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 2 

ABSTRACT:  1 

Chemotherapy resistance and relapses are common in high-risk neuroblastoma (NB), an 2 

aggressive pediatric solid tumor of the sympathetic nervous system. Here, we developed a 3 

clinically-relevant in vivo treatment protocol mimicking the first line five-chemotherapy treatment 4 

regimen of high-risk NB and applied this protocol to mice with MYCN-amplified NB patient-5 

derived xenografts (PDXs). Genomic and transcriptomic analyses were used to reveal the genetic 6 

and non-genetic mechanisms involved in NB chemoresistance. We observed convergent and 7 

parallel evolution of key NB genetic aberrations over time. Intrinsic resistance to chemotherapy 8 

was associated with high genetic diversity and an embryonic phenotype. Relapsed NB PDX tumors 9 

with acquired resistance showed an immature mesenchymal-like phenotype resembling 10 

multipotent Schwann cell precursors that are found in the adrenal gland. NBs with a successful 11 

treatment response presented a lineage-committed adrenergic phenotype similar to normal 12 

neuroblasts, reduced cell cycle gene expression, and negative regulation of the mitogen-activated 13 

protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) cascade. NB organoids 14 

established from relapsed PDX tumors retained drug resistance, tumorigenicity, and transcriptional 15 

cell states ex vivo. This work sheds light on mechanisms involved in NB chemotherapy response 16 

in vivo and ex vivo using a clinically-relevant protocol, and emphasizes the importance of 17 

transcriptional cell states in treatment response. Detailed characterization of resistance 18 

mechanisms is essential for the development of novel treatment strategies in non-responsive or 19 

relapsed high-risk NB.  20 

  21 
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Main Text: 1 

INTRODUCTION 2 

Neuroblastoma (NB) is a pediatric tumor that arises from the developing sympathetic 3 

nervous system and accounts for over 15% of childhood cancer deaths (1). Patients with high-risk 4 

tumors receive a very intense multimodal treatment regime that includes high doses of 5 

chemotherapy, surgery, radiation, stem cell transplants, and, in some cases, immunotherapy and 6 

targeted therapies. An established regimen to treat high-risk NB is the one set by the International 7 

Society of Pediatric Oncology – European Neuroblastoma (SIOPEN) (2, 3). Rapid COJEC is the 8 

induction chemotherapy step established by SIOPEN (3, 4). COJEC consists of high doses of five 9 

chemotherapeutic drugs (cisplatin, carboplatin, cyclophosphamide, etoposide, and vincristine) 10 

distributed in three courses that are alternatively administered in eight 10-day cycles. However, 11 

resistance is common. Some high-risk NB patients display upfront progression despite therapy; 12 

more commonly, patients initially respond but subsequently relapse, developing treatment-13 

resistant disease. Thus, the overall survival for patients with high-risk disease remains lower than 14 

50% (5). 15 

Treatment resistance, which is a major clinical challenge and cause of death, is often linked 16 

to various aspects of intratumor heterogeneity. In principle, treatment resistance can arise from 17 

clonal evolution and selection of tumor cell subclones or by non-genetic mechanisms including 18 

transcriptional reprogramming (6, 7). NB is mainly driven by large chromosomal aberrations and 19 

is characterized by a low number of somatic driver mutations, even after relapse, and high inter- 20 

and intratumor heterogeneity (8, 9). Transcriptional and epigenetic analyses revealed that NB can 21 

exhibit at least two phenotypic cellular states, which are commonly referred to as ADR and MES 22 

(10–19). Cells in the ADR state are lineage-committed sympathetic nor-adrenergic cells. Cells in 23 

the MES state are immature neural crest cell-like or undifferentiated mesenchymal-like cells. Both 24 
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states have been detected in established conventional cell lines (10–14) and in patient samples (13–1 

19). In cell culture studies, MES cells are implicated in NB treatment resistance (10, 12, 20, 21). 2 

However, this association has been difficult to demonstrate beyond cell culture. The effects of 3 

treatment pressure on NB cell states are unclear because patient studies use mainly untreated 4 

samples obtained during diagnosis, and cells with the MES phenotype have not been conclusively 5 

identified in xenograft studies in vivo (12).  6 

The characteristically low number of somatic driver mutations, the small number of 7 

patients, and the heterogeneity within and across patients have made it especially challenging to 8 

identify the mechanisms of treatment resistance in NB (8, 9). A limitation of most preclinical 9 

studies of chemotherapy resistance is the use of single agents, rather than the combination of 10 

multiple drugs as is done for NB patients’ treatment. Here, we sought to investigate treatment 11 

resistance and relapse in NB in a clinically-relevant in vivo setting. We developed and used a 12 

COJEC-like treatment protocol that included all five COJEC drugs to treat multiple NB patient-13 

derived xenograft (PDX) models that resemble the genotype and phenotype of NB patient tumors 14 

(22, 23). With this system, we detailed the transcriptomic and genomic changes occurring during 15 

NB treatment and at relapse. 16 

 17 

RESULTS  18 

Establishment of a COJEC-like treatment protocol using NB PDX tumors 19 

Using three NB PDX models derived from high-risk NB tumors (22, 23), each with 1p 20 

deletion, MYCN amplification and 17q gain (Fig. S1A), we modeled NB treatment resistance using 21 

a treatment paradigm based on COJEC. PDX1 was derived from a COJEC-refractory tumor, 22 

whereas PDX2 and PDX3 were derived from COJEC-responsive tumors that subsequently 23 

relapsed (Fig. S1A). In our COJEC-like protocol, cisplatin, vincristine, etoposide, 24 
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cyclophosphamide, and carboplatin were administered intraperitoneally in a cycled manner, for 1 

six 7-day cycles (Fig. S1B). Two tiers of dosing were designed and tested. The basic protocol 2 

(COJEC) was the lower dose and was well tolerated overall, whereas the high dose protocol 3 

(COJEC-HD) induced weight loss that required treatment interruptions to allow mice to recover 4 

(Fig. S1C). Both nude and NSG mice were evaluated and no difference in treatment response was 5 

observed between the mouse strains (Table S1). Mice were randomized into treatment groups 6 

when subcutaneous tumors reached ~500 mm3.  Mice were treated intraperitoneally for six weeks 7 

with either saline (control), cisplatin (4 mg/kg, 3 times/week) or COJEC (Fig. 1A and S1B).  8 

Consistent with the patient response, PDX1 tumors showed no or limited response to 9 

treatment with either cisplatin or the basic COJEC protocol (Fig. 1B). Therefore, we subjected this 10 

PDX model to the COJEC-HD protocol (Fig. S1B). Both COJEC doses led to smaller tumor 11 

volumes than controls on day 13 (median survival day for control group) (Fig. S1D), but only 12 

COJEC-HD treatment showed an increase in mouse survival (Fig. 1B). Overall, 19/20 PDX1 mice 13 

treated with cisplatin, COJEC, or COJEC-HD presented progressive disease (PD), and only one 14 

mouse showed stable disease (SD) during treatment (Table S1). These findings thus mirror the 15 

(lack of) therapy response seen in the corresponding patient. 16 

Mice bearing PDX2 tumors responded well to treatment, presenting significant tumor size 17 

reduction (Fig. S1D; p < 0.05 for each therapy) and significantly increased survival when treated 18 

either with cisplatin or COJEC (Fig. 1B, p < 0.0001). Most COJEC-treated tumors (5/8) displayed 19 

a partial response (PR) and a significantly smaller tumor volume during treatment (Table S1 and 20 

Fig. S1D, p = 0.0008), whereas 4/7 cisplatin-treated tumors showed PD (Table S1). One COJEC-21 

treated PDX2 mouse presented with complete response (CR) under treatment and relapsed locally 22 

after a period without treatment (Fig. 1B, Table S1).  23 
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  1 

Fig. 1. Establishment and application of a COJEC-like treatment protocol using NB PDX models. (A) 
Schematic representation of the experimental design. Mice were injected subcutaneously (S.c.) with dissociated 
PDX-derived organoids from PDX1, 2, or 3. When tumors reached ~500 mm3, mice were randomized into groups: 
Control, Cisplatin, and COJEC. A subgroup of PDX3 COJEC-responsive mice was further subjected to tumor 
resection surgery. (B) Tumor volume and mouse survival for each PDX model for the different treatment protocols. 
Red dashed line represents the end of COJEC. HD, high dose group for PDX1. Statistical analysis of survival was 
performed with log-rank test. (C) Immunohistochemical staining of PHOX2B (NB marker). (D) Representative 
Hoechst and eosin (H&E) and TUNEL staining for PDX3. (E) Assessment of differentiation status based on 
morphology from H&E staining. (F) Quantitation of cell death from TUNEL assay. (G-H) Quantitation of 
morphological differentiation and Ki67-positive cells for samples that were or were not cured in PDX3 in the PC 
group. Scale bars, 50 µm. 
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COJEC-treated PDX3 tumors presented an overall PR, with significantly reduced tumor 1 

volume during COJEC treatment (Fig. S1D, p < 0.0001) and significantly increased survival (Fig. 2 

1B, p = 0.0006), consistent with the corresponding patient’s clinical response (Fig. S1A). Two 3 

mice presented a CR and relapsed after treatment was removed (Table S1). To resemble the clinical 4 

regimen in patients, we performed surgical resection on a subgroup of COJEC-treated mice (n=9) 5 

when tumors had reduced below 200 mm3 (aimed volume reduction >60%). Following surgery, 6 

the mice did not receive any further COJEC treatment. At the end of the study, 2/9 mice in the 7 

COJEC + surgery group had relapsed locally (22% relapse rate) and 7/9 were “cured” (tumors did 8 

not relapse). Among the COJEC-treated PDX3 mice that did not have surgery, 2/7 mice relapsed 9 

after presenting a CR and 5/7 had tumors that exhibited a PR or SD but regrew rapidly after 10 

treatment cessation (Fig. 1B and Table S1). Among the 17 mice in the COJEC-treated group, one 11 

had to be euthanized early because of severe weight loss despite exhibiting SD with regard to the 12 

tumor. Because this mouse did not complete the 6-week COJEC protocol, for downstream analyses 13 

this tumor was grouped with the surgically collected samples in a group hereon referred as post-14 

COJEC (PC), comprised of cured (n=7) and not-cured (n=3) PDX3 mice.  15 

Thus, we developed and evaluated a COJEC-like protocol and showed that high-risk NB 16 

PDX models display clinically relevant and unique responses to this treatment, ranging from 17 

upfront PD to maintained CR. The results mirror those seen in the corresponding patients. 18 

 19 

Histological characterization of COJEC-treated NB PDX tumors 20 

When subjected to immunohistochemical analysis, all tumors were positive for the NB 21 

marker PHOX2B (Fig. 1C) Hoechst and eosin (H&E) staining and blinded morphological analysis 22 

of tumor sections revealed that COJEC-treated PDX3 tumors (PC group) displayed clear signs of 23 
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morphological differentiation (enrichment of neurofibrillary matrix), whereas this was less 1 

obvious in COJEC-treated PDX2 and absent in PDX1 tumors from mice receiving COJEC or 2 

COJEC-HD (Fig. 1D and E, Fig. S1E). TUNEL staining revealed increased cell death in PDX1 3 

only for COJEC-HD treatment and in the PDX3 PC group (Fig. 1D and F, Fig. S1F). All tumors 4 

displayed intense staining for the proliferation marker Ki67 (Fig. S1G). PDX1 and PDX2 tumors 5 

exhibited large and collapsed blood vessels (Fig. S1G), consistent with a worse prognosis (24). 6 

PDX3 tumors had overall smaller and open blood vessels. Within the PDX3 PC group no 7 

statistically significant difference was seen in morphological differentiation or proliferation 8 

between the cured and non-cured samples (Fig. 1G and H). 9 

 10 

Clonal dynamics and signs of parallel and convergent evolution 11 

To characterize the genetic changes occurring during and after COJEC treatment, we 12 

performed whole genome copy-number analysis of selected tumors within the control and 13 

treatment groups, as well as of parental tumor organoids before injection. A high number of 14 

subclones was detected in all three PDX models during tumor progression and treatment, and all 15 

models clearly showed a complex, branched evolutionary pattern (Fig. 2 and Fig. S2-S3). For each 16 

model, we defined a “stem” clone as having all copy number aberrations (CNAs) present in all 17 

organoids and tumors. 18 

The non-responsive NB-PDX1 had a high number of subclones in tumors from both the 19 

control and the treatment groups (Fig. 2A). One tumor in a mouse that received COJEC-HD 20 

treatment exhibited a clonal sweep (Fig. 2A). A clone tree (Fig. 2B) based on phylogenetic analysis 21 

(Fig. S2A) illustrated how whole genome duplication (WGD) in the parental organoids created an 22 

abundance of genomic material and many subsequent whole chromosome or whole arm CNAs in 23 
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all tumors. Complex branching and parallel evolution were detected, but no evidence of 1 

enrichment for specific subclones as a response to COJEC treatment was found. 2 

For each NB-PDX, we summed the number of CNAs in each tumor or parental organoid 3 

to calculate the “copy number aberration burden” (CNAB). First, this was done for all aberrations 4 

detected in the respective stem as a comparison between the PDX models (Fig. S2B). After that, 5 

we calculated CNAB per tumor in addition to the phylogenetically defined stem clone (Fig. S2C). 6 

For PDX1, CNAB was comparable between controls and treated tumors (Fig. S2C), suggesting 7 

that COJEC-treatment did not increase the number of CNAs. However, the fraction of private 8 

aberrations (that is clones unique to a single tumor and representing high inter-tumor 9 

heterogeneity) was higher in the treated samples (Fig. 2A, Fig. S2D), suggesting diverse 10 

evolutionary trajectories in response to COJEC treatment in the individual tumors, despite 11 

genetically shared starting material. We analyzed the genetic diversity to describe subclonal 12 

variation within each tumor (Fig. S2E). Simpson’s Index of Diversity (Ds; 0 to 1 where 0 = no 13 

clonal variation and 1 = all subclones are different) showed no statistical difference between the 14 

controls and treated samples in PDX1 (Fig. S2E). 15 

Compared to NB-PDX1, NB-PDX2 (Fig. 2C-D) had lower CNAB (Fig. S2C) and fewer 16 

private aberrations (Fig. 2D and S2D). Treatment-specific copy number losses were detected on 17 

chromosomes 22q and 8q (Fig. 2D, green shading, and Fig. S2F). The 22q region included a 18 

specific loss of a small part of LARGE1 (encoding a glycosyltransferase) that was present in all 19 

treated samples. The 8q region included RAB2A (encoding a RAS family member involved in 20 

vesicular fusion and trafficking from the endoplasmic reticulum to the Golgi) and CHD7 (encoding 21 

a DNA-binding protein with a chromodomain and helicase activity). CNAB calculation indicated 22 
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that the total number of chromosomal aberrations was similar between controls and treated samples 1 

(Fig. S2C), as was genetic diversity (Fig. S2E). No clonal sweeps were detected in this model. 2 

Most NB-PDX3 tumors showed a marked response to COJEC treatment. A high number 3 

of subclones and several selective sweeps occurred in both control tumors and treated samples 4 

(Fig. 2E-F, Fig. S3A-B). No specific subclone was selected by COJEC treatment, but we observed 5 

continuous clonal dynamics during tumor growth both in the presence and absence of treatment. 6 

These dynamics were evident by the trend of increased CNAB in the regrown and relapsed tumors 7 

(Fig. S2C), as well as in the linear correlation between high CNAB and time of tumor growth (Fig. 8 

2G). Tumors from the control, cisplatin, and PC groups collected around the same time showed 9 

comparable CNAB (Fig. 2G). These data suggested that CNA events accumulate over time but 10 

that the number of different clones within tumors (genetic diversity) was not increased (Fig. S2E). 11 

We found two major CNA events occurring in the majority of the samples: an extra copy of the 12 

already gained q-region in chromosome 17 (17q++), clone 25 (Fig. 2E-F, red), and a new gain 13 

spanning part of the p-arm and all of the q-arm in chromosome 1 (1pq+), clone 21 (Fig. 2E-F, 14 

orange). These genomic events occurred in both controls and treated samples, and also in 15 

subclones that were phylogenetically not derived from clones 25 and 21 (Fig. 2F, orange text). The 16 

accumulation of the same genetic aberrations in tumors that were not clonally related represents a 17 

typical example of parallel evolution. Since the aberrations occurred in both controls and treated 18 

tumors it suggested that they resulted from tumor-intrinsic evolutionary forces rather than 19 

chemotherapy-induced selection.  20 

 21 

 22 

 23 
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 1 

Fig. 2. Genetic evolution of 
COJEC-treated NB PDXs 
based on copy number 
aberrations (CNAs). (A-B) 
PDX1, (C-D) PDX2, (E-G) 
PDX3. (A, C, E) Subclonal 
composition per sample where 
each small circle represents 
10% of the tumor. Yellow 
background in the tumors 
illustrates a clonal sweep where 
one clone has taken over the 
tumor. Stars of different colors 
are signs of convergent and/or 
parallel evolution of specific 
genes (denoted for the 
respective tumor). Small 
circles with bold black outlines 
indicate private aberrations 
found only within that specific 
tumor. (B, D, F) Clone trees 
illustrating the phylogenetic 
relationship among the 
subclones, based on maximum 
likelihood phylogenetic 
analysis (see Fig. S2 and S3). 
(G) Correlation between 
CNAB and tumor collection 
day in PDX3. Statistical 
analysis by simple linear 
regression.  
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There was evidence of parallel evolution of small deletions of specific genetic regions 1 

within each of the PDXs (colored stars, Fig. 2). Many of these genes were found in two or all three 2 

PDX models, suggesting convergent evolution in aggressive MYCN-positive NB. For example, 3 

deletions in MACROD2 (20p12.1) and in LSAMP (3q13.31) occurred in controls and treated 4 

samples across the three PDXs; thus, are unlikely related to treatment. MACROD2 microdeletions 5 

may cause chromosomal instability (CIN), and the gene could function as a tumor suppressor in 6 

CNA- driven tumors (25), but this is debated (26). In all three models, the MACROD2 7 

microdeletion was associated with extensive branching and the accumulation of CNAs (Fig 2B, 8 

D, F and Fig. S2A, F). LSAMP encodes a protein that is a neuronal surface glycoprotein and the 9 

gene has also been suggested to be a tumor suppressor (27). PTPRD (9p23) deletions were detected 10 

in PDX1 and 3. This gene has been suggested as a tumor suppressor in high-risk NB through 11 

destabilization of AURKA and MYCN (28, 29). Partial deletion of the gene ITPR1 (3p26.1) was 12 

found in PDX1 (parallel evolution) and in PDX3 (stem). ITPR1 encodes an intracellular calcium 13 

channel important for apoptosis in response to endoplasmic reticulum stress (30). 14 

 15 

High genetic diversity and clonal evolution over time revealed by single-cell DNA analysis 16 

We performed single-cell DNA sequencing (scDNA-seq) and low pass single-cell copy-17 

number aberration (CNA) analysis of selected PDX tumors to further dissect the subclonal 18 

composition and evolutionary patterns. scDNA-seq analysis of treatment-resistant PDX1 revealed 19 

a 58-81% of unique single-cell clones in each tumor (Fig. 3A, gray shades) with no clones detected 20 

in more than one tumor (Fig. 3A and Fig. S4A). No enrichment of distinct subclones after treatment 21 

could be found, consistent with the results from bulk DNA analysis. High genetic diversity (Fig. 22 

S4B) reflected a high number of cell-unique clones in control tumors as well as in tumors sampled 23 

post-COJEC. The WGD event, which we detected in the tumor-initiating organoids (Fig. 2B and 24 
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Fig. S2A), provided high genetic diversity and genomic instability, which is seen in some patients 1 

(31, 32). Even though we found no indications that a specific clone could explain treatment 2 

resistance in this model, it is possible that a high adaptability caused by genomic instability 3 

contributes to an evolutionary mechanism for treatment resistance in PDX1 (Fig 3B). 4 

 5 
Fig. 3. Clonal dynamics during and after COJEC treatment revealed by single-cell DNA sequencing.  (A) Pie 
chart illustrating the fraction of different CNA-based clones within each of 2 control (C1 and C4) and 2 treated (T4-
HD and T5-HD) NB-PDX1 tumors. Cells with a unique CNA from that in any other cell, that is a single-cell clone 
(S), are shown in shades of gray. No gray cell in any tumor is identical to a gray cell in another tumor from the same 
PDX. Clones represented by more than one cell are indicated in color. No shared identical clones means that, among 
these 4 NB-PDX1 tumors, each tumor had a unique set of clones. (B) Schematic view of the phylogenetic relationship 
among clones from the four NB-PDX1 tumors. WGD - whole genome duplication occurred in the stem and was 
subsequently followed by a high number of numeric losses shared by all clones. (C) Pie chart of clonal composition 
of NB-PDX3 tumors. Samples T1 and T5 were analyzed both at surgery (PC) and at a later relapse (rel). (D) Schematic 
view of the phylogenetic relationship between PDX3 clones A, B, C, and E. (E) Single-cell copy number profiles of 
clones A and C in PDX3. One profile per cell was received and processed in this analysis. 
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In the treatment-responsive PDX3, scDNA analysis revealed two major clones: clone A 1 

(1p-, MNA, 5p+, and 17q+) and clone C (1p-, 1pq+, MNA, 5p+, and 17q++) (Fig. 3C-D). 2 

Phylogenetic analysis showed that clone A (Fig. 3E) was more parental and that the aberrations 3 

associated with clone C (Fig. 3E, 1pq+ and 17q++) occurred after these changes (Fig. 3D and Fig. 4 

S4C). This result is consistent with data from bulk DNA analysis. The parental clone A was partly 5 

retained in control tumors and in tumors post-COJEC, but the occurrence of this clone was 6 

substantially decreased after regrowth and relapse, which represent tumors subjected to a 7 

treatment-induced genetic bottleneck (Fig. 3C). In contrast, clone C was enriched in tumors after 8 

treatment or at relapse (Fig. 3C, D) and showed aberrations commonly found in patient tumors 9 

(33). However, clone C was common in the controls and was not exclusive of treated tumors. 10 

Phylogenetic analysis indicated that, in addition to the dominating clones, unique NB cells can 11 

accumulate high numbers of CNAs (Fig. S4A and S4C). For example, two cells in PDX3 tumor 12 

T6 had gone through WGD, similar to PDX1. Enrichment of specific subclones did not lead to a 13 

significant decrease in genetic diversity in tumors after treatment and at relapse, but a trend was 14 

visible (Fig. S4B). 15 

Taken together, scDNA-seq CNA analyses revealed contrasting patterns of clonal 16 

evolution between the treatment-responsive PDX3 and the refractory PDX1. PDX3 showed 17 

specific clonal enrichment of the clinically relevant 1pq and 17q regions. In contrast, PDX1 18 

displayed an extremely high level of genetic diversity but no distinct clonal enrichment. 19 

 20 

Transcriptional signatures of COJEC treatment 21 

 We performed RNA-sequencing (RNA-seq) to explore the effects of COJEC at a 22 

transcriptional level. Unsupervised analysis of all the tumors (number of tumors: n=30 for PDX1, 23 
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n=21 for PDX2, and n=41 for PDX3) showed that tumors strongly cluster within each PDX model 1 

(Fig. 4A, Fig. S5A and S5D). Analysis of each individual PDX revealed no distinct clusters for 2 

PDX1 (Fig. 4B) and PDX2 (Fig. 4C). However, for PDX3, a cluster representing PC-Cured tumors 3 

was observed (Fig. 4D). PDX1 tumors in nude mice or NSG mice had similar transcriptional 4 

profiles (Fig. S5B) and the treatment responses among PDX1 tumors from the two mouse strains 5 

was also similar (Fig S5C). 6 

To establish a transcriptional baseline for each NB PDX, independent of treatment, we 7 

analyzed the top 1000 most variable genes expressed in the control tumors (Fig. S5E and Data file 8 

S1). Six well-defined clusters were identified. Gene ontology (GO) analysis revealed that PDX3 9 

(Ctrl-Cluster 1) was mainly characterized by nervous system development genes and negative 10 

regulation of the MAPK/ERK cascade (Fig. S5F), whereas PDX1 (Ctrl-Cluster 6) contained 11 

mainly embryonic developmental signatures and a signature for regulation of Notch signaling (Fig. 12 

S5F). Few significant terms were identified for PDX2 with this analysis (Ctrl-Cluster 5). Analysis 13 

of differentially expressed genes (DEGs) with a false discovery rate (FDR) < 0.01 between control 14 

groups confirmed that PDX1 was characterized by upregulation of genes associated with 15 

embryonic development, the mitotic cell cycle, and metabolic processes (Fig. S5G-H). PDX2 had 16 

increased expression of genes associated with lipid metabolism along strong upregulation of the 17 

MAGE (melanoma associated gene) gene family (Fig. S5G, Fig. S5I). The MAGE gene family is 18 

linked to aggressive tumor progression and poor prognosis in several cancers (34). PDX3 was 19 

characterized by genes associated with nervous system development, differentiation, and 20 

regulation of ERK cascade (Fig. S5H, Fig. S5I). These results are consistent with our previous 21 

findings from the respective NB PDXs during in vivo passaging (22). 22 

  23 
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  1 
Fig. 4. Transcriptomic 
analysis across NB PDXs and 
treatment groups. (A-D) t-
SNE plots for all NB PDXs. 
Dotted line circle in (D) marks 
the cluster of PC-cured 
samples. (E-G) Unsupervised 
analysis of the top 1000 most 
variable genes across treatment 
groups for (E) PDX1, (F) 
PDX2, and (G) PDX3. Red is 
upregulated, blue is 
downregulated. Relapsed 
tumors (pink) are noted as R 
(for PDX2) and Rel (for 
PDX3). (H) Key gene 
ontologies (GO) defining each 
of the four gene clusters 
identified for PDX3 (G). (I-L) 
Overall survival Kaplan-Meier 
curves for each PDX3 gene 
cluster, identified from (G), in 
NB patients (stages 3 – 4, 
n=219; Kocak dataset, R2 
Genomics Analysis Platform). 
(M-N) Expression (average z-
score values over the gene set) 
of DNA repair and cell cycle 
gene signatures across PDX3 
treatment groups. Statistical 
analysis performed with R2 
genomics platform, ordinary 
one-way ANOVA with 
Welch’s t-test multiple 
comparison. 
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Next, we analyzed each PDX model to identify how COJEC treatment leads to 1 

transcriptional changes in NB. Unsupervised analysis revealed no clear transcriptional pattern in 2 

response to treatment for PDX1 and PDX2 (Fig. 4B and 4C, 4E and 4F). Analysis of the top 1000 3 

most variable genes showed downregulation of one gene cluster in the COJEC groups for PDX1 4 

and PDX2 (Fig. 4E and 4F, and Data file S1). In both cases, the downregulated gene clusters were 5 

mainly characterized by protein translation and protein localization ontologies (Fig. S6A and S6B). 6 

Only PDX3 samples showed a tendency to cluster by treatment, especially the cured samples and 7 

those that relapsed (Fig. 4D).  8 

Unsupervised analysis of the top 1000 most variable genes in PDX3 revealed four gene 9 

clusters (Fig. 4G, and Data file S1). Using GO enrichment analysis, we characterized the clusters 10 

as “early development” (Cluster 1), “cell cycle” (Cluster 2), “mixed” (Cluster 3), and “nervous 11 

system” (Cluster 4) (Fig. 4H, Fig. S6C-S6F, and Data file S2). Relapsed and regrown tumors were 12 

characterized by increased expression of genes in early developmental pathways (Cluster 1) and 13 

downregulation of genes in nervous system development (Cluster 4) (Fig. 4G and 4H). A clear 14 

difference in expression was also observed between the surgery-collected samples that were cured 15 

(PC-cured) and those that later relapsed (PC-not cured), with the latter presenting an overall 16 

transcriptional signature similar to that of controls or cisplatin samples, with higher expression of 17 

clusters 2 and 3 (Fig. 4G). In contrast, the PC-cured tumors presented with strong downregulation 18 

of genes involved in the cell cycle (Cluster 2) and upregulation of nervous system development 19 

genes (Cluster 4) (Fig. 4G and 4H). This was further confirmed by DEG analysis of the PC-cured 20 

samples against the control, regrown, and relapse groups (Fig. S7A and Data file S1). The gene 21 

signatures defined by the PC-cured samples (low expression of Cluster 2 and high expression of 22 

Cluster 4) correlated with a significantly better prognosis in a cohort of 219 stages 3 – 4 NB 23 
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patients (Fig. 4J and 4L, p < 0.0001). The mixed cluster 3, representative of the PC-not cured and 1 

cisplatin samples, correlated with poor prognosis in NB patients (Fig. 4K, p < 0.0001). PC-not 2 

cured tumors also showed significantly higher expression of DNA repair and cell cycle genes than 3 

the PC-cured samples (p=1.77e-03 and p=3.4e-02 respectively, Fig. 4M). Additionally, we 4 

explored the relevance of the MAPK/ERK and Notch signaling pathways, identified in the 5 

controls, and pertinent to many different cancers (14, 35, 36). The PC-cured samples presented 6 

significantly higher expression of genes involved in inhibition of the MAPK cascade (Fig. S7B, p 7 

< 0.01), and downregulation of Notch signaling (Fig. S7C, p < 0.05).  8 

In summary, treatment-resistant and relapsed NB tumors exhibited features of early 9 

embryonic development. Tumors that eventually were cured showed features of nervous system 10 

development as well as reduced cell cycle and DNA repair gene expression following COJEC 11 

therapy, whereas tumors that eventually relapsed (represented by the PC-not cured samples) 12 

maintained a higher expression of cell cycle genes at the time of surgical removal. 13 

 14 

Identification of NB phenotypes based on transcriptional analysis 15 

Our analysis revealed significantly enriched expression of nervous system development 16 

genes (Cluster 4) in PC-cured tumors (Fig. 5A, p < 0.01) and early development genes (Cluster 1) 17 

in relapsed tumors (Fig. 5B, p < 0.05). Previous studies identified ADR and immature MES-like 18 

tumor cell states in NB cell lines and patients tumors (10–13, 15–19), but their study using in vivo 19 

models has been challenging (12, 20) and the implications of chemotherapy are not clear. To 20 

explore these cell states, we analyzed the gene expression pattern of six pairs of publicly available 21 

ADR and MES-like signatures (10, 12, 15–17, 19) across the PDX3 treatment groups (Fig. S8A). 22 

Consistently, PC-cured tumors showed a higher ADR signature across all individual signatures. 23 
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All of the immature MES-like signatures were higher in relapsed tumors, and some signatures 1 

were also high in PC-cured samples (Fig. S8A).  2 

Given the diverse definitions of “MES-like” or “immature” signatures in published work, 3 

we constructed two new gene signatures: “Merged ADR” is a signature comprised of our Cluster 4 

4 genes and those ADR-associated genes in the 6 published signatures; “Merged MES” is a 5 

signature comprised of our Cluster 1 genes with all the MES or immature genes in the six pair 6 

published signatures. We analyzed the merged signatures across treatment groups for PDX3. 7 

Again, the ADR signature was enriched in the PC-cured tumors and the MES signature was 8 

enriched in the relapsed tumors (Fig. S8B). Similar to the association between low expression of 9 

cluster 4 with poor patient prognosis (Fig. 4L), low expression of Merged ADR correlated with 10 

poor prognosis in the same NB cohort (Fig. S8C). The Merged MES signature did not associate 11 

with NB patient prognosis (Fig. S8C). In summary, we observed that cured tumors display an 12 

enrichment of the ADR cell state, whereas the features of relapsed NB resembled the immature 13 

MES-like cell state. 14 

 15 

Transcriptional features of relapsed and cured NB 16 

Based on the therapeutic responses, we explored in detail the ADR and MES gene 17 

expression signatures involved in relapsed, regrown, and cured samples by plotting the merged 18 

MES and ADR lists across these treatment groups (Fig. S8D and Data file S1). From the Merged 19 

MES list, we identified two sub-signatures: “MES-Relapse” (enriched in relapsed and regrown 20 

tumors) and “MES-Cured” (enriched in the PC-cured samples). GO analysis showed that the MES-21 

relapse signature is enriched in early developmental pathways, cell proliferation, cell migration, 22 

and Notch and Wnt signaling (Fig. 5C). The MES-Cured signature is characterized by cell death, 23 
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cell differentiation, and negative regulation of the MAPK/ERK cascade (Fig. 5C). From the 1 

Merged ADR list, we identified one main signature, Merged ADR-Cured (Fig. S8D). 2 

Fig. 5. Adrenergic or mesenchymal-like gene signatures across NB PDX3 treatment groups. (A, B) 
Expression of PDX3-Cluster 4 (nervous system) and PDX3-Cluster 1 (early development) across PDX3 treatment 
groups. (C) Multidimensional scaling (MDS) analysis and visualization of the gene ontologies defined by the 
Merged-MES gene clusters corresponding to the relapsed and PC-cured tumors (Revigo, non-redundant scaling 
0.7). (D) Immunofluorescence staining of PHOX2B (green), SOX9 (red, left panel), LGR5 (red, right panel), and 
TH (white) across PDX3 treatment groups. Blue nuclear staining with DAPI. Paired not cured and relapse samples 
correspond to different timepoints of the same mouse. Scale bars, 50 µm. (E) Mapping of PDX3-Cluster 4 and 
PDX3-Cluster 1 gene signatures over the Jansky et al. (13) single-cell RNA UMAP of normal adrenal medulla 
development. 
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MES-like signatures and markers obtained from NB patient tumors can be derived from 1 

NB cells or from stromal cells (15, 16). Here, we identified human-specific transcripts in the RNA-2 

seq to distinguish human NB cells from mouse cells. Analysis of the fraction of RNA-seq “reads” 3 

specific to human and mouse showed that the small contribution of mouse reads was highly similar 4 

between PDX treatment groups (Fig. S9A-S9C). Only PC-cured samples in PDX3, which have a 5 

low MES signature, had a significantly higher presence of mouse stroma (Fig. S9C, p < 0.05). 6 

Relapsed samples had low percentages of mouse reads, indicating that the immature MES-like 7 

phenotype detected in relapsed tumors represents the NB cells rather than the stromal cells. 8 

In the search for specific gene markers that correlate with prognosis both in the PDX model 9 

and in NB patients and have a minimal expression in stromal cells, we selected the common genes 10 

between the merged MES-Relapse and PDX3-Cluster 1 signatures, and the merged ADR-Cured 11 

and PDX3-Cluster 4 signatures, and filtered them through the cohort of 219 stage 3-4 patients 12 

(overall survival, median cut, FDR < 0.05).  A curated list of 18 genes was identified from the 13 

MES lists and 146 genes from the ADR lists (Fig. S9D and S9E, and Data file S1), which correlated 14 

with poor and good prognosis in NB patients, respectively (Fig. S9F and S9G). Consistently, the 15 

146-gene ADR signature was significantly higher in the PDX3 PC-cured samples, whereas the 18-16 

gene MES signature was higher in relapse and regrown groups (Fig. S9H and S9I). Protein 17 

production from key genes selected from these lists was confirmed in PDX3 tumors (Fig. 5D). 18 

PHOX2B was used in our models as a pan-NB marker, similar to its clinical use. Consistent with 19 

the RNA results, cured tumors show an overall low protein expression of SOX9 and LGR5 (MES 20 

markers), and high abundance of TH (ADR marker), whereas relapse and regrown tumors showed 21 

the opposite pattern. Interestingly, PC-not cured samples present high amounts of both MES and 22 
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ADR markers at the surgical resection time point (Fig. 5D), pointing to the importance of the 1 

immature MES-like cells in drug resistance and relapse in vivo. 2 

 3 

Relapsed NB resembles human Schwann cell precursors 4 

NB is derived from progenitors of the sympathetic nervous system. We analyzed how the 5 

gene clusters 1 (relapsed tumors) and 4 (PC-cured) relate to the human adrenal medulla during 6 

normal development (13). Genes in the Cluster 1 signature were highly expressed in immature 7 

Schwann cell precursors (SCPs), whereas high expression of Cluster 4 genes mainly correlated 8 

with neuroblasts and chromaffin cells (Fig. 5E). Thus, COJEC-treated relapsed NB PDX tumors 9 

resemble human SCPs in the adrenal medulla, which is consistent with other reports (16, 37, 38). 10 

 11 

MYCN transcript and protein abundance in response to COJEC treatment  12 

The MYCN gene is essential in NB pathogenesis (39, 40). Based on the scDNA data, we 13 

determined the number of MYCN copies for PDX1 and PDX3 (Fig. 6A and 6B). The non-14 

responsive PDX1 had higher MYCN copy numbers compared to the responsive PDX3 (Fig. 6A). 15 

Within PDX3, all treatment groups had similar numbers of MYCN copies (Fig. 6B). We next 16 

analyzed MYCN RNA expression across PDX models and treatment groups (Fig. 6C). Consistent 17 

with CNAs, the amount of MYCN RNA was lower in PDX3 compared to PDX1 (Fig. 6D). PC-18 

cured tumors presented strong MYCN RNA downregulation, whereas relapsed and PC-not cured 19 

tumors showed expression in the range of PDX1 and PDX2 (Fig. 6C and 6E). Consistent with the 20 

PDX1 and PDX2 tumors exhibiting higher MYCN transcripts, these tumors had high expression 21 

of a MYCN target gene signature (41) (Fig. 6F). PC-cured tumors also had lower expression of 22 

MYCN downstream target genes (Fig. 6G). At the protein level, we observed that relapse samples 23 

had a significantly higher number of MYCN-positive cells than PC-cured samples (Fig. 6H and 24 
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6I, p=3.8e-03). Thus, NB responding to COJEC showed downregulation of MYCN RNA and 1 

protein and its target genes, despite high MYCN copy numbers.  2 

 3 

 4 

Fig. 6. MYCN transcript and protein abundance during and after COJEC treatment. (A) Number of MYCN 
amplification copies in PDX1 and PDX3 tumors obtained from scDNA analysis. (B) Number of MYCN 
amplification copies across PDX3 treatment groups obtained from scDNA analysis. (C) MYCN gene expression 
for each individual tumor across all PDXs. (D, E) Statistical analysis of MYCN gene expression (transcripts) across 
NB PDXs (D) and across PDX3 treatment groups (E). (F, G) Correlation between MYCN expression and MYCN 
targets signature across PDXs (F) and PDX3 treatment groups (G). (H) Immunofluorescence staining of MYCN 
across PDX3 treatment groups. Blue nuclear staining with DAPI. Scale bars, 50 µm. (I) Statistical comparison by 
Welch’s t-test of MYCN staining quantitation from fluorescence staining. Symbols represent individual tumors. 
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Influence of key genetic aberrations in transcriptional signatures and treatment response 1 

Based on bulk DNA-seq data (Fig. 2), we observed parallel and convergent evolution of 2 

certain fragment losses that affected eight genes (Fig. S9J). These specific convergent losses 3 

seemed to accumulate across COJEC-treated and cisplatin-treated groups (Fig. S9J), but they did 4 

not correlate with treatment response. Instead, we found that the transcript abundance of these 5 

genes correlated with response: PC-cured samples had significantly higher expression of this 8-6 

gene signature (Fig. S9J and S9K, p < 0.05). High expression of this signature also correlated with 7 

good prognosis in patients (Fig. S9L). Further work is needed to clarify the clinical relevance of 8 

these genes. 9 

 10 

3D tumor organoids from relapsed NB maintain in vivo phenotype and tumorigenicity 11 

We established free-floating 3D NB organoids, cultured under serum-free conditions with 12 

the addition of epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2), from control 13 

and COJEC-treated tumors for all three PDX models (Fig. 7A-7C). All NB organoids were tested 14 

with cisplatin and vincristine as single drugs to assess for acquired resistance to chemotherapy 15 

(Fig. S10A-S10C). NB organoids derived from PDX1 and PDX2 showed no difference in drug 16 

responses between control and COJEC-treated (Fig. S10A-S10B). However, NB organoids 17 

derived from a relapsed PDX3 tumor (tumor T5) showed decreased treatment response as 18 

compared to PDX3 control organoids (Fig. S10C).  19 

We developed two ex vivo COJEC treatment protocols and applied these five 20 

chemotherapies combined to NB organoids derived from PDX3 tumors. Organoids derived from 21 

the relapsed T5 tumor displayed higher cell viability and lower cell death under COJEC treatment 22 

compared to control NB organoids (Fig. 7D). This suggested that NB organoids derived from 23 

COJEC-treated and relapsed NB PDXs can retain chemotherapy treatment resistance ex vivo. 24 
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We performed RNA-seq of the PDX3 control and relapsed organoids (untreated and 1 

COJEC-treated ex vivo) to examine if the organoids maintained transcriptional signatures similar 2 

to those observed in vivo. Each sample clustered well within their respective groups (Fig. 7E). We 3 

applied our previously identified PDX3 Cluster 4 (nervous system) and Cluster 1 (early 4 

development) gene signatures. Relapsed NB organoids displayed lower expression of the Cluster 5 

4 signature compared to controls (Fig. 7F), consistent with our in vivo data (Fig. 4G, 5A). COJEC-6 

treated control organoids showed significantly higher Cluster 1 expression than their untreated 7 

counterparts (Fig. 7G, Fig. S10D, p=1.94e-06).  8 

We analyzed mRNA expression of key NB genes in all control organoids and relapsed 9 

organoids. MYCN expression was significantly higher in organoids derived from relapses 10 

compared to controls (Fig. 7H), consistent with the in vivo results. The expression of PHOX2B 11 

and the ADR markers DBH, TH, and NCAM1 was lower in relapsed organoids compared to control 12 

organoids (Fig. 7H). The MES markers LGR5, MAB21L2, SOX9, and FOXC1, which we identified 13 

from the in vivo data, maintained an overall higher expression in relapsed organoids compared to 14 

controls (Fig. 7H). Nonetheless, within the control organoids, we observed significantly higher 15 

expression of some individual MES markers in the COJEC-treated group (Fig. S10E), consistent 16 

with the higher expression of Cluster 1 in this group (Fig. 7G, Fig. S10D). 17 

DEG analysis showed that COJEC-treated control organoids presented with 18 

downregulation of cell cycle genes along with upregulation of genes in specific morphogenesis 19 

and cell motility pathways (Fig. S10F-S10G). For relapse organoids, the main DEGs identified 20 

between the treated and untreated groups were related to cell cycle (Fig. S10H-I).  21 

 22 

  23 
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  1 
Fig. 7. Establishment and 
characterization of COJEC-
treated NB PDX-derived 
organoids. (A-C) NB organoids 
from control and COJEC-treated 
PDX tumors. Fluorescence staining 
of MYCN (green) and PHOX2B 
(red); scale bars, 100 µm (bright 
field) and 20 µm (fluorescence). 
(D) Cell viability and cell death (%) 
for PDX3-derived organoids 
treated with low or high dose 
COJEC in vitro. (E) 
Transcriptomic t-SNE plot of 
PDX3-derived organoids treated or 
untreated in vitro with COJEC 
High (as defined in D). (F, G) 
Expression of PDX3-Clusters 1 
and 4 signatures in PDX3-derived 
organoids. Dotted line circles in 
(G) mark the untreated and 
COJEC-treated groups for control 
organoids. (H) Expression of 
selected genes in control (C) and 
relapse (R) PDX3 organoids. (I) 
Fish-plot depiction of the genetic 
evolution of a PDX3 COJEC-
treated tumor, from the parental 
organoids, through the post-
COJEC (surgical resection 
timepoint) and relapse stages, to 
the establishment of new 
organoids. Clones match those in 
Fig 2I-J. Subclone frequency is 
reflected by the relative size of 
colored region at specific 
timepoints. (J) Tumor growth of 
PDX3-relapse organoids in NSG 
mice (n=3). (K) 
Immunohistochemical 
fluorescence staining with 
PHOX2B (green), SOX9 (red, top 
panel), LGR5 (red, bottom panel), 
and TH (white). Nuclear staining 
with DAPI (blue). Scale bars, 50 
µm. 
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Using the relapse organoid derived from PDX3 T5, we confirmed by scDNA-seq that 1 

genetic aberrations were maintained from in vivo to ex vivo (Fig. 7I). The relapsed PDX3 T5 was 2 

a clonal sweep of subclone #8 (Fig. 2I). The convergent smaller deletions of genes PTPRD and 3 

MACROD2, as well as the deletion of PCDH15 (detected in subclone #8, as well as several PDX3 4 

tumors after treatment), were present in the COJEC relapse organoids and consistently maintained 5 

in the established organoids. Thus, the selective sweep of subclone #8 in the relapse was complete 6 

and no new aberrations were detected in the organoids (Fig. 7I). The subclone with LSAMP 7 

deletion (#27, yellow) occurring in approximately 60% of the T5 tumor at the time of surgical 8 

resection, was not retained neither in the relapse nor the organoids, illustrating continuous clonal 9 

evolution over time. 10 

Finally, we injected the relapsed NB organoids subcutaneously into NSG mice (n=3), and 11 

showed that they maintain tumorigenic capacity in vivo (Fig. 7J). Tumors displayed an 12 

undifferentiated morphology, were positive for the NB marker PHOX2B, and maintained high 13 

amounts of MES markers SOX9 and LGR5 along with low ADR marker TH (Fig. 7K), in 14 

concordance with the parental relapse tumor (Fig. 5D).  15 

Thus, NB organoids derived from COJEC-treated relapsed PDXs exhibited the following 16 

properties: (i) display increased resistance to chemotherapy ex vivo; (ii) maintain transcriptional 17 

signatures of their corresponding in vivo tumors; (iii) are genetically similar to the in vivo tumor; 18 

(iv) are tumorigenic, and (v) maintain relative expression of ADR and MES-associated markers. 19 

 20 

DISCUSSION  21 

Treatment resistance and relapse are common for patients with high-risk NB. 22 

Chemoresistance is usually studied in vivo by applying a single drug treatment (for example, 23 
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cisplatin). Here, we developed a clinically relevant COJEC-like treatment protocol including the 1 

five chemotherapeutic agents usually given as first-line treatment to children with high-risk NB. 2 

This protocol was applied to multiple NB MYCN-amplified PDX models, and genomic and 3 

transcriptomic analyses were performed at different time points through the treatment course. Our 4 

analyses revealed substantial genetic diversity, as well as high intra- and inter-tumor heterogeneity, 5 

at both the DNA and transcriptional levels. NB PDXs in mice with upfront progression during 6 

chemotherapy and relapsed NB PDXs after chemotherapy showed an immature transcriptional 7 

phenotype that resembles the previously described MES-like cell state (10, 12, 15–17, 19). In 8 

contrast, NB tumors from mice that were cured after COJEC and surgical resection showed, at the 9 

time of surgical resection, features of nervous system development that resemble the ADR cell 10 

state (10, 12, 15–17, 19). The 3D NB organoids derived from relapsed PDXs retained chemo-11 

resistance, transcriptional and genetic signatures of the in vivo tumor from the mice, as well as 12 

tumorigenicity, showing that these features can be maintained ex vivo. 13 

Although a mutation-centric view has been dominant for years, recent data also point to 14 

transcriptionally-plastic oncogenic cell states as mediators of cancer development and treatment 15 

resistance (42–44). Several studies have demonstrated the existence of at least two transcriptional 16 

cell states in NB: an immature MES-like cell state and an ADR differentiated cell state (10–13, 17 

15–19). There is consensus across studies for the ADR cell state, but inconsistencies exist in the 18 

definition of the immature MES-like state, with some data even questioning the existence of this 19 

cell state beyond cell culture (12, 45). The discordances observed between studies could be due to 20 

differences in methodology, including technical and bioinformatic methods, or sample material, 21 

such as cell lines, mouse models, PDXs, or patients, or the use of treatment naïve vs. treated 22 

tumors. 23 
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Our findings showed that these transcriptional cell states occur in patient-derived MYCN-1 

amplified NB models both in vivo and ex vivo. Our results also demonstrated the relevance of the 2 

immature MES-like cell state in intrinsic and acquired NB treatment resistance. In vivo and ex 3 

vivo data suggested that COJEC treatment could select for cells with the immature MES-like 4 

phenotype and that these cells might contribute to relapse. In contrast, a predominantly ADR 5 

signature right after COJEC treatment correlated with the absence of relapses and a good overall 6 

prognosis. Our results also identified multiple cells positive for both ADR and MES markers (Fig. 7 

5D and 7K), indicating the presence of cells in an intermediate state, which has been previously 8 

proposed (10, 11, 17, 19). In addition, we showed that the time point of transcriptional analysis is 9 

important; for responsive tumors, the immature phenotype was primarily identified in the relapses, 10 

and this phenotype was only detected in the absence of treatment in tumors with upfront 11 

progression. Our results are consistent with findings in which an NB cell subtype with immature 12 

mesenchymal characteristics was enriched in relapsed patient tumors (10, 16). Our data also 13 

suggested that transcriptional analysis and histochemical evaluation of ADR and MES markers, in 14 

addition to genomic assays, may be clinically valuable when assessing NB prognosis and treatment 15 

course. In particular, at the surgical resection post-COJEC timepoint, when specific signatures 16 

(cell cycle, ADR, MAPK) and markers (SOX9, LGR5) could provide valuable information about 17 

the COJEC response. Additionally, our results pointed to the importance of targeting both cell 18 

states from the start of treatment, to address upfront progression and prevent relapses.  19 

We identified examples of convergent evolution between the PDX models, parallel 20 

evolution within each PDX model, clonal sweeps, and several examples of smaller deletions of 21 

genes that regulate nervous system development and chromosomal stability, both of which may 22 

influence chemoresistance. Convergent evolution of small deletions in two or more of the PDX 23 
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models indicated that Darwinian selection occurred during tumor progression. However, these 1 

changes were detected in both controls and treated tumors, suggesting that they are important for 2 

NB progression but not necessarily for treatment resistance. We found no recurrent CNAs that 3 

could explain resistance or relapse. Thus, although the common NB CNAs lay the oncogenic 4 

foundation for NB growth, the development of relapses seems to be primarily mediated by 5 

transcriptional (and likely epigenetic (16)) changes. Our findings that COJEC-resistance was 6 

influenced by the immature MES-like phenotype while tumors lacked specific clonal selection at 7 

DNA level suggested that treatment-resistant relapses can develop as a result of Lamarckian 8 

induction, rather than through pure Darwinian selection. The level of (in)stability of the relapse-9 

associated immature phenotype will be important to understand. The phenotype could, in principle, 10 

become stable through acquisition of genetic changes. However, we did not identify specific CNAs 11 

that could confer such stability. The identification of the immature phenotype in PDX tumors 12 

weeks after cessation of treatment in vivo and in organoids established ex vivo indicated a certain 13 

level of intrinsic stability of the phenotype even without treatment pressure.  14 

A limitation in our study is that we analyzed a limited set of NB PDX models and, given 15 

the broad heterogeneity of NB, it remains to be shown if our findings represent a general 16 

phenomenon of all MYCN-amplified NBs or only a subset of tumors. We did not investigate MYCN 17 

non-amplified high-risk NB because of a lack of stable PDX models for this subtype. Our studies 18 

were performed using immunodeficient mice and the immune system can interact with the NB cell 19 

phenotypes (46, 47), which could yield a different outcome in fully immunocompetent individuals. 20 

On the other hand, our findings demonstrated that NB can adopt an immature MES-like phenotype 21 

even in the absence of a complete immune system.  22 
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The in vivo confirmation of two NB phenotypic cell states opens for novel therapeutic 1 

opportunities because current treatment protocols are not designed to target different NB cell 2 

states. It is conceivable that the cell states are not binary, but NB cells exist along a continuum of 3 

states. Our results showed the relevance of the MAPK and ERK cascades, in line with findings 4 

that suggest therapeutic targeting of these pathways in chemotherapy-resistant NB (16, 48, 49). 5 

Additionally, other work shows that Tumor Necrosis Factor Related Apoptosis-Inducing Ligand 6 

(TRAIL) therapy (21) and immunotherapy (46) could also be of interest. Given the clinical 7 

heterogeneity in NB patient tumors, and reflected in our NB PDX treatment responses, treatment 8 

resistance can likely develop by multiple mechanisms in individual tumors, as demonstrated in 9 

melanoma (7).  Nevertheless, successful treatment of NB will likely need to target both, or 10 

multiple, cell states. Future studies need to define how and when specific targeting of the NB cell 11 

states should be implemented. 12 

 13 

MATERIALS AND METHODS  14 

Experimental Design 15 

The goal of this work was to uncover the mechanisms involved in COJEC treatment 16 

resistance in high-risk NB. We designed and tested a COJEC-like protocol using three NB PDX 17 

models. In vivo, mice were injected subcutaneously with dissociated PDX organoids and, upon 18 

tumor engraftment, the mice were randomly allocated to treatment groups aiming for a minimum 19 

of 5 mice per group (on the basis of previous experimental experience). In vivo experiments were 20 

not blinded. Mice were euthanized based on tumor size, weight loss, overall health deterioration, 21 

or end of study time. No tumor-bearing mice were excluded. Only one outlier was identified 22 

(PDX3-T10), which was considered as part of the COJEC (only) group for mice survival analysis 23 

and as part of the PC group (not cured) for subsequent tumor analyses. Samples were blinded for 24 
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morphological differentiation assessment. Bulk DNA and RNA were collected from the same 1 

piece of tumor tissue to allow for direct comparison. SNP and scDNA-seq were performed for 2 

samples of interest based on tumor response. RNA-seq was performed for all tumors. All RNA 3 

analyses were performed using the embedded analysis tools within the R2 Genomics Analysis 4 

Platform and Metascape. For in vitro experiments, three biological replicates with three technical 5 

replicates each were performed. For the organoids RNA analysis, two biological replicates with 6 

three technical replicates each were analyzed.  7 

Animal Experiments 8 

All procedures were conducted according to the guidelines from the regional Ethics 9 

Committee for Animal Research (permit no. M11-15 and 19012-19). NMRI nude mice were 10 

purchased from Taconic and NSG mice were obtained from in-house breeding. NB PDX 11 

dissociated organoids (2x106 cells) were suspended in a 100 µl mixture (2:1) of stem cell medium 12 

and Matrigel (Corning, Cat No.354234) and injected subcutaneously into the flanks of female 13 

mice. Mouse breed was selected based on the tumor engraftment rate for each PDX; PDX1 was 14 

analyzed in both nude (n=9) and NSG mice (n=24), PDX2 in NSG mice (n=22) and PDX3 in nude 15 

mice (n=41). Tumor size was measured using a digital caliper and calculated with the formula 16 

V=(πls2)/6 mm3 (l=long side and s=short side of each tumor). Mice were randomly allocated to 17 

control, cisplatin or COJEC groups once their tumor had reached approximately 500 mm3. The 18 

cisplatin group was treated intraperitoneally with 4 mg/kg cisplatin dissolved in sterile saline 19 

(Selleckchem, Cat No.S1166) each Monday, Wednesday and Friday, the control group was treated 20 

with equal volume of saline. The COJEC group was treated with intraperitoneal injections of 21 

cisplatin (1 mg/kg; Selleckchem, Cat No.S1166) and vincristine (0.25 mg/kg; Santa Cruz, sc-22 

201434) on Mondays, etoposide (4 mg/kg; Santa Cruz, sc-3512) and cyclophosphamide (75 23 

mg/kg; Santa Cruz, sc-361165) on Wednesdays, and carboplatin (25 mg/kg; Santa Cruz, sc-24 
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202093A) on Fridays. A subset of PDX1 mice (n=7) was treated with a high-dose COJEC protocol: 1 

cisplatin 1.5 mg/kg, vincristine 0.5 mg/kg, etoposide 6 mg/kg, cyclophosphamide 100 mg/kg, and 2 

carboplatin 35 mg/kg. Treatment was administered for a maximum of six weeks, making a 3 

maximum of 18 injection days per mouse. Treatment response was defined by the parameters 4 

established by the Pediatric Preclinical Testing Program (50) presented in Table S1. All mice were 5 

monitored for weight loss and other signs of toxicity. Treatment was paused if weight loss >10% 6 

to allow for recovery. When the tumor size had decreased to approximately 200 mm3, a subgroup 7 

of COJEC-treated PDX3 tumors (n=9) was surgically removed, treatment was interrupted and 8 

mice were monitored for tumor relapses. Mice were sacrificed when tumors reached 1800 mm3, 9 

or at a humane endpoint if weight loss >20% from initial weight or significant health deterioration 10 

was observed, or one year after initial cell injection. Upon collection, tumors were divided into 11 

pieces and stored for the corresponding experimental purposes.  12 

Immunohistochemistry and histological analyses 13 

Tumors were fixed in 4% formalin, embedded in paraffin and cut in 4 µm sections for 14 

staining. H&E (Histolab Products) staining was performed for histopathological analysis. The 15 

slides were blinded for morphological differentiation assessment, and evaluated by an independent 16 

viewer. TUNEL assay (Abcam, ab206386), using either methyl green or hematoxylin as 17 

counterstain, was performed to asses cell death. Quantification was performed using the software 18 

QuPath 0.2.3. DAB staining was performed using the Autostainer Plus (Dako) and fluorescence 19 

staining was performed manually. Heat-induced antigen retrieval was done using sodium citrate 20 

buffer (pH 6.0). The antibodies used are PHOX2B (1:1000, Abcam), PHOX2B-AF647 conjugate 21 

(1:100, Santa Cruz Biotechnology), KI67 (1:200, Dako), CD34 (1:200, Santa Cruz 22 

Biotechnology), MYCN (1:200, Proteintech), TH (1:1000, Abcam), SOX9 (1:500, Abcam) and 23 
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LGR5 (1:150, Abcam). Processing and quantification of fluorescence images was performed with 1 

Image J.  2 

Bulk DNA and RNA extraction 3 

Snap-frozen tumors were added to RNAlaterTM-ICE (Invitrogen, #AM7030) and kept overnight 4 

at -20°C before extraction. DNA and RNA were extracted from tumors and organoids using the 5 

AllPrep DNA/RNA MiniKit (Qiagen, #80204). 6 

SNP-array DNA genotyping and analysis 7 

DNA from selected PDX-samples was subjected to the Cytoscan HD array (Affymetrix) platform 8 

according to standard methods. The obtained CYCSPH-files were imported into Chromosome 9 

Analysis Suite (ChAS, Affymetrix, v.4.1.0.90 r29400). All samples from the same PDX were 10 

imported simultaneously and the chromosomes were assessed manually. Only genetic alterations 11 

clearly visible by eye, ≥	50 kBp and with a marker count ≥	50, were included in further analysis. 12 

Constitutional copy number variants (CNVs) were omitted based on manual comparison against 13 

the Database of Genomic Variants (DGV) with genome GRCh37/hg19. For each genetic 14 

alteration, its genomic location, type of aberration (loss/gain) and logarithmic median probe 15 

intensity ratio (log! R) was extracted. The function Rawcopy (v.1.1) (51) in R was used on the 16 

Affymetrix fluorescence array intensity (CEL) files and its output was used to generate Tumor 17 

Aberration Prediction Suite (TAPS, v.2.0) (52) plots of copy number clusters for each chromosome 18 

and sample. 19 

Each detected genetic alteration was analyzed in unison with the TAPS-plots to determine 20 

the allelic composition and the clonality (clonal/subclonal) for the aberrations. The log! R together 21 

with the ploidy of the genetic alteration (N") as well as the background cells (N#), were used to 22 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 2, 2022. ; https://doi.org/10.1101/2022.04.01.486670doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.01.486670


 35 

compute the mutated sample fraction (MSF), defined as the percentage of cells in that sample that 1 

harbor this alteration. 2 

MSF =	
N#	 ⋅ 2%&'!( − N#	

N" −	N#
 3 

For cnni:s, the mirrored B-allele frequency (mBAF) together with information about its allelic 4 

composition (number of A- and B-alleles, N) and N*) was used for MSF computation. 5 

MSF =	
1 − 2 ⋅ mBAF

mBAF(N) + N* − 2) − N* + 1	
 6 

The MSF was used to compute the mutated clone fraction (MCF) defined as the proportion of cells 7 

in the sample having a specific genetic alteration divided by the purity or tumor cell fraction (TCF) 8 

of that sample. The TCF was computed for each sample by calculating the mean of the MSF-values 9 

of all aberrations in a sample defined to be clonal by the visual inspection of TAPS-plots. The 10 

interval of clonal events was computed using the standard deviation of the MSF-values of the 11 

alterations used for TCF-computation (SD+,-) as 12 

Interval	of	clonal	events =
TCF ± 2 ⋅ SD+,-

TCF  13 

defined as the MCF-interval in which an alteration is determined as clonal. If a genetic alteration 14 

has a MCF in that sample that is within the interval of clonal events, it was set to 100 %, otherwise 15 

the MCF-value were kept, and the event was defined as subclonal. 16 

Single-cell low pass CNA sequencing 17 

Single cells were prepared from viably frozen tumors by mechanical dissociation with 18 

sterile scalpels and enzymatic dissociation with Liberase DH (0.15 mg/mL) at 37°C and 250 rpm 19 

for 20-40 min depending on tumor size. Then, tumor cells were treated with DNase I (2.5 µg/ml, 20 

Sigma-Aldrich), trypsinized (0.05%) and filtered through a 70 µm cell strainer. Single-cell whole 21 

genome sequencing (scDNA seq) was performed as previously described (53–55). Library 22 
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preparation was performed from each isolated nucleus. Low-pass (0.01-0.02x) whole genome 1 

sequencing produced reads which were aligned to human reference genome (GRCh38). Copy 2 

numbers were determined by AneuFinder (version 1.8.0) at 1 Mb bin sizes. Analysis quality was 3 

determined as previously described (53). Manual curation of single cell CNA profiles identified 4 

true imbalances based on the previously optimized cut-off of five consecutive 1Mb bins (33). 5 

High-grade amplifications of MYCN (2p24.3-24.2) and of 4q28.3-q31.1 were scored based on two 6 

consecutive 1Mb bins. Specific clones based on unique CNAs were identified for all single cells 7 

within the respective tumor. In total, 18 samples (19-85 libraries (cells)/tumor) were successfully 8 

analyzed. This resulted in a matrix where each row is a bin, approximately 1 Mbp of size, each 9 

column is a single cell, and the matrix elements are the number of copies of that particular segment. 10 

The matrix was used as input to an algorithm written in R. This information was used to construct 11 

an event matrix where each row is a genomic event, and each column is a cell or group of identical 12 

cells. 13 

Phylogenetic and genomic analyses 14 

To analyze the evolutionary trajectory of the genomic alterations across the PDX-samples, 15 

DEVOLUTION (56) was used. The input is a matrix in which each row represents a genetic 16 

alteration in a particular sample, along with information about that genetic alteration’s genomic 17 

location, type of alteration and MCF. Hence, for bulk genotyping data we obtain an event matrix 18 

using DEVOLUTION and for single cell whole genotyping data we obtain an event matrix using 19 

a customized algorithm written in R. The event matrices obtained from DEVOLUTION for bulk 20 

data and from the customized algorithm for single cell data were used to reconstruct phylogenetic 21 

trees using the maximum likelihood and maximum parsimony methods using the phangorn 22 

(v2.8.1) (57) package and visualized using the ggplot2 (v.3.3.5) package. 23 
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Genetic diversity was calculated using multiple metrics based on clonal/subclonal 1 

information and phylogenetic analysis. First, the fraction of private aberrations (clone/subclone 2 

detected in only one tumor within the PDX model) gave a measure of inter-tumor heterogeneity. 3 

Second, copy number aberration burden (CNAB) was calculated from the number of accumulated 4 

copy number aberrations (CNAs), to describe the total burden of CNAs within each tumor:  5 

𝐶𝑁𝐴𝐵	 = 	H(𝑓(𝑐𝑙𝑜𝑛𝑒)	𝑥	𝐶𝑁𝐴(𝑐𝑙𝑜𝑛𝑒)) 6 

where f(clone) is the frequency of each clone/subclone in one tumor and CNA (clone) is the 7 

absolute value of the copy number deviation compared to a diploid cell. The sum is over all genetic 8 

alterations and all subclones encompassed by that tumor. To allow for comparison between 9 

treatment groups within each PDX, only CNAs that were not present within the stem of that PDX 10 

were included in the calculations and graphs. Third, genetic diversity was calculated with inverse 11 

Simpson’s index of diversity (Ds) as: 12 

𝐷𝑠 = 1 −H(𝑓)! 13 

where f equals the frequency of each clone. To visually depict the frequency of clones at certain 14 

time points and the emergence of new clones over time, a fish plot based on CNA events at specific 15 

time points during treatment was produced using an R script (58).  16 

Comparison between groups and test for trend for the genetic diversity measures was done 17 

by one-way ANOVA. The correlation between CNAB and tumor collection day was investigated 18 

with Spearman correlation and linear regression. All statistical analysis was performed by the 19 

GraphPad software. 20 

RNA sequencing and analysis 21 

mRNA library preparation was performed using Illumina Stranded mRNA Prep, Ligation 22 

(Illumina, #20040534) and TruSeq® Stranded mRNA Library Prep (Illumina, #20020594) kits on 23 
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the King Fisher FLEX system (Thermo Fisher Scientific, #18-5400620). Sequencing was done 1 

using the NovaSeq 6000 SP Reagent Kit v1.5 (200 cycles, Illumina, #20040719) and the NovaSeq 2 

6000 S1 Reagent Kit v1.5 (200 cycles, Illumina, #20028318) on the NovaSeq 6000 System 3 

(Illumina, #20012850). Reads were aligned to the Human GRCh38 reference genome (Ensembl) 4 

using STAR (59) and transcript summarization was carried out using featureCounts with subread 5 

package (60, 61) using the annotation (GTF) from Gencode version 33. Expression count matrixes 6 

from the different sequencing runs were merged and batch corrected using CombatSeq (62), 7 

followed by variance stable transformation (VST) of the resulting matrix using DESeq2 R package 8 

(63). Library preparation, mRNA sequencing, data normalization and batch correction were 9 

performed by the Center for Translational Genomic, Lund University. The data is available on the 10 

R2: Genomic Analysis and Visualization Platform (http://r2.amc.nl) under ____(upon acceptance 11 

for publication).  12 

All RNA-seq analyses were performed on the R2 Genomics Analysis and Visualization 13 

Platform. The Kocak dataset, was used for patient overall survival analysis (Stages 3-4, n=219, 14 

median cut). Visualization of t-SNE plots, heatmaps and volcano plots was done using R2, 15 

FDR<0.01. Box plots for genetic signatures present the average z-score values over the gene set 16 

for each sample. Welch’s t-test correction was used to analyze statistical differences between 17 

groups for individual signatures. Gene ontology (GO) enrichment analysis was performed using 18 

the Gene Ontology Platform (64–66) and Metascape (67). Visualization of GO enrichment and 19 

DEG was performed using Revigo (68) and Metascape.  20 

In vitro cultures 21 

NB PDX organoids previously established derived from PDX1, 2 and 3 (22, 23, 69) and 22 

newly established organoids, were cultured as free-floating tumor organoids under serum-free 23 
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conditions in Dulbecco’s modified Eagle’s medium and GlutaMAX F-12 in a 3:1 ratio, 1 

supplemented with 1% penicillin/streptomycin, 2% B27 without vitamin A, fibroblast growth 2 

factor (40 ng/ml), and epidermal growth factor (20 ng/ml). Cells were tested for Mycoplasma prior 3 

to experiments. The identity of the NB PDX cells was confirmed using STR/SNP analysis. 4 

New PDX-derived tumor organoids were established by performing mechanical 5 

dissociation of fresh pieces of tumor using a sterile scalpel, followed 24 hours later by enzymatic 6 

dissociation with Liberase DH (0.15 mg/ml, Roche Ref. 05401054001). 7 

Cell viability and cell death assays 8 

Cell viability and death were measured using the CytoTox-Glo Cytotoxicity Assay 9 

(Promega). Organoids were dissociated using Accutase (Sigma) and single cells were seeded and 10 

treated in triplicates in white 96-well plates with clear bottom for 48 hours, for three biological 11 

replicates. Cells were incubated for 48 hours before treatment to allow the formation of small 12 

organoids. Luminescence readouts were performed using a Synergy2 plate reader (BioTek). Drugs 13 

used for in vitro treatment were the same used for the in vivo work. 14 

Immunofluorescence 15 

Dissociated organoids were seeded on glass slides pre-coated with LN521-05 laminin (10 16 

ug/ml, Biolamina). Cells were allowed to attach and grow for at least 72 hours, then they were 17 

fixed using 4% paraformaldehyde. Permeabilization and blocking was performed with 0.25% 18 

Triton X and 2.5% Fetal Bovine Serum in 1XTBS. The primary antibodies used were against 19 

MYCN (1:100, Santa Cruz Biotechnologies, sc-142) and PHOX2B (1:100, Abcam, ab183741). 20 

The secondary antibodies used were AlexaFluor 488 (1:200, Invitrogen, Ref. A11001) and 21 

AlexaFluor 633 (1:200, Invitrogen, Ref. A21071). Nuclear staining was performed with DAPI 22 

(Invitrogen, Ref. D3571).  23 
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Statistical analyses 1 

All statistical analyses pertinent to DNA and RNA analysis were performed as described 2 

in the corresponding methods sections. The remaining analyses were performed using GraphPad 3 

Prism 9. The log-rank test was used to determine significance for Kaplan-Meier survival curves 4 

for in vivo studies. Non parametric Mann-Whitney test was used for the morphological 5 

differentiation analysis, and samples were graded as undifferentiated (0), mixed (1) or 6 

differentiated (2). For the analysis of TUNEL cell death quantification, ordinary one-way ANOVA 7 

was performed with Dunnett’s test correction for multiple comparison by treatment group 8 

compared to controls. For tumor volume comparison, ordinary one-way ANOVA was performed 9 

with Welch’s t-test correction for multiple comparison. For the organoid drug testing, two-way 10 

ANOVA with Sidak correction for multiple comparison by concentration was performed. Overall, 11 

a p-value<0.05 was considered significant.  12 

 13 

SUPPLEMENTARY MATERIALS 14 

Fig. S1. A COJEC-like protocol for the treatment of NB PDX models in vivo. 15 

Fig. S2. Clonal dynamics and genetic diversity across NB PDX models. 16 

Fig. S3. Clonal dynamics from NB PDX3. 17 

Fig. S4. Phylogenetic analysis of low pass single cell (sc)DNA profiles across NB PDX models. 18 

Fig. S5. Baseline transcriptional signatures for each NB PDX model. 19 

Fig. S6. Characterization of transcriptional signature clusters for each NB PDX. 20 

Fig. S7. DEG analysis and key transcriptional signatures across NB PDX3 treatment groups. 21 

Fig. S8. Publicly available ADR and MES-like signatures across NB PDX3 treatment groups. 22 

Fig. S9. Identification of phenotypic markers independent of stroma content and correlation of 23 
genetic aberrations and prognosis. 24 

Fig. S10. Treatment and characterization of PDX-derived NB organoids. 25 

Table S1. Individual responses to COJEC and Cisplatin treatment. 26 

Data file S1. Complete lists of transcriptional signatures, DEG analysis and gene ontologies 27 

Data file S2. Complete data for the Metascape enrichment analysis and network plots 28 
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