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Highlights 

x We developed FateCompass, a flexible pipeline to estimate transcription factor activities 

during cell-fate decision using single-cell RNA seq data.  

x FateCompass outlines gene expression stochastic trajectories by infusing the direction of 

differentiation using RNA velocity or a differentiation potential when RNA velocity fails.   

x Transcription factor dynamics allow the identification of time-specific regulatory interactions. 

x FateCompass predictions revealed known and novel cell-subtype-specific regulators of mouse 

pancreatic islet cell development. 

x Differential motif analysis predicts lineage-specific regulators of stem cell-derived human ɴ-

cells and sheds light on the cellular heterogeneity of ɴ-cell differentiation protocols. 
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Abstract 

Transcriptional regulation is a fundamental process during cell subtype specification. By modulating 

the rate of gene expression dynamically, transcription factors promote cell diversity and functional 

specialization. Despite their crucial role in cell fate decisions, no experimental assays allow the 

estimation of transcription factors͛ regulatory activity in a high-throughput manner and at the single-

cell resolution. Here, we present FateCompass, a computational method for identifying lineage-

specific transcription factors across differentiation. Our pipeline uses single-cell RNA sequencing data 

to infer differentiation trajectories and transcription factor activities. We combined a probabilistic 

framework with RNA velocities or a differentiation potential to estimate transition probabilities and 

perform stochastic simulations. Also, we implemented a linear model of gene regulation to learn 

transcription factor activities. Taking into account dynamic changes and correlations, we identified 

lineage-specific regulators. We applied FateCompass to an islet cell formation dataset from the mouse 

embryo, and we found known and novel potential cell-type dependent drivers. Also, when applied to 

a differentiation protocol dataset of human embryonic stem cells towards beta-like cells, our approach 

pinpointed undescribed regulators of an off-target population of intestinal-like cells. Thus, as a 

framework for identifying lineage-specific transcription factors, FateCompass could have broader 

implications on hypothesis generation to increase the understanding of the gene regulatory networks 

driving cell fate choices during differentiation.  

Introduction 

Gene regulation is pivotal during many biological processes, including development, cell cycle, 

regeneration, reprogramming, and cancer, and it usually occurs in a cell- and stage-dependent mode 
1. Notably, cells transition from a less to a more differentiated state during differentiation via the 

interplay of transcriptional regulation events in a highly dynamic manner 1,2. Transcription factors (TFs) 

are essential proteins that have the ability to bind specific DNA regulatory regions and link signaling 

transduction networks to gene-specific transcriptional regulation 3; hence they are commonly used as 

readouts of pathway activities. Currently, there are no high-throughput techniques to measure TF 

activity; instead, their direct product, gene expression level, can be measured with an unprecedented 

high resolution using single-cell transcriptomics.  

Single-cell RNA sequencing (scRNAseq) techniques allow identifying different cell types and, more 

importantly, the study of lineage-specification at the single-cell resolution 4. The inherent asynchrony 

of scRNAseq data has allowed the development of several approaches to reconstruct differentiation 

trajectories, which rely on variation among cell types within the captured population 5. The developed 

computational techniques include pseudotime methods 6,7 and RNA velocity 8,9. Noteworthy, 
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pseudotime algorithms depend on the previous knowledge of the initial state, and it is limited to the 

analysis of general trends of biological progressions rather than the precise dynamics of individual 

cells. Conversely, RNA velocity overcomes the limitation of the directionality by leveraging the splicing 

kinetics and predicting the RNA expression states in the near future. Nevertheless, it has intrinsic 

limitations, e.g., when the spliced-to-unspliced mRNA ratio is trendless or in predicting the continuous 

evolution of cells over a long period of time 10,11. Typically, differentiation trajectories are used together 

with differential gene expression analysis to identify TFs specific to a given cell type 12. However, this 

approach ignores the fact that even lowly expressed TFs can have high regulatory activity, and it does 

not consider direct regulatory interactions with target genes. On the other hand, several methods to 

derive mechanistic signatures in cell-fate decisions from transcriptomics data have been proposed, 

including ISMARA 13 and DOROTHEA 2 for bulk RNA seq; and SCENIC 14 and metaVIPER 15 for scRNAseq. 

However, except for ISMARA, they are based on correlations between the expression of TF transcripts 

and the TF target genes or the expressed genes in general. Using correlations requires further 

assumptions or perturbation assays to distinguish causal relationships. Furthermore, none describes 

the dynamic change of TF activity throughout the cell-fate decision process, which is pivotal in time-

dependent systems. The challenge is to devise a robust workflow that infers cell-type-specific 

regulators dynamically.  

Here, we present FateCompass, a workflow that aims to identify lineage-specific TFs for a system 

undergoing differentiation. First, we outlined differentiation trajectories from progenitor cells to final 

states using a discrete Markov Process on a network. This allows us to describe stochastic gene 

expression dynamics during the cell fate process incorporating RNA velocity or differentiation 

potentials to infuse the differentiation direction. Then, we inferred TF activities by modeling the 

observed gene expression as a linear combination of the regulatory sites and the TF activity. Finally, 

we performed a differential TF activity analysis using statistical criteria. We applied FateCompass to a 

pancreatic endocrine differentiation system, where endocrine progenitors, marked by the transient 

expression of the TF Neurog3, differentiate towards glucagon-ƉƌŽĚƵĐŝŶŐ�ɲ-cells and insulin-producing 

ɴ-cells, among others 16. We analyzed a well-characterized scRNAseq dataset from the developing 

mouse pancreas 17. FateCompass identified known and novel lineage-specific regulators; among them, 

Arx and Nkx6-ϭ� ĂƐ� ɲ- ĂŶĚ� ɴ-specific, respectively. Further, to demonstrate the capabilities of 

FateCompass, we used a scRNAseq experiment from the differentiation of human stem cells towards 

pancreaƚŝĐ�ɴ-like cells 18. Of note, this complex population includes, besides the expected endocrine 

cells, an off-target population of intestinal cells called enterochromaffin (EC). FateCompass identified 

ŶŽƚ�ŽŶůǇ�ɲ- ĂŶĚ�ɴ-specific but also EC-specific known and novel factors such as CDX2. FateCompass 
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boosts the ability to identify lineage-specific regulators by estimating TF activities dynamically. 

revealing time-specific transcriptional regulatory interactions underlying cell-subtype specification. 

Results 

Inferring dynamic transcription factor activity during cell subtype specification  

The FateCompass workflow aims to identify lineage-specific transcription factors for a cellular system 

undergoing differentiation. To mechanistically understand the dynamic transcriptional interactions 

underlying a cell subtype specification process, we designed a three-step pipeline using scRNAseq (Fig. 

1). First, to depict the system's dynamics, we outlined differentiation trajectories from progenitor cells 

to final states using a discrete Markov Process on a network representing cell states and possible 

transitions. Next, we focused on TFs as readouts of pathway activity due to their direct role in cell-

specific transcriptional regulation. Hence, we inferred TF activities using a linear model of gene 

regulation, as in the original framework, ISMARA 13; we modeled the observed gene expression as a 

linear combination of the regulatory sites and the motif activity. Finally, to coarse-grain the list of TFs 

and identify lineage-specific regulators, we defined a differential motif activity analysis using three 

metrics. 

To infer the dynamic trends of the system undergoing differentiation and describe stochastic gene 

expression profiles along the cell-fate decision process, we used cell-to-cell similarity based on 

transcriptomic profiles together with RNA velocity 8 or a differentiation potential from progenitor to 

mature cells 19. Of note, single-cell transcriptomics provides a snapshot of intrinsically asynchronous 

cells that can be ordered based on similarities in the expression patterns to capture the time-evolution 

faithfully over the transition populations 4,20. Indeed, most trajectory inference methods using 

scRNAseq data assume that a cell change states in small transcriptional steps 5ʹ7,21. Similarly, 

FateCompass uses this assumption to model differentiation trajectories, except that we implemented 

a cell-dependent drift that biases the trajectories towards the direction of differentiation. Briefly, we 

represented the phenotypic manifold in a low-dimensional space using a Markov chain on a network 

(Fig 1A and Methods 1.1.1). To that end, we first embedded the gene expression data in a significant 

low-dimensional manifold using Uniform Manifold Approximation and Projection (UMAP) 22. Notably, 

UMAP was first developed for clustering and has proven to be more performant than other non-linear 

dimensionality reduction algorithms when the embedding dimension is higher than two 22,23. Next, we 

built a nearest-neighborhood graph in the low-dimensional space connecting each cell with the n most 

similar neighbors. Currently, RNA velocity is a well-accepted method to infer differentiation dynamics 

unbiasedly; however, some of the method's limitations lead to inconclusive velocity fields in some 

biological systems. For instance, some datasets might have, to name just a few, time frames out of the 
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initial modeling framework, insufficient unspliced counts in the key biological driver genes, and 

multiple kinetic regimes 10. Therefore, to make FateCompass flexible and applicable to any 

differentiating system, we used either the RNA velocity vector (Methods 1.1.3) or the gradient of 

Potential energy from progenitor cells to mature cells (Methods 1.1.4) to bias the transitions between 

states in the Markov process (Fig 1B). The resulting transition probabilities reflect both transcriptional 

and directional similarities. To ultimately describe the time evolution of the differentiating system, we 

used a Monte Carlo sampling algorithm where the next-jump probability was given by the transition 

matrix of the Markov chain (Methods 1.1.5). This approach is instrumental in estimating quantities of 

interest, e.g., gene expression or transcription factor activity over differentiation trajectories (Fig 1C&F 

and Methods 1.1.6).  

To decipher the transcriptional interactions driving cell subtype specification, we used TFs as a proxy 

because of their direct role in gene-specific transcriptional regulation 24. To predict TF activities during 

differentiation, we reasoned that changes in the transcriptional state, in response to developmental 

cues, are conditioned by conserved regulatory mechanisms Ͷ such as the interaction between TFs and 

promoters (Fig 1D). Similar to Balwierz et al. (2014), we used a linear model to infer TF activities 

(Methods 1.2.2). The primary assumption is that the transcription rate is controlled by the TF binding 

sites present in the promoters (Fig 1E and Methods 1.2.1); we considered promoters because of their 

direct assignation to the target genes based on their proximity to the transcriptional start site (TSS). 

There is no standard high-throughput way to assign reliably long-distant regulatory interactions such 

as enhancers to target genes. We defined a promoter region as the 2 kb region centered in the TSS. 

Importantly, we implemented a new regularization technique using data diffusion to control the 

ŵŽĚĞů͛Ɛ� ĐŽŵplexity and avoid overfitting (Methods 1.2.3). Shortly, we used the k-nearest 

neighborhood graph to smooth the learned activities correcting for dropout and other noise sources 
25. In the data diffusion regularization, the cells share information through the local neighbors by a 

process analogous to diffuse the data over the network. The t-step is akin to raising the diffusion 

operator to the tth power. We fitted the optimal value of t using a cross-validation scheme. 

Finally, to identify lineage-specific TFs, we defined a differential motif activity analysis based on three 

metrics (Fig 1G and Methods 1.3). Firstly, we reasoned that activities that are important to explain the 

expression variation across cells should be relevant in the cell-fate decision; we summarize this using 

the z-score (Methods 1.3.1). Next, we detected TFs whose activity profile over the differentiation 

trajectories was highly changingͶintuiting that these will have a crucial role in the state-transition 

process (Methods 1.3.2). Lastly, we acknowledge that for a TF to be active, it has first to be expressed; 

hence, we looked for TFs with high and positive dynamical cross-correlation (Methods 1.3.3). 

FateCompass boosts the ability to identify lineage-specific regulators by estimating TF activities 
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dynamically. The potential to identify relative-time-specific regulatory interactions opens the door for 

hypothesis generation on transcriptional regulation cascades underlying cell-subtype specification 

processes (Fig 1H). 

Delineating transcriptional regulators during mouse islet cell formation  

To assess the robustness of our workflow, we applied it to a well-characterized scRNAseq data set from 

the developing mouse pancreas with transcriptome profiles sampled from embryos at 15.5 days post-

coïtum (E15.5) 17. In the Pancreas, endocrine cells differentiate from endocrine progenitors marked by 

the transient expression of the basic helix loop helix (bHLH) transcription factor Neurog3 16. Bastidas-

Ponce et al. (2019) profiled pancreatic epithelial cells using a Neurog3-Venus fusion reporter mouse 

line, sequencing both Venus-positive and Venus-negative (Epcam+) cells using droplet-based 

scRNAseq (10X genomics chromium). We decided to test the capabilities of our workflow with the data 

from E15.5 (3696 cells) because at this time point, endocrine cell commitment ends in four major cell 

types: glucagon-ƉƌŽĚƵĐŝŶŐ� ɲ-cells, insulin-producing ɴ-cells, somatostatin-ƉƌŽĚƵĐŝŶŐ� ɷ-cells, and 

ghrelin-ƉƌŽĚƵĐŝŶŐ�ɸ-cells, Fig. 2A. Moreover, this dataset presents a strong directional velocity flow 

towards the final endocrine fates, Fig. 2A 9. 

To retrieve the dynamic profiles towards the final endocrine fates, we first embedded the data in a 

low-dimensional manifold using UMAP with ten dimensions, and we built a nearest neighborhood 

graph in the reduced space. Next, we leveraged the robust RNA velocity profile to direct the edges of 

the Markov chain, Fig. 2B; and estimated transition probabilities using a velocity-driven kernel (see 

Methods). We used the transition matrix with a Monte Carlo sampling algorithm to simulate stochastic 

gene expression profiles along the differentiation trajectories, which allowed us to plot gene 

expression trends. The time-evolution simulation showed that, after two thousand iterations, the 

simulations mainly ended in three of the final endocrine fates ɲ, ɴ, and Ԗ; with higher frequencies for 

ɲ (12.4%) and ɴ (77%), from now on we focused the analysis on these two lineages. In Fig 2C-C', we 

presented an example of the simulated trajectories for the final fates ɲ and ɴ. These fates clearly 

represent sinks during the endocrine cell-subtype specification. We computed fate probabilities 

utilizing the information of stochastic simulations. We asked how often a simulated random walk that 

visited a given cell ended up in any terminal index sinks. We summarized this information in a sink-

probability distribution (Fig 2D-D'). To verify the performance of our dynamic inference approach using 

different kernels, we also computed the transition probabilities with the gradient of potential energy 

as the drift. In this case we assumed that cells feel both repulsive and attractive forces with decreasing 

strengths as a function of their distances to progenitors and differentiated cells, respectively. As 

expected, we got similar sink-probabilities distribution (Supplementary figure 1). Of note, the inferred 

Fate probabilities follow the same trend of what has been reported for the same dataset using a 
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deterministic approach 26, validating the subjacent dynamics of the stochastic simulations. Moreover, 

this analysis accurately identifies the ɴ-fate as the most likely terminal fate for endocrine progenitors 

at E15.5, consistent with the previous biological knowledge 17,27. 

Next, to evaluate the dynamic profile of transcriptional regulators, we estimated TF activities from the 

behavior of the predicted target genes. Briefly, there will be an increased activity for a TF when its 

targets show, on average, an increase in expression that cannot be explained by the presence of sites 

for other TFs in their promoters 13. To objectively assess the inferred transcriptional dynamics, we 

looked at known lineage-specific regulators' expression and activity profiles. The TF Arx is essential for 

ƉƌŽƉĞƌ�ɲ�Đell formation 28, and unsurprisingly, it had high expression in ɲ�ĐĞůůƐ�;Fig. 2E). As expected, 

ƚŚĞ�ĞǆƉƌĞƐƐŝŽŶ�ƉƌŽĨŝůĞ�ŽĨ��ƌǆ�ŽǀĞƌ�ƚŚĞ�ɲ�ƚƌĂũĞĐƚŽƌŝĞƐ�ŝŶĐƌĞĂƐĞĚ�ǁŚŝůĞ�ŽǀĞƌ�ƚŚĞ�ɴ trajectories was flat 

(Fig. 2F). Similarly, the TF Nkx6-1 acts downstream Neurog3 16 and has been described as necessary for 

normal ɴ cell development 29. Indeed, it was highly expressed in ɴ cells (Fig. 2E'), and its expression 

profile increased only over ɴ trajectories (Fig. 2F'). Strikingly, we found high Arx and Nkx6-1 activity in 

both ɲ�ĂŶĚ�ɴ cells (Fig 2G-G'). We reasoned that this is the typical behavior of a TF that acts as an 

activator of one fate and repressor of the other. Indeed, a high activity means that the targets of the 

TF present a high expression on average, and the binding of other TFs in the promoters cannot explain 

this. Taken together, TFs that show correlation between its activity and its own mRNA expression are 

predicted to be activators. On the contrary, when the correlation is negative, a repression role is 

expected. We extracted the dynamical profile of Arx (Fig. 2H) and Nkx6-1 (Fig. 2H') activities, and then 

performed dynamical correlation over ɲ and ɴ trajectories between the expression and the activity. 

We found that Arx is an activator of ɲ cell identity (positive correlation without any time-lag) while it 

is a repressor of the ɴ lineage (negative correlation), Fig. 2I. This cell-dependent role has been well 

documented 28,30. On the other hand, Nkx6-1 behaves as an activator during ɴ cell differentiation, 

whereas it has a repressor role in ɲ cells, Fig. 2I͛. This antagonistic behavior is supported by the findings 

of Schaffer et al. (2013) 31. 

The differential motif activity analysis identified 86 TFs (Supplementary table 1), from which 22 were 

predicted to be specific for both ɲ and ɴ fates (Fig. 2J), 38 were ɴ-specific (Fig. 2K), and 25 were ɲ-

specific (Fig. 2L).  Interestingly, although Neurod1 was identified for both fates, the profile over the 

differentiation trajectories was higher in the ɴ cells; this can also be observed in the distribution of 

activities in the UMAP plot (Fig. 2J). This result is consistent with previous publications about the role 

of Neurod1 in murine ɲ- and ɴ-cell specification, where the authors found a cell-type dependent role 

of Neurod1 in combination with Nkx2-2. They showed that Nkx2-2 represses Neurod1 in Pdx1+ and 

Neurog3+ progenitors allowing ɲ-cell specification, while the activation of Neurod1 by Nkx2-2 permits 

ɴ-cell formation 32. Although Nkx2-2 was not identified as differentially active, its activity profile is 
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highly similar to the Neurod1 one (Supplementary figure 2). Bcl11a was the factor with the highest z-

score (4.1192) (Fig. 2J), indicating the significance of this motif to explain the variance of the linear 

model of gene regulation. Remarkably, Bcl11a has an active role as a potent suppressor of insulin 

secretion in adult islets 33; however, despite its upregulation during the second wave of ɲ-cell 

differentiation 34, its role during islet cell subtype specification remains to be studied. Some of the 

identified factors for both ɲ and ɴ fates have not been yet reported to have a function during 

pancreatic endocrine differentiation; thus, they are potential novel regulators. For instance, we found 

Cxxc1 as one of the differentially active factors early on during differentiation (Fig. 2J); it has already 

been pointed out as a critical factor during other differentiation processes such as in thymocyte 

development 35. Also, previous studies from our group reported it to be a direct target of Neurog3 36. 

Regarding the identified ɴ-specific factors, our differential motif activity analysis identified several TFs 

known for playing a role in ɴ-cell subtype specification or identity, including: Nkx6-1 29, Glis3 37, Mlxipl 
38,39, and Pdx1 40 (Fig. 2K). Noteworthy, Cebpg was the first factor in reporting an increasing activity 

profile over ɴ-trajectories. It has been reported as a novel regulator of insulin secretion and 

transcription 41, whether it also has a function during ɴ-cell differentiation remains to be unraveled. 

Similarly, among the factors designated as ɲ-specific (Fig. 2L), we found known ones such as Arx 28 and 

Prox1 42. Prox1 has a function during exocrine pancreas development 43, and it needs to be 

downregulated in ɴ cells for their expansion and maturation 42. Hence, our predictions might suggest 

a role for Prox1 in ɲ cell differentiation where this gene, in contrast to ɴ cells, is highly expressed. We 

also identified core clock factors as Arntl as ɲ-specific. Previous studies have shown that the distinct 

characteristics of ɲ-cell and ɴ-cell clocks harbor different circadian properties resulting in differential 

gene expression and functional regulation 44. Notably, one of the clock transcripts previously identified 

with an advanced phase in ɲ-cells was Arntl 44. Intriguingly, Atf4 was the first factor to become active 

during ɲ trajectories. It affects the pancreas morphology due to abnormal development of the acinar 

tissue 45 and has a paracrine effect on ɴ cells 46. However, its effect on islet-cell subtype specification 

has not been studied. Thus, our predictions might indicate a cell-autonomous role of Atf4 in the ɲ 

lineage. Taken together, FateCompass predicted well-known TFs, which serve as a positive control of 

the method's performance. Beyond that, we identified novel potential ɴ- and ɲ- fate regulators with 

clearly distinct dynamic behaviors. This information can be harnessed further to characterize the 

regulatory interactions behind endocrine cell formation.  

FateCompass identifies transcriptional dynamic profiles beyond RNA velocity  

To test whether the FateCompass workflow retrieves differentiation trajectories and identifies lineage-

specific TFs in more complex  experimental designs, with several harvesting points, we considered a 

scRNAseq experiment from an in-vitro differentiation of human stem cells towards pancreatic ɴ-like 
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cells 18. In this study, the authors used the SC-ɴ-cell protocol to mimic ɴ cell development 47. Shortly, 

human pluripotent stem cells growing in 3D clusters were differentiated into six stages using specific 

ŝŶĚƵĐŝŶŐ� ĨĂĐƚŽƌƐ� ƚŽ� ƉƌŽĚƵĐĞ� ͞ƐƚĞŵ-cell-ĚĞƌŝǀĞĚ� ŝƐůĞƚƐ͟� ;^�-islets) that contained SC-ɴ-cells 

(Supplementary Figure 3C). We applied FateCompass to a dataset of 25299 cells profiled using In-Drops 

sequencing across eight timepoints throughout stage five. Notably, at the beginning of stage five, there 

were NKX6-1+ pancreatic progenitors as well as the first SC-ɲ�ĐĞůůƐ͖�and by the end of it, there were 

three classes of endocrine cells: SC-ɴ-cells expressing INS, NKX6-1, ISL1, PDX1, and other ɴ-cell 

markers; SC-ɲ-cells expressing GCG, ARX, IRX2 and also INS; and SC-EC-cells expressing CHGA, TPH1, 

LMX1A and SLC18A1 that resembled intestinal enterochromaffin (EC) cells (Fig. 3A). Noteworthy, 

enterochromaffin cells are not present, in-vivo, in mouse or human islets and are thus considered an 

in-vitro-specific fate bifurcation 48,49. We were interested in seeing how well FateCompass retrieved 

lineage-specific TFs in this challenging setting, where there is a directed differentiation (towards SC-

islets) with an undesired by-product (SC-EC-cells). 

To infer the differentiation trajectories towards the final endocrine cell types, we first computed RNA 

velocities using scVelo 9 and visualized them using 2-dimensional UMAP embedding (Supplementary 

Figure 3A). Notably, the projected velocities did not have a conclusive pattern towards the final fates, 

probably due to the high proportion of unspliced transcripts (30%, Supplementary Figure 3B). The 

above, together with the inherent limitation coming from the batch effect introduced by harvesting at 

different time points (Supplementary Figure 3C-D) 10, made the use of RNA velocity as a drift for the 

transition probabilities a liability. Therefore, we estimated FateCompass transition probabilities using 

the potential energy gradient from NKX6-1+ Progenitors to each terminal fate (SC-ɲ͕�^�-ɴ, and SC-EC), 

Fig. 3B-C (see Methods). To summarize the information of the stochastic simulations, we plotted the 

sink-probability distribution for each final cell type. Notably, the likelihood of having SC-ɲ�ĂƐ�ĨŝŶĂů�fate 

strongly decreases for NEUROG3-mid and NEUROG3-late progenitors suggesting that this cell type 

comes mainly from early endocrine precursors (Fig. 3D); this is consistent with previous reports 50. 

Oppositely, SC-ɴ and SC-EC are the prevalent endpoints for trajectories passing through late NEUROG3 

progenitors (Fig. 3E-F). These observations are consistent with previous studies 18,51, validating our 

drift-dependent Markov chain approach to infer differentiation dynamics. 

To further validate FateCompass predictions, we checked the dynamic profile of known regulators. 

NKX6-1 is pivotal at different differentiation stages to giving rise to ɴ-like cells 50. Congruently, Veres 

et al. (2019) reported high expression of NKX6-1 in early endocrine precursors, Neurog3-late 

progenitors, SC-ɴ, and SC-EC cells (Fig 3G). In agreement, the dynamic profile of NKX6-1 expression 

(Fig. 3H) started at a high value that corresponds to the trajectories passing through early progenitors 

expressing NKX6-1+, PTF1A+, and PDX1high. Then, a decreasing profile is followed by an expected burst 
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on SC-ɴ and SC-EC cells, corresponding to the influence in endocrine cell-subtype specification 18. 

Similar to the in-vivo situation, we found high NKX6-1 activity in SC-ɴ- and SC-ɲ-; and in this context, 

also in SC-EC-cells (Fig. 3I-J). After checking the dynamical correlation of mRNA expression and motif 

activity (Fig. 3K), we consistently predicted NKX6-1 as an activator of the SC-ɴ identity. Also, for the 

first time, we provide evidence of the possible role of NKX6-1 protein as an activator (positive 

correlation without time-lag with the mRNA expression in Fig. 3K) of the EC fate specification during 

pancreatic endocrine differentiation in-vitro. In contrast, the high NKX6-1 activity in SC-ɲ�cells that 

negatively correlated with the mRNA expression of the NKX6-1 transcript points to a possible repressor 

role in the SC-ɲ-cells, suggesting a similar function to the reported by Schaffer et al. (2013) in the 

mouse 31. On the other hand, ISL1 is a well-known marker of ɴ-cells 52, and it functions as a regulator 

of �Zy�ĚƵƌŝŶŐ�ɲ-cell development 53. Indeed, Veres et al. (2019) reported it as differentially expressed 

in the SC-ɴ branch, Fig. 3G'; and the dynamic expression profile showed a clear increasing pattern over 

SC-ɲ�ĂŶĚ�^�-ɴ differentiation trajectories (Fig. 3H'). Moreover, the activity profile of the ISL1 motif was 

higher in the expected populations, SC-ɲ- and SC-ɴ-cells (Fig. 3I'-J'). Also, the dynamic correlation 

between expression and activity (Fig. 3K') confirmed the expected activator role over SC-ɲ�ĂŶĚ�^�-ɴ 

trajectories. Altogether, these results validate both the potential energy from progenitors to final fates 

as a useful tool to reveal differentiation trajectories and the linear model of gene regulation as an 

efficient way to estimate TF activities in challenging systems. 

Differential motif activity analysis predicts driving factors during in-vitro ɴ-cell 

differentiation protocols 

To check FateCompass performance in identifying lineage-specific regulators on a challenging 

differentiating system, whose endpoints include an off-target population, we applied the differential 

motif activity analysis to the in-vitro differentiation towĂƌĚƐ� ƉĂŶĐƌĞĂƚŝĐ� ɴ-like cells dataset. We 

identified 126 differentially active TFs (Supplementary Table 2), 14 for the three endocrine lineages 

(Fig. 4A), 14 for both SC-ɴ and SC-ɲ�;Fig. 4B), 15 for SC-ɴ and SC-EC (Fig. 4C), 10 for SC-ɲ�ĂŶĚ�^�-EC, 20 

were SC-ɴ-specific (Fig. 4D), 25 were SC-EC-specific (Fig. 4E), and 28 were SC-ɲ-specific (Fig. 4F). 

Interestingly, the TF CDX2 was differentially active for SC-ɴ, SC-EC, and SC-ɲ͖�ƚŚŝƐ�ĨŝŶĚŝŶŐ�was puzzling 

since CDX2 is well-known for its role in intestinal specification of the gut endoderm during 

development 54. During mammalian development, different organs such as the stomach, pancreas, 

liver, and intestine derive from the gut endoderm. Different regulatory interactions control gut 

endoderm regionalization promoting organ specification. It has been reported that the TFs PDX1 and 

SOX9 have a positive cross-regulatory loop that promotes the expression of pancreas-specific factors 

while repressing CDX2 55. Thus, our predictions suggest that the early endodermal progenitors might 

still be plastic and have the potential to activate other fates that will be repressed upon islet-cell 
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development; this observation agrees with the reported by Ramond et al. (2018) 56. Of note, CDX2 

activity is high at the beginning of the three endocrine fates trajectories, then, it decreased in SC-ɴ and 

SC-ɲ�ĐĞůůƐ�ǁŚŝůĞ�ƌĞŵĂŝŶŝŶŐ�ŚŝŐŚ�ŝŶ�^�-EC, which resemble intestinal enterochromaffin cells (Fig. 4A). 

For its part, MAFB was also identified for the three endocrine fates. However, its activity was higher 

through SC-ɴ and SC-ɲ�ƚƌĂũĞĐƚŽƌŝĞƐ (Fig. 4A); this predicted behavior agrees with the known role of 

D�&��ĚƵƌŝŶŐ�ŝƐůĞƚ�ɲ�ĂŶĚ�ɴ cell development 57. 

FateCompass predicted some factors to be specific for two lineages simultaneously. As expected, ISL1 

and NEUROD1 were classified as SC-ɴ- and SC-ɲ-specific (Fig. 4B) 32,52,53. Contrary to what we observed 

in the mouse in-vivo situation, where NEUROD1 and NKX2-2 had a similar activity profile, in this case, 

during human in-vitro ɴ-cell differentiation, the activity of NKX2-2 was restricted to NEUROG3 

endocrine progenitors and SC-EC cells (Supplementary figure 4). This observation points to differences 

in the regulatory programs of endocrine cell differentiation in mice vs. humans. PAX6 was also 

identified as SC-ɴ- and SC-ɲ-specific (Fig. 4B). Previous chromatin analysis and shRNA-mediated gene 

suppression experiments showed that PAX6 has a key role in the identity and function of ɴ-cells by 

activating specific markers and repressing alternative islet genes. Interestingly, using RNAseq and 

luciferase assay, the authors found that PAX6 represses NKX2-2 58. We observed mutually exclusive 

behavior for PAX6 and NKX2-2 activities (Supplementary figure 4), which supports that PAX6 and NKX2-

2 might have antagonistic roles. Regarding the factors classified as SC-ɴ- and SC-EC-specific (Fig. 4C), 

we found NKX6-1 among the predictions, supporting our previous observation of the possible activator 

role of NKX6-1 for both the pancreatic ɴ-like cells and the off-target intestinal-like population of EC 

cells. Along the same line, a recent study found an enrichment of the NKX6-1 motif on EC-like cells 

using single-cell ATAC seq 59, which further endorse our prediction. Notably, we identified PHOX2B, 

which belongs to the same motif family as LMX1A (Supplementary figure 5); LMX1A has a known role 

as a regulator of the EC fate in the adult small intestine downstream NKX2-2 60. Thus, our findings 

suggest that promoters with the binding site for PHOX2B/LMX1A are, on average, highly expressed on 

the SC-ɴ- and SC-EC-trajectories. Whether the differentiation of SC-EC cells has similar regulatory 

mechanisms to those in the murine small intestine remains largely elusive.  

To learn more about SC-ɴ, SC-ɲ͕�and SC-EC development, we exclusively focused on FateCompass 

predictions for each particular lineage. MAFA was among the SC-ɴ-specific factors (Fig. 4D), indicating 

that in the human in-vitro context, there is a similar switch from MAFB to MAFA, in developing towards 

fully functional ɴ-cells, to the one reported in rodents 61. GLIS3, which we previously found as a direct 

target of NEUROG3 in pancreatic endocrine progenitor cells 36, was classified as SC-EC (Fig. 4E). 

Notably, it has been reported both as a ɴ-cell marker in the pancreas 37 and as an EC marker in the 

adult small intestine 62. Thus, our data might imply a tissue- and cell-dependent role for GLIS3. ARX is 
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the first TF to become highly active during SC-ɲ� ƚƌĂũĞĐƚŽƌŝĞƐ͕� ĐŽƌƌŽďŽƌĂƚŝŶŐ� ŝƚƐ� ĨƵŶĐƚŝŽn during 

glucagon-producing cells development 28. IRX2 was highly active later on during SC-ɲ�ƐƉĞĐŝĨŝĐĂƚŝŽŶ�;Fig. 

4F); importantly, Gage et al. (2015) found it downregulated in hPSC-derived human islet cells lacking 

ARX 63, and Schreiber et al. (2021) found it as a direct target of NEUROG3 36. Hence, our predictions 

ĂŶĚ�ƉƌĞǀŝŽƵƐ�ĞǀŝĚĞŶĐĞ�ƉŽƐŝƚŝŽŶ�/ZyϮ�ĂƐ�Ă�ƉŽƚĞŶƚŝĂů�ɲ-specific novel TF acting downstream NEUROG3. 

Taken together, FateCompass systematically predicts known and novel potential regulators during a 

complex differentiation system that, besides the expected population, included an off-target cell type, 

highlighting the possible use of the pipeline in the improvement of differentiation protocols. 

Comparison between in-vivo and in-vitro ɴ-cell-specific drivers. 

The design of stepwise directed differentiation protocols to produce islet-like cells has relied heavily 

on mouse pancreas developmental biology knowledge. We leveraged the predictions of FateCompass 

to identify common and new transcriptional interactions to steer hypothesis generation aiming to 

unravel what leads to the cellular heterogeneity of ɴ cell differentiation protocols. First, we reasoned 

that by comparing the differentially active factors involved in ɴ-cell specification, we could get insights 

into similar and different regulatory programs in mouse in-vivo and human in-vitro. We found an 

interesting pattern of conservation and divergence with only around 16% of TFs at the intersection 

(Fig. 5A). We reasoned that having few overlapping factors could be due to significant differences at 

the expression level that translate in different TFs driving such an expression pattern. We performed 

hierarchical clustering among the mouse in-vivo and human in-vitro populations to test this. We found 

ƚŚĂƚ�ŵŽƵƐĞ�ɴ-cells are more similar to the rest of murine hormone-ƉƌŽĚƵĐŝŶŐ�ĐĞůůƐ�;ɲ͕�੣͕�ĂŶĚ�ɷͿ͕�ǁŝƚŚ�

a Pearson correlation higher than 0.7 (Supplementary figure 6). Although human-derived SC-ɴ�ĐĞůůƐ�

clustered with most of the endocrine-ĐŽŵŵŝƚƚĞĚ�ŵƵƌŝŶĞ�ĐĞůůƐ͕�ƚŚĞŝƌ�ƌĞůĂƚŝŽŶƐŚŝƉ�ǁŝƚŚ�ŵŽƵƐĞ�ɴ-cells 

was not that high, Pearson correlation 0.6 (Supplementary figure 6). The above points to significant 

differences in the expression levels that drive the inference of mainly divergent TFs. 

Next, we focused on the common TFs for the mouse in-vivo and the human in-vitro to see whether 

there were relative-time-specific profiles. To that end, we sorted the TFs according to which was active 

first for each system independently (Fig. 5 B-B͛Ϳ͘�,ŵŐĂϮ�ǁĂƐ�ĐůĂƐƐŝĨŝĞĚ͕� ŝŶ�ďŽƚŚ�ĐĂƐĞƐ͕�ĂƐ�ɴ- ĂŶĚ�ɲ-

specific, and it was active at early stages. Conversely, Essrg had a different dynamic profile despite 

ďĞŝŶŐ� ɴ-specific in both systems. While it was constantly highly active in the mouse in-vivo and 

appeared third on the dynamic ranking, it had a slowly increasing profile in the human in-vitro and 

showed next to last. This result was striking because the estrogen-related receptor ɀ (Esrrg) is a 

ŚĂůůŵĂƌŬ� ŽĨ� ĂĚƵůƚ� ĂŶĚ� ŶŽƚ� ĚĞǀĞůŽƉŝŶŐ� ɴ-cells, with a known function for metabolic maturation 64. 

Therefore, we did not expect a high activity on the mouse system. Then, our prediction might indicate 

that Esrrg has a stage-dependent role that remains to be explored in the embryo. Notably, Neurod1 
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ǁĂƐ�ɴ- ĂŶĚ�ɲ-specific, appearing at later stages in both contexts, indicating that Neurod1 is playing a 

similar role in both systems. Similarly, Nkx6-1 was a common factor that became active progressively 

ĚƵƌŝŶŐ� ƚŚĞ� ɴ-differentiation trajectories. Notwithstanding, Nkx6-1 was also involved in the EC cell 

subtype specification in the human in-vitro dataset, which raises flags about its organism-dependent 

role and the different programs it is activating. 

To unravel possible time-specific regulatory interactions, we plotted the dynamic profiles of the 

species-specific TFs (Fig. 5C-D). About the mouse-specific factors (Fig. 5C), the dynamic profiles showed 

that Sox9 was active early on, confirming its role in inducing Neurog3 in the progenitor cord 65. 

Additionally, we found Meis2 with an increasing profile towards the end of the ɴ-trajectories; previous 

ƐƚƵĚŝĞƐ�ƌĞƉŽƌƚĞĚ�ŝƚ�ƚŽ�ďĞ�ĞŶƌŝĐŚĞĚ�ŝŶ�ƚŚĞ�ƐĞĐŽŶĚ�ǁĂǀĞ�ŽĨ�ŵƵƌŝŶĞ�ĨĞƚĂů�ɲ�ĐĞůůƐ�66, but its specific role in 

ɴ-cell differentiation remains known. We observed two dynamic waves regarding the human-specific 

factors (Fig. 5D). The first includes factors active early on during the SC-ɴ trajectories with fetal-like 

functions, such as SOX4, PTF1A, and CDX2; the second with factors active later on during ɴ-cell 

differentiation resembling maturation and maintenance roles, such as MAFA and PAX6. The above 

suggests that the human in-vitro regulatory programs differentiate ɴ-like cells activating adult-like 

factors to produce functional insulin-responsive cells. Interestingly, FateCompass identified GATA4 as 

human-specific; this factor represents a well-known human-mouse difference. Indeed, its expression 

is delayed during human development, appearing simultaneously as PDX1 67. Next, to learn more about 

differences in some known factors identified for one system and not the other, we plotted the z-score 

of their average activity profile over ɴ-trajectories for the mouse in-vivo vs. the human in-vitro (Fig. 5E-

F). Naturally, TFs identified only in the mouse system such as PDX1, MLXIPL, RFX3, and GLIS3 presented 

a constantly increasing profile in the in-vivo dataset. In contrast, in the in-vitro dataset, they either had 

a burst and then decreased or were not active (Fig. 5E). Similarly, except for CDX2, known ɴ-cell 

markers predicted only in the human case (MAFB, PAX6, ISL1, MAFA, and ATF6) presented an 

increasing profile in the in-vitro dataset. At the same time, in the in-vivo system, no clear pattern was 

identified for these TFs (Fig. 5F). 

Altogether, comparing the mouse in-vivo vs. human in-vitro ɴ-cell differentiation showed that 

significant differences in gene expression profiles lead to inferring different lineage-specific TFs. Also, 

FateCompass recovered robust well-known TFs at the intersection of both systems. Beyond the 

similarities, we found that factors involved in early development prevailed in the mouse system. In 

contrast, a second dynamic wave that activates factors involved in maturation and maintenance is also 

present in the human case. 
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FateCompass guides hypothesis generation to understand SC-EC cell-fate 

determination during in-vitro ɴ-cell differentiation protocols 

To further investigate the possible role of NKX6-1 in differentiating the undesired SC-EC cells during in-

vitro ɴ-cell differentiation, we looked at the targets of the NKX6-1 motif in the mouse and the human 

(Fig. 6A). Remarkably, CDX2, a small intestinal epithelial marker 68, and NKX2-2, a well-documented 

factor for having a role in developing endocrine cells in the small intestine and the pancreas, are 

human-specific targets. In the mouse developing pancreas, the expression of Nkx2-2 starts at E12.5, 

ĂŶĚ�ŝƚ�ƉƌŽŵŽƚĞƐ�ɲ�ĂŶĚ�ɴ fates while repressing ghrelin-producing cells 69; at later stages (E15.5 and 

E18.5), the knockout of Nkx2-2 downstream Neurog3 results in defective ɴ-cell differentiation 70. On 

the other hand, in the developing small intestine, Nkx2-2 expression starts at E15.5, and serotonin, the 

main secretory product of EC cells, is reduced in the absence of Nkx2-2 71. Similarly, in the adult small 

intestine, the role of Nkx2-2 downstream Neurog3 regulating Lmx1a, a direct regulator of Tph1 

(enzyme involved in the synthesis of serotonin), has been previously proven 60. Altogether, the 

mentioned studies about Nkx2-2 in the mouse suggest it has different roles: tissue- and stage-specific. 

Of note, in the mouse in-vivo dataset, the expression of Nkx2-2 was very sparse and mainly in 

progenitor cells, and activity of the Nkx2-2 motif was restricted to the progenitor and pre-endocrine 

cells (Supplementary Figure 2). In the human in-vitro dataset, NKX2-2 expression was high from 

Neurog3+ clusters to SC-ɴ and SC-EC cells, and its motif activity was high from Neurog3+ cells towards 

SC-EC cells, not towards SC-ɴ cells (Supplementary Figure 4).  

Then, we reasoned that NKX6-1 motif activity and NKX2-2 mRNA level should have a similar pattern if 

there is direct activation. Similarly, NKX2-2 motif activity should follow a similar trend to the LMX1A 

mRNA level. We found an increasing, almost parallel, profile for NKX6-1 activity and NKX2-2 expression 

(Fig. 5B). On the other hand, NKX2-2 activity peaked when the LMX1A expression level started to 

increase (Fig. 6C), which might indicate an early burst of activation. Taken together, by exploring the 

behavior of common TFs and digging further into the transcriptional interactions of NKX6-1, we 

opened the question of whether the SC-EC differentiation is regulated by the TF NKX2-2 acting 

downstream NKX6-1. This type of hypothesis merits further investigation to identify key targets to 

improve ɴ-cell differentiation protocols.  

Discussion 

Here, we have introduced FateCompass, a workflow that robustly estimates lineage-specific TFs 

dynamically. FateCompass pipeline integrates a flexible framework to infer gene expression dynamic 

profiles with a linear model of gene regulation based on interactions between TFs and promoters to 

predict regulators implicated in fate choice during development in different contexts (in-vivo and in-
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vitro), across sequencing platforms (10X and InDrops) and across organisms (mouse and human). We 

designed an innovative differential motif activity analysis that considers the significance of the TF to 

explain the variability of the linear model of gene regulation, the change of the regulatory activity 

throughout the cell-fate decision process, and the dynamical correlation of the TF activity with the TF 

mRNA level. Applied to pancreatic islet cell subtype specification, we predicted time- and fate-specific 

known and novel TFs; the former serve as ground truth while the latter represents an advance in the 

current understanding of the transcriptional interactions underlying endocrine cell differentiation.  

In the inference of differentiation trajectories, we assumed, like other studies, that the process of a 

cell changing states along a trajectory until it reaches a final fate can be understood as a particle 

diffusing on a volume 7,72; but, unlike them, we infused the direction of the differentiation as a drift to 

bias the transition probabilities. When RNA velocity profiles are robust, FateCompass uses them to 

direct the edges of the Markov chain. On this line, FateCompass predicted the same terminal fates and 

final fate probabilities for murine endocrine differentiation as similar existing methods 26. During 

development, when the starting cell and the final fates are clear, and the RNA velocity profiles are 

inconclusive, FateCompass infers differentiation trajectories beyond RNA velocity, biasing the 

transition probabilities using the gradient of potential energy from the starting cells towards the final 

states. We validated this approach using a dataset from an in-vitro ĚŝĨĨĞƌĞŶƚŝĂƚŝŽŶ� ƚŽǁĂƌĚƐ� ɴ-cells, 

ǁŚĞƌĞ�ǁĞ�ĂĐĐƵƌĂƚĞůǇ�ƌĞĐŽǀĞƌĞĚ�ƚŚĂƚ�ɴ-like cells differentiate from NEUROG3-late progenitors while ɲ-

like cells start to differentiate from NEUROG3-early progenitors 18,50,51.  

FateCompass uses TFs as the leading players in the gene regulation model; they are well-known for 

their direct role in gene-specific transcriptional regulation; hence they are commonly used as readouts 

of pathway activities 73. Other approaches attempting TF activity inference from transcriptomic data, 

both bulk and single-cell, do not consider the dynamic nature of the TF activities 2,14,15,74. Some studies 

have based their predictions merely on correlations between mRNA level of the TF and expressed 

genes 15,74. Other more advanced rely on known regulons and inferred TF activities using the 

correlation of the mRNA level of the TF and the group of genes that it can potentially regulate, based 

on the presence of binding sites on a given regulatory region 2,14. In contrast to the previously cited 

methods, ISMARA, initially developed for bulk RNA seq data, does not rely on correlations; it modeled 

the expression levels as a linear combination of TF binding site predictions and unknown TF activities 
13. Here, we extended the use of ISMARA to single-cell transcriptomics. The original ISMARA model 

proposed a symmetric Gaussian prior to avoid overfitting; however, in that way, all the parameters are 

regularized equally, which might not be suitable on single-cell data, where different regions of the 

manifold represent, usually, different phenotypes associated with changing TF activities. FateCompass 

address the multicollinearity problem in linear regression using a novel regularization approach. We 
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defined a data-diffusion-based regularization where we enforced the smoothness and stability of the 

inferred activities across cells. This approach has been widely used for imputation methods 25.  

In the mouse in-vivo data set, FateCompass recovered well-documented regulatory interactions, such 

as the antagonistic role of Arx and Nkx6-1 30,31 and the cell-type dependent interaction between 

Neurod1 and Nkx2-2 32. We also identified putative driver factors with interesting known roles ŝŶ�ɴ�ĐĞůů�

function 41 ĂŶĚ� Ă� ĐŝƌĐĂĚŝĂŶ� ƉĂƚƚĞƌŶ� ŝŶ� ɲ� ĐĞůůƐ� 44, whether they are also involved in endocrine cell 

differentiation remains to be tested. A recently published study aimed to identify lineage-specific 

drivers during pancreatic endocrine differentiation, where they focused on the differential gene 

expression of TFs, also identified some of the known regulators 75. In contrast, we steered on regulation 

principles by considering interactions between TFs and promoters, which provide a more accurate 

picture of gene-specific regulation. We anticipate applying our framework to guide experiment design 

to test the function of the lineage-specific factors. In the human in-vitro dataset, we identified TFs 

acting early on during the differentiation trajectories that confirmed the plasticity of the less mature 

cells in differentiation protocols 56,68. Moreover, we retrieved cell-type-specific drivers for the 

pancreatic endocrine cells and the off-target enterochromaffin population. Importantly, our 

differential motif activity analysis pinpointed, for the first time, NKX6-1 as a potential regulator of the 

SC-EC cells. Comparing the in-vivo and in-vitro ƉƌĞĚŝĐƚŝŽŶƐ�ĨŽƌ�ƚŚĞ�ɴ�ĐĞůů�ƚƌĂũĞĐƚŽƌŝĞƐ͕�ǁĞ�ĨŽƵŶĚ�ŬŶŽǁŶ�

TFs at the intersection such as NEUROD1 and NKX6-1 31,32; also, we were able to recapitulate mouse- 

and human-specific differences 67. We foresee the use of FateCompass to generate hypotheses 

targeted to provide means to optimize differentiation protocols. 

The fast evolution of high-throughput methods and generation of large-scale datasets impose the need 

for robust computational approaches not only to characterize genome-wide patterns but also to 

extract information and mechanistically model biological phenomena that, in the end, will provide 

predictions aimed at increasing the current state of the knowledge. As with any inference method, 

aspiring to reconstruct the exact interactions underlying a complex biological process, such as 

endocrine cell formation, is a futile task. In this study, we rely on computationally predicted regulatory 

sites, summarized in a binding site matrix; this represents a bias on the structure of the gene regulatory 

network. Moreover, we are only considering interactions between TFs and promoters, and it is well 

known that some essential regulatory interactions occur at distal regulatory sites 76. We have designed 

our pipeline such that the limitations mentioned above could be addressed by extending the binding 

site matrix. As a framework for identifying lineage-specific drivers, we forecast FateCompass to be 

used as a tool to explore scRNAseq data, guide hypothesis generation, and direct experiment design. 

Further experimental validation of the generated hypothesis will increase the current understanding 
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of a given process and provide means to improve existing translational experiments aimed at cell 

therapy. 
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Figure 2 | Islet cell formation landscape in the mouse. A. UMAP plot of 3696 cells at E15.5 from
Bastidas-Ponce et al. (2019), colors highlight clustering into eight main cell types. Arrows indicate
the direction of cell transitions which was estimated using RNA velocity. Red dots represent the
possible neighborhood a cell can explore when modeled using a Markov chain. B. Propagator (Π)
of the Markov chain as a function of the direction of differentiation (") and the stochasticity of
gene expression (#). Π34 represents the probability of transitioning to the state $ when being at
the state %. C-C’. Stochastic differentiation trajectories starting in a Sox9 bipotent cell and ending
in α (C), and β (C’) fates. D-D’. Fate probabilities calculated as the absorption probabilities for the
α (D), and β (D’) sinks. E-E’. UMAP plots with normalized gene expression of known lineage-
specific markers; Arx for α (E), and Nkx6-1 for β (E’) cells. F-F’. Average gene expression of known
lineage-specific markers over α and β stochastic differentiation trajectories. G-G’. UMAP plot with
motif activity profile of known lineage-specific regulators; Arx motif for α (G), and Nkx6-1 motif
for β (G’) cells. H-H’. Average motif activity of known lineage-specific regulators over α and β
stochastic differentiation trajectories. I-I’. Dynamic Pearson correlation between mRNA
expression and motif activity over α and β trajectories; Arx and its motif (I), and Nkx6-1 and its
motif (I’). J-L. Heatmaps showing the average motif activity over stochastic trajectories and
dynamic Pearson correlation. Not all TF names are shown (see supplementary table 1 for full list).
Right: activity distribution on the UMAP embedding of selected examples and respective z-score.
J. Factors predicted as drivers of both β and α fates. K. Factors predicted as β-specific sorted
according to which was active first in the β trajectories. L. Factors predicted as α-specific sorted
according to which was active first in the α trajectories.
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Figure 3 | In-vitro β-cell differentiation landscape. A. UMAP plot of 25299 cells profiled during a
7-day time-course at stage 5 of differentiation towards β-like cells from Veres et al. (2019), colors
highlight clustering into nine main cell types. B. UMAP plot colored according to the potential
energy, the gradient goes from NKX6-1+ pancreatic progenitors (source) to the mature hormone-
producing cell types (sinks). Red dots represent the possible neighborhood a cell can explore
when modeled using a Markov chain. C. Propagator (Π) of the Markov chain as a function of the
potential energy (F). Π/0 represents the probability of transitioning to the state # when being at
the state $. D-F. Fate probabilities calculated as the absorption probabilities for the SC-α (D) SC-EC
(E), and SC-β (F) sinks. G-G’. UMAP plots with normalized gene expression of known lineage-
specific markers; NKX6-1 for SC-β and SC-EC (G) and ISL1 for SC- α and SC-β (G’) cells. H-H’.
Average gene expression of known lineage-specific markers over SC-α, SC-β, and SC-EC stochastic
differentiation trajectories. I-I’. UMAP plot with motif activity profile of known lineage-specific
regulators; NKX6-1 motif for SC-β and SC-EC (I) and ISL1 motif for SC- α and SC-β (I’) cells. J-J’.
Average motif activity of known lineage-specific regulators over SC-α, SC-β, and SC-EC stochastic
differentiation trajectories. K-K’. Dynamic Pearson correlation between mRNA expression and
motif activity over SC-α, SC-β, and SC-EC stochastic trajectories; NKX6-1 and its motif (K), and
ISL1and its motif (K’).
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Figure 5 | Cross-species comparison of the !-specific factors. A. Venn-diagram showing the
number and overlap of β-specific TFs predicted by FateCompass. B-B’. Heatmaps showing the
average motif activity over β trajectories of the 10 overlapping factors in the mouse in-vivo system
(B), and in the human in-vitro system (B’). C. Heatmaps showing the average motif activity over β
trajectories of the 50 mouse in-vivo specific factors, TFs are sorted according to which was active
first. D. Heatmaps showing the average motif activity over β trajectories of the 53 human in-vitro
specific factors, TFs are sorted according to which was active first. E-F. z-score of the average
motif activity profile over β trajectories for some known factors specifically predicted for the
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2019).
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1. Pipeline 

The FateCompass workflow aims to identify key transcription factors (TFs) during a cellular system 
undergoing differentiation. To mechanistically understand the dynamic transcriptional interactions 
underlying the cell subtype specification, we reasoned that inherent asynchrony of the cells, coming 
from single-cell RNA sequencing (scRNAseq) experiments, provides a temporal resolution of the 
transcriptome; also, that cis-regulatory regions of the expressed genes contain essential information 
of the TFs that regulate their transcription. To this end, we integrated both state-of-the-art methods 
and newly developed algorithms in a coherent and flexible pipeline. We took as input the gene 
expression count matrix, �� א �Թେൈୋ, where � is the number of cells and 
 is the number of genes; the 
velocity field when present, �� א �Թେൈୋ; and TFs binding sites predictions in the promoters of the 
expressed genes, �୮୫ א� �Թ୔ൈ୑, where � is the number of promoters and � is the number of TF 
motifs. Importantly, our pipeline can be generalized to include epigenetic information coming from 
chromatin accessibility and interactions between promoters and enhancers by extending �୮୫. The 
FateCompass pipeline consists of three main steps: 

i. Retrieve gene expression dynamics of cell differentiation.  
ii. Estimate TF activities along the cell-fate decision process.  

iii. Identify lineage-specific regulators.  

1.1 Cell-fate decision dynamics from single-cell RNA sequencing  

The main purpose of this work is to study the trajectory a cell follows to arrive to its final state rather 
than the final state itself. A single cell, whose phenotype is represented by a point in the 
multidimensional space, will move along a specific trajectory as its composition changes 
(transcriptomic profile). Considering a regionalized scenario such as the Epigenetic Landscape of 
Waddington (Waddington, 1957), we reasoned that trajectories converge to end-states which are 
essentially different from one another; also, that if a cell-system moving along a specific trajectory is 
pushed slightly out of its way, then the canalization of the landscape will compensate, and eventually, 
the cell will arrive in the stable state it would typically have done [1]. The process of a cell changing 
states along a trajectory until it reaches a final fate can be understood as a particle diffusing on a 
volume. To delineate the differentiation trajectories, we considered two scenarios: one unbiased, in 
which the diffusing particle, single-cell, follows a random walk under the influence of a vector field, 
here represented by the RNA velocity until it gets trapped on an attractor; and the other, biased, in 
which the single-cell is following a random walk from progenitor cells, that are defined as sources, 
towards mature cells, that are defined as sinks. 

1.1.1 Nearest neighbor graph representing the phenotypic manifold 

Similar to other methods [2], [3], FateCompass models cell state transitions restricting possible state 
changes to those consistent with the global structure of the phenotypic manifold via a k-nearest 
neighbor graph based on similarities on the gene expression space. Due to the high sparsity and noise 
in scRNAseq data, finding nearest neighbors in the raw data using a simple similarity metric is likely to 
accumulate spurious connections and obscure the structure we seek.  

To build the neighbor graph based on solid data trends, we used Uniform Manifold Approximation and 
Projection (UMAP), a non-linear dimensionality reduction algorithm that estimates the topology of the 
high dimensional data and uses this information to build a low-dimensional representation that better 
preserves the local structure of the data over the global variability [4]. Despite the wide use of Principal 
Component Analysis (PCA) for detecting among-sample heterogeneity, it has shown to be inefficient 
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in dimensionality reduction of scRNAseq data [5], [6], and we reasoned that for large datasets, local 
and neighborhood structures are more prominent for sample heterogeneity analysis and describe the 
local structure of the data. Therefore, we choose the non-linear method UMAP, which has proven to 
be more performant than others like tSNE when embedding in dimensions larger than 2 [4], which is 
particularly important when the intention is to use the low dimensional representation for further 
downstream analysis such as clustering.  

Formally, given a dataset, �� א �Թେൈୋ, a k-nearest neighbor graph is constructed using the Euclidean 
distance on the � dimensions of the UMAP embedding, where ʹ ൏ � ൏ �, and � is the number of 
neighbors initially used for the embedding. The reason for this is that UMAP will have significantly 
diminishing returns as it approaches the value of n_neighbors used for the embedding [4]. Then, to 
build the adjacency matrix, �, we kept the same number of neighbors for each cell, ��; and the 
distances were weighted equally since the intermediary embedding step favored a single strong 
connection vs. lots of weak links. 

1.1.2 Modeling transition probabilities using a Markov process 

Single-cell transcriptomics provides a static picture of a time-evolving system whose possible states 
are represented by points in a manifold, in other words, �ሺ�ሻ  state point of the system at time �. The ؠ
value of � at some initial time �଴ is fixed, �ሺ�଴ሻ ൌ �଴, and for successive instants �ଵ, �ଶ͕�͙͕��୬; where 
�ଵ ൏ �ଶ ൏ ڮ ൏ �୬; there are � corresponding random states �ሺ�ଵሻ, �ሺ�ଶሻ͕�͙͕��ሺ�୬ሻ. To determine how 
the cells move from progenitors to mature cells, we assumed that they traverse the manifold in small 
steps under the influence of an external force, drift, in the direction of differentiation, e.g., RNA 
velocity or gradient of potential energy from progenitor cells (sources) to mature cells (sinks). This can 
be modeled using a Markov chain to represent cell fate choices in a probabilistic manner as follows 
[7]: 

μ
μ� �

ሺ�ǡ �ሻ ൌ
μଶ

μ�ଶ
ሾ�ሺ�ǡ �ሻ�ሺ�ǡ �ሻሿ െ

μ
μ�

ሾ	ሺ�ǡ �ሻ�ሺ�ǡ �ሻሿ ሺͳሻ 

where the left-hand-side of the equation represents the probability of being at the state � at the time 
�,��ሺ�ǡ �ሻ; the first term on the right-hand-side is the flux through the state � due to diffusion, �ሺ�ǡ �ሻ, 
and the second term on the right-hand-side is the flux through the state due the external force or drift, 
	ሺ�ǡ �ሻ. 

To outline the differentiation trajectories, we took advantage of the system's stability in the observable 
space. We went from the continuous-space previously described (equation 1) to a discrete space with 
state-dependent drift criteria. We decided to move to a discrete space due to the ill-posed nature of 
the problem and that the observed states are not enough to constrain the solution. As a result, the 
gene expression dynamics are described by a discrete Markov process on a network. This simplification 
avoids the complex problem of inferring the high-dimensional drift field, 	ሺ�ǡ �ሻ, with only a few 
thousand observations. In this way, we allowed jumps only to the observed states, with state-
dependent drift, 	ሺ�୧ሻ, and the weight of each jump given by the normalized transition probability, 
ȫ൫�୨ȁ�୧ǡ 	ሺ�୧ሻ൯. Below we describe the form of the propagator when considering different drifts, 
namely, RNA velocity and Potential energy.  

1.1.3 RNA velocity as driving force  

To get the transition probabilities using RNA velocity information, we reasoned from equation (1) that 
the drift directing the state-transition probabilities is given by the direction of differentiation, 
represented by the direction of the velocity vector [8]. In addition, we made the following 
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assumptions: for a very small ��, we approximate �� ՜ ο�, we assumed the diffusion coefficient to be 
completely homogeneous (�), and the drift to be time-independent and locally constant around a 
given state � (�ሺ�ሻ). Under these assumptions, and in the continuous space, the propagator of 
equation (1) can be approximated by Gaussian distribution: 

ȫሺɌǡ �ȁ�଴ǡ �଴ሻ ൌ
ͳ

ሺʹɎ�ο�ሻ
ଵ
ଶ
��� ቆെ

ሺɌ െ �ሺ�ሻο�ሻଶ

ʹ�ο� ቇ ሺʹሻ 

where Ɍ is the distance between the current state and the next possible state, Ɍ ൌ ȁ�୲ െ �଴ȁ. A row 
normalization is applied to transform the Gaussian distribution into transition probabilities over the 
network of discrete observed states: 

ȫ୧୨ ൌ
ͳ

�୧ሺʹɎ�ο�ሻ
ଵ
ଶ
��� ൭െ

൫Ɍ୧୨ െ �ሺ�୧ሻο�൯
ଶ

ʹ�ο� ൱ ሺ͵ሻ 

with row normalization factors �୧ ؠ σ ȫ௜௝୨ . 

We fitted the diffusion coefficient, �, and ο� heuristically based on the number of neighbors. Shortly, 
we set ο� such that on average the number of nearest neighbors can be reached, and � such that the 
average number of connections is twice the number of nearest neighbors. In this way, the distance 
traveled until the next state is close to the distance to the nearest neighbors, and the explored 
neighborhood is within the velocity gradient. Therefore, we make sure that the progression of stable-
states follows the direction of differentiation. 

1.1.4 Potential energy as driving force  

To estimate transition probabilities using the gradient of potential energy from progenitor cells 
(sources) to mature cells (sinks) we defined the boundaries of the phenotypic space, i.e., we fixed the 
starting point (source) and the endpoints (sinks). In this case, we built the energy landscape by doing 
a force balance between each � point in the network (observable state) and the � states of interest 
(sources and sinks). Briefly, we assumed the force at each point on the network, �నǡ୩ሬሬሬሬሬሬԦ, to be directly 
proportional to an attraction or repulsion coefficient, �୩, and inversely proportional to the distance of 
that given state to the state of interest, ����ሺ�୧ǡ �୩ሻ. This is equivalent to: 

�నǡ୩ሬሬሬሬሬሬԦ ן
�୩

����ሺ�୧ǡ �୩ሻ୬ౡ
Ǣ ሺͶሻ 

with � א ሾͳǡ �ሿ������ ൌ׷ ��������Ƭ������. Then, assuming the energy landscape to be time-
independent and locally constant around a given state �, the force balance around each � gives the 
energy landscape, �, as follows: 

�୧ ൌ �෍
�୩

ሾ����ሺ�୧ǡ �୩ሻ ൅ ͳሿ୬ౡ
୩

ሺͷሻ 

To approximate this, we assume ȁ�ୱ୭୳୰ୡୣୱȁ ൌ ȁ�ୱ୧୬୩ୱȁ ൌ ȁ�ȁ and �ୱ୭୳୰ୡୣୱ ൌ �ୱ୧୬୩ୱ ൌ �, and we used 
a heuristic criterion to set their value based on the distribution profile of the energy landscape. We 
reasoned that the potential energy gradient should be high enough for the sources to be 
phenotypically distinct from the sinks. Having the potential energy for each state, we defined the 
transition kernel as [9]: 
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ȫሺכ�ȁ�୧ሻ ൌ �ሺכ�ȁ�୧ሻࣛሺ�୧ȁכ�ሻ ൅ �ୋሺכ�ሻ�ሺ�୧ሻ ሺ͸ሻ 

where the left-hand-side of the equation, ȫሺכ�ȁ�୧ሻ, is the transition probability from �୧ to כ�, the first 
term on the right-hand-side represents the probability of jumping from state �୧ to state כ� given by 
the multiplication of the proposal distribution � and the acceptance distribution ࣛ, and the second 
term on the right-hand-side is the probability of not jumping represented by the rejection distribution 
�. Having a symmetric proposal distribution, �ሺכ�ȁ�୧ሻ ൌ �ሺ�୧ȁכ�ሻ ൌ ͳ

��ൗ , with �� the number of 
nearest-neighbors, the acceptance probability is 

ࣛሺ�୧ȁכ�ሻ ൌ ��� ቊͳǡ
�ሺכ�ሻ�ሺ�୧ሻ
�ሺ�୧ሻ�ሺכ�ሻ

ቋ ൌ ���ቊͳǡ
�ሺכ�ሻ
�ሺ�୧ሻ

ቋ ሺ͹ሻ 

where � is the invariant distribution,  

�ሺ�୧ሻ ൌ ��୛౟ ሺͺሻ 

Finally, the rejection distribution reads 

�ሺ�୧ሻ ൌ ෍�ሺכ�ȁ�୧ሻ൫ͳ െ ࣛሺ�୧ȁכ�ሻ൯
୒୒

ሺͻሻ 

1.1.5 Stochastic simulations  

To describe the time evolution of the previously described Markov processes, we used a numerical 
approach called Monte Carlo sampling algorithm. Shortly, the idea of a Monte Carlo simulation is to 

draw an i.i.d. set of samples ൛�ሺ୧ሻൟ୧
୒

 from a target density �ሺ�ሻ [9]. To estimate the values of � without 
knowing the density function �ሺ�ሻ, we used sampling methods that essentially mimic the real-time 
evolution of the process. The pseudo-code for the simulations is below: 

1. Initialize: �ଵ 

2. Pick כ� according to the density function of the 
propagator 

3. Accept or reject the jump based on the 
comparison with a random number 

4. Advance in the process Æ �୧ାଵ ൌ  כ�

5. Record as required for sampling or plotting. If the 
process continues, then return to (2); otherwise, 
stop. 

For � ൌ ͳ to � 



 6 

1.1.6 Average profiles over stochastic trajectories  

We used the previously generated � samples with the following empirical point-mass function to 
approximate the expected value of the final quantities of interest, mean and standard deviation, as 
follows, 

୒ۄ�ሺ�ሻۃ ൌ
ͳ
�෍�ሺ�୧ሻ

୒

୧ୀଵ

ሺͳͲሻ 

and 
୒ۄ�ଶሺ�ሻۃ ൌ ଵ

୒
σ �ଶሺ�୧ሻ୒
୧ୀଵ ሺͳͳሻ 

Of note, the estimates (10) and (11) will become exact in the limit � ՜ λ. 

1.1.7 Fate probabilities  

We defined the fate probabilities based on the information of the stochastic trajectories. We reasoned 
that if one of the simulated random walks on the Markov chain passes by cell �; then, we continue to 
simulate the random walk until it reaches any cell from a final sink, and we record this for every single 
cell on the graph. In the end, we estimated the fate probabilities by counting how often a random walk 
that visits cell���terminated in any of the terminal index sinks.  

1.2 Modeling regulatory interactions between transcription factors and cis-
regulatory regions 

To model the regulatory interactions underlying cell-fate decisions, we considered TFs as the central 
drivers of transcriptional regulation. TFs are usually designed to transit rapidly between active and 
inactive molecular states at a rate modulated by a specific environmental signal. Each active TF can 
bind the DNA to regulate the rate at which specific target genes are transcribed [10]. This section 
describes the model we used to infer TF activates in single cells from their gene expression profiles. 

1.2.1 Binding site matrix  

First, to find the regulatory interactions between TFs and the different genes, we used TF binding sites 
predictions reported in [11], and available in the Swiss Regulon Portal 
(https://swissregulon.unibas.ch/sr/downloads). Briefly, it uses a Bayesian framework to estimate the 
posterior probability that a binding site for a given weight matrix (associated with a motif) occurs in an 
interval. Next, we summarized the TF binding sites in a matrix of site-counts by summing the posterior 
probabilities for each motif in the promoter of each gene. We defined a promoter as the TSS +/- 1kb, 
Fig. 1d. 

1.2.2 Linear model to estimate motif activities 

We hypothesize that the expression level of each gene is proportional to the activity of the TFs that 
can potentially bind to its promoter. Therefore, as in the original framework [12], we modeled the log-
expression level of a gene as the linear combination of motif activities weighted by their number of 
the binding sites present in its promoter, that is, 
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�୥ୡ ൌ෍�୥୫
୑

�୫ୡ
כ ൅ ����� ሺͳʹሻ 

where �୥ୡ are the cell- and gene- normalized log-expression values, �୥୫ are the motif-normalized 
site-counts, and �୫ୡ

כ  are the cell-normalized motif activities. The term noise is related to multiple 
sources, namely technical, biological, and error in the model. To estimate the unknown motif activities 
�୫ୡ
כ , we first used minimum norm least-squares (lsqminnorm) solution to linear equations 

implemented in Matlab 2018b to fit the best estimates of �୫ୡ
כ  from equation 11. Briefly, lsqminnorm 

uses the complete orthogonal decomposition to find a low-rank approximation of �୥୫. Next, to 
ĐŽŶƚƌŽů�ƚŚĞ�ŵŽĚĞů͛Ɛ�ĐŽŵƉůĞǆŝƚǇ�ĂŶĚ�ĂǀŽŝĚ�ŽǀĞƌfitting, we applied regularization as explained in the 
following section.  

1.2.3 Regularization using data diffusion  

A model's ability to reproduce intricate patterns in data is typically related to its number of parameters 
and complexity. However, the higher the complexity of a model, the higher the risk of overfitting, i.e., 
fitting spurious noise in the data leading to poor generalizing performance when applied to new 
observations. Single-cell transcriptomic data present large technical and biological noise introducing 
variability in the gene expression profiles across cells that do not reflect true variability in the 
physiological cellular state. Not accounted for, this variability propagates to the inferred TF activities 
leading to non-functional cell-to-cell differences in TF activates levels. To control for this, we penalized 
the model's complexity by introducing a regularization term that enforces the smoothness and stability 
of the fitted activities across cells. We embedded the cells in a low-dimensional manifold that faithfully 
represents the phenotypic similarities (section 1.1.1). Next, we imputed a cell's motif activities as the 
weighted average of the activities across the neighboring cells. This strategy, which is mathematically 
akin to diffusing heat through the data, has been used to correct for dropout and other noise sources 
on transcriptomic data [van Dijk 2018]. It reads,  

�୫ୡ
ୖୣ୥ ൌ ሺכ�ሻ୲�୫ୡ

כ ሺͳ͵ሻ 

where �୫ୡ
ୖୣ୥ are the regularized activities, כ� is the transition matrix, and �୫ୡ

כ  are the maximum-
likelihood estimates of the activities. Raising כ� to the power of � results in a matrix where each entry 
represents the probability that a random walk of length � starting at cell � will reach cell �, a process 
similar to diffusion [13]. Importantly, we want a cell's own observed values to have the highest impact 
on the imputation of its own values; therefore, our transition matrix כ� allows for self-loops, and these 
are the most probable steps in the random walk. Thus, 

�ᇱ ൌ �൅ ͳͲ כ �ୡ 

ሺ�ǡכ� �ሻ ൌ
�ᇱሺ�ǡ �ሻ

σ �ᇱሺ�ǡ �ሻୡ
ሺͳͶሻ 

To find the optimal �, we evaluated the impact of � on the final imputed data. We used an 80/20 cross-
validation scheme, where the set of promoters was divided randomly into two sets, the training set 
containing 80% of all promoters and the test set with the remaining 20%. We used the training set to 
fit the motif activities and the test set to evaluate the quality of the fit. Then, we choose the value of � 
that minimizes the mean square error (MSE) between the observed expression levels and those 
predicted by the model in the test set.  
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1.3 Differential motif activity analysis 

To identify key lineage-specific regulators during the cell-fate decision process, we defined a 
differential motif activity analysis based on the following criteria: (i) motifs with the high positive z-
score, i.e., motifs that significantly varied across cells compared with their estimated errors. (ii) motifs 
with high activity variability across the linage-specific differentiation trajectory. Finally, (iii) motifs with 
a high temporal correlation between its activity and mRNA expression within a specific window of time 
lags. 

1.3.1 Z-score 

To estimate the importance of a motif, we reasoned that activities that fluctuate the most across 
conditions should be the more important. Therefore, we used the number of standard-deviations that 
the activity of motif � is away from its average of zero corrected by the precision of the estimation 
(error bar), also known as z-score, as an indicator of the importance of each motif 

�୫ ൌ ඨ
ͳ
�෍ቆ

Ɋ୅ౣౙ
౎౛ౝ

Ɂ�୫ୡ
ቇ
ଶ

େ

ሺͳͷሻ 

where � is the number of cells, Ɋ୅ౣౙ
౎౛ౝ  is the mean of the motif activity distribution, and Ɂ�୫ୡ is the 

reliability of the fitting of �୫ୡ
ୖୣ୥ (error-bar) [12]. Since we do not know the posterior distribution of the 

�୫ୡ
ୖୣ୥, there is no analytical way to estimate the standard deviations Ɂ�୫ୡ. Therefore, we used 

bootstrapping, as explained below.  

Bootstrapping  

Important to the concept of bootstrapping is that inference about a population from sample data can 
be modeled by resampling the sample data and performing inference about a sample from the 
resampled data. Then, we built the distribution of the estimate for the motif activities using random 
sampling with replacement following the steps below: 

i. The activity of motif � in cell � is a function of the gene expression on that cell and the binding-
site matrix; in other words, �୫ୡ

ୖୣ୥ ൌ �ሺ�୥ୡ�୮୫ሻ. Similar to the cross-validation scheme, here 
we sampled taking the promoters/genes as observations.  

ii. Resample from �୥ୡ and �୮୫ taking randomly 80% of the observations. Importantly, the 
bootstrap resample has the same number of observations as the original data used in the 
training (sections 1.2.2 & 1.2.3).  

iii. Compute the estimate of �୫ୡ
ୖୣ୥. 

iv. Repeat (ii) and (iii) a large number of times, �, to get �୫ୡ
ୖୣ୥ǡଵ, �୫ୡ

ୖୣ୥ǡଶ, �୫ୡ
ୖୣ୥ǡଷ͕�͙͕��୫ୡ

ୖୣ୥ǡ୆. 
v. Use the estimates in (iv) to build the empirical bootstrap distribution of the estimate for the 

motif activities.  
vi. Infer Ɋ୅ౣౙ

౎౛ౝ  and Ɂ�୫ୡ from the empirical bootstrap distribution of the estimate.  

1.3.2 Variability over time 

We seek TFs with a high rate of change in the activity with respect to time, which is, clearly, the 
definition of the first-order derivative. However, since we do not know the exact distribution of the 
motif activities, there is no easy way to get the analytical solution. To get a proxy of the rate of change, 
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we estimate the standard deviation over time of the mean activity profile along the simulated 
trajectories (computed via Eqn 10), as follows: 

�୫ ൌ ඩ
ͳ

� െ ͳ෍ห�୫ǡన෢ െ Ɋ୫ห
ଶ

୬

୧ୀଵ

ሺͳ͸ሻ 

where � is the number of iterations, �୫෢  is the average activity of motif � over the simulated 
trajectories, and Ɋ୫ is the mean of �୫෢  

Ɋ୫ ൌ
ͳ
�෍�୫ǡన෢

୬

୧ୀଵ

ሺͳ͹ሻ 

1.3.3 Dynamic correlation 

Next, we used cross-correlation to identify dynamical correlations between average motif activities 
and their average mRNA expression along the differentiation trajectories. Cross-correlation is defined 
as a similarity measure between two series as a function of the displacement of one relative to the 
other. 

�୉෢ౣ ୅෢ౣ ሺ�ଵǡ �ଶሻ ؜ � ቂ�୫෢ ୲భ
�୫෢ ୲మ
തതതതതതቃ ሺͳͺሻ 

the left-hand-side reads as the cross-correlation between times �ଵ and �ଶ for the average mRNA 
expression over the simulated trajectories of �, �୫෢ , and �୫෢ . Next, we converted cross-correlation to 
Pearson correlation to facilitate the comparisons (1: maximum correlation, 0: no correlation, and -1: 
maximum anti-correlation). 

2. Mouse in-vivo dataset from endocrinogenesis 

We used scRNAseq data from the developing pancreas during the secondary transition, i.e., from 
embryonic day 12.5 to 15.5, published by Bastidas-Ponce et al., 2019 [14] and available in the Gene 
Expression Omnibus under accession number GSE132188. In particular, we used data from the last 
experimental time point, E15.5. We retrieve an annotated object directly from https://scvelo.org with 
the expression matrix and the annotations for unspliced/spliced reads using the following command: 
scvelo.datasets.pancreatic_endocrinogenesis(). Our final subset for Figure 2 contained 3696 cells. We 
kept the original cluster annotation reported by Bastidas-Ponce et al., 2019.  

Data pre-processing and velocity computation  

We used SCANPY [15] and scVelo [16] with most of the default parameters. We filtered out genes with 
less than 20 counts in both spliced and unspliced layers. Next, we normalized by total counts per cell, 
log-transformed the data, and kept the top 2000 highly variable genes. We embedded the data in the 
PCA space and used the top 30 principal components to compute a k-nearest neighbor graph with k = 
30. For visualization, we used UMAP embedding with two dimensions with default parameters. To 
ĐŽŵƉƵƚĞ�ZE��ǀĞůŽĐŝƚǇ͕�ǁĞ�ƵƐĞĚ�ƐĐsĞůŽ͛Ɛ�ĚǇŶĂŵŝĐ�ŵŽĚĞů�ŽĨ�ƐƉůŝĐŝŶŐ�ŬŝŶĞƚŝĐƐ͘  

https://scvelo.org/
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FateCompass specific computations  

For downstream analysis of the FateCompass pipeline, we embedded the mouse in-vivo data of gene 
expression and RNA velocity on ten dimensions in the UMAP space. Next, we computed a 
neighborhood graph in the reduced gene expression space with k = 10. This setting was the graph 
structure for the Markov chain operations of the FateCompass pipeline. The edges of the Markov chain 
were directed using the RNA velocity information and equation 3. We outlined stochastic trajectories 
using a Gibbs Sampling algorithm. Last, the thresholds for the differential motif activity analysis were: 
minimum z-score of 1.5, minimum standard deviation over trajectories of 0.003, and minimum 
Pearson correlation of 0.7.  

3. Human in-vitro ĚĂƚĂƐĞƚ�ĨƌŽŵ�ĚŝĨĨĞƌĞŶƚŝĂƚŝŽŶ�ƚŽǁĂƌĚƐ�ɴ-like cells 

We used a scRNAseq time-series dataset from a differentiation protocol from human embryonic stem 
cells towards ɴ-like cells profiled using inDrops [17]. The differentiation protocol consists of six stages, 
with pancreatic endocrine cells appearing throughout stage five. Veres et al. (2019) performed 
sequencing at the end of each stage and daily sampling across stage five. The data is available in the 
Gene Expression Omnibus under accession number GSE114412. We restricted the data to the 
endocrine lineage, from NKX6-1+ progenitors to hormone-producing cells. Our final subset for figure 
3 contained 25299 cells. We kept the original cluster annotations. 

Data pre-processing and velocity computation  

Sequencing reads were preprocessed according to the dropEst pipeline 
(https://github.com/kharchenkolab/dropEst). A reference index was built from the Ensembl GRCh38 
human genome assembly and the GRCh38.88 transcriptome annotation to run the pipeline. Shortly, 
we first extracted the cell barcodes and UMIs from the library using the dropTag command. Next, we 
used STAR 2.7.9a to map the reads to the human transcriptome. Finally, we used the dropEst command 
with the option -V, which allows the output of three separate matrices containing only UMIs of a 
specific type: intronic, exonic, or exon/intron spanning. These matrices were used to build an 
annotated h5ad object with the unspliced layer equal to the sum of intronic and spanning UMIs and 
the spliced layer corresponding to the exonic UMIs. We used SCANPY and scVelo with mostly default 
parameters. We filtered genes to be expressed in at least three cells. Next, we normalized by total 
counts per cell, log-transformed the data, and kept the top 2000 highly variable genes. We embedded 
the data in the PCA space and used the top 50 principal components to compute a k-nearest neighbor 
graph with k = 50. For visualization, we used UMAP embedding with two dimensions with default 
ƉĂƌĂŵĞƚĞƌƐ͘�dŽ�ĐŽŵƉƵƚĞ�ZE��ǀĞůŽĐŝƚǇ͕�ǁĞ�ƵƐĞĚ�ƐĐsĞůŽ͛Ɛ�ĚǇŶĂŵŝĐ�ŵŽĚĞů�ŽĨ�ƐƉůŝĐŝŶŐ�ŬŝŶĞƚŝĐƐ͘ 

FateCompass specific computations  

For downstream analysis of the FateCompass pipeline, we embedded the human in-vitro data of gene 
expression and RNA velocity on ten dimensions in the UMAP space. Next, we computed a 
neighborhood graph in the reduced gene expression space with k = 50. This setting was the graph 
structure for the Markov chain operations of the FateCompass pipeline. The edges of the Markov chain 
were directed using the potential energy landscape described in equation 5. We outlined stochastic 
trajectories using a Monte Carlo Sampling algorithm. Last, the thresholds for the differential motif 
activity analysis were: minimum z-score of 1.5, minimum standard deviation over trajectories of 0.006, 
and minimum Pearson correlation of 0.7.  

https://github.com/kharchenkolab/dropEst
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