.0003 

RA-HC 

LANDMark 0.72 ± 0.06 0.81 ± 0.06 0.0 0.0003 1.0 

Extra Trees 0.69 ± 0.07 0.69 ± 0.10 0.12 0.62 0.26 

Random Forest 0.69 ± 0.07 0.68 ± 0.09 0.24 0.65 0.11 

UC-HC 

LANDMark 0.68 ± 0.08 0.72 ± 0.07 0.006 0.23 0.76 

Extra Trees 0.68 ± 0.12 0.67 ± 0.10 0.19 0.73 0.08 

Random Forest 0.67 ± 0.09 0.65 ± 0.08 0.39 0.57 0.03 

 392 

The Supervised LANDMark (Oracle) Classifier Learns Better Decision Rules than the 393 

Random Forest and Extremely Randomized Trees Classifiers 394 

Supervised LANDMark’s ability to split samples into their respective classes using 395 

multiple features resulted in clearer separations between classes (Figure 6). The decision 396 

boundaries learned by LANDMark were also less influenced by the peculiarities of the RF or ET 397 

classifiers. For example, an arcing effect was observed in the PCoA projection of the decision 398 

space of the RF classifier (Figure 6, Right Panel) while no such pattern could be observed in the 399 

decision space of the LANDMark classifier (Figure 6, Left Panel). Regardless of which classifier 400 

was used, the first principal component in each PCoA projection explained a large amount of the 401 

variance in the decision space. This suggests that each classifier can learn good decision rules 402 
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which separate different classes of samples (14,37). However, due to the small number of 403 

samples, the PCoA results for the higher components should be interpreted with some caution. 404 

Finally, LANDMark (Oracle) models tend to be as good or better than RF or ET models since 405 

they appear to generalize better (Tables 3 - 5).  406 

Table 3: Results of a Bayesian analysis that investigated the effect of feature selection on 407 
generalization performance. 408 

Dataset Subset Model 
Mean ± Std 

Dev (Before) 

Mean ± 

Std Dev 

(After) 

Probability 

Before > 

After 

Probability 

Before = 

After 

Probability 

Before < 

After 

Healthy Gut 

LS-LB 

LANDMark 0.87 ± 0.05 0.88 ± 0.04 0.01 0.93 0.06 

Extra Trees 0.86 ± 0.05 0.85 ± 0.06 0.11 0.87 0.02 

Random Forest 0.85 ± 0.05 0.85 ± 0.05 0.03 0.97 0.01 

RS-RB 

LANDMark 0.64 ± 0.10 0.64 ± 0.12 0.11 0.80 0.08 

Extra Trees 0.66 ± 0.11 0.68 ± 0.09 0.01 0.65 0.34 

Random Forest 0.65 ± 0.10 0.68 ± 0.10 0.01 0.34 0.65 

RB-LB 

LANDMark 0.75 ± 0.07 0.74 ± 0.09 0.25 0.73 0.02 

Extra Trees 0.74 ± 0.08 0.74 ± 0.08 0.06 0.92 0.02 

Random Forest 0.74 ± 0.08 0.72 ± 0.08 0.38 0.59 0.03 

Immune 

Modulated 

Inflammatory 

Disease 

CD-HC 

LANDMark 0.88 ± 0.06 0.86 ± 0.06 0.29 0.71 0.0 

Extra Trees 0.82 ± 0.08 0.85 ± 0.07 0.0 0.45 0.55 

Random Forest 0.81 ± 0.09 0.83 ± 0.09 0.003 0.59 0.40 

MS-HC 

LANDMark 0.72 ± 0.09 0.72 ± 0.10 0.14 0.79 0.07 

Extra Trees 0.60 ± 0.12 0.63 ± 0.11 0.01 0.44 0.55 

Random Forest 0.57 ± 0.09 0.61 ± 0.11 0.0 0.18 0.82 

RA-HC 

LANDMark 0.81 ± 0.06 0.80 ± 0.08 0.17 0.78 0.05 

Extra Trees 0.69 ± 0.10 0.75 ± 0.08 0.0 0.11 0.89 

Random Forest 0.68 ± 0.09 0.75 ± 0.08 0.0 0.05 0.95 

UC-HC 

LANDMark 0.72 ± 0.07 0.73 ± 0.07 0.04 0.72 0.24 

Extra Trees 0.67 ± 0.10 0.69 ± 0.10 0.0 0.52 0.48 

Random Forest 0.65 ± 0.08 0.68 ± 0.08 0.0 0.68 0.62 

 409 
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Table 4: Results of a Bayesian analysis comparing the generalization performance of 416 
different models before feature selection. These results were obtained using the best-417 

performing transformation. 418 

Dataset Subset Model A Model B 

Probability 

Model A > 

Model B 

Probability 

Model A = 

Model B 

Probability 

Model A < 

Model B 

Healthy Gut 

(Presence – 

Absence) 

LS-LB 

LANDMark Extra Trees 0.17 0.83 0.0003 

LANDMark Random Forest 0.31 0.68 0.0 

Extra Trees Random Forest 0.03 0.96 0.004 

RS-RB 

LANDMark Extra Trees 0.01 0.60 0.39 

LANDMark Random Forest 0.09 0.63 0.28 

Extra Trees Random Forest 0.15 0.84 0.01 

RB-LB 

LANDMark Extra Trees 0.18 0.80 0.02 

LANDMark Random Forest 0.27 0.71 0.02 

Extra Trees Random Forest 0.13 0.80 0.07 

Immune 

Modulated 

Inflammatory 

Disease 

(CLR) 

CD-HC 

LANDMark Extra Trees 0.93 0.07 0.0004 

LANDMark Random Forest 0.96 0.04 0.0003 

Extra Trees Random Forest 0.10 0.90 0.0001 

MS-HC 

LANDMark Extra Trees 0.99 0.007 0.0002 

LANDMark Random Forest 1.00 0.0 0.0 

Extra Trees Random Forest 0.63 0.36 0.008 

RA-HC 

LANDMark Extra Trees 1.00 0.002 0.0 

LANDMark Random Forest 1.00 0.0004 0.0 

Extra Trees Random Forest 0.18 0.79 0.03 

UC-HC 

LANDMark Extra Trees 0.78 0.20 0.02 

LANDMark Random Forest 0.97 0.03 0.0004 

Extra Trees Random Forest 0.46 0.53 0.006 

 419 

Table 5: Results of a Bayesian analysis comparing the generalization performance of 420 
different models after feature selection. These results were obtained using the best-performing 421 

transformation. 422 

Dataset Subset Model A Model B 

Probability 

Model A > 

Model B 

Probability 

Model A = 

Model B 

Probability 

Model A < 

Model B 

Healthy Gut 

(Presence – 

Absence) 

LS-LB 

LANDMark Extra Trees 0.58 0.42 0.002 

LANDMark Random Forest 0.68 0.32 0.0 

Extra Trees Random Forest 0.07 0.89 0.04 

RS-RB 

LANDMark Extra Trees 0.01 0.28 0.71 

LANDMark Random Forest 0.0008 0.16 0.84 

Extra Trees Random Forest 0.07 0.77 0.16 

RB-LB 

LANDMark Extra Trees 0.09 0.81 0.09 

LANDMark Random Forest 0.36 0.63 0.01 

Extra Trees Random Forest 0.37 0.62 0.02 

Immune 

Modulated 

Inflammatory 

Disease 

(CLR) 

CD-HC 

LANDMark Extra Trees 0.26 0.72 0.02 

LANDMark Random Forest 0.59 0.40 0.01 

Extra Trees Random Forest 0.30 0.70 0.0 

MS-HC 

LANDMark Extra Trees 0.97 0.03 0.0 

LANDMark Random Forest 0.99 0.01 0.0 

Extra Trees Random Forest 0.40 0.58 0.04 

RA-HC 

LANDMark Extra Trees 0.86 0.14 0.0 

LANDMark Random Forest 0.87 0.13 0.0 

Extra Trees Random Forest 0.16 0.75 0.09 

UC-HC 

LANDMark Extra Trees 0.68 0.30 0.03 

LANDMark Random Forest 0.87 0.12 0.003 

Extra Trees Random Forest 0.35 0.63 0.01 

 423 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2022. ; https://doi.org/10.1101/2022.03.31.486647doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.31.486647
http://creativecommons.org/licenses/by/4.0/


Figure 6: Principal Coordinate Analysis projections of test data can be used to assess model 424 
fit. Proximity matrices extracted from supervised LANDMark (Oracle) (Left) and Random 425 

Forest (Right) models trained on centered-log ratio transformed counts from the Crohn’s Disease 426 
subset of the Immune-Mediated Inflammatory Disease dataset were projected into two 427 
dimensions using PCoA. Higher explained variation along the first principal component reflects 428 
the ability of each model to learn a simple set of decision rules. Healthy controls are colored 429 
orange while samples from patients suffering from Crohn’s Disease are colored blue. Coloring of 430 

points serves as a visual aid and it does not affect the result. 431 

 432 
 433 

ASVs Predicted to Have a High Impact on Model Performance is Consistent with Previously 434 

Reported Results  435 

The ASVs identified using LANDMark (Oracle) and RFE in the LB-LS subset of the 436 

healthy gut dataset are generally consistent with what was reported by Flynn et al. (19). We 437 

confirmed that Turicibacter spp., Peptoniphilus spp., and Finegoldia spp. play a role in 438 

differentiating these two sites (19) (Suppl Figures 1 and 2). However, the results suggest that the 439 

individual impact that these ASVs have on classification is somewhat muted. Also, the 440 

differences in overall importance may be due to the experimental design since we built our 441 

models using 50% of the dataset. The ASV which had the strongest influence on generalization 442 

performance in test samples, ASV 317, belonged to Schaalia spp. and was not originally 443 

identified as important. Interestingly, ASV 576 (assigned to Anaeromassilibacillus spp.) was 444 

only present in one test sample but its absence strongly shifted the predictions of the model 445 
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towards both types of samples, suggesting a possible interaction between one or more ASVs. 446 

Currently, it is difficult to determine interactions between ASVs using LANDMark. To 447 

investigate potential interactions involving ASV 576, an Extremely Randomized Trees model 448 

with 2048 trees was trained. This approach was chosen since it has been shown to approximate a 449 

non-linear function as the number of trees increases (33,34). While classification was not perfect 450 

(balanced accuracy score of 0.9) this follow-up analysis did confirm that ASVs 317 (Schaalia), 451 

457 (Enterocloster), 429 (Faecalicatena), 120 (Veillonella), 610 (Eisenbergiella), and 249 452 

(Lawsonibacter) primarily impact classification and that the effect of ASV 576 is likely an 453 

artifact (Suppl Figure 3). 454 

We identified a group of ASVs which are important for distinguishing between CD and 455 

HC samples. ASVs belonging to Gemmiger, Coprococcus, and Lachnospiracea incertae sedis 456 

were included in this group. Furthermore, the genera identified by our model are consistent with 457 

those reported in the original work (3). Lower abundance in ASVs 18, 64, 36, 95, 187, and 92 - 458 

shift model predictions away from HCs. These ASVs were assigned to the genera Gemmiger, 459 

Coprococcus, and Blautia (for the remainder) respectively. Interestingly, a higher abundance of 460 

these ASVs did not result in a strong shift towards the prediction of a HC. An increase in the 461 

abundance of ASV 39 (Lachnospiracea incertae sedis) shifts predictions towards CD. A sixth 462 

ASV which was assigned to the genus Monoglobus, a taxon that was not previously identified as 463 

important, was identified in our analysis (Figure 7). While a detailed discussion of Monoglobus 464 

is outside the scope of this work, this species has been shown to be involved in pectin 465 

degradation and the metabolites produced from these pathways are important mediators of the 466 

inflammatory response (38,39). Within test samples from the first time point higher abundance 467 

of this ASV tended to shift some predictions towards healthy controls while a lower abundance 468 
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of this ASV tends to shift predictions away from healthy controls. In a follow-up analysis using 469 

the second time point, however, the impact this ASV had on model predictions was considerably 470 

more muted (Suppl Figure 4). Finally, our analysis identified a group of additional ASVs (which 471 

included taxa such as Terrisporobacter, Neglecta, Roseburia) where a decrease in abundance 472 

tends to shift predictions towards CD. The overall influence that these ASVs exert on prediction 473 

is smaller, however. 474 

 475 

 476 

 477 
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Figure 7: Analysis of LANDMark (Oracle) models using model agnostic approaches can 488 
identify sets of predictive ASVs. These ASVs were identified using recursive feature 489 

elimination. Changes in the abundance (bottom, with pink indicating higher abundance) of 490 
specific ASVs appears to be related to how strongly (top) ASVs shift model predictions towards 491 
CD or a healthy control (HC). In the top graph, positive values (pink) indicate model predictions 492 
are shifted towards CD while negative values (blue) indicate shifts towards HCs. An asterisk 493 
denotes a sample that was not correctly predicted. 494 

 495 
 496 
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Discussion 498 

 The datasets investigated here were chosen since the human gut microbiome is an 499 

important area of medical research and is becoming increasingly linked to important disease 500 

phenotypes. Since machine learning models are becoming increasingly used to identify 501 

predictive features, it is important to understand how the quality and interpretation of results 502 

change depending on the machine learning model. This will hopefully allow greater insights into 503 

the composition and function of the human microbiome. The choice of transformation and 504 

dissimilarity measure is an important consideration when investigating microbiome data. It has 505 

long been known that the choice of dissimilarity measure can influence our measurement and 506 

interpretation of the main gradients influencing the structure of communities and taxonomic 507 

similarity between pairs of samples (40,41). For example, recent investigations have 508 

demonstrated that this choice can result in misleading results due to the sparsity inherent to the 509 

data, and differences in library size and sampling (24,27,42). To combat these problems a 510 

multitude of dissimilarity measures and ordination approaches have been developed to 511 

summarize and visualize ASV differences between sites (41). However, it remains incomplete 512 

since distance metrics and other commonly used dissimilarity measures have difficulty capturing 513 

potential interactions between ASVs. For example, the Jaccard distance simply calculates the 514 

number of shared ASVs over the total number of unique ASVs between two communities and it 515 

fails to consider how dependencies between ASVs influence the structure of a community. An 516 

example of such a dependency occurs when the presence of one ASV depends on the exclusion 517 

of another (43). Furthermore, when using measures that use abundance information, it is simple 518 

to show how differences in abundances can result in situations where the sites that share the 519 

same species are more dissimilar than sites that have no species in common. While applying 520 
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transformations, such as CLR or converting to presence-absence, can help in these situations, a 521 

review of the literature suggests that there is yet to be a consensus on which approach is best 522 

(24,41,44,45). Our results are also unclear in this matter and suggest that the best choice in 523 

transformation will depend on both the dataset and model being used. For example, our results 524 

suggest that the presence-absence transformation may be better suited when samples come from 525 

(or are suspected to come from) two or more distinct ecological niches, such as the lumen and 526 

mucosa of the colon (46). This likely occurs since differences between these communities are 527 

dominated by changes in the presence and absence of specific organisms rather than abundance. 528 

However, when analyzing changes occurring within similar niches, such as those derived from 529 

stool, the CLR transformation may be more useful since it is sensitive to changes within 530 

compositions (28,47). 531 

Alternative approaches to measuring pairwise dissimilarity, such as learning a dissimilarity 532 

measure, have also been developed and applied to the analysis of genomic and transcriptomic 533 

datasets (13,16,17,29). Unfortunately, while the properties of various dissimilarity measures 534 

have been extensively investigated, comparatively little work has been done exploring how 535 

learned dissimilarity measures can be used to investigate the same data. They are particularly 536 

interesting since they can learn a representation of the underlying manifold upon which the input 537 

samples are embedded (29,48). Given that amplicon sequencing datasets tend to lie on such 538 

manifolds, using learned dissimilarities could represent a potentially powerful way to analyze 539 

these datasets. Furthermore, since these dissimilarity matrices are derived from decision tree 540 

ensembles, interactions between ASVs are potentially accounted for, thereby overcoming one of 541 

the weaknesses of distance metrics (7,43,48). Therefore, using learned dissimilarities could result 542 

in the construction of more informative ordinations. 543 
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Our experiments show that a PCoA, on its own, is not able to adequately project samples into 544 

an appropriate embedding. This occurs since PCoA is a type of matrix factorization algorithm 545 

and it is difficult to construct linear representation in cases where the input manifold is non-546 

linear. In these cases, PCoA cannot adequately preserve relationships between samples and the 547 

resulting projection would not effectively capture important aspects of the data. This is evident in 548 

Figures 2 and 3, which demonstrate that the first two principal axes of each PCoA projection of 549 

the original dissimilarities explain only a small fraction of the variation in each dataset. This is 550 

further underscored by the data presented in panels A, D, G and J of Figures 4 and 5 panels. 551 

These experiments clearly show that PCoA only rotates the input space and does not preserve the 552 

pairwise dissimilarities between samples in the resulting projection. Graph algorithms, such as 553 

UMAP, are an attractive alternative since these approaches are designed to learn an appropriate 554 

representation of the input manifold. Our experiments, evidenced in Figures 4 and 5, show that 555 

UMAP (and UMAP followed by PCoA) preserves the relationships between samples in the 556 

projected space since the pairwise dissimilarities in the original and projected space are 557 

correlated (31,49). Simply put, if the distance or dissimilarity between a pair of samples is large 558 

in the original space it tends to be large in the projected space. Applying these algorithms to our 559 

datasets allowed us to effectively visualize the relationships between samples, specifically 560 

differences in sampling location, with minimal distortion. Our results also support the growing 561 

body of work that shows that UMAP preserves the overall structure of HTS datasets and that it is 562 

more capable of representing sources of biological variation than PCoA (32). Finally, since the 563 

number of components used to construct the UMAP projection is arbitrary, we strongly suggest 564 

that a grid search over two UMAP parameters, the number of components and neighbors, is run 565 
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so that a projection that best preserves the pairwise dissimilarity between samples can be 566 

constructed. 567 

The dissimilarity matrices learned by unsupervised LANDMark (Oracle) resulted in 568 

projections that more clearly distinguished between the known main effects (sampling location 569 

and disease phenotype) (Table 1). Also, as the number of features used for splitting in 570 

LANDMark (Oracle) increased, the explanatory power of the main effects grew. This result 571 

demonstrates that distance metrics, such as the Jaccard or Aitchison metrics, might not capture 572 

the important differences between samples as readily as learned dissimilarities. One possible 573 

explanation for this result could be due to the inclusion of an increasing number of irrelevant 574 

dimensions as the dimensionality of the dataset increases (50,51). In amplicon sequencing 575 

datasets, irrelevant dimensions likely occur due to the inclusion of uninformative ASVs, 576 

potentially informative but highly variable ASVs, splitting a single genome, and missing data 577 

(24,27,52,53). Learned dissimilarity measures, such as those explored here, may be capable of 578 

identifying and reducing the impact uninformative ASVs exert when measuring dissimilarity. 579 

For example, in a RF classifier only ASVs which result in the best split are chosen at each node 580 

(13). Therefore, the impact of uninformative ASVs tends to be minimized since they are not 581 

selected as often. LANDMark (Oracle) extends this idea by identifying which linear or non-582 

linear model is best at discriminating between classes using a randomly selected coalition of 583 

ASVs (37).  584 

We show that using oblique decision tree ensemble classifiers, such as LANDMark (Oracle), 585 

can result in a highly predictive model. In this work, we show that a LANDMark (Oracle) 586 

classifier was likely to be at least as good as the ET or RF classifiers. Furthermore, when 587 

compared to RF and ET classifiers, we demonstrate that using feature selection is less likely to 588 
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impact the generalization performance of a LANDMark (Oracle) classifier (Table 3). This result 589 

is important since it suggests that LANDMark (Oracle) is more robust to noise, especially when 590 

trained on CLR-transformed data. Furthermore, it is important to consider the shape of the 591 

decision boundaries learned by these classifiers. Both the RF and ET classifiers will produce a 592 

blocky boundary since each is only capable of learning axis-aligned splitting rules, although the 593 

boundary learned by ET tends to be smoother due to the random selection of cut-points (14,34). 594 

Smoother boundaries are preferred since they are likely to be a more faithful approximation of 595 

the rules which generate the data being studied (14,54). While the performance of all three 596 

models was similar in some instances, issues in the decision boundaries in these instances were 597 

noted. Specifically, we observed structures in the higher components of a PCoA using proximity 598 

matrices derived from supervised RF and ET models. In contrast, these structures did not exist in 599 

LANDMark (Oracle) models, implying the learning of a smoother boundary. This is consistent 600 

with other work involving this class of classifiers (14,37). 601 

The generalization performance of our models tended to differ from that reported in the 602 

original work (3,19). We believe that these differences arose from differences in methodology, 603 

the use of ASVs, our choice of transformation, and our use of split-half cross-validation. Since 604 

we chose to analyze ASVs instead of OTUs, the dimensionality of our dataset substantially 605 

increased. For example, in the original IMID study the authors used 383 OTUs while our study 606 

found 702 ASVs (3). While using ASVs can provide a richer amount of information, 607 

generalization performance may degrade if ASVs artificially split bacterial genomes into 608 

different clusters (52). This occurs since the signal from one unique strain will now be spread 609 

over multiple ASVs. While this can lead to lower classification performance, this choice is 610 

justifiable since the results of our analysis are reproducible and these ASVs we identified as 611 
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important can be used to generate new hypotheses for future experiments (55). The number of 612 

trees used to train our models and how generalization performance was calculated were also 613 

different. The original IMID work used 500 trees and calculated generalization performance 614 

using the out-of-bag error while the work by Flynn et al. (2018) used non-rarefied data as input 615 

and measured generalization performance using AUC scores (3,19). In contrast, we used 128 616 

trees and split our data into training and testing sets using repeated split-half cross-validation. 617 

Previous work has demonstrated that after 128 trees the performance of a RF tends to plateau 618 

(30,37). Some additional testing using the various subsets of the IMID dataset demonstrated that 619 

adding additional trees to our analysis is unlikely to result in substantially better performance 620 

(Suppl Table 1). Finally, and likely the most significant contributor to differences in 621 

generalization performance, is our choice to use repeated split-half cross-validation. This 622 

approach is expected to result in decreased generalization performance since fewer samples are 623 

used for training. However, the advantage of this approach is that the overlap between training 624 

datasets is minimized (56). This reduces the dependence between different estimates of 625 

generalization performance thereby improving the ability to detect a true difference between the 626 

generalization performance of two classifiers (56). An additional advantage of using split-half 627 

cross-validation is that we can use more testing samples to calculate feature importance scores. 628 

The ASVs identified as important by LANDMark (Oracle) are consistent with those 629 

identified in the original studies. This not only confirms the viability of LANDMark (Oracle) in 630 

this area of research, but it also strengthens the original work as their findings were replicated 631 

using a very different approach. Our work also demonstrates that classifiers such as LANDMark 632 

can not only validate the results of the original studies, but they can also add additional insights. 633 

For example, in the LS-LB investigation LANDMark (Oracle) identified Schaalia spp. as an 634 
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important marker capable of distinguishing between the proximal lumen and mucosa of the 635 

colon. Finally, while detecting single ASV biomarkers is important, we should always be 636 

cognizant of the fact that these organisms interact with each other and the host. Therefore, when 637 

building and analyzing predictive models it is important to use approaches that can explore, 638 

quantify, and validate these interactions. In addition to detecting strongly predictive ASVs, our 639 

approach was also capable of detecting ASVs which have a more subtle effect on predicting CD 640 

and HC patients and whether samples originated in the distal or the proximal colon. 641 

When looking at the ASVs identified by each model, both the RF and ET identified fewer 642 

ASVs than LANDMark (Oracle). The larger number of ASVs identified by LANDMark (Oracle) 643 

is likely due to differences in the way in which nodes are constructed. In RF and ET classifiers, 644 

only single features are used to construct each node (13,34). Therefore, only a very small fraction 645 

of features (at most n-1, where n is the number of samples) will be used to construct each tree. In 646 

practice, however, it is more likely that fewer features will be used if particularly good splits are 647 

found. It is also possible that features are reused at deeper nodes within each tree. This form of 648 

tree construction has also been shown to have a strong regularizing effect, which could limit the 649 

amount of available information upon which decisions are made (57). While it is likely that a 650 

regularization effect similar to that observed in RF and ET occurs in LANDMark, the strength of 651 

this effect may be more muted because LANDMark considers more features at each node (37). 652 

This allows a richer amount of information to be used to construct each tree but comes at the cost 653 

of including features that may have a limited impact on classification. For this reason, we believe 654 

it is particularly important to pair LANDMark models with model agnostic introspection 655 

algorithms, such as Permutation Explainer, which are capable of quantifying feature importance 656 

and interactions between features (58). It is also important to note that genome splitting could 657 
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also contribute to this effect (52). For example, multiple ASVs assigned to Peptoniphilus in the 658 

LS-LB data and Blautia and Coprococcus in the CD-HC data. Therefore, additional work is 659 

needed to determine the extent of this issue in 16S datasets. Work is also needed to determine 660 

how best to handle this problem. 661 

Conclusions and Future Work 662 

Our work has shown that unsupervised LANDMark (Oracle) models can learn effective 663 

dissimilarity matrices. When paired with modern dimensionality reduction approaches, such as 664 

UMAP, the global structure of the original dissimilarity matrix is preserved. UMAP 665 

representations can then be combined with existing matrix factorization approaches to create 666 

informative ordinations. However, this comes at a cost of clarity since it is difficult to determine 667 

how variance along each axis is related to the presence/absence or abundance of each ASV. 668 

Therefore, it is important to conduct work investigating approaches capable of identifying which 669 

ASVs impact the location of samples in the transformed space. Finally, we show that 670 

LANDMark (Oracle) can learn highly predictive models after feature selection. Importantly, the 671 

ASVs identified by feature selection is consistent with contemporary work. Due to the way 672 

LANDMark constructs each tree, further investigations into the integration of feature selection 673 

and a statistical analysis of the resulting feature impact scores are necessary. This could 674 

potentially identify a small subset of highly predictive ASVs and this analysis would sidestep the 675 

need to use generalized linear models since the degree of confidence in the impact that each ASV 676 

has on classification is evaluated rather than differences in abundance/presence. 677 
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