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Abstract.

Directed microbial evolution harnesses evolutionary processes in the
laboratory to construct microorganisms with enhanced or novel func-
tional traits. Attempting to direct evolutionary processes for applied
goals is fundamental to evolutionary computation, which harnesses the
principles of Darwinian evolution as a general purpose search engine
for solutions to challenging computational problems. Despite their over-
lapping approaches, artificial selection methods from evolutionary com-
puting are not commonly applied to living systems in the laboratory. In
this work, we ask if parent selection algorithms—procedures for choosing
promising progenitors—from evolutionary computation might be useful
for directing the evolution of microbial populations when selecting for
multiple functional traits. To do so, we introduce an agent-based model
of directed microbial evolution, which we used to evaluate how well three
selection algorithms from evolutionary computing (tournament selec-
tion, lexicase selection, and non-dominated elite selection) performed
relative to methods commonly used in the laboratory (elite and top-10%
selection). We found that multi-objective selection techniques from evo-
lutionary computing (lexicase and non-dominated elite) generally out-
performed the commonly used directed evolution approaches when se-
lecting for multiple traits of interest. Our results motivate ongoing work
transferring these multi-objective selection procedures into the labora-
tory. Additionally, our findings suggest that more sophisticated artificial
selection methods from evolutionary computation should also be evalu-

ated for use in directed microbial evolution.

Keywords: directed evolution, artificial selection, evolutionary com-
puting, selection schemes, digital organisms, agent-based modeling
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. 1 Introduction

. Directed evolution harnesses laboratory artificial selection to generate biomolecules or or-
s ganisms with desirable functional traits (Arnold, 1998; Sanchez et al., 2021). The scale and
+ specificity of artificial selection has been revolutionized by a deeper understanding of evo-
s lutionary and molecular biology in combination with technological innovations in sequenc-
s ing, data processing, laboratory techniques, and culturing devices. These advances have
7 cultivated growing interest in directing the evolution of whole microbial communities with
s functions that can be harnessed in medical, biotech, and agricultural domains (Sanchez

o et al., 2021).

10 Of course, attempting to direct evolutionary processes for applied goals has not been lim-
un ited to biological systems. Evolutionary computing harnesses the principles of Darwinian
12 evolution as a general-purpose search engine to find solutions to challenging computa-
13 tional and engineering problems (Fogel, 2000). As in evolutionary computing, directed
1. evolution in the laboratory begins with a library—or population—of variants (e.g., commu-
15 nities, genomes, or molecules). Variants are scored based on a phenotypic trait (or set of
16 traits) of interest, and the variants with the “best” traits are chosen to produce the next
17 generation. Such approaches to picking progenitors are known as elitist selection algo-
18 rithms in evolutionary computing (Back et al., 1997). Evolutionary computing research has
10 shown that these elitist approaches to artificial selection can be sub-optimal in complex
20 search spaces. On their own, elitist selection schemes fail to maintain diversity, which
21 can lead to premature convergence (Hernandez, Lalejini, & Ofria, 2021; Lehman & Stan-
2 ley, 2011a), and they lack mechanisms to balance multiple objectives. Artificial selection
23 routines (i.e., parent selection algorithms or selection schemes) are intensely studied in
2 evolutionary computing, and many in silico selection techniques have been developed that
» improve the quality and diversity of evolved solutions (e.g., Goings et al., 2012; Goldberg,

2 Richardson, et al., 1987; Hornby, 2006; Lehman & Stanley, 2011b; Mouret & Clune, 2015;
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o Spector, 2012).

s Given their success, we expect that artificial selection methods developed for evolutionary
20 computing will improve the efficacy of directed microbial evolution in the laboratory, espe-
s cially when simultaneously selecting for more than one trait (a common goal in evolutionary
s computation). However, directed microbial evolution differs from evolutionary computing
52 in ways that may inhibit our ability to predict which techniques are most appropriate to
;3 apply in the laboratory. For example, candidate solutions in evolutionary computing are
s evaluated individually, resulting in high-resolution genotypic and phenotypic information
55 that can be used for selecting parents, which are then copied, recombined, and mutated
s to produce offspring. In directed microbial evolution, individual-level evaluation is often
;7 intractable at the scale required for directed evolution; as such, evaluation often occurs at
;s the population-level, and the highest performing populations are partitioned (instead of
3 copied) to create “offspring” populations. Moreover, when traits of interest do not bene-
» fit individuals’ reproductive success, population-level artificial selection may work against

s individual-level selection, which increases the difficulty of steering evolution.

»2 Here, we ask if artificial selection techniques developed for evolutionary computing might
»s  be useful for directing the evolution of microbial populations when selecting for multiple
« traits of interest: both for enhancing multiple traits in a single microbial strain and for pro-
s ducing a set diverse strains that specialize on different traits. To do so, we developed an
« agent-based model of directed evolution wherein we evolve populations of self-replicating
«  computer programs that perform computation that contributes either to the phenotype of
s the individual or the phenotype of the population. Using our model, we evaluated how
w well three selection techniques from evolutionary computing (tournament, lexicase, and
so non-dominated elite selection) performed in a setting that mimics directed evolution on
st functions measurable at the population-level. Overall, we found that multi-objective selec-

s2 tion techniques (lexicase and non-dominated elite selection) generally outperformed the


https://doi.org/10.1101/2022.04.01.486727
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.01.486727; this version posted April 21, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

53 selection schemes commonly applied to directed microbial evolution (elite and top-10%).
s« In particular, our findings suggest that lexicase selection is a good candidate technique
ss to transfer into the laboratory, especially when aiming to evolve a diverse set of specialist
ss Mmicrobial populations. Additionally, we found population-level artificial selection can im-
s prove directed evolution outcomes even when functional traits of interest can be tied to

ss individual-level reproductive success.

5o These findings lay the foundation for strengthened communication between the evolu-
s tionary computing and directed evolution communities. The evolution of biological or-
&1 ganisms (both natural and artificial) inspired the origination of evolutionary computation,
&2 and insights from evolutionary biology are regularly applied to evolutionary computing. As
s evolutionary computation has immense potential as a system for studying how to control
& laboratory evolution, these communities are positioned to form a virtuous cycle where in-
es Sights from evolutionary computing are then applied back to directing the evolution of

s biological organisms. With this work, we seek to strengthen this feedback loop.

« 2 Directed evolution

¢ Humans have harnessed evolution for millennia, applying artificial selection (knowingly
s and unknowingly) to domesticate a variety of animals, plants, and microorganisms (Cobb
70 etal, 2013; Driscoll et al., 2009; Hill & Caballero, 1992; Libkind et al., 2011). More recently,
n a deeper understanding of evolution, genetics, and molecular biology in combination with
7 technological advances have extended the use of artificial selection beyond domestication
7z and conventional selective breeding. For example, artificial selection has been applied to
= biomolecules (Beaudry & Joyce, 1992; Chen & Arnold, 1993; Esvelt et al., 2011), genetic
7 circuits (Yokobayashi et al., 2002), microoganisms (Ratcliff et al., 2012), viruses (Burrowes
% et al, 2019; Maheshri et al., 2006), and whole microbial communities (Goodnight, 1990;

77 Sanchez et al., 2021; Swenson et al., 2000). In this work, we focus on directed microbial
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s evolution.

7o One approach to artificial selection is to configure organisms’ environment such that desir-
s able traits are linked to growth or survival (referred to as “selection-based methods” (Wang
s et al, 2021)). In some sense, these selection-based methods passively harness artificial
&2 selection, as individuals with novel or enhanced functions of interest will tend to outcom-
&3 pete other conspecifics without requiring intervention beyond initial environmental ma-
& Nipulations. In combination with continuous culture devices, this approach to directing
& evolution can be used to achieve high throughput microbial directed evolution, “automat-
& ically” evaluating many variants without manual analysis (DeBenedictis et al., 2021; Toprak
&7 et al, 2012; Wang et al., 2021). For example, to study mechanisms of antibiotic resistance,
s researchers have employed morbidostats that continuously monitor the growth of evolv-
g iNng microbial populations and dynamically adjust antibiotic concentrations to maintain
o constant selection on further resistance (Toprak et al., 2012). However, linking desirable
a1 traits to organism survival can be challenging, requiring substantial knowledge about the

e organisms and the functions of interest.

s Similar to conventional evolutionary algorithms, “screening-based methods” of directed
« evolution assess each variant individually and choose the most promising to propagate (Wang
s et al, 2021). Overall, screening-based methods are more versatile than selection-based
s Mmethods because traits that are desirable can be directly discerned. However, screening
o7 requires more manual intervention and thus limits throughput. In addition to their gener-
e ality, screening-based methods also allow practitioners to more easily balance the relative
o importance of multiple objectives, such as yield, seed size, drought tolerance, et cetera in

o plant breeding (Bruce et al., 2019; Cooper et al., 2014).

w  In this work, we investigate screening-based methods of directed microbial evolution,
102 as many insights and techniques from evolutionary computation are directly applicable.

10z When directing microbial evolution, screening is applied at the population (or community)
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w4 level (Sanchez et al., 2021; Xie & Shou, 2021). During each cycle of directed microbial
10s evolution, newly founded populations grow over a maturation period in which members
10s Of each population reproduce, mutate, and evolve. Next, populations are assessed, and
w7 promising populations are chosen as “parental populations” that will be partitioned into

w8 the next generation of “offspring populations”.

1w Screening-based artificial selection methods are analogous to parent selection algorithms
1o Or selection schemes in evolutionary computing. We know from evolutionary computing
m research that the most effective selection scheme depends on a range of factors, including
12 the number of objectives (e.g., single- versus multi-objective), the form and complexity of
u3 the search space (e.g., smooth versus rugged), and the practitioner’s goal (e.g., generating a
s single solution versus many different solutions). Conventionally, however, screening-based
s methods of directing microbial evolution choose the overall “best” performing populations

us to propagate (e.g., the single best population or the top 10% (Xie et al., 2019)).

uz  To the best of our knowledge, the more sophisticated methods of choosing progenitors
us from evolutionary computing have not been applied to directed evolution of microbes.
ne However, artificial selection techniques from evolutionary computing have been applied
120 in a range of other biological applications. For example, multi-objective evolutionary al-
121 gorithms have been applied to DNA sequence design (Chaves-Gonzalez, 2015; Shin et al,,
122 2005); however, these applications are treated as computational optimization problems.
123 A range of selection schemes from evolutionary computing have also been proposed for
124 both biomolecule engineering (Currin et al,, 2015; Handl et al., 2007) and agricultural se-
125 lective breeding (especially for scenarios where genetic data can be exploited) (Rama-
126 Subramanian & Beavis, 2021). For example, using an NK landscape model, O’'Hagan et al.
127 evaluated the potential of elite selection, tournament selection, fitness sharing, and two
128 rule-based learning selection schemes for selective breeding applications (O’Hagan et al.,

120 2012). Inspired by genetic algorithms, island model approaches (Tanese, 1989) have been
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130 proposed for improving plant and animal breeding programs (Ramasubramanian & Beavis,
1 2021; Yabe et al., 2016), and Akdemir et al. applied multi-objective selection algorithms
12 like non-dominated selection to plant and animal breeding (Akdemir et al., 2019). In each
133 of these applications, however, artificial selection acted as screens on individuals and not
13« Whole populations; therefore, our work focuses on screening at the population-level in order
135 to test the applicability of evolutionary computing selection algorithms as general-purpose

136 screening methods for directed microbial evolution.

= 3 Digital Directed Evolution

s Conducting directed evolution experiments in the laboratory can be slow and labor inten-
139 sive, making it difficult to evaluate and tune new approaches to artificial selection in vitro.
1 We could draw directly from evolutionary computing results when transferring techniques
w1 into the laboratory, but the extent to which these results would predict the efficacy (or
12 appropriate parameterization) of a given algorithm in a laboratory setting is unclear. To
143 address this, we developed an agent-based model of directed evolution of microbes for
s evaluating which techniques from evolutionary computing might be most applicable in the

s laboratory.

us Figure [l overviews our model of laboratory directed microbial evolution. Our model con-
ur tains a population of populations (i.e., a “metapopulation”). Each population comprises
us digital organisms (self-replicating computer programs) that compete for space in a well-
1 mixed virtual environment. Both the digital organisms and their virtual environment are
10 inspired by those of the Avida Digital Evolution Platform (Ofria et al., 2009), which is a
151 well-established study system for in silico evolution experiments (e.g., A. Lalejini et al.,
12 2021; Lenski et al., 1999; Lenski et al., 2003; Zaman et al,, 2014) and is a closer analog
153 to microbial evolution than conventional evolutionary computing systems. However, we

1.« note that our model’s implementation is fully independent of Avida, as the Avida software
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Figure 1: Overview of our model of directed microbial evolution. In (a), we found each of N popu-
lations with a single digital organism. Next (b), we give each populatlon a maturation period during
which organisms reproduce, mutate, and evolve. After maturation, (c) we evaluate each population
based on population-level characteristics, and (d) we select populations (repeats allowed) to parti-
tion into IV “offspring” populations (e).

155 platform does not allow for us to model laboratory setups of directed microbial evolution

156 (as described in the previous section).

157 In our model, we initialize each population with a digital organism capable only of self-
158 replication (Figure ﬁ|a). After initialization, directed evolution proceeds in cycles. During a
150 cycle, we allow each population to evolve for a “maturation period” that comprises a fixed
10 number of time steps (Figure ﬁ|b). We then evaluate each population’s performance on a set
11 Of objectives (Figure ﬁ|c), and we select performant populations as “parental” populations
12 (Figure ﬁ|d). To create an “offspring” population (Figure ﬁ|e), we use a random sample of
13 digital organisms from the chosen parental population; in this work, we used 1% of the

16« Maximum population size.

s 3.1 Digital Organisms

s Each digital organism is defined by a sequence of program instructions (its genome) and

17 a set of virtual hardware components used to interpret and express those instructions. The
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s Virtual hardware and genetic representation used in this work extends that of (E. Dolson et
1o al,, 2019; Hernandez, Lalejini, & Dolson, 2021). The virtual hardware includes the following
o components: an instruction pointer indicating the position in the genome currently being
. executed, sixteen registers for performing computations, sixteen memory stacks, input and
12 output buffers, “scopes” that facilitate modular code execution, and machinery to facilitate
13 self-copying. For brevity, we refer readers to supplemental material for a more detailed

s description of these virtual hardware components (A. Lalejini et al., 2022).

s Digital organisms express their genomes sequentially unless the execution of one instruc-
e tion changes which instruction should be executed next (e.g., “if” instructions). The instruc-
17 tion set is Turing Complete and syntactically robust such that any ordering of instructions
s is valid (though not necessarily useful). The instruction set includes operators for basic
e math, flow control (e.g., conditional logic and looping), designating and triggering code
180 modules, input, output, and self-replication. Each instruction contains three arguments,
11 which may modify the effect of the instruction, often specifying memory locations or fixed

182 values. We further document the instruction set in our supplemental material.

183 Digital organisms reproduce asexually by copying their genome instruction-by-instruction
1.« and then executing a divide instruction. However, copying is imperfect and can result in
15 single-instruction and single-argument substitution mutations. We configured copy op-
16 erations to err at an expected rate of one instruction per 100 copied and one argument
17 per 200 copied. Genomes were fixed at a length of 100 instructions. When an organism
188 replicates, its offspring is placed in a random position in the population, replacing any
19 previous occupant. We limited the maximum population size to 1,000 organisms. As such,
10 improvements to the rate of self-replication are advantageous in the competition for space

11 Within a population.

12 During evolution, organism replication can be improved two ways: by improving genome

13 efficiency or by increasing the rate of genome expression (“metabolic rate”). An organ-
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Function # Inputs = Benefit
ECHO 1 Individual
NAND 2 Individual

NOT 1 Population
ORNOT 2 Population
AND 2 Population
OR 2 Population
ANDNOT 2 Population
NOR 2 Population
XOR 2 Population
EQU 2 Population
2A 1 Individual
A? 1 Population
A3 1 Population
A+ B 2 Population
Ax B 2 Population
A—B 2 Population

A% + B? 2 Population

AP A B 2 Population

A? — B2 2 Population

A3 — B3 Population

418 2 Population

Table 1: Computational functions that conferred individual-level or population-level benefits. The
particular functions were chosen to be used in our model based on those used in the Avida sys-
tem (Bryson et al., 2021). In all experiments, we included two versions of ECHO (each for different
input values), resulting in 22 possible functions that organisms could perform.
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14 isSM’s metabolic rate determines the speed at which it executes its genome. Digital or-
15 ganisms can improve their metabolic rate by performing designated functions (referred to
19s as individual-level functions), including some Boolean logic functions and simple mathe-
107 matical expressions (Table ﬁ]). Organisms can perform functions by executing the input
108 instruction to get numeric values from the environment, performing computations on those
100 values, and executing an output instruction with the results. When an organism produces
200 Output, we check to see if the output completes any of the designated functions (Table ﬁ]);
20 if 0, the organism’s metabolic rate is adjusted accordingly. We guarantee that the set of
22 iNputs received by an organism result in a unique output for each designated function. Or-
203 ganisms benefit from performing each function only once, preventing multiple rewards for
204 repeating a single function result. In this work, we configured each function that confers
205 an individual-level benefit to double an organism’s metabolic rate, which doubles the rate

26 the organism can copy itself.

o 3.2 Population-level Evaluation

26 In addition to individual-level functions, organisms can perform 18 different population-
200 level functions (Table ﬁ]). Unless stated otherwise, performing a population-level function
210 does not improve an organism’s metabolic rate. Instead, population-level functions are
a1 used for population-level evaluation and selection, just as we might screen for the pro-
212 duction of different biomolecules in laboratory populations. We assigned each population
213 @ score for each population-level function based on the number of organisms that per-
2. formed that function during the population’s maturation period. The use of these scores

215 for selecting progenitors varied by selection scheme (as described in Section ).

216 While population-level functions benefit a population’s chance to propagate, they do not
217 benefit an individual organism’s immediate reproductive success: time spent computing

218 population-level functions is time not spent on performing individual-level functions or

10
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210 self-replicating. Such conflicts between group-level and individual-level fitness are well-
20 established in evolving systems (Simon et al., 2013; Waibel et al., 2009), and are indeed
21 a problem recognized for screening-based methods of artificial selection that must be

22 applied at the population-level (Brenner et al., 2008; Escalante et al., 2015).

» 4 Methods

22« Using our model of laboratory directed evolution, we investigated if selection schemes
25 from evolutionary computing might be useful for directed evolution of microbes. Specifi-
26 cally, we compared two selection schemes used in directed evolution (elite and top-10%
227 selection) with three other methods used in evolutionary computing (tournament, lexi-
28  Case, and non-dominated elite selection). Additionally, we ran two controls that ignored

220 population-level performance.

2 We conducted three independent experiments. First, we evaluated the relative perfor-
2 mance of parent selection algorithms in a conventional evolutionary computing context,
22 Which established baseline expectations for subsequent experiments using our model of
233 laboratory directed evolution. Next, we compared parent selection algorithms using our
22 model of laboratory directed evolution in two contexts. In the first context, we did not link
235 population-level functions (Table ﬁ]) to organism survival to evaluate how well each parent
236 selection algorithm performs as a screening-based method of artificial selection. In the
237 second context, we tested whether any of the selection schemes still improve overall di-
28 rected evolution outcomes even when organism survival is aligned with population-level

20 functions.

1
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x 4.1 Selection Schemes
1 4.1.1  Elite and top-10% selection

22 Elite and top-10% selection are special cases of truncation selection (Mihlenbein & Schlierkamp-
a3 Voosen, 1993) or (i, \) evolutionary strategies (Back et al.,, 1991) wherein candidates are
24 ranked and the most performant are chosen as progenitors. We implement these selec-
s tion methods as they are used in laboratory directed evolution (Xie & Shou, 2021; Xie et
s al., 2019). Here, both elite and top-180% selection rank populations according to their ag-
2«7 gregate performance on all population-level functions. Elite selection chooses the single
us best performing population to generate the next metapopulation, and top-18% chooses

20 the best 10% (rounded up to the nearest whole number) as parental populations.

» 4.1.2 Tournament selection

;1 Tournament selection is one of the most common parent selection methods in evolution-
2 ary computing. To select a parental population, 7" populations are randomly chosen from
»3  the metapopulation to form a tournament (IT' = 4 in this work). The population with the
4 highest aggregate performance on all population-level functions wins the tournament and
5 1S chosen as a parent. We run N tournaments to choose the parental populations for each

»6  Of N offspring populations.

»7 4.1.3 Lexicase selection

s Unlike the previously described selection schemes, lexicase selection does not aggre-
0 gate measures of performance across population-level functions (i.e., objectives) to choose
x0 parental populations. Instead, lexicase selection considers performance on each population-
21 level function independently. For each parent selection event, all members of the metapop-
22 Ulation are initially considered candidates for selection. To select a parental population,

%3 the set of population-level functions are shuffled and considered in sequence. Each func-

12
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x4 tion (in shuffled order) is then used to sequentially filter candidates, removing all but the
x5 best candidates from further consideration. This process continues until only one candi-
%6 date remains to be selected or until all functions have been considered; if more than one

%7 candidate remains, one is selected at random.

xs Lexicase selection was originally proposed for test-based genetic programming prob-
%o lems (Helmuth et al., 2015; Spector, 2012), but has since produced promising results in
270 @ variety of domains (Aenugu & Spector, 2019; La Cava et al., 2016; Metevier et al., 2019;
on Moore & Stanton, 2017). By randomly permuting the objectives for each parent selec-
a2 tion, lexicase selection maintains diversity (E. L. Dolson et al., 2018; Helmuth et al., 2016),
23 Which improves search space exploration (Hernandez, Lalejini, & Ofria, 2021) and overall
s problem-solving success (Helmuth & Spector, 2015; Hernandez, Lalejini, & Dolson, 2021).

s In particular, lexicase selection focuses on maintaining specialists (Helmuth et al., 2019).

7 4.1.4 Non-dominated elite selection

o7 Non-dominated elite selection is a simple multi-objective selection algorithm that chooses
s all populations that are not Pareto dominated by another population (Zitzler, 1999). A
70 candidate, ¢,, Pareto dominates another candidate, ¢, if the following two conditions are
20 Mmet: (1) ¢, performs no worse than ¢, on all population-level functions, and (2) ¢, has strictly
21 better performance than ¢, on at least one population-level function. After identifying all
22 hon-dominated populations, these populations are selected with replacement to found

83 each offspring population.

2. Pareto domination is a fundamental component in many successful evolutionary multi-
25 Objective optimization (EMOO) algorithms (Deb et al.,, 2002; Fonseca & Fleming, 1995;
6 Horn et al, 1994; Zitzler, 1999). In general, EMOO algorithms aim to produce the set of
27 solutions with optimal trade-offs of the objective set. Most EMOO algorithms have more

28 Sophisticated routines for parent selection than non-dominated elite selection (e.g., use of
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20 external archives or crowding metrics). We opted to use non-dominated elite selection for

200 1ts simplicity, but future work will explore more EMOO selection schemes.

01 4.1.5 Selection controls

22 We used random and no selection as controls. Random selection chooses a random set of
203 populations (with replacement) to serve as parental populations. “No selection” chooses
20 all populations in the metapopulation as sources for founding the next generation of pop-
205 Ulations; that is, each population is chosen to produce one offspring population. Both

206 controls apply no selection pressure for performing population-level functions.

»» 4.2 Experimental design

»s 4.2.1 Establishing baseline problem-solving expectations in an evolutionary com-

299 puting context

w0 First, we evaluated the relative performance of parent selection algorithms in a conven-
;o0 tional evolutionary computing context (linear genetic programming (Brameier & Banzhaf,
s 2007)), in which we evolved programs to compute the functions in Table ﬂ] This control
503 experiment allowed us to verify that the genetic representation used by digital organisms
s (Section ) is sufficient for evolving each of the computational functions used in subse-
s quent experiments. Additionally, the relative performances of each algorithm establishes
36 an expectation for how each parent selection algorithm might perform in our model of

507 laboratory directed evolution.

x For each of the seven selection schemes described in Section 4.1, we evolved 50 replicate
300 populations of 1,000 programs. We chose to evolve populations for 55,000 generations to
;10 approximate the number of digital organism generations that elapsed in our directed evo-
s lution experiments (based on exploratory runs). We used the same genetic representation

s12 - as described in Section ; however, we excluded self-replication instructions from the
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a3 instruction set, as we did not require programs to copy themselves during this experiment.

s Each program was evaluated independently to determine its phenotype. To evaluate a pro-
a5 gram, we executed it for 200 time steps, and we tracked its inputs and outputs to deter-
s mMine which of the functions in Table ﬁ] it performed (if any). For the purpose of selection, we
siz  treated each of the 22 possible functions as a pass-fail task. Lexicase and non-dominated
sis  elite selection considered each task separately to choose parents, while elite, top-10%, and
;10 tournament selection used the number of task passes as fitness values for choosing par-
0 ents. Chosen parents reproduced asexually, and we applied mutations to offspring of the

;21 same types and frequencies as in our model of laboratory directed evolution (Section ).

22 At the end of each run, we identified the program that performed the most tasks, and
23 We compared these values across treatments. We considered a run to be successful if it

;24 produced a program capable of performing all 22 tasks during evaluation.

2 4.2.2 Applying parent selection algorithms in a digital directed evolution context

26 Next, we evaluated each selection scheme’s performance in our model of laboratory di-
s27 rected evolution. For each selection scheme, we ran 50 independent replicates of di-
28 rected evolution for 2,000 cycles of population maturation, screening, and propagation
39 (a@s shown in Figure ﬁ]). During each cycle, we gave populations a maturation period of 200
330 updatesﬂ (approximately 25 to 35 generations). Within each replicate, the metapopulation
;31 comprised 96 populations (following the number of samples held by a standard microtiter
s plate used in laboratory experiments), each with a maximum carrying capacity of 1,000
;3 digital organisms. During a population’s maturation period, we measured the number of
s organisms that performed each of the 18 population-level functions (Table ﬁ]) as the pop-
135 Ulation’s “phenotype” for evaluation. We selected populations to propagate according to

136 the treatment-specific selection scheme, and propagated chosen parental populations as

'One update is the amount of time required for the average organism in a population to execute 30
instructions.
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= described in Section [3.

;33 At the end of the experiment, we analyzed the population-level functions performed by
;30 populations in each replicate’s metapopulation. First, we calculated each population’s
a0 “task profile”, which is a binary vector that describes which population-level functions are
s “covered” by the population (zeroes are assigned for functions that are not covered and
w2 ones for those that are covered). A function is considered covered if it is performed by at
w3 least 50 organisms (a threshold ensuring the performance was not one-off) during a given

s Maturation period.

us  Next, we measured the “best population task coverage” and “metapopulation task cov-
us erage” for each replicate. Best population task coverage is measured as the number of
w7 functions covered by the population with the largest set of covered functions. Metapop-
us Ulation task coverage is measured as the number of functions covered across the entire
10 Metapopulation (i.e., the union of unique tasks covered by each population in the metapop-

0 Ulation).

;51 We also measured the phenotypic diversity within each metapopulation. Specifically, we
;2 measured the number of different task profiles present in the metapopulation (i.e., pheno-
;53 typic richness), and we measured the “spread” of task profiles in the metapopulation. To
;54 Measure a metapopulation’s task profile spread, we calculated a centroid task profile as
55 the average of all task profiles in the metapopulation, and then we calculated the average
;56 normalized cosine distance between each population’s task profile and the centroid. A
357 metapopulation’s task spread summarizes how different the constituent populations’ task

;s profiles are from one another.
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0 4.2.3 Evaluating whether selection schemes improve directed evolution outcomes

360 when population-level functions are aligned with organism survival

s Selection-based methods of artificial selection tie desired traits to organism survival, elim-
2 inating the need to apply screening-based methods to populations. We tested whether the
s addition of population-level selection improves directed evolution outcomes even when
s traits of interest (population-level functions) are selected for at the individual level (i.e.,
35 tied to organism survival). To do so, we repeated our previously described directed evo-
w6 lution experiment (Section ), except we configured all population-level functions to
7 iMmprove an organism’s metabolic rate in addition to the individual-level functions. As
s such, all population-level functions were beneficial in all treatments, including the random
0 and no selection controls. However, only treatments with non-control selection schemes

s0 - applied artificial selection at the population-level.

- 4.3 Statistical Analyses

sz In general, we differentiated between sample distributions using non-parametric statisti-
;3 cal tests. For each major analysis, we first performed a Kruskal-Wallis test (Kruskal & Wallis,
s [1952) to determine if there were significant differences in results across treatments (sig-
a5 nificance level o = 0.05). If so, we applied a Wilcoxon rank-sum test (Wilcoxon, 1992) to
s distinguish between pairs of treatments, using a Bonferroni correction for multiple com-
577 parisons (Rice, 1989). Due to space limitations, we do not report all pairwise comparisons
ws 1N our main results; however, all of our statistical results are included in our supplemental

a9 material.

w« 4.4 Software and Data Availability

s Our model of laboratory directed evolution is available on GitHub (see A. Lalejini et al,,

2 2022) and is implemented using the Empirical scientific software library (Ofria et al., 2020).
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;3 We conducted all statistical analyses with R version 4.04 (R Core Team, 2021), using
s« the following R packages for data analysis and visualization: tidyverse (Wickham et al.,,
s 2019), ggplot2 (Wickham, 2016), cowplot (Wilke, 2028), viridis (Garnier, 2018), and Color
s Brewer (Harrower & Brewer, 2003; Neuwirth, 2014|). Our source code for experiments, anal-
ss7 yses, and visualizations is publicly available on GitHub (see A. Lalejini et al., 2022). Addi-
;s tionally, our experiment data are publicly archived on the Open Science Framework (see

0 A. M. Lalejini, 2022).

«» B Results and Discussion

= 5.1 Baseline problem-solving expectations in an evolutionary com-

302 puting context

;03 First, we established baseline performance expectations for the selection schemes in a
s conventional genetic programming context to validate the solvability of the individual- and
;5 population-level functions used in our digital directed evolution experiments. Two se-
;06 lection schemes produced successful replicates, where success is defined as evolving a
;07 program capable of performing all 22 functions: elite (1/50) and lexicase selection (47/50).
ss  No solutions evolved in any other treatment. Figure 2 depicts the number of functions per-
;0 formed by the best program from each replicate. All selection schemes outperformed the
w0 random and no selection controls. Differences between all pairs except random and no
w1 selection were statistically significant (Bonferroni-corrected Wilcoxon rank-sum, p < 0.01).
w2 Lexicase selection was the most performant followed by top-10%, elite, tournament, and

w03 non-dominated elite selection.

w4 These data confirm that our genetic representation allows for the evolution of each com-
w5 putational function used in our model of laboratory directed evolution. Moreover, these

w6 data establish some expectations for the relative performance of each selection scheme in
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Figure 2: Task coverage of the best program (per replicate) evolved in an evolutionary computing
context. Selection scheme abbreviations are as follows: TOURN is tournament, LEX is lexicase, NDE
is non-dominated elite, RAND is random, and NONE is no selection. Differences among treatments
were statistically significant (Kruskall-Wallis, p < 107).

w7 our directed evolution experiments. Lexicase selection’s strong performance is consistent
«ws  With previous work demonstrating its efficacy on program synthesis problems (Helmuth &
w0 Abdelhady, 2020; Helmuth & Spector, 2015). While initially surprised by non-dominated
w0 elite’s poor performance (relative to other non-control selection schemes), we note that
a1 selection methods based on Pareto domination are rarely applied to pass-fail test-based
a2 genetic programming problems, and perhaps the course-grained function scores (® or 1)

sz hindered its capacity for problem-solving success.
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Figure 3: Digital directed evolution results. Differences among treatments were statistically sig-
nificant for each panel (Kruskall-Wallis, p < 107%).

5.2 Lexicase and non-dominated elite selection show promise for

directed evolution

Next, we compared selection scheme performance when modeling the directed evolution
of digital organisms. Figures @a and Qb show the best population and metapopulation
task coverages, respectively. All selection schemes resulted in greater single-population
task coverage than both random and no selection controls (Bonferroni-corrected Wilcoxon
rank-sum test, p < 10™). Metapopulation coverage under tournament selection was not
significantly different than coverage under the no selection control, but all other selec-
tion schemes resulted in significantly better metapopulation coverage than both controls
(Bonferroni-corrected Wilcoxon rank-sum, p < 0.03). Overall, lexicase and non-dominated
elite selection scored the greatest population and metapopulation task coverage out of all
selection schemes, and lexicase was the overall best selection scheme according to both

metrics of performance.
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w27 While differences were significant on the best population-task coverage, they were not
w28 necessarily substantial. However, other measures had more substantial differences. Both
»29 multi-objective selection schemes—lexicase and non-dominated elite—had the greatest
s0 metapopulation task coverage (Figure Qb), and the greatest diversity of task profiles in
s the final metapopulations (Figure Bc; Bonferroni-corrected Wilcoxon rank-sum test, p <
2 10™%). Lexicase selection in particular also had the greatest task profile spread (Figure Ed;
s Bonferroni-corrected Wilcoxon rank-sum test, p < 10), which is consistent with previous
s4  results demonstrating that lexicase excels at maintaining diverse specialists (E. L. Dolson

i35 et al, 2018; Helmuth et al.,, 2016; Helmuth et al., 2019; Hernandez, Lalejini, & Ofria, 2021).

i35 We hypothesized that lexicase and non-dominated elite selection’s mechanisms for select-
s ing different types of parental populations underpinned their improved performance over
is  elite, top-10%, and tournament selection. This, however, is confounded by each selection
130 scheme’s varying capacity to select a greater number of different populations (regardless
wo Of differences in those selected). As such, we asked whether lexicase and non-dominated
w1 elite’s success could be explained by a capacity to select a greater number of different
a2 parental populations. Elite selection selected exactly one population per cycle, top-10%
w3 selected 10, lexicase selected an average of 12, tournament selected an average of 50, and
«s  Non-dominated elite selected an average of 83 different populations. Thus, we can rule
us out the number of populations selected per cycle as the sole explanation for lexicase se-
us lection’s success; we argue that this, in combination with our diversity data, suggests that
w7 directed evolution practitioners should consider incorporating mechanisms for selecting

us  phenotypically diverse parental populations into their artificial selection approaches.

uo  These results are also informative when compared to our genetic programming control
0  experiment (Figure @). While results across these two contexts are not directly compara-
1 ble, we argue that, taken together, our experiments suggest that steering evolution at the

2 population-level is more challenging than steering at the individual-level. For example,
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»s3 across all treatments, no single population in our model of directed evolution performed
s+ all 18 population-level functions. Yet, after a similar number of organism-level genera-
s5  tions (~55,000), both elite and lexicase selection produced programs capable of all 22
s6 functions in a genetic programming context; even after only 2,000 generations (the num-
7 ber of cycles in our directed evolution experiments), we found that conventional genetic
s programming produced more performant programs than those evolved under our model
w0 Of laboratory directed evolution (supplemental material A. Lalejini et al., 2022). We also
w0 Observed differences in the rank order of selection schemes between experiments. For ex-
w1 ample, non-dominated elite selection performed poorly in a genetic programming context
w2 relative to the other non-control selection schemes; however, non-dominated elite outper-
w3 formed all selection schemes except lexicase selection in our model of laboratory directed
w4 evolution. On its own, non-dominated elite’s difference in performance is not surprising, as
w5 non-dominated elite selection is not conventionally used for evolving computer programs
w6 Where evaluation criteria are evaluated on a pass-fail basis. More broadly, however, we
w7 argue that this result highlights modeling as an important intermediate step when evaluat-
w8 ing which techniques from evolutionary computing are likely to be effective in a laboratory

469 setting.

«~ 5.3 Selection schemes improve outcomes even when organism sur-

- vival can be tied to population-level functions

w2 Next, we tested whether the addition of population-level screening improves directed evo-
w3 lution outcomes even when population-level functions can be tied to organism survival.
s Qverall, each non-control selection scheme resulted in better single-population task cov-
w5 erage than either control treatment (Figure E]a; Bonferroni-corrected Wilcoxon rank-sum
e test, p < 107*). We did not find significant differences in best population coverage among

ar elite, top-10%, tournament, and non-dominated elite selection. In contrast to our previous
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Figure 4: Digital directed evolution results when organism survival is tied to population-level
functions. Differences among treatments were statistically significant for each panel (Kruskall-
Wallis, p < 107).

w8 experiment, lexicase selection resulted in lower best population coverage than each other

s non-control selection scheme (Bonferroni-corrected Wilcoxon rank-sum test, p < 10™4).

w0 Lexicase selection, however, outperformed all other selection schemes on metapopulation
w1 task coverage (Figure E]b; Bonferroni-corrected Wilcoxon rank-sum test, p < 10™), produc-
2 1ing 30 metapopulations that cover all 18 population-level functions. In general, lexicase
i3 selection produced metapopulations containing distinct specialist populations, resulting
s4 1N high metapopulation task coverage while each specialist population had low task cov-
w5 erage on its own. Indeed, while lexicase metapopulations did not necessarily comprise
6 many different population task profiles (Figure @c), the task profiles were very different

«s7  from one another (Figure @d).

sss  Of our two control selection methods, we found that performing no selection was bet-

s0 ter than random selection for both single-population and metapopulation task coverage
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w0 (Bonferroni-corrected Wilcoxon rank-sum test, p < 10). In fact, performing no selection
w1 at all resulted in better metapopulation task coverage than elite, top-10%, and tournament
w2 selection (Bonferroni-corrected Wilcoxon rank-sum test, p < 1073). We hypothesize that this
w03 result is because elite, top-10%, and tournament selection converge to metapopulations
w4 With homogeneous task profiles, while performing no selection at all allows populations to

w5 diverge from one another.

« 6 Conclusion

s7 In this work, we investigated whether the selection schemes from evolutionary computing
w8 Might be useful for directing the evolution of microbial populations. To do so, we intro-
w0 duced an agent-based model of laboratory directed evolution. Overall, our results suggest
s0 that lexicase and non-dominated elite selection are promising techniques to transfer into
so0 the laboratory when selecting for multiple traits of interest, as both of these selection
s2  Schemes resulted in improved outcomes relative to conventional directed evolution selec-
s tion methods. In particular, we expect lexicase selection to be especially useful for evolving
sa @ set of microbial populations, each specializing on different population-level functions.
ss We also found that the addition of screening-based methods of artificial selection can im-
so6 prove directed evolution outcomes in cases where organisms’ reproductive success can

s7 be tied to traits of interest.

sos  Our study has several important limitations that warrant future model development and
s00 experimentation. For example, we focused on modeling microbial populations that grow
50 (and evolve) in a simple environment without complex ecological interactions. We plan to
su  add ecological dynamics by incorporating features such as limited resources, waste by-
sz products, symbiotic interactions, and spatial structure. These extensions will allow us to
513 model the directed evolution of complex microbial communities (e.g., Sanchez et al., 2021;

s Xie & Shou, 2021), which is an emerging frontier in laboratory directed evolution.
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si5  In this study, we compared simple versions of each selection scheme. We plan to test
s More sophisticated selection schemes as we continue to transfer techniques developed
si7 for evolutionary computation into the laboratory. For example, non-dominated elite se-
sis lection is one of the simplest methods that uses Pareto domination to choose parents;
s given its strong performance, we see more sophisticated multi-objective selection algo-
s20 rithms (e.g., NSGA-II (Deb et al., 2002)) as particularly promising for laboratory directed
s21 evolution. Lexicase selection variants are also promising for laboratory directed evolu-
s2 tion: epsilon lexicase (La Cava et al,, 2016; Spector et al., 2018) might be useful when
s23  population-level characteristics are measured as real-valued quantities, and cohort lexi-
s case selection (Hernandez et al., 2019) could reduce the amount of screening required to
s select parental populations. Beyond selection schemes, we also see quality diversity algo-
s rithms (Hagg, 2021) (e.g., MAP-Elites (Mouret & Clune, 2015)) as promising techniques to

sz transfer into the laboratory.

s We see digital experiments like the ones reported here as a critical step for transferring
s20 techniques developed for evolutionary computing into the laboratory. Indeed, our results
s3 are currently informing the design of laboratory experiments that apply evolutionary com-
s puting techniques to the directed evolution of E. coli. Our model of directed microbial
52 evolution provides a testbed for rigorously evaluating different artificial selection methods
33 with different laboratory setups (e.g., metapopulation size, maturation period, etc.) before

s embarking on costly or timing consuming laboratory experiments.
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