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Abstract.

Directed microbial evolution harnesses evolutionary processes in the

laboratory to construct microorganisms with enhanced or novel func-

tional traits. Attempting to direct evolutionary processes for applied

goals is fundamental to evolutionary computation, which harnesses the

principles of Darwinian evolution as a general purpose search engine

for solutions to challenging computational problems. Despite their over-

lapping approaches, artificial selection methods from evolutionary com-

puting are not commonly applied to living systems in the laboratory. In

this work, we ask if parent selection algorithms—procedures for choosing

promising progenitors—from evolutionary computation might be useful

for directing the evolution of microbial populations when selecting for

multiple functional traits. To do so, we introduce an agent-based model

of directed microbial evolution, which we used to evaluate how well three

selection algorithms from evolutionary computing (tournament selec-

tion, lexicase selection, and non-dominated elite selection) performed

relative to methods commonly used in the laboratory (elite and top-10%

selection). We found that multi-objective selection techniques from evo-

lutionary computing (lexicase and non-dominated elite) generally out-

performed the commonly used directed evolution approaches when se-

lecting for multiple traits of interest. Our results motivate ongoing work

transferring these multi-objective selection procedures into the labora-

tory. Additionally, our findings suggest that more sophisticated artificial

selection methods from evolutionary computation should also be evalu-

ated for use in directed microbial evolution.

Keywords: directed evolution, artificial selection, evolutionary com-
puting, selection schemes, digital organisms, agent-based modeling
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1 Introduction1

Directed evolution harnesses laboratory artificial selection to generate biomolecules or or-2

ganisms with desirable functional traits (Arnold, 1998; Sánchez et al., 2021). The scale and3

specificity of artificial selection has been revolutionized by a deeper understanding of evo-4

lutionary and molecular biology in combination with technological innovations in sequenc-5

ing, data processing, laboratory techniques, and culturing devices. These advances have6

cultivated growing interest in directing the evolution of whole microbial communities with7

functions that can be harnessed in medical, biotech, and agricultural domains (Sánchez8

et al., 2021).9

Of course, attempting to direct evolutionary processes for applied goals has not been lim-10

ited to biological systems. Evolutionary computing harnesses the principles of Darwinian11

evolution as a general-purpose search engine to find solutions to challenging computa-12

tional and engineering problems (Fogel, 2000). As in evolutionary computing, directed13

evolution in the laboratory begins with a library—or population—of variants (e.g., commu-14

nities, genomes, or molecules). Variants are scored based on a phenotypic trait (or set of15

traits) of interest, and the variants with the “best” traits are chosen to produce the next16

generation. Such approaches to picking progenitors are known as elitist selection algo-17

rithms in evolutionary computing (Bäck et al., 1997). Evolutionary computing research has18

shown that these elitist approaches to artificial selection can be sub-optimal in complex19

search spaces. On their own, elitist selection schemes fail to maintain diversity, which20

can lead to premature convergence (Hernandez, Lalejini, & Ofria, 2021; Lehman & Stan-21

ley, 2011a), and they lack mechanisms to balance multiple objectives. Artificial selection22

routines (i.e., parent selection algorithms or selection schemes) are intensely studied in23

evolutionary computing, and many in silico selection techniques have been developed that24

improve the quality and diversity of evolved solutions (e.g., Goings et al., 2012; Goldberg,25

Richardson, et al., 1987; Hornby, 2006; Lehman & Stanley, 2011b; Mouret & Clune, 2015;26
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Spector, 2012).27

Given their success, we expect that artificial selection methods developed for evolutionary28

computing will improve the efficacy of directed microbial evolution in the laboratory, espe-29

cially when simultaneously selecting for more than one trait (a common goal in evolutionary30

computation). However, directed microbial evolution differs from evolutionary computing31

in ways that may inhibit our ability to predict which techniques are most appropriate to32

apply in the laboratory. For example, candidate solutions in evolutionary computing are33

evaluated individually, resulting in high-resolution genotypic and phenotypic information34

that can be used for selecting parents, which are then copied, recombined, and mutated35

to produce offspring. In directed microbial evolution, individual-level evaluation is often36

intractable at the scale required for directed evolution; as such, evaluation often occurs at37

the population-level, and the highest performing populations are partitioned (instead of38

copied) to create “offspring” populations. Moreover, when traits of interest do not bene-39

fit individuals’ reproductive success, population-level artificial selection may work against40

individual-level selection, which increases the difficulty of steering evolution.41

Here, we ask if artificial selection techniques developed for evolutionary computing might42

be useful for directing the evolution of microbial populations when selecting for multiple43

traits of interest: both for enhancing multiple traits in a single microbial strain and for pro-44

ducing a set diverse strains that specialize on different traits. To do so, we developed an45

agent-based model of directed evolution wherein we evolve populations of self-replicating46

computer programs that perform computation that contributes either to the phenotype of47

the individual or the phenotype of the population. Using our model, we evaluated how48

well three selection techniques from evolutionary computing (tournament, lexicase, and49

non-dominated elite selection) performed in a setting that mimics directed evolution on50

functions measurable at the population-level. Overall, we found that multi-objective selec-51

tion techniques (lexicase and non-dominated elite selection) generally outperformed the52
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selection schemes commonly applied to directed microbial evolution (elite and top-10%).53

In particular, our findings suggest that lexicase selection is a good candidate technique54

to transfer into the laboratory, especially when aiming to evolve a diverse set of specialist55

microbial populations. Additionally, we found population-level artificial selection can im-56

prove directed evolution outcomes even when functional traits of interest can be tied to57

individual-level reproductive success.58

These findings lay the foundation for strengthened communication between the evolu-59

tionary computing and directed evolution communities. The evolution of biological or-60

ganisms (both natural and artificial) inspired the origination of evolutionary computation,61

and insights from evolutionary biology are regularly applied to evolutionary computing. As62

evolutionary computation has immense potential as a system for studying how to control63

laboratory evolution, these communities are positioned to form a virtuous cycle where in-64

sights from evolutionary computing are then applied back to directing the evolution of65

biological organisms. With this work, we seek to strengthen this feedback loop.66

2 Directed evolution67

Humans have harnessed evolution for millennia, applying artificial selection (knowingly68

and unknowingly) to domesticate a variety of animals, plants, and microorganisms (Cobb69

et al., 2013; Driscoll et al., 2009; Hill & Caballero, 1992; Libkind et al., 2011). More recently,70

a deeper understanding of evolution, genetics, and molecular biology in combination with71

technological advances have extended the use of artificial selection beyond domestication72

and conventional selective breeding. For example, artificial selection has been applied to73

biomolecules (Beaudry & Joyce, 1992; Chen & Arnold, 1993; Esvelt et al., 2011), genetic74

circuits (Yokobayashi et al., 2002), microoganisms (Ratcliff et al., 2012), viruses (Burrowes75

et al., 2019; Maheshri et al., 2006), and whole microbial communities (Goodnight, 1990;76

Sánchez et al., 2021; Swenson et al., 2000). In this work, we focus on directed microbial77
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evolution.78

One approach to artificial selection is to configure organisms’ environment such that desir-79

able traits are linked to growth or survival (referred to as “selection-based methods” (Wang80

et al., 2021)). In some sense, these selection-based methods passively harness artificial81

selection, as individuals with novel or enhanced functions of interest will tend to outcom-82

pete other conspecifics without requiring intervention beyond initial environmental ma-83

nipulations. In combination with continuous culture devices, this approach to directing84

evolution can be used to achieve high throughput microbial directed evolution, “automat-85

ically” evaluating many variants without manual analysis (DeBenedictis et al., 2021; Toprak86

et al., 2012; Wang et al., 2021). For example, to study mechanisms of antibiotic resistance,87

researchers have employed morbidostats that continuously monitor the growth of evolv-88

ing microbial populations and dynamically adjust antibiotic concentrations to maintain89

constant selection on further resistance (Toprak et al., 2012). However, linking desirable90

traits to organism survival can be challenging, requiring substantial knowledge about the91

organisms and the functions of interest.92

Similar to conventional evolutionary algorithms, “screening-based methods” of directed93

evolution assess each variant individually and choose themost promising to propagate (Wang94

et al., 2021). Overall, screening-based methods are more versatile than selection-based95

methods because traits that are desirable can be directly discerned. However, screening96

requires more manual intervention and thus limits throughput. In addition to their gener-97

ality, screening-based methods also allow practitioners to more easily balance the relative98

importance of multiple objectives, such as yield, seed size, drought tolerance, et cetera in99

plant breeding (Bruce et al., 2019; Cooper et al., 2014).100

In this work, we investigate screening-based methods of directed microbial evolution,101

as many insights and techniques from evolutionary computation are directly applicable.102

When directing microbial evolution, screening is applied at the population (or community)103
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level (Sánchez et al., 2021; Xie & Shou, 2021). During each cycle of directed microbial104

evolution, newly founded populations grow over a maturation period in which members105

of each population reproduce, mutate, and evolve. Next, populations are assessed, and106

promising populations are chosen as “parental populations” that will be partitioned into107

the next generation of “offspring populations”.108

Screening-based artificial selection methods are analogous to parent selection algorithms109

or selection schemes in evolutionary computing. We know from evolutionary computing110

research that the most effective selection scheme depends on a range of factors, including111

the number of objectives (e.g., single- versus multi-objective), the form and complexity of112

the search space (e.g., smooth versus rugged), and the practitioner’s goal (e.g., generating a113

single solution versus many different solutions). Conventionally, however, screening-based114

methods of directing microbial evolution choose the overall “best” performing populations115

to propagate (e.g., the single best population or the top 10% (Xie et al., 2019)).116

To the best of our knowledge, the more sophisticated methods of choosing progenitors117

from evolutionary computing have not been applied to directed evolution of microbes.118

However, artificial selection techniques from evolutionary computing have been applied119

in a range of other biological applications. For example, multi-objective evolutionary al-120

gorithms have been applied to DNA sequence design (Chaves-González, 2015; Shin et al.,121

2005); however, these applications are treated as computational optimization problems.122

A range of selection schemes from evolutionary computing have also been proposed for123

both biomolecule engineering (Currin et al., 2015; Handl et al., 2007) and agricultural se-124

lective breeding (especially for scenarios where genetic data can be exploited) (Rama-125

subramanian & Beavis, 2021). For example, using an NK landscape model, O’Hagan et al.126

evaluated the potential of elite selection, tournament selection, fitness sharing, and two127

rule-based learning selection schemes for selective breeding applications (O’Hagan et al.,128

2012). Inspired by genetic algorithms, island model approaches (Tanese, 1989) have been129
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proposed for improving plant and animal breeding programs (Ramasubramanian & Beavis,130

2021; Yabe et al., 2016), and Akdemir et al. applied multi-objective selection algorithms131

like non-dominated selection to plant and animal breeding (Akdemir et al., 2019). In each132

of these applications, however, artificial selection acted as screens on individuals and not133

whole populations; therefore, our work focuses on screening at the population-level in order134

to test the applicability of evolutionary computing selection algorithms as general-purpose135

screening methods for directed microbial evolution.136

3 Digital Directed Evolution137

Conducting directed evolution experiments in the laboratory can be slow and labor inten-138

sive, making it difficult to evaluate and tune new approaches to artificial selection in vitro.139

We could draw directly from evolutionary computing results when transferring techniques140

into the laboratory, but the extent to which these results would predict the efficacy (or141

appropriate parameterization) of a given algorithm in a laboratory setting is unclear. To142

address this, we developed an agent-based model of directed evolution of microbes for143

evaluating which techniques from evolutionary computing might be most applicable in the144

laboratory.145

Figure 1 overviews our model of laboratory directed microbial evolution. Our model con-146

tains a population of populations (i.e., a “metapopulation”). Each population comprises147

digital organisms (self-replicating computer programs) that compete for space in a well-148

mixed virtual environment. Both the digital organisms and their virtual environment are149

inspired by those of the Avida Digital Evolution Platform (Ofria et al., 2009), which is a150

well-established study system for in silico evolution experiments (e.g., A. Lalejini et al.,151

2021; Lenski et al., 1999; Lenski et al., 2003; Zaman et al., 2014) and is a closer analog152

to microbial evolution than conventional evolutionary computing systems. However, we153

note that our model’s implementation is fully independent of Avida, as the Avida software154
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Initialize

Select 

Propagate

Maturation Period

Evaluate 

P1 P2

P3 P4

a) b) 

c) 

d) 

e) 

Figure 1: Overview of our model of directed microbial evolution. In (a), we found each of N popu-
lations with a single digital organism. Next (b), we give each population a maturation period during
which organisms reproduce, mutate, and evolve. After maturation, (c) we evaluate each population
based on population-level characteristics, and (d) we select populations (repeats allowed) to parti-
tion into N “offspring” populations (e).

platform does not allow for us to model laboratory setups of directed microbial evolution155

(as described in the previous section).156

In our model, we initialize each population with a digital organism capable only of self-157

replication (Figure 1a). After initialization, directed evolution proceeds in cycles. During a158

cycle, we allow each population to evolve for a “maturation period” that comprises a fixed159

number of time steps (Figure 1b). We then evaluate each population’s performance on a set160

of objectives (Figure 1c), and we select performant populations as “parental” populations161

(Figure 1d). To create an “offspring” population (Figure 1e), we use a random sample of162

digital organisms from the chosen parental population; in this work, we used 1% of the163

maximum population size.164

3.1 Digital Organisms165

Each digital organism is defined by a sequence of program instructions (its genome) and166

a set of virtual hardware components used to interpret and express those instructions. The167
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virtual hardware and genetic representation used in this work extends that of (E. Dolson et168

al., 2019; Hernandez, Lalejini, & Dolson, 2021). The virtual hardware includes the following169

components: an instruction pointer indicating the position in the genome currently being170

executed, sixteen registers for performing computations, sixteenmemory stacks, input and171

output buffers, “scopes” that facilitate modular code execution, and machinery to facilitate172

self-copying. For brevity, we refer readers to supplemental material for a more detailed173

description of these virtual hardware components (A. Lalejini et al., 2022).174

Digital organisms express their genomes sequentially unless the execution of one instruc-175

tion changes which instruction should be executed next (e.g., “if” instructions). The instruc-176

tion set is Turing Complete and syntactically robust such that any ordering of instructions177

is valid (though not necessarily useful). The instruction set includes operators for basic178

math, flow control (e.g., conditional logic and looping), designating and triggering code179

modules, input, output, and self-replication. Each instruction contains three arguments,180

which may modify the effect of the instruction, often specifying memory locations or fixed181

values. We further document the instruction set in our supplemental material.182

Digital organisms reproduce asexually by copying their genome instruction-by-instruction183

and then executing a divide instruction. However, copying is imperfect and can result in184

single-instruction and single-argument substitution mutations. We configured copy op-185

erations to err at an expected rate of one instruction per 100 copied and one argument186

per 200 copied. Genomes were fixed at a length of 100 instructions. When an organism187

replicates, its offspring is placed in a random position in the population, replacing any188

previous occupant. We limited the maximum population size to 1,000 organisms. As such,189

improvements to the rate of self-replication are advantageous in the competition for space190

within a population.191

During evolution, organism replication can be improved two ways: by improving genome192

efficiency or by increasing the rate of genome expression (“metabolic rate”). An organ-193
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Function # Inputs Benefit

ECHO 1 Individual

NAND 2 Individual

NOT 1 Population

ORNOT 2 Population

AND 2 Population

OR 2 Population

ANDNOT 2 Population

NOR 2 Population

XOR 2 Population

EQU 2 Population

2A 1 Individual

A2 1 Population

A3 1 Population

A+B 2 Population

A× B 2 Population

A− B 2 Population

A2 +B2 2 Population

A3 +B3 2 Population

A2 − B2 2 Population

A3 − B3 2 Population
A+B
2

2 Population

Table 1: Computational functions that conferred individual-level or population-level benefits. The
particular functions were chosen to be used in our model based on those used in the Avida sys-
tem (Bryson et al., 2021). In all experiments, we included two versions of ECHO (each for different
input values), resulting in 22 possible functions that organisms could perform.
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ism’s metabolic rate determines the speed at which it executes its genome. Digital or-194

ganisms can improve their metabolic rate by performing designated functions (referred to195

as individual-level functions), including some Boolean logic functions and simple mathe-196

matical expressions (Table 1). Organisms can perform functions by executing the input197

instruction to get numeric values from the environment, performing computations on those198

values, and executing an output instruction with the results. When an organism produces199

output, we check to see if the output completes any of the designated functions (Table 1);200

if so, the organism’s metabolic rate is adjusted accordingly. We guarantee that the set of201

inputs received by an organism result in a unique output for each designated function. Or-202

ganisms benefit from performing each function only once, preventing multiple rewards for203

repeating a single function result. In this work, we configured each function that confers204

an individual-level benefit to double an organism’s metabolic rate, which doubles the rate205

the organism can copy itself.206

3.2 Population-level Evaluation207

In addition to individual-level functions, organisms can perform 18 different population-208

level functions (Table 1). Unless stated otherwise, performing a population-level function209

does not improve an organism’s metabolic rate. Instead, population-level functions are210

used for population-level evaluation and selection, just as we might screen for the pro-211

duction of different biomolecules in laboratory populations. We assigned each population212

a score for each population-level function based on the number of organisms that per-213

formed that function during the population’s maturation period. The use of these scores214

for selecting progenitors varied by selection scheme (as described in Section 4.1).215

While population-level functions benefit a population’s chance to propagate, they do not216

benefit an individual organism’s immediate reproductive success: time spent computing217

population-level functions is time not spent on performing individual-level functions or218
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self-replicating. Such conflicts between group-level and individual-level fitness are well-219

established in evolving systems (Simon et al., 2013; Waibel et al., 2009), and are indeed220

a problem recognized for screening-based methods of artificial selection that must be221

applied at the population-level (Brenner et al., 2008; Escalante et al., 2015).222

4 Methods223

Using our model of laboratory directed evolution, we investigated if selection schemes224

from evolutionary computing might be useful for directed evolution of microbes. Specifi-225

cally, we compared two selection schemes used in directed evolution (elite and top-10%226

selection) with three other methods used in evolutionary computing (tournament, lexi-227

case, and non-dominated elite selection). Additionally, we ran two controls that ignored228

population-level performance.229

We conducted three independent experiments. First, we evaluated the relative perfor-230

mance of parent selection algorithms in a conventional evolutionary computing context,231

which established baseline expectations for subsequent experiments using our model of232

laboratory directed evolution. Next, we compared parent selection algorithms using our233

model of laboratory directed evolution in two contexts. In the first context, we did not link234

population-level functions (Table 1) to organism survival to evaluate how well each parent235

selection algorithm performs as a screening-based method of artificial selection. In the236

second context, we tested whether any of the selection schemes still improve overall di-237

rected evolution outcomes even when organism survival is aligned with population-level238

functions.239

11

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2022. ; https://doi.org/10.1101/2022.04.01.486727doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.01.486727
http://creativecommons.org/licenses/by/4.0/


4.1 Selection Schemes240

4.1.1 Elite and top-10% selection241

Elite and top-10% selection are special cases of truncation selection (Mühlenbein & Schlierkamp-242

Voosen, 1993) or (µ, λ) evolutionary strategies (Bäck et al., 1991) wherein candidates are243

ranked and the most performant are chosen as progenitors. We implement these selec-244

tion methods as they are used in laboratory directed evolution (Xie & Shou, 2021; Xie et245

al., 2019). Here, both elite and top-10% selection rank populations according to their ag-246

gregate performance on all population-level functions. Elite selection chooses the single247

best performing population to generate the next metapopulation, and top-10% chooses248

the best 10% (rounded up to the nearest whole number) as parental populations.249

4.1.2 Tournament selection250

Tournament selection is one of the most common parent selection methods in evolution-251

ary computing. To select a parental population, T populations are randomly chosen from252

the metapopulation to form a tournament (T = 4 in this work). The population with the253

highest aggregate performance on all population-level functions wins the tournament and254

is chosen as a parent. We run N tournaments to choose the parental populations for each255

of N offspring populations.256

4.1.3 Lexicase selection257

Unlike the previously described selection schemes, lexicase selection does not aggre-258

gatemeasures of performance across population-level functions (i.e., objectives) to choose259

parental populations. Instead, lexicase selection considers performance on each population-260

level function independently. For each parent selection event, all members of themetapop-261

ulation are initially considered candidates for selection. To select a parental population,262

the set of population-level functions are shuffled and considered in sequence. Each func-263
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tion (in shuffled order) is then used to sequentially filter candidates, removing all but the264

best candidates from further consideration. This process continues until only one candi-265

date remains to be selected or until all functions have been considered; if more than one266

candidate remains, one is selected at random.267

Lexicase selection was originally proposed for test-based genetic programming prob-268

lems (Helmuth et al., 2015; Spector, 2012), but has since produced promising results in269

a variety of domains (Aenugu & Spector, 2019; La Cava et al., 2016; Metevier et al., 2019;270

Moore & Stanton, 2017). By randomly permuting the objectives for each parent selec-271

tion, lexicase selection maintains diversity (E. L. Dolson et al., 2018; Helmuth et al., 2016),272

which improves search space exploration (Hernandez, Lalejini, & Ofria, 2021) and overall273

problem-solving success (Helmuth & Spector, 2015; Hernandez, Lalejini, & Dolson, 2021).274

In particular, lexicase selection focuses on maintaining specialists (Helmuth et al., 2019).275

4.1.4 Non-dominated elite selection276

Non-dominated elite selection is a simple multi-objective selection algorithm that chooses277

all populations that are not Pareto dominated by another population (Zitzler, 1999). A278

candidate, ca, Pareto dominates another candidate, cb, if the following two conditions are279

met: (1) ca performs no worse than cb on all population-level functions, and (2) ca has strictly280

better performance than cb on at least one population-level function. After identifying all281

non-dominated populations, these populations are selected with replacement to found282

each offspring population.283

Pareto domination is a fundamental component in many successful evolutionary multi-284

objective optimization (EMOO) algorithms (Deb et al., 2002; Fonseca & Fleming, 1995;285

Horn et al., 1994; Zitzler, 1999). In general, EMOO algorithms aim to produce the set of286

solutions with optimal trade-offs of the objective set. Most EMOO algorithms have more287

sophisticated routines for parent selection than non-dominated elite selection (e.g., use of288
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external archives or crowding metrics). We opted to use non-dominated elite selection for289

its simplicity, but future work will explore more EMOO selection schemes.290

4.1.5 Selection controls291

We used random and no selection as controls. Random selection chooses a random set of292

populations (with replacement) to serve as parental populations. “No selection” chooses293

all populations in the metapopulation as sources for founding the next generation of pop-294

ulations; that is, each population is chosen to produce one offspring population. Both295

controls apply no selection pressure for performing population-level functions.296

4.2 Experimental design297

4.2.1 Establishing baseline problem-solving expectations in an evolutionary com-298

puting context299

First, we evaluated the relative performance of parent selection algorithms in a conven-300

tional evolutionary computing context (linear genetic programming (Brameier & Banzhaf,301

2007)), in which we evolved programs to compute the functions in Table 1. This control302

experiment allowed us to verify that the genetic representation used by digital organisms303

(Section 3.1) is sufficient for evolving each of the computational functions used in subse-304

quent experiments. Additionally, the relative performances of each algorithm establishes305

an expectation for how each parent selection algorithm might perform in our model of306

laboratory directed evolution.307

For each of the seven selection schemes described in Section 4.1, we evolved 50 replicate308

populations of 1,000 programs. We chose to evolve populations for 55,000 generations to309

approximate the number of digital organism generations that elapsed in our directed evo-310

lution experiments (based on exploratory runs). We used the same genetic representation311

as described in Section 3.1; however, we excluded self-replication instructions from the312
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instruction set, as we did not require programs to copy themselves during this experiment.313

Each program was evaluated independently to determine its phenotype. To evaluate a pro-314

gram, we executed it for 200 time steps, and we tracked its inputs and outputs to deter-315

mine which of the functions in Table 1 it performed (if any). For the purpose of selection, we316

treated each of the 22 possible functions as a pass-fail task. Lexicase and non-dominated317

elite selection considered each task separately to choose parents, while elite, top-10%, and318

tournament selection used the number of task passes as fitness values for choosing par-319

ents. Chosen parents reproduced asexually, and we applied mutations to offspring of the320

same types and frequencies as in our model of laboratory directed evolution (Section 3.1).321

At the end of each run, we identified the program that performed the most tasks, and322

we compared these values across treatments. We considered a run to be successful if it323

produced a program capable of performing all 22 tasks during evaluation.324

4.2.2 Applying parent selection algorithms in a digital directed evolution context325

Next, we evaluated each selection scheme’s performance in our model of laboratory di-326

rected evolution. For each selection scheme, we ran 50 independent replicates of di-327

rected evolution for 2,000 cycles of population maturation, screening, and propagation328

(as shown in Figure 1). During each cycle, we gave populations a maturation period of 200329

updates1 (approximately 25 to 35 generations). Within each replicate, the metapopulation330

comprised 96 populations (following the number of samples held by a standard microtiter331

plate used in laboratory experiments), each with a maximum carrying capacity of 1,000332

digital organisms. During a population’s maturation period, we measured the number of333

organisms that performed each of the 18 population-level functions (Table 1) as the pop-334

ulation’s “phenotype” for evaluation. We selected populations to propagate according to335

the treatment-specific selection scheme, and propagated chosen parental populations as336

1One update is the amount of time required for the average organism in a population to execute 30
instructions.
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described in Section 3.337

At the end of the experiment, we analyzed the population-level functions performed by338

populations in each replicate’s metapopulation. First, we calculated each population’s339

“task profile”, which is a binary vector that describes which population-level functions are340

“covered” by the population (zeroes are assigned for functions that are not covered and341

ones for those that are covered). A function is considered covered if it is performed by at342

least 50 organisms (a threshold ensuring the performance was not one-off) during a given343

maturation period.344

Next, we measured the “best population task coverage” and “metapopulation task cov-345

erage” for each replicate. Best population task coverage is measured as the number of346

functions covered by the population with the largest set of covered functions. Metapop-347

ulation task coverage is measured as the number of functions covered across the entire348

metapopulation (i.e., the union of unique tasks covered by each population in the metapop-349

ulation).350

We also measured the phenotypic diversity within each metapopulation. Specifically, we351

measured the number of different task profiles present in the metapopulation (i.e., pheno-352

typic richness), and we measured the “spread” of task profiles in the metapopulation. To353

measure a metapopulation’s task profile spread, we calculated a centroid task profile as354

the average of all task profiles in the metapopulation, and then we calculated the average355

normalized cosine distance between each population’s task profile and the centroid. A356

metapopulation’s task spread summarizes how different the constituent populations’ task357

profiles are from one another.358
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4.2.3 Evaluating whether selection schemes improve directed evolution outcomes359

when population-level functions are aligned with organism survival360

Selection-basedmethods of artificial selection tie desired traits to organism survival, elim-361

inating the need to apply screening-based methods to populations. We tested whether the362

addition of population-level selection improves directed evolution outcomes even when363

traits of interest (population-level functions) are selected for at the individual level (i.e.,364

tied to organism survival). To do so, we repeated our previously described directed evo-365

lution experiment (Section 4.2.2), except we configured all population-level functions to366

improve an organism’s metabolic rate in addition to the individual-level functions. As367

such, all population-level functions were beneficial in all treatments, including the random368

and no selection controls. However, only treatments with non-control selection schemes369

applied artificial selection at the population-level.370

4.3 Statistical Analyses371

In general, we differentiated between sample distributions using non-parametric statisti-372

cal tests. For eachmajor analysis, we first performed a Kruskal-Wallis test (Kruskal &Wallis,373

1952) to determine if there were significant differences in results across treatments (sig-374

nificance level α = 0.05). If so, we applied a Wilcoxon rank-sum test (Wilcoxon, 1992) to375

distinguish between pairs of treatments, using a Bonferroni correction for multiple com-376

parisons (Rice, 1989). Due to space limitations, we do not report all pairwise comparisons377

in our main results; however, all of our statistical results are included in our supplemental378

material.379

4.4 Software and Data Availability380

Our model of laboratory directed evolution is available on GitHub (see A. Lalejini et al.,381

2022) and is implemented using the Empirical scientific software library (Ofria et al., 2020).382
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We conducted all statistical analyses with R version 4.04 (R Core Team, 2021), using383

the following R packages for data analysis and visualization: tidyverse (Wickham et al.,384

2019), ggplot2 (Wickham, 2016), cowplot (Wilke, 2020), viridis (Garnier, 2018), and Color385

Brewer (Harrower & Brewer, 2003; Neuwirth, 2014). Our source code for experiments, anal-386

yses, and visualizations is publicly available on GitHub (see A. Lalejini et al., 2022). Addi-387

tionally, our experiment data are publicly archived on the Open Science Framework (see388

A. M. Lalejini, 2022).389

5 Results and Discussion390

5.1 Baseline problem-solving expectations in an evolutionary com-391

puting context392

First, we established baseline performance expectations for the selection schemes in a393

conventional genetic programming context to validate the solvability of the individual- and394

population-level functions used in our digital directed evolution experiments. Two se-395

lection schemes produced successful replicates, where success is defined as evolving a396

program capable of performing all 22 functions: elite (1/50) and lexicase selection (47/50).397

No solutions evolved in any other treatment. Figure 2 depicts the number of functions per-398

formed by the best program from each replicate. All selection schemes outperformed the399

random and no selection controls. Differences between all pairs except random and no400

selection were statistically significant (Bonferroni-corrected Wilcoxon rank-sum, p < 0.01).401

Lexicase selection was the most performant followed by top-10%, elite, tournament, and402

non-dominated elite selection.403

These data confirm that our genetic representation allows for the evolution of each com-404

putational function used in our model of laboratory directed evolution. Moreover, these405

data establish some expectations for the relative performance of each selection scheme in406
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Figure 2: Task coverage of the best program (per replicate) evolved in an evolutionary computing
context. Selection scheme abbreviations are as follows: TOURN is tournament, LEX is lexicase, NDE
is non-dominated elite, RAND is random, and NONE is no selection. Differences among treatments
were statistically significant (Kruskall-Wallis, p < 10-4).

our directed evolution experiments. Lexicase selection’s strong performance is consistent407

with previous work demonstrating its efficacy on program synthesis problems (Helmuth &408

Abdelhady, 2020; Helmuth & Spector, 2015). While initially surprised by non-dominated409

elite’s poor performance (relative to other non-control selection schemes), we note that410

selection methods based on Pareto domination are rarely applied to pass-fail test-based411

genetic programming problems, and perhaps the course-grained function scores (0 or 1)412

hindered its capacity for problem-solving success.413
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Figure 3: Digital directed evolution results. Differences among treatments were statistically sig-
nificant for each panel (Kruskall-Wallis, p < 10-4).

5.2 Lexicase and non-dominated elite selection show promise for414

directed evolution415

Next, we compared selection scheme performance when modeling the directed evolution416

of digital organisms. Figures 3a and 3b show the best population and metapopulation417

task coverages, respectively. All selection schemes resulted in greater single-population418

task coverage than both random and no selection controls (Bonferroni-corrected Wilcoxon419

rank-sum test, p < 10-4). Metapopulation coverage under tournament selection was not420

significantly different than coverage under the no selection control, but all other selec-421

tion schemes resulted in significantly better metapopulation coverage than both controls422

(Bonferroni-corrected Wilcoxon rank-sum, p < 0.03). Overall, lexicase and non-dominated423

elite selection scored the greatest population and metapopulation task coverage out of all424

selection schemes, and lexicase was the overall best selection scheme according to both425

metrics of performance.426
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While differences were significant on the best population-task coverage, they were not427

necessarily substantial. However, other measures had more substantial differences. Both428

multi-objective selection schemes—lexicase and non-dominated elite—had the greatest429

metapopulation task coverage (Figure 3b), and the greatest diversity of task profiles in430

the final metapopulations (Figure 3c; Bonferroni-corrected Wilcoxon rank-sum test, p <431

10-4). Lexicase selection in particular also had the greatest task profile spread (Figure 3d;432

Bonferroni-corrected Wilcoxon rank-sum test, p < 10-4), which is consistent with previous433

results demonstrating that lexicase excels at maintaining diverse specialists (E. L. Dolson434

et al., 2018; Helmuth et al., 2016; Helmuth et al., 2019; Hernandez, Lalejini, & Ofria, 2021).435

We hypothesized that lexicase and non-dominated elite selection’s mechanisms for select-436

ing different types of parental populations underpinned their improved performance over437

elite, top-10%, and tournament selection. This, however, is confounded by each selection438

scheme’s varying capacity to select a greater number of different populations (regardless439

of differences in those selected). As such, we asked whether lexicase and non-dominated440

elite’s success could be explained by a capacity to select a greater number of different441

parental populations. Elite selection selected exactly one population per cycle, top-10%442

selected 10, lexicase selected an average of 12, tournament selected an average of 50, and443

non-dominated elite selected an average of 83 different populations. Thus, we can rule444

out the number of populations selected per cycle as the sole explanation for lexicase se-445

lection’s success; we argue that this, in combination with our diversity data, suggests that446

directed evolution practitioners should consider incorporating mechanisms for selecting447

phenotypically diverse parental populations into their artificial selection approaches.448

These results are also informative when compared to our genetic programming control449

experiment (Figure 2). While results across these two contexts are not directly compara-450

ble, we argue that, taken together, our experiments suggest that steering evolution at the451

population-level is more challenging than steering at the individual-level. For example,452
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across all treatments, no single population in our model of directed evolution performed453

all 18 population-level functions. Yet, after a similar number of organism-level genera-454

tions (∼55, 000), both elite and lexicase selection produced programs capable of all 22455

functions in a genetic programming context; even after only 2,000 generations (the num-456

ber of cycles in our directed evolution experiments), we found that conventional genetic457

programming produced more performant programs than those evolved under our model458

of laboratory directed evolution (supplemental material A. Lalejini et al., 2022). We also459

observed differences in the rank order of selection schemes between experiments. For ex-460

ample, non-dominated elite selection performed poorly in a genetic programming context461

relative to the other non-control selection schemes; however, non-dominated elite outper-462

formed all selection schemes except lexicase selection in our model of laboratory directed463

evolution. On its own, non-dominated elite’s difference in performance is not surprising, as464

non-dominated elite selection is not conventionally used for evolving computer programs465

where evaluation criteria are evaluated on a pass-fail basis. More broadly, however, we466

argue that this result highlights modeling as an important intermediate step when evaluat-467

ing which techniques from evolutionary computing are likely to be effective in a laboratory468

setting.469

5.3 Selection schemes improve outcomes even when organism sur-470

vival can be tied to population-level functions471

Next, we tested whether the addition of population-level screening improves directed evo-472

lution outcomes even when population-level functions can be tied to organism survival.473

Overall, each non-control selection scheme resulted in better single-population task cov-474

erage than either control treatment (Figure 4a; Bonferroni-corrected Wilcoxon rank-sum475

test, p < 10-4). We did not find significant differences in best population coverage among476

elite, top-10%, tournament, and non-dominated elite selection. In contrast to our previous477
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Figure 4: Digital directed evolution results when organism survival is tied to population-level
functions. Differences among treatments were statistically significant for each panel (Kruskall-
Wallis, p < 10-4).

experiment, lexicase selection resulted in lower best population coverage than each other478

non-control selection scheme (Bonferroni-corrected Wilcoxon rank-sum test, p < 10-4).479

Lexicase selection, however, outperformed all other selection schemes on metapopulation480

task coverage (Figure 4b; Bonferroni-corrected Wilcoxon rank-sum test, p < 10-4), produc-481

ing 30 metapopulations that cover all 18 population-level functions. In general, lexicase482

selection produced metapopulations containing distinct specialist populations, resulting483

in high metapopulation task coverage while each specialist population had low task cov-484

erage on its own. Indeed, while lexicase metapopulations did not necessarily comprise485

many different population task profiles (Figure 4c), the task profiles were very different486

from one another (Figure 4d).487

Of our two control selection methods, we found that performing no selection was bet-488

ter than random selection for both single-population and metapopulation task coverage489
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(Bonferroni-corrected Wilcoxon rank-sum test, p < 10-4). In fact, performing no selection490

at all resulted in better metapopulation task coverage than elite, top-10%, and tournament491

selection (Bonferroni-correctedWilcoxon rank-sum test, p < 10-3). We hypothesize that this492

result is because elite, top-10%, and tournament selection converge to metapopulations493

with homogeneous task profiles, while performing no selection at all allows populations to494

diverge from one another.495

6 Conclusion496

In this work, we investigated whether the selection schemes from evolutionary computing497

might be useful for directing the evolution of microbial populations. To do so, we intro-498

duced an agent-based model of laboratory directed evolution. Overall, our results suggest499

that lexicase and non-dominated elite selection are promising techniques to transfer into500

the laboratory when selecting for multiple traits of interest, as both of these selection501

schemes resulted in improved outcomes relative to conventional directed evolution selec-502

tionmethods. In particular, we expect lexicase selection to be especially useful for evolving503

a set of microbial populations, each specializing on different population-level functions.504

We also found that the addition of screening-based methods of artificial selection can im-505

prove directed evolution outcomes in cases where organisms’ reproductive success can506

be tied to traits of interest.507

Our study has several important limitations that warrant future model development and508

experimentation. For example, we focused on modeling microbial populations that grow509

(and evolve) in a simple environment without complex ecological interactions. We plan to510

add ecological dynamics by incorporating features such as limited resources, waste by-511

products, symbiotic interactions, and spatial structure. These extensions will allow us to512

model the directed evolution of complex microbial communities (e.g., Sánchez et al., 2021;513

Xie & Shou, 2021), which is an emerging frontier in laboratory directed evolution.514
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In this study, we compared simple versions of each selection scheme. We plan to test515

more sophisticated selection schemes as we continue to transfer techniques developed516

for evolutionary computation into the laboratory. For example, non-dominated elite se-517

lection is one of the simplest methods that uses Pareto domination to choose parents;518

given its strong performance, we see more sophisticated multi-objective selection algo-519

rithms (e.g., NSGA-II (Deb et al., 2002)) as particularly promising for laboratory directed520

evolution. Lexicase selection variants are also promising for laboratory directed evolu-521

tion: epsilon lexicase (La Cava et al., 2016; Spector et al., 2018) might be useful when522

population-level characteristics are measured as real-valued quantities, and cohort lexi-523

case selection (Hernandez et al., 2019) could reduce the amount of screening required to524

select parental populations. Beyond selection schemes, we also see quality diversity algo-525

rithms (Hagg, 2021) (e.g., MAP-Elites (Mouret & Clune, 2015)) as promising techniques to526

transfer into the laboratory.527

We see digital experiments like the ones reported here as a critical step for transferring528

techniques developed for evolutionary computing into the laboratory. Indeed, our results529

are currently informing the design of laboratory experiments that apply evolutionary com-530

puting techniques to the directed evolution of E. coli. Our model of directed microbial531

evolution provides a testbed for rigorously evaluating different artificial selection methods532

with different laboratory setups (e.g., metapopulation size, maturation period, etc.) before533

embarking on costly or timing consuming laboratory experiments.534
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