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Abstract 

Employing a sensory conflict paradigm, previous research has found that vision and touch 

contribute, on average, equally to the visuo-tactile perception of surface texture. Our study 

aimed to, firstly, replicate the original findings using a comparable setup and stimulus set; 

secondly, examine whether equal modality contributions can also be observed on an individual 

basis (using a within-subject design); and thirdly, explore how visuo-tactile integration is 

affected by illumination angle (top vs. oblique). Participants explored a discrepant standard 

consisting of different abrasive papers by vision, touch, and using both modalities 

simultaneously, and subsequently had to find the closest visual, tactile, and visuo-tactile match 

from a set of matching stimuli. We replicated equal contribution from vision and touch across 

the whole sample in both illumination conditions. We also found considerable inter-individual 

variations in the modality contributions when the stimuli were illuminated from the top. 

Interestingly, this variation decreased under oblique illumination, with most participants 

showing an about-equal contribution from both modalities to the combined texture percept. 

These findings are consistent with the assumption that the perceived discrepancy between 

vision and touch was reduced under oblique illumination suggesting overall that visual and 

tactile information are only weighted equally within a certain range of experienced 

discrepancy. Outside this individual range, one of the modalities is weighted higher with no 

clear preference for either modality. 

 

Keywords: multisensory perception; modality weights; haptics; discrepancy paradigm; surface 

perception; roughness; sensory integration 
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Introduction 

Texture perception is complex as it is multidimensional as well as multisensory [1]. Surface 

roughness is one important dimension of 3D texture and material perception that has been 

studied extensively (e.g., [2-4]). Perceived roughness is a composite texture property that 

depends on a number of different physical parameters such as the size, density, spacing, and 

jaggedness of the particles on surfaces [5, 6] which may be evaluated visually, haptically, 

and/or auditorily. Consequently, many studies have focussed on how sensory information is 

weighted and integrated across different modalities to produce a unified percept of 3D texture 

(for a review, see [7]). Here, we investigated the integration of visual and haptic information 

of surface properties with a focus on inter-individual variations in the way modalities are 

weighted.  

Studies examining visual and haptic judgements of surface roughness consistently show that 

both measures are highly correlated (e.g., [2, 8]) and that judgements are similarly accurate 

when made by either vision or touch [5, 9, 10, 11]. Interestingly, in contrast to other visuo-

haptic object properties (e.g., object size, 12]) as well as other modality combinations (e.g., 

audio-visual signals [13], or gustatory and olfactory stimuli, [14]), these studies found no 

compelling evidence for multimodal enhancement, that is, improved performance when 

textures were presented bimodally as compared to unimodally. In other words, bimodal 

performance is not found to be generally superior to unimodal performance (but see [15] for a 

different view). This finding has led to the suggestion that vision and touch may act as 

independent sources of roughness information [7, 10].   

The finding of vision and touch being similarly accurate in providing information about 

roughness further means that it cannot be easily determined if the different sources of visual 

and haptic information are integrated, or if information from one modality is ignored in 
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situations where congruent information is available to both senses simultaneously. One way to 

resolve this issue is to use a sensory discrepancy paradigm in which an artificial conflict is 

introduced between the information presented to different sensory modalities, seemingly 

originating from exploring the same physical event (e.g., [16, 17]; for a review, see [18]).  

Lederman and Abbott [5] used such a discrepancy paradigm to study the relative contributions 

from vision and touch to texture perception when performing matches to abrasive papers either 

by vision, touch or using both modalities together. The results of their Experiment 1 showed 

that when abrasive papers of different roughness (i.e., different grit values) were explored by 

vision and touch, the combined texture matches were approximately the mean of the unimodal 

texture matches. Equal contributions from visual and tactile modalities have also been observed 

in subsequent studies using abrasive papers [11] and fabric samples [10]. These findings can 

be well described by a weighted averaging model ([1], see Method for details) where visual 

and tactile information are assigned approximately equal weights. Assuming similar precision 

for visual and haptic texture perception [5, 10, 11], the equal weighting of visual and tactile 

input in the discrepancy paradigm might also indicate statistically optimal integration as 

predicted by the maximum-likelihood integration model [12] in which modality weights are 

assigned in a way that minimises the variance in the combined percept.  

However, despite the evidence for equal contributions from vision and touch, it has been shown 

that there can be great variability in modality weights between participants when making visual 

and haptic judgments about certain object properties, such as size, form, or texture (e.g., [10, 

16, 19]), with some participants showing complete visual or haptic dominance.  

Since Lederman and Abbott [5] employed a between-subject design where for each exploration 

and matching condition a different group of participants (N=10) provided only one single 

match/trial (i.e., nine experimental groups), they were unable to determine whether the equal 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 5, 2022. ; https://doi.org/10.1101/2022.04.01.486675doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.01.486675
http://creativecommons.org/licenses/by/4.0/


 

 

5 

weights for vision and touch veridically represented individual weightings or if they partly 

resulted from combining the data from visually and tactually dominant participants. It has been 

suggested that individual differences in modality weights may also be linked to the precision 

with which individuals can make visual and tactile judgements (for reviews see [7, 18]) as well 

as their experience and personal sensory preferences (e.g., [20-22]). However, overall, studies 

investigating the relationship between sensory acuity, experience and modality biases are 

sparse and their findings are inconclusive. 

Hence, the main objective of our study was to replicate and extend Experiment 1 of Lederman 

and Abbott’s study and to establish whether equal modality weightings in a discrepancy 

matching task are also consistently observed for individual participants. Consequently, we 

applied a within-subject design which allowed us to determine visual and tactile weights for 

each participant separately.  

Furthermore, Lederman and Abbott [5] illuminated their stimuli from the top. As there is 

evidence that roughness perception is not independent of illumination angle and direction [23-

24], we were also interested in exploring the role illumination may play in visuo-tactile 

integration when using discrepant roughness stimuli. More specifically, it seems that lowering 

the illumination angle results in the surfaces being perceived as rougher. To our knowledge, 

the only study that systematically varied illumination angles while measuring visual and tactile 

judgements of surface roughness found that the sensitivity and efficiency of visual judgments 

improved under oblique illumination conditions [21]. At the same time, visual judgements 

became more similar, in terms of accuracy, to tactile ones. Brown speculated that participants’ 

ability to discriminate visual roughness improved under oblique illumination due to increased 

grain-shadowing. This speculation is in line with Ho et al. [23] who found that patterns of 

shading and cast shadows may be among the visual cues that participants use to make 

roughness judgements. 
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To explore the potential effect of illumination on texture perception in a discrepancy paradigm, 

we employed two different illumination conditions. In Experiment 1, the discrepant standard 

and matching stimuli were illuminated directly from the top. In the following, we will refer to 

this as top illumination (i.e., illumination perpendicular to the surface of the stimuli). We 

assumed that the illumination of Experiment 1 was similar to the illumination condition used 

by Lederman and Abbott and thus represents a close replication of their study. In Experiment 

2, we lowered the illumination to a grazing angle (oblique illumination) which allowed us to 

test if visual roughness perception indeed varies with illumination angle, and whether and how 

this affects the integration (and respective weights) of visual and tactile information. Finally, 

we also assessed participants’ tactile acuity [25] as well as their personal preferences for haptic 

information processing (Need for Touch Scale, [26]), in order to explore if any potential 

individual differences in those measures correlate with modality preferences (as measured by 

modality weights) in a discrepancy matching task.  

Materials and methods 

Participants 

Twelve participants took part in Experiment 1 (6 males, Mage = 29.2 years, SDage = 5.3 years, 

age range: 24-40), and ten of those also completed Experiment 2 (5 males, Mage = 29.2 years, 

SDage = 5.5 years, age range: 24-40). The sample size was chosen to match that of Lederman 

and Abbott [5] where each participant performed one single trial in one of the exploration and 

matching conditions (10 participants (i.e., trials) per condition and 90 participants (i.e., trials) 

in total). As we employed a within-subject design, we aimed to recruit at least ten participants 

to match the number of trials per condition from Lederman and Abbott’s study.   

Near visual acuity was measured using the SLOAN letter chart (40 cm distance, SKU: 52185, 

Good-Lite: 756400) and was at least 20/20 for all participants. The tactile acuity thresholds 
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were smaller than 3 mm for all participants as determined by the JVP domes (Stoelting Co., 

Wood Dale, IL, USA).  

The study has been approved by the local ethics committee of the School of Psychology at the 

University of Aberdeen (PEC/4360/2019/10) and was performed in accordance with the ethical 

guidelines of the British Psychological Society. All participants provided written informed 

consent and were reimbursed £30 for completion of Experiments 1 and 2.  

Note that the methods and data analysis procedures of this study have been pre-registered on 

the OSF prior to starting data collection, and are publicly stored with the data associated with 

this project:  https://osf.io/nzb78/ (DOI 10.17605/OSF.IO/NZB78) 

Discrepancy matching task 

Stimuli and setup 

Our stimuli were identical to those used by Lederman and Abbott [5] consisting of nine 

different abrasive papers (7.5 cm x 12.5 cm) with the following grit values: 40, 50, 60, 80, 100, 

120, 150, 180, 220. Grit values refer to the number of openings per square inch in the sieve 

used to apply the particles to the papers [27], with lower grit values referring to rougher, and 

higher grit values to finer, abrasive papers. To eliminate colour cues (and following Lederman 

& Abbott’s procedure), all abrasive papers were painted with a single coat of black semi-gloss 

enamel paint. Abrasive papers were cut in half (3.75 cm x 6.25 cm) to create a visual and a 

tactile stimulus set. There were nine matching stimuli for which the visual and tactile grit values 

were identical. The discrepant stimulus (we will call this the discrepant standard) was a 

combination of a 150 grit paper for visual exploration and a 60 grit paper for tactile exploration.  

The setup consisted of a black rectangular box (H: 60 cm, W: 73 cm, D: 30 cm, Fig 1A) placed 

on a table with two openings: the upper one (W: 15 cm, H: 10 cm) for the visual and the lower 

one (W: 15 cm, H: 5 cm) for the tactile exploration of the stimuli (comparable setup to 
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Lederman & Abbott [5]). A rotating table (IKEA SNUDDA, d = 39 cm) was placed inside the 

box in line with the tactile exploration opening, and the nine matching stimuli and the 

discrepant standard were placed on it. The tactile stimuli were arranged in a circle around the 

perimeter of the rotating table, and the visual stimuli were placed in an adjacent inner circle 

(Fig 1B). The matching stimuli were ordered counterclockwise from low to high grit values. 

The construction of the box prevented the participants from seeing the tactile and/or touching 

the visual stimuli while also ensuring that only one visual and/or tactile stimulus could be 

explored at a time.  

Fig 1. Setup of the discrepancy matching task. (A) An example of the trial where the discrepant standard was 

explored on the rotating table visually and tactually (visuo-tactile exploration). Please note that while this image 

depicts both illumination angles, they were tested in separate experiments. The lights were not directly visible to 

the participants. (B) Stimuli and their ordered arrangement on the rotating table. Numbers indicate the grit values 

associated with the abrasive papers. The stimuli arranged around the perimeter were for tactile exploration while 

those around the adjacent inner circle were for visual exploration. The discrepant standard comprised the visual 

(150 grit) and the tactile standard (60 grit). The colours are for illustrative purposes only. (C) Experimental 

procedure for all sessions of the discrepancy matching task. 
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The visual stimuli were illuminated by a strip of three LED lights (colour temperature: 6000K) 

spaced at 1.5 cm intervals. In Experiment 1 (top illumination), the visual stimuli were 

illuminated from the top, whereas in Experiment 2 (oblique illumination), they were 

illuminated from an oblique angle (30 degrees). The viewing distance from the eye to the 

stimulus was 24 cm.  

Procedure 

The matching task involved three exploration and three matching conditions: visual (V), tactile 

(T), and visuo-tactile (VT). This resulted in nine combinations of exploration and matching 

conditions: V-V, V-T, V-VT, T-V, T-T, T-VT, VT-V, VT-T, and VT-VT. Note, when we use 

these abbreviations, the letter(s) before the hyphen refer(s) to the exploration condition and the 

letter(s) after the hyphen to the matching condition.  

Participants were first asked to explore the discrepant standard uni- or bimodally and then to 

pick a match to the standard from the array of matching stimuli uni- or bimodally. In the 

unimodal exploration conditions (i.e., starting with ‘V-’ and ‘T-’), participants explored the 

discrepant standard either by vision (always 150 grit) or by touch (always 60 grit) alone. In the 

bimodal exploration condition (i.e., starting with ‘VT-’), they explored the discrepant standard 

(always visually 150 grit and tactually 60 grit) using both modalities. In these bimodal trials, 

we ensured a simultaneous sensory presentation by lifting a visual cover the moment 

participants’ fingers made contact with the tactile standard.  

Once finished with the exploration, the visual opening was covered and/or the participants 

removed their hand from the tactile opening. The experimenter then informed the participants 

whether matching would be done visually, tactually, or by using both senses together. Both the 

participant and the experimenter were unaware of the matching modality until after the 
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participant had finished the exploration of the standard. Participants were asked to pick the 

matching stimulus that corresponded to the standard that they had just explored. During 

matching, only one stimulus was visible and/or felt at a time, and the participants were aware 

that the stimuli were arranged in the order of grit values. The exploration started randomly 

either from the roughest (i.e., 40 grit) or the finest (i.e., 220 grit) matching stimulus (following 

the procedure of Lederman & Abbott [5]). The experimenter moved the rotating table as per 

the verbal instructions from the participants (e.g., “next”, “go back”) until a match was chosen, 

thus concluding the matching trial (i.e., session). Please note that at no point was the term 

‘roughness’ mentioned in the instructions of the experimenter, participants were simply asked 

to choose the closest match out of the available textures. Participants received no feedback 

about their performance at any point during the experiment.  

The order of presentation of exploration and matching conditions was randomised. Each 

participant completed each of the nine exploration-matching combinations in different 

sessions, each consisting of one experimental trial (Fig 1C). To avoid possible learning effects, 

the sessions were completed on separate days. In the first session, participants’ visual and 

tactile acuity was assessed, they completed the haptic preference questionnaire (i.e., NFT 

Scale), and performed one matching trial. This session took just under one hour to complete. 

Consecutive matching sessions lasted no longer than five minutes, but no time restrictions were 

imposed during the exploration or matching. 

Setup and procedure were identical in Experiments 1 and 2. Experiments only differed in the 

angle from which the stimuli were illuminated. Participants completed the first nine sessions 

in Experiment 1, followed by nine sessions with oblique illumination angle in Experiment 2. 

Since we assumed that the illumination in Experiment 1 closely resembles the illumination 

originally employed by Lederman and Abbott [5], the rationale for performing illumination 

conditions in separate (and subsequent) experiments was to separate the replication of 
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Lederman and Abbott’s study from the more exploratory investigation of the effects of oblique 

illumination in this paradigm (see pre-registration).  

 

Deviations from pre-registered protocol 

In the pre-registration (https://osf.io/nzb78), we suggested excluding participants who verbally 

commented on a perceived discrepancy in the visuo-tactile standard. Surprisingly, most of our 

participants commented on a potential sensory discrepancy at different points during 

Experiments 1 and 2. This was unexpected as Lederman and Abbott [5] stated that none of 

their participants reported having noticed a sensory discrepancy in a follow-up questioning 

despite using the same discrepant standard. Importantly, the detection of a sensory discrepancy 

in our experiments was neither due to accidental tactile exposure to the visual stimulus (as the 

experimenter watched participants’ hand movements during the exploration phase) nor to a 

lack of naivety about the purpose of the study (which none of our participants guessed 

correctly). We suspect that the prolonged exposure may have given more opportunities for the 

participants to detect and comment on a discrepancy. Since previous studies indicated that 

awareness of a sensory conflict has little or no effect on reported perception in discrepancy 

paradigms ([28]; for a review, see [18]), we decided against excluding participants based on 

these comments. Limitations that this could possibly impose on our results are discussed in 

more detail in the “Discussion” section. 

Data analysis 

We manually recorded the numerical grit values of our participants’ matches. As outlined in 

the pre-registration document, the individual matches in Experiments 1 and 2 were analysed 

using a 3 (exploration modality: V, T, and VT) x 3 (matching modality: V, T, and VT) repeated-

measures ANOVA. In line with Lederman and Abbott [5], significant main effects of 
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exploration and matching modalities were followed up with the examination of the differences 

between the uni- and bimodal matches using paired-samples t-tests.  

Some of the statistical comparisons we chose were not anticipated in the pre-registration, and 

thus not planned. For these non-planned (and labelled as such) comparisons, Bonferroni-Dunn 

corrections were applied. For all analyses, a significance level of ⍺ = 0.05 was used. Means are 

presented with ±1 SEM (between subjects). 

Following Lederman and Abbott [5], we calculated the modality weights by averaging grit 

values over the three matching conditions. Equations 1 and 2 show how the weights for the 

visual (1) and tactile (2) modalities were computed (also see [5], page 906): 

% 𝑣𝑖𝑠𝑢𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡: 𝑤𝑉 =
𝑀𝑒𝑎𝑛 (𝑉𝑇 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑) − 𝑀𝑒𝑎𝑛(𝑇 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑)

𝑀𝑒𝑎𝑛 (𝑉 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑) − 𝑀𝑒𝑎𝑛 (𝑇 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑)
𝑥 100               (1)  

 

% 𝑡𝑎𝑐𝑡𝑖𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡: 𝑤𝑇 =
𝑀𝑒𝑎𝑛 (𝑉 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑) − 𝑀𝑒𝑎𝑛(𝑉𝑇 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑)

𝑀𝑒𝑎𝑛 (𝑉 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑) − 𝑀𝑒𝑎𝑛 (𝑇 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑)
𝑥 100               (2)  

T refers to the mean grit values of all matches (visual, tactile and visuo-tactile) made following 

the exploration of the tactile standard, V to the mean of all matches made to the visual standard, 

and VT to the mean of all matches made to the discrepant visuo-tactile standard. 

These equations were derived from assuming a weighted averaging model of visuo-tactile 

integration with the weights adding up to 1 (Equation 3; also see [1]). 

𝑉𝑇 =  𝑤𝑉 𝑉 + 𝑤𝑇 𝑇, 𝑤𝑖𝑡ℎ 𝑤𝑉 +  𝑤𝑇 =  1           (3)  

Using the within-subjects design allowed us to also calculate the individual visual and tactile 

weights: individual modality weights were based on the average of three matching trials per 

participant and condition. We used paired-samples t-tests to determine whether the weights of 

the two modalities significantly deviated from equal modality weighting. 
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Finally, to test if illumination affected matching performance, we conducted a 3 (exploration 

modality: V, T, VT) x 2 (illumination: top vs oblique) repeated-measures ANOVA. This 

analysis included the data from the ten participants who completed both experiments. We also 

determined the effect of illumination on the modality weights using a paired-samples t-test. 

Analyses were performed using JASP, R (RStudio IDE) and SPSS.  

Tactile acuity and haptic preference measures 

Prior to the discrepancy matching task, we also assessed participants’ tactile acuity in a 

standardised grating orientation task (JVP Domes [25]), as well as their preferences for 

extracting and using haptic information using a standardised questionnaire (Need for Touch 

(NFT) Scale [26]). The tactile acuity task required participants to discriminate between vertical 

and horizontal orientations of differently spaced grating patterns of a small plastic dome 

(grating spaces of 0.35, 0.5, 0.75, 1.0, 1.25, 1.5, 2.0, 3.0 mm) applied to the index finger pad 

of participants’ dominant hand (2-AFC task). Each dome was administered 10 times (5 in each 

orientation) in random order resulting in a total of 80 trials. Tactile spatial acuity was 

determined as the 75% threshold of correct responses and provides an estimate of participants’ 

cutaneous spatial resolution. The NFT Scale consists of 12 questionnaire items that assess two 

dimensions of haptic experience (‘autotelic’ and ‘instrumental’). It requires participants to 

indicate their agreement on a 7-point Likert scale (‘Strongly disagree’ to ‘Strongly agree’). For 

both NFT scores and tactile acuity thresholds, we determined their correlation with the tactile 

weights in the discrepancy matching task.  
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Results 

Experiment 1: Top illumination: Replication of Lederman & 

Abbott (1981) 

We were interested in the differences in the matching grit values between the unimodal (i.e., 

visual and tactile only) and the discrepant bimodal (i.e., combined visuo-tactile) exploration 

conditions and whether those varied with matching modality. Based on the findings of 

Lederman and Abbott [5], we expected that the matches chosen after the exploration of the 

discrepant standard (i.e., VT-T, VT-V and VT-VT) would be roughly halfway between the 

matches made after unimodal tactile (60 grit) and unimodal visual (150 grit) exploration, i.e., 

around 105 grit.  

Figure 2 shows the mean matches for the three exploration and matching modalities (2A) as 

well as the mean matches averaged across matching modalities (2B, i.e., the average for each 

of the three lines in 2A; note 2C and 2D show results for Experiment 2). As predicted, the 

average matches in the discrepant bimodal exploration condition were in-between the matches 

made after visual or tactile unimodal exploration for all three matching modalities. As 

expected, matches made after unimodal visual or tactile exploration were close to the grit 

values explored in those conditions (i.e., 60 grit tactile and 150 grit visual).  
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Fig 2. Mean matches in the top and oblique illumination experiments. Panels A and B refer to the top 

illumination (Experiment 1), C and D to the oblique illumination (Experiment 2) experiments. (A, C) Mean 

matches as a function of matching and exploration modalities. (B, D) Mean matches for the three exploration 

modalities averaged over the three matching modalities. Horizontal lines at 60 and 150 represent the grit values 

associated with the standards. Please note that the horizontal line at 105 grit represents the average of the visual 

(150 grit) and tactile (60 grit) standards. Error bars denote ±1SEM (between subjects). Figs A and C directly 

correspond to Fig 2 in Lederman & Abbott [5]. 

 

To test those observations statistically, we conducted a 3 (exploration modality: V, VT, T) x 3 

(matching modality: V, VT, T) repeated-measures ANOVA on the individual matches. As 

predicted, our analysis revealed a main effect of exploration modality (F(2,22) = 55.25, p < 

.001, ηp
2= .834). Planned pairwise comparisons confirmed that the tactile standard was 

perceived as significantly rougher (63 ±5 grit) than the visuo-tactile standard (104 ±6 grit; t(11) 

= -5.00, p < .001), and the visuo-tactile standard as significantly rougher than the visual 

standard (146 ±5 grit; t(11) = 4.36, p = .001, Fig 2B). These results were expected as different 

standards were examined in the tactile (60 grit) and visual (150 grit) exploration conditions and 
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are also in line with those reported by Lederman and Abbott [5]. One-sample t-tests further 

confirmed that there were no statistically significant deviations from the expected values for 

the tactile standard (60 grit; t(11) = 0.61, p = .61) and the visual standard (150 grit; t(11) = -

0.83, p = .42). Furthermore, the matching values for the discrepant visuo-tactile standard did 

not differ from the average of the two unimodal standards (105 grit; t(11) = -0.13, p = .90). 

Contrary to Lederman and Abbott, the repeated-measures ANOVA revealed no significant 

main effect of matching modality, F(2,22) = 2.86, p = .079, ηp
2 = .206. The interaction between 

exploration modality and matching modality was also not significant, F(4,44) = 1.02, p = .41, 

ηp
2 = .085.  

To calculate the relative modality weights in the discrepant condition, we first averaged the 

matches over the factor matching modality (i.e., three trials per participant and matching 

modality, resulting in one matching value per exploration modality). Then, weights were 

computed using the weighted averaging model (see Equations 1 and 2) suggested by Lederman 

and Abbott [5]. Figure 3 shows the averaged (3A) and individual weights (3C;  note that 3B 

and 3C also show data for Experiment 2, see below). Averaged across all our participants, we 

found a mean visual influence of 52.4%, and thus a tactile influence of 47.6% (±12.5%, Fig 

3A). Note that visual and tactile weights always add up to 100% using this model. These 

weights were very close to those reported by Lederman and Abbott who found a visual 

influence of 49.3% and a tactile influence of 50.7%. A paired-samples t-test showed that the 

difference between the visual and tactile weights was not significant, t(11) = 0.19, p = .85, 

further confirming an equal contribution from both modalities.  
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Fig 3. Tactile and visual modality weights in the two experiments. Panel A refers to top illumination 

(Experiment 1), panel B to oblique illumination (Experiment 2), and panel C to both experiments. Visual weights 

are 1 - tactile weights and are plotted for illustrative purposes only. (A, B) Black dots denote the mean, and error 

bars denote ±1SEM (between subjects). Grey dots in A highlight the two participants who completed the top but 

not the oblique illumination experiment (participants 2 and 8). (C) The two experiments are denoted with different 

bar line types (top: solid line; oblique: dotted line). 

 

Further, we aimed to determine if equal modality weights also occur on an individual level. As 

can be seen from Fig 3A (and solid bars in 3C), we observed clear individual differences in 

modality weights. It seems that while the two modalities are weighted about equally for some 

participants, others showed pronounced modality preferences. For three participants, we found 

weights that were outside the 0-100% range: two participants, 9 and 10, showed nearly 

complete tactile dominance, while participant 1 showed a visual weight well above 100%, and 

therefore a negative tactile weight (see Fig 3C). Weights outside the 0-100% range indicate 

that matches (i.e., grit values) for the discrepant visuo-tactile standard were outside of the range 

of matches that the participant selected for the unimodal visual and tactile standards. For 

example, Participant 1 chose an average match of 57 grit after exploring the tactile standard 
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(60 grit), an average match of 117 grit after exploring the visual standard (150 grit) but an 

average match of 150 grit after exploring the discrepant visuo-tactile standard (60 grit tactually 

and 150 grit visually). This may potentially happen if the participant experienced a strong 

discrepancy between the visual and haptic stimuli and, therefore, assumed that the two sensory 

inputs emanated from different physical events ([29, 18], see discussion for more information). 

Overall, our results replicate Lederman and Abbott’s [5] original findings confirming an 

approximately equal weighting of vision and touch in texture perception across participants. In 

addition, our findings reveal some inter-individual variations in the weighting of visual and 

tactile information. The weights found for some participants suggest that they may have 

experienced a discrepancy too large for visuo-tactile integration to take place.  

Experiment 2: Oblique illumination  

In Experiment 2, we aimed to explore the effects of oblique illumination on texture/roughness 

perception and visuo-tactile integration. We expected that an oblique illumination angle would 

result in the visual standard and matching stimuli being perceived as overall rougher (see [23]). 

An increase in perceived roughness of the visual standard would result in a reduction of the 

perceived discrepancy between the visual and the tactile standard which, in turn, may affect 

the weights given to this information in the discrepant exploration condition. 

Compared to the illumination from the top in Experiment 1 (i.e., top illumination), the 

illumination angle was lowered in Experiment 2 (i.e., oblique illumination). Otherwise, the 

experiment and data analysis remained identical to Experiment 1 (Fig 1).  

Figure 2C shows the mean matching responses for the three exploration and matching 

modalities for Experiment 2. As in Experiment 1 (Fig 2A), the selected matches (averaged 

across matching modality) were close to the grit values of the visual and tactile standards after 

unimodal exploration, and in between those values after bimodal discrepant exploration (Fig 
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2D). The 3 (exploration modality: V, T, VT) x 3 (matching modality: V, T, VT) repeated-

measures ANOVA on the individual matches revealed, again, a main effect of exploration 

modality, F(2,18) = 121.83, p < .001, ηp
2= .931. Planned post-hoc comparisons show that the 

matches to the tactile standard (58 ±2 grit) were significantly rougher than matches to the visuo-

tactile standard (100 ±3 grit; t(9) = -9.0, p < .001). Moreover, matches to the visuo-tactile 

standard were significantly rougher than the matches to the visual standard (141 ±6 grit; t(9) = 

9.4, p < .001, Fig 2D). One-sample t-tests showed that there were no statistically significant 

deviations of the matches for the tactile (i.e., 60 grit; t(9) = 0.69, p = .51) and the visual 

standards (i.e., 150 grit; t(9) = -1.61, p = .14) when compared to the actual grit values explored. 

Again, the average visuo-tactile match was also not significantly different from the average of 

the two unimodal standards (i.e., 105 grit; t(9) = -1.65, p = .13).  

Similarly to the original findings by Lederman and Abbott [5] but contrary to our 

findings from Experiment 1, we found a significant main effect of matching modality, F(2,18) 

= 29.05, p < .001, ηp
2
 = .763. However, this effect cannot be meaningfully interpreted as there 

was also a significant interaction between exploration and matching modality, F(4,36) = 4.95, 

p = .003, ηp
2 = .355. In order to understand the differential effects of matching modality on 

matches made in the different exploration conditions, we conducted post-hoc repeated-

measures ANOVAs with the factor matching modality (V, T, VT) separately for each of the 

three exploration conditions. These analyses revealed that neither for tactile exploration, 

F(2,18) = 1.22, p = .32, ηp
2 = .12, nor for visual exploration, F(2,18) = 3.07, p = .07, ηp

2 = .25, 

were the matches significantly affected by the matching modality. In contrast, for the bimodal 

exploration of the discrepant standard, matching modality had a significant effect on the 

selected matches, F(2,18) = 25.10, p < .001, ηp
2 = .74. In the bimodal exploration condition, 

the unimodal matches (VT-T and VT-V) were closer to the grit values of the unimodal 
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standards, respectively (see [5] for a similar observation and comparison between Experiments 

1 and 2 for a more detailed discussion).  

Modality weights are shown in Fig 3B. Again, we found on average an equal weighting of 

visual (50.5%) and tactile information (49.5% ±4%), t(9) = .14, p = .90, thus again replicating 

Lederman and Abbott’s [5] findings for oblique illumination. Interestingly, the inter-individual 

variability in modality weights seemed substantially reduced as compared to Experiment 1 

(compare Fig 3A and B), and the weights of all participants were within the 0-100% range. To 

analyse the effects of illumination angle in more detail, we compared the matches and modality 

weights in the two experiments. 

Comparison of Experiments 1 and 2: Effects of Illumination angle 

on visuo-tactile integration 

We compared how the matches and modality weights differed when the stimuli were 

illuminated from the top (Experiment 1) and from an oblique angle (Experiment 2) for those 

participants that finished both experiments (N=10).  

Based on the work by Ho et al. [23], we expected the change in illumination angle in 

Experiment 2 to result in systematic changes in the visual appearance of the visual standard 

and the visual matching stimuli. Specifically, we expected the visual standard to appear rougher 

and, therefore, likely to be matched to a lower grit value tactually compared to the 

corresponding match in Experiment 1 (V-T condition). Additionally, the tactile standard may 

be matched to a smoother matching stimulus visually (T-V condition) than in Experiment 1 

because of the overall rougher visual appearance of the matching stimuli under oblique 

illumination. Descriptively, tactile matches to the visual standard (V-T condition) decreased 

slightly in Experiment 2 (123 ±12 grit) as compared to Experiment 1 (137 ±14 grit), but this 

change was not statistically significant, t(9) = 0.74, p = .48. There was also no evidence that 
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participants selected larger grit values visually after exploring the tactile standard (T-V 

condition: 70 ±12 grit in Experiment 1 vs. 58 ±5 grit in Experiment 2; t(9) = 1.04, p = .33).   

To test if illumination and exploration modality affected the selected matches, we 

conducted a 2 (illumination: top, oblique) x 3 (exploration modality: V, T, VT) repeated 

measures ANOVA averaged across matching modality. As expected, this analysis revealed a 

significant effect of exploration modality, F(1,9) = 104.1, p <.001, ηp
2 = .92, indicating that 

matches were roughest for exploration of the tactile standard (61 ±4 grit) and least rough for 

exploration of the visual standard (143 ±4 grit), with matches to the discrepant standard falling 

in between the two (102 ±5 grit). However, there was no main effect of illumination and no 

interaction between the two factors (both p > .20, ηp
2 <.17), suggesting that participants made 

similar matches in both illumination conditions. 

As discussed above, the most pronounced changes between the matches in the two 

illumination conditions were observed for the unimodal matches in the bimodal (VT) 

exploration condition (Fig 2, conditions VT-T and VT-V). To further explore this observation 

statistically, we performed a 2 (illumination: top, oblique) x 3 (matching modality: V, T, VT) 

repeated-measures ANOVA (none pre-registered analysis) on the matches made in the 

discrepant exploration condition (i.e., VT-). While there was no main effect of illumination, 

F(1,9) = 0.20, p  = .66, ηp
2 = .022, the main effect of matching modality was significant, F(2,18) 

= 8.47, p = .003, ηp
2 = .49, as was the illumination x matching modality interaction effect, 

F(2,18) = 6.46, p =. 008, ηp
2 = .42. This interaction effect seems to be driven by the fact that in 

the oblique illumination condition, the unimodal matches (i.e., VT-T and VT-V) were closer 

to the grit values of the visual standard when matching visually and closer to the tactile standard 

when matching tactually than in the top illumination condition (i.e., VT-T: matched 82 grit 

under top and 66 grit under oblique illumination; VT-V: matched 117 grit under top and 142 

grit under oblique illumination). Note that the observation that the matches selected for the 
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discrepant standard are biased toward the modality with which the match is made, mirrors the 

findings and observations of Lederman and Abbott ([5], see their Fig 2).  

Importantly, the finding that after bimodal exploration, participants select visual and 

tactual matches that are close to the respective visual and tactile standards, seems consistent 

with the assumption that the discrepancy between the visual and tactile standards was reduced 

under oblique illumination (i.e., the visual standard appears rougher and thus closer to the 

tactile standard). To make this reasoning clearer: Once participants had explored the discrepant 

VT-standard bimodally (i.e., using vision and touch simultaneously), they were asked to either 

match the stimulus using vision (VT-V) or touch (VT-T) only. If they experienced little or no 

discrepancy during exploration, they would be expected to select a match close to the respective 

unimodal standards (i.e., 60 grit haptically and 150 grit visually). If asked to select the match 

bimodally (VT-VT) participants would still need to resolve a mismatch given that the 

discrepant standard they had explored was not available in the array of matching stimuli. It is 

possible that the change in illumination angle that resulted in the decrease of the discrepancy 

in the standard at the same time also increased the discrepancy in the matching stimuli. The 

finding that the VT-VT matches remained largely the same for the two illumination angles is 

consistent with this assumption. However, as discussed in the introduction, assuming that 

visual and tactile senses are similarly accurate, it is impossible to tell for a non-discrepant 

standard whether the information is integrated or whether one of the senses is ignored when 

making a judgement as both would result in the same match. Yet, as we find integration under 

top illumination, there seems no good reason to assume that sensory dominance should occur 

under oblique but not under top illumination, since sensory dominance is more likely when a 

discrepancy is increased rather than reduced (e.g., [12, 18]).  

Finally, we wanted to assess if the illumination angle affects the weights given to the two 

modalities. As shown in Figs 3A and 3B, on average, about equal modality weights for vision 
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and touch were observed in both illumination conditions, t(9) = 0.059, p = .95 (wV = 51.5 

±15.1% in Experiment 1; and wV = 50.5 ±4.0% in Experiment 2; both N=10). However, what 

is notable (Fig 3C), is the reduced inter-participant variability when stimuli were illuminated 

from an oblique angle (Experiment 2). While a number of participants seemed to show some 

modality preferences in Experiment 1, with three participants showing behaviour inconsistent 

with a weighted averaging model, this did not occur in Experiment 2. To test this observation 

statistically, we conducted a Levene’s Test for the equality of variances for paired samples [30-

31] on the haptic weights of Experiments 1 and 2 (none pre-registered test). This test confirmed 

that variances in modality weights were smaller in Experiment 2, t(9) = 2.32, p = .02 (one-

sided).  

Finally, we were interested in exploring whether individual modality weights correlated under 

the two different illumination conditions (none pre-registered analysis). Interestingly, we 

observed no significant correlation between modality weights, r(10) = -.11, p = .75. The fact 

that participants’ modality weights were uncorrelated in the two illumination conditions may 

suggest that these weightings do not relate to specific individual preferences or sensitivities but 

may instead more strongly be influenced by task-related/environmental factors.  

This observation is further supported by the finding that tactile weights neither correlated with 

the spatial tactile acuity thresholds (as determined by the JVP Domes), despite relatively large 

individual differences (range: 0.68 to 2.38 mm, mean: 1.39 mm ±0.13, both p > .74) nor with 

the participants’ preferences in engaging in haptic interactions as determined by the NFT Scale 

(all p > .22). However, given the relatively small sample size, the lack of correlations should 

be interpreted with caution (see also pre-registration).  
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Discussion 

The main aim of our study was to test whether the almost equal weighting of modality 

contributions – as seen in Lederman and Abbott [5] on a group level – also holds on an 

individual level. Lederman and Abbott employed a between-subjects design meaning that 

weights could not be calculated for each participant separately but were instead determined 

across the whole sample. Consequently, it remained unspecified if the equal contribution from 

the two modalities occurred consistently across participants or may have been, in part, due to 

averaging responses across participants that were strongly biased either towards the visual or 

tactile modality (see [5], page 911, for discussion of this issue). Using the same task, stimuli 

and a comparable setup, but employing a within-subjects design, allowed us to compute 

individual modality weights and thus determine inter-individual differences. We also tested 

different illumination conditions to explore whether and how illumination affects texture 

perception and modality weights in a discrepancy paradigm. In both experiments, we found, 

on average, equal weighting of visual and tactile modalities. Hence, we replicated Lederman 

and Abbott’s findings consistently across both top and oblique illumination conditions.  

Our exploration of individual differences provided some interesting new insights into the 

processing of discrepant visuo-tactile information. Specifically, we found larger inter-

individual variations in the relative weights with illumination from the top (Experiment 1) with 

some participants showing a stronger preference for tactile and others for visual information. 

For one participant, we observed weights clearly outside of the expected 0-100% range and for 

another two participants tactile weights close to 100%. In contrast, for oblique illumination 

(Experiment 2), inter-individual variability was reduced, and all weights fell within the 

expected range. 

It has been argued that multisensory integration depends on the amount of discrepancy that is 

introduced between the different modalities. As the experienced discrepancy becomes too 
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large, one of the input modalities may be discounted resulting in visual or tactile dominance 

[12, 18]. This may have occurred for some participants in Experiment 1 thereby explaining the 

overall larger inter-individual variability. Furthermore, a number of participants mentioned that 

they noticed a discrepancy between the visual and tactile standards in Experiment 1. Previous 

literature suggests that awareness of a discrepancy alone has little effect on participants’ biases 

as long as they still believe that the same object/stimulus is explored (e.g., [18, 28]). However, 

if participants no longer believe that their visual and tactile sensations originate from the same 

physical stimulus, no inter-sensory discrepancy is experienced, and thus no integration is 

expected to occur. In this case, it is difficult to predict on what basis participants select their 

matches if the task requires them to do so, but it may result in modality weights that are no 

longer within the expected range (i.e., 0-100%). This might have been the case for participant 

1 whose visual weight exceeded the 100% mark (see Fig 3C). 

There are two potential explanations for the reduced inter-individual variability in Experiment 

2. Firstly, as all participants completed the top illumination condition first (in order to separate 

the replication of Lederman and Abbott’s [5] study from the exploration of the effect of 

illumination angle), one could speculate that reduced variability may simply be due to training 

effects. However, even though this explanation seems quite straightforward, we deem it 

relatively unlikely for a number of reasons. First, participants only performed a total of nine 

trials under top illumination and never received any feedback about their performance in this 

condition. Second, all trials/sessions were performed on separate days, with participants 

completing all 18 trials/sessions over the course of several weeks. Third, variations between 

stimuli were relatively subtle. Whatever participants may have learnt in Experiment 1 about 

the mapping between visual and tactile experience and the range of the matching stimuli, might 

not have been applicable in Experiment 2 because of the change in the visual appearance of the 

standard and the matching stimuli. This argument is further supported by the lack of a 
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correlation between the modality weights in the two experiments, suggesting that discrepant 

information may have been processed differently in the two tasks (i.e., dominance vs. 

integration).  

Hence, we think that the reduced inter-individual variability in performance under oblique 

illumination may be better explained by the assumption that the perceived roughness of the 

visual standard was increased, which in turn would reduce the perceived discrepancy of the 

visuo-tactile standard. In particular, we found that after bimodal exploration, the unimodal 

tactile matches were close to the grit value of the tactile standard while the unimodal visual 

matches were close to the grit value of the visual standard (i.e., steep VT exploration line in 

Figure 2C). This is in line with the notion that the experienced discrepancy was reduced in the 

oblique illumination condition because with decreasing experienced discrepancy when 

exploring the visuo-tactile standard bimodally, the need for compromise between the two 

senses also decreases. Interestingly, the results of Experiment 2 (Fig 2C) appear to more closely 

resemble the findings by Lederman and Abbott (see their Fig 2, page 907), which might 

indicate that our oblique illumination provided a closer approximation of participants’ visual 

experience in their Experiment 1.  

Under both illumination conditions, participants quite accurately matched the visual and tactile 

standards in the unimodal exploration conditions to the correct matching stimulus within and 

across modalities. This seems, at first glance, to contradict the findings of Brown [21] and Ho 

et al. [23]. Brown [21] observed larger accuracy for visual performance under oblique 

illumination. While our task was not particularly suited to thoroughly investigate the accuracy 

of matching performance, our results reveal similar accuracy in matching the unimodal 

standards to the correct matching stimulus (i.e., 60 grit tactually and 150 grit visually) in the 

two illumination conditions. Furthermore, to concur with Ho et al., we might have expected 
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the participants to match the visual standard to a rougher matching stimulus tactually (V-T 

condition), and the tactile standard to a less rough matching stimulus visually (T-V condition) 

under oblique illumination. Descriptively, the visual match was perceived as rougher after 

tactile exploration (T-V condition) in Experiment 2, but those observations were not 

statistically significant. However, in contrast to Ho et al., our comparisons were made cross-

modally and, most importantly, based on a relatively coarse (and thus probably not sensitive 

enough) grit scale. The fact that the variability of weights (and of the matches) changed with 

illumination is, however, in line with the supposition that perceived roughness increased under 

oblique illumination and therefore indirectly corroborate the findings by Ho et al., that the 

perceived visual roughness changes with illumination angles.  

Finally, we also wanted to explore if and how tactile weights correlate with haptic preferences 

and tactile acuity, especially in cases where we observed large differences in individual 

weights. For example, in Experiment 1, some participants seemed biased towards the visual or 

tactile modality to varying degrees. However, no correlations with tactile acuity measures and 

haptic preferences were observed. Together, with the lack of a correlation between the weights 

in the two experiments, this seems to speak against a consistent influence of individual 

modality preferences and acuity measures. This is also in line with previous studies that failed 

to establish a clear link between tactile acuity and tactile experience with the size of individual 

haptic biases [16, 22], as well as between tactile acuity and roughness discrimination 

performance [32]. Note though, that our sample size might have been too small to detect 

potential correlations, so it may be worth assessing this further in studies using larger samples.  

Conclusion 

We replicated Lederman and Abbott’s [5] finding of an equal visuo-tactile contribution in 

surface texture perception on a group level under two different illumination conditions. Our 
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within-subject design further revealed substantial inter-individual variations in modality 

weights. More specifically, we found that equal weighting of sensory information seems to 

hold only within a limited range of experienced discrepancy, and this range may vary between 

participants. Outside of this range, participants may no longer integrate information from 

different modalities, but may instead discount information from one modality (for a similar 

argument, see [12, 33]). 
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