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Abstract 15 
 16 
Heuristics can inform human decision making in complex environments through a reduction of 17 
computational requirements and a robustness to overparameterisation. However, tasks capturing 18 
the efficiency of reduced decision dimensionality typically ignore action proficiency in 19 
determining rewards. The value of movement parameterisation in sensorimotor control questions 20 
whether heuristics preserve efficiency when actions are non-trivial. We developed a novel 21 
selection-execution task requiring joint optimisation of action selection and spatio-temporal skill. 22 
Optimal choices could be determined by either a spatio-temporal forward simulation or a simpler 23 
spatial heuristic. Sequential-sampling models of action-selection response times parsimoniously 24 
distinguished human participants who adopted either strategy. Heuristics preserved broad 25 
decisional advantages over forward simulations. In addition, heuristics aligned with greater action 26 
proficiency, though predominantly through the core feature (spatial) shaping their decision policy. 27 
We accordingly reveal evidence that the dimensionality of information guiding action selection 28 
might be yoked to the granularity of plasticity in the motor system. 29 
 30 
Introduction 31 
 32 
In naturalistic settings, our cognitive architecture for making goal-oriented decisions typically 33 
resolves an ecological utility problem, integrating both extrinsic and intrinsic dynamics. 34 
Extrinsically, selected actions should maximise reward capture in line with a complex external 35 
state - a soccer player in possession of the ball must select the most rewarding action (shoot or 36 
pass) by incorporating such parameters as their location relative to the goalposts, availability of 37 
teammates, wind direction, readiness of the opposition goalkeeper, and so on. While the player 38 
might base their decision on exhaustive forward simulations across all possible actions, such a 39 
highly dimensional external state likely favours some manner of goal-oriented heuristic, i.e., a 40 
decision formed from a subset of all available external state information (e.g., if within 10 metres 41 
of the goalposts, shoot). Behavioural evidence verifies that a human decision policy can span 42 
different levels of planning complexity, with emerging neural evidence further suggesting that the 43 
brain harbours separate neural controllers for heuristics1. 44 
 45 
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The logic underscoring heuristic adoption is at least two-fold. Heuristics first offer a trade-off 46 
between accuracy and available resources. That is, where exhaustive forward simulations might 47 
exceed computational resources or decision deadlines, heuristics offer a less laborious means to 48 
achieve a proxy for optimal action-selection policy1,2. An alternative "less-is-more" rationale, 49 
inspired by machine learning principles, considers heuristics as the optimal means to avoid 50 
overfitting in uncertain environments. That is, in uncertain environments, an overparameterised 51 
forward simulation will likely pick up on stochastic noise and create more prediction errors across 52 
choices than a function that uses fewer parameters, even if the latter function produces a biased 53 
estimate3. 54 
 55 
However, much like the areas of reinforcement learning and value-based decision making, 56 
evidence that humans adopt goal-oriented heuristics has emerged predominantly in contexts that 57 
do not consider intrinsic cost as a determining factor in reward yields. For example, in recent 58 
work1, simple button presses in a virtual task emulated foraging outcomes that probabilistically 59 
imparted a positive (partial increase), negative (partial decrease) or nonlinearly negative (complete 60 
erasure) impact on ongoing reward scores; human participants adopted a heuristic stimulus-driven 61 
policy that primarily avoided the nonlinear outcome, consistent with accuracy-resource trade-offs. 62 
Meanwhile, the less-is-more principle has been empirically supported in forecasting contexts such 63 
as weather3, investments4 and sporting events5. Simple-action probabilistic emulations and 64 
forecasting can innovatively replicate much of the extrinsic reward-oriented cognitive challenges 65 
presented by dynamic naturalistic environments, however, they probe only one side of the 66 
ecological utility dilemma. Lost in both paradigm formats are additional cost dimensions 67 
associated with effort6,7, motor plasticity8,9, and a broader sense of agency10, all of which integrate 68 
with external factors in the ultimate utility of selected actions in naturalistic settings11,12. 69 
 70 
To our knowledge, no study has characterised heuristic adoption by humans when they select state-71 
appropriate actions in selection-execution contexts, i.e., not only is there a correct action for a 72 
given state, but the proficiency of a selected action subsequently scales the level of reward and 73 
generates independent intrinsic error distributions such as spatial and temporal motor skill. 74 
According to sensorimotor control theory, such intrinsic error distributions are often attenuated by 75 
increasing the parameterisation of movement, e.g., by implementing forward-models or 76 
simulations27,28,29. This raises the question: do heuristics preserve their efficiency when actions are 77 
non-trivial; or do action values derived from parameterised utility assessments justify preserved 78 
use of forward simulations? We additionally do not know how decision heuristics relate to 79 
phenotypic variation in skill. On the one hand, higher skill should improve both the time to 80 
generate, and the subsequent predictiveness of, forward simulations, potentially rendering 81 
parameterisation a more rewarding option for higher-skilled individuals. However, an alternative 82 
prediction stems from the computational underpinnings of how motor learning evolves. Here, the 83 
commonly held view is that model-based deliberation dominates early in learning13, presumably 84 
while skill levels are also at their lowest. Thus if heuristics reflect a "model-free" antipode to 85 
model-based deliberation14, we might expect them to characterise planning in systems that have 86 
reached greater proficiency with the plant's output. 87 
 88 
Given their dynamic, non-punctuative nature, naturalistic states likely require action-selection 89 
deliberation to be a gradual process of evidence accumulation toward an action-deterministic 90 
criterion. Indeed, for decades, such a sequential-sampling framework has guided joint modeling 91 
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of choice and the dynamics constraining its underlying response-time distribution, revealing 92 
comprehensive accounts of decision formation in perceptual contexts15-18. A specific class of 93 
sequential sampling, the drift-diffusion model (DDM), has more recently linked model-based 94 
values to choice dynamics in reinforcement learning19,20 and value-based decision making21,22. The 95 
DDM approach has a potential benefit over discrete (e.g., logistic) models, stemming not just from 96 
comprehensiveness23, but also from increased reliability19 and robustness18. In the present work we 97 
use a DDM framework for the first time with data from a selection-execution task to distinguish 98 
people on their use of forward simulations or heuristics when selecting actions, and further 99 
hypothesise that these two groups might differ in terms of how skillfully they perform them. 100 
 101 
The novel task we developed scales trialwise reward based on the joint optimisation of action 102 
selection (between two possible actions) and subsequent action execution. Action execution is 103 
indexed by a tractable reward function and action proficiency is also decomposable into spatial 104 
and temporal error dimensions. Meanwhile, action selection can be guided by simulating reward 105 
from each action (i.e., incorporating both spatial and temporal dynamics), or by a simpler spatial 106 
heuristic. The forward and heuristic strategies therefore differ by a single, identifiable degree of 107 
freedom (temporal dynamics). In addition, for each trial one possible action is low-cost, while the 108 
other is high-cost. All environments can be solved with either action, however, certain 109 
environments favour the high-cost action in terms of reward yield. These asymmetric action costs 110 
first amplify the influence of effort, skill and agency. They further allow us to cull participants 111 
who do not behave in a goal-oriented manner, i.e., rarely (or never) selecting the high-cost, high-112 
potential reward action. Thirdly, the degree of parametric bias toward the low-cost action offers a 113 
novel complement to the commonly used approach of tracking intrinsic motor error as a means to 114 
characterise low skill systems. 115 
 116 
Combining our novel task and seminal DDM framework, we first confirm that human participants 117 
can be identified by whether they predominantly use forward simulations or heuristics, with 118 
between-group parametric differences consistent with forward simulations requiring slower 119 
evidence accumulation to more conservative decision criteria. We next uncover strong evidence 120 
that heuristics remain efficient in action-execution contexts; heuristic planners made faster 121 
decisions, reached choice optimality sooner and, overall, obtained more reward. In addition, 122 
heuristic planners showed a striking skill profile. Overall, they demonstrated a higher level of 123 
spatial skill, relative to participants using forward simulations. However, unlike the latter group, 124 
heuristic participants demonstrated no learning across the task in the temporal domain. Their skill 125 
learning therefore centred on the key dimension incorporated into their planning strategy. 126 
Combined, our findings help unpack the broader dynamics of goal-oriented behaviour by revealing 127 
the first evidence of heuristic efficiency in a selection-execution context and that a yoked 128 
dimensionality might exist between planning and motor learning. 129 
 130 
Results 131 
 132 
Fifty-three healthy human participants performed 360 trials (six runs of 60) of our novel 133 
"boatdock" task (Figure 1), in which reward yields require joint optimisation of action selection 134 
and action execution. On each trial, participants select one of two cursors to pilot between a 135 
randomly drawn start-goal pairing (SG; Figure 1a). Each cursor accelerates continuously in three 136 
unique orthogonal directions (Figure 1b), burning fuel any time an accelerator button (throttle - 137 
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Figure 1c) is down. One cursor imparts a higher motor execution cost via an incongruent key-138 
mapping (Figure 1c). However, trialwise reward is contingent on fuel conservation, such that a 139 
selection policy that harnesses the relative orthogonality of the two cursors’ directionality, and 140 
selects the cursor better suited to each SG, will yield higher reward. The two cursors accelerate 141 
with the same nonlinear function, and deplete fuel with the same linear function, i.e., faster 142 
displacement is more fuel efficient (Figure 1d). A maximum docking displacement rule (Figure 143 
1d), imposing a speed limit on arrival, imparts additional temporal control demands. Thus, in 144 
addition to fewer direction changes (spatial error), greater temporal control maximises reward 145 
(Figs. 1f, 1g). Finally, participants receive no reward for "catastrophic errors" (Figure 1e): when 146 
they run out of fuel, leave the grid, or attempt to dock above the maximum docking displacement. 147 
 148 

 149 
 150 
 151 

Figure 1 - Task outline. a, on each trial, participants pilot one of two cursors from 152 
a start to a goal (SG). b, each cursor can accelerate in three unique orthogonal 153 
directions. c, position of index (I), middle (M) and ring (R) finger of right hand on 154 
throttle buttons throughout the experiment, and cursor-specific throttle-vector 155 
mapping. Fuel burns any time a throttle is pushed down. Each trial allows six 156 
cumulative seconds of throttling before fuel depletes. d, throttle time linearly burns 157 
fuel, but nonlinearly increases displacement. Faster displacement is therefore more 158 
fuel efficient, however, a maximum dock displacement imparts additional temporal 159 
control requirements. e, successful docks yield a reward contingent on fuel 160 
conservation. This requires jointly maximising cursor choice for a given SG (action 161 
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selection) in addition to spatial and temporal precision (action execution). Trials 162 
containing catastrophic errors - running out of fuel, leaving the grid, or docking 163 
above maximum displacement - yield no reward. f, schematic of two similar SGs 164 
with the same cursor but different performance dynamics. Three horizontal lines in 165 
each panel chart activity over time separately for each vector, while each vortex 166 
relates to a single throttle pulse. Top panel utilises fewer direction changes (marked 167 
with c1,...,cn), reaches a higher maximum displacement (depicted by diameter of 168 
largest vortex) and yields higher reward (depicted by colour). g, reward (depicted 169 
by colour), yielded on every successful trial across all participants (individual 170 
markers), is a joint function of spatial and temporal precision. 171 

 172 
Forward simulations vs heuristics 173 
We hypothesised that participants might select the cursor yielding the highest reward from forward 174 
modeling of simulated routes, i.e., incorporating both the spatial and temporal constraints on 175 
reward optimisation into their choice (route planning; Figure 2a). Alternatively, participants might 176 
use a simple rule: select the cursor with a vector subtending the smallest angular offset to that of 177 
the SG, i.e., incorporating only spatial constraints on reward optimisation into their choice 178 
(heuristic; Figure 2b). Differences between these two approaches result in an imperfect correlation 179 
of action value across all trials. Specifically, the nonlinear nature of the temporal dynamics 180 
uniquely incorporated by route planning creates greater action-value deviance on trials where the 181 
SG covers smaller Euclidean distances (Figure 2d). Across all participants, the reaction time (RT) 182 
for action selection was slower in SGs where either strategy computed equivalent value for either 183 
cursor (Figure 2c), suggesting first that these policies modulate decision formation, and secondly, 184 
that difficulty or conflict (known to modulate drift parameter (μ) in perceptual contexts) could be 185 
further characterised in a DDM model. 186 
 187 
DDM framework distinguishes individual-participant strategy 188 
The DDM (Figure 2e) describes a noisy sequential sampling process, which originates at a starting 189 
point (bcB), and accumulates evidence at an average "drift" rate (μ) before reaching a decision 190 
criterion or "boundary" (B or -B for congruent or incongruent cursors, respectively). In perceptual 191 
contexts, difficulty reduces the gradient of evidence accumulation, which can be verified 192 
computationally when models containing two drift rates (e.g., μ1 and μ2) mapping respectively 193 
onto decisions presenting a high or low degree of difficulty, provide better model fits (Figure 2e). 194 
The goal of our DDM framework was to distinguish people based on whether they used a forward 195 
simulation or heuristic to guide decisions (Figs. 2a-b). We therefore formally considered a 196 
participant to be using a specific strategy if their evidence accumulation was best modulated by 197 
difficulty arising from it. To each participant's set of trialwise choices and RTs, we fitted a total of 198 
three DDMs, each containing free parameters for bcB, B, and nondecision time t0. The null model 199 
was constrained such that μ1=μ2=0, while the route-planner and heuristic models had two free 200 
parameters, μ1 and μ2, mapping respectively onto high or low difficulty as calculated by either 201 
forward simulations or angular offset (Figs. 2a-b.). Based on model fits24 after adjusting for model 202 
complexity according to the Akaike information criterion with correction for finite sample size 203 
(AICc)25,26, we confirmed that 19 participants' choice and RT data were best fitted by the route-204 
planner model, 14 participants' data were best fitted by the heuristic model, while a third group of 205 
20 participants were best fitted by the null model, indicating neither strategy-specific difficulty 206 
modulated the rate of their evidence accumulation (Table 1). We hence refer to these three groups 207 
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respectively as the "route", "heuristic" and "nonplanner" groups (see Table 1 for group-specific 208 
DDM parameter and behaviour summaries). The remaining portion of these results will describe 209 
hypothesis-driven contrasts between the route and heuristic groups, in terms of DDM parameters, 210 
choice behaviour and skill. However, for completeness, we include data from the nonplanner group 211 
in Figure 3 and Supplementary Table 1, and also include a supplementary section summarising 212 
their parametric and skill findings (see Supplementary Materials: Nonplanner group). 213 
 214 

 215 
 216 

Figure 2 - Action-selection policy identified by sequential sampling 217 
framework. a-b, route planning selects the cursor in accordance with the delta 218 
between reward yields estimated from forward simulations with both cursors, i.e., 219 
incorporating both spatial and temporal task constraints into choice. A lower-220 
dimensional heuristic instead selects the cursor with a displacement vector with the 221 
least angular offset to that described by the SG, i.e., incorporating only spatial 222 
information. c, across participants, both strategies create more difficult decisions, 223 
indexed by greater reaction time (RT) for action selection, on SGs where strategies 224 
ascribe equivalent value to both cursors. Here, solid black lines in each panel 225 
connect the means of nine RT bins after first sorting all participants' trials by 226 
relevant policy value. Gray shaded area depicts the standard error of the mean in 227 
each RT bin. d, strategy-specific action values are imperfectly positively correlated. 228 
Each individual marker describes the relation between individual action values 229 
derived from the route-planning and heuristic strategy across all trials from all 230 
participants. Hotter colors describe greater Euclidean distance between S and G, 231 
i.e., route-planning and heuristic strategy maximally deviates with shorter-distance 232 
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SGs. e, DDM framework, in which a noisy evidence accumulation process 233 
terminates at a decision criterion. We hypothesised that difficulty arising in our task 234 
would modulate the rate of evidence accumulation (drift rate μ) in a manner similar 235 
to that observed in perceptual tasks, and that comparison of strategy-specific 236 
difficulty modulation would identify individual-participant policy. For each 237 
participant's choice and RT data, two target models allowed separate drift rates μ1 238 
and μ2 for high and low difficulty, respectively as per route-planning and heuristic 239 
strategy. Three groups of participants emerged, based on whether their data were 240 
best fitted by the route-planning (n=19), heuristic (n=14) or null (n=20) models (see 241 
also Table 1). f-g, scaled schematic of DDM profile estimated for route-planning 242 
(route) and heuristic groups. h, comparison of DDM parameters between route and 243 
heuristic group consistent with the former integrating additional information (i.e., 244 
temporal dynamics) into decision formation. Boxes and thin lines respectively 245 
represent the interquartile range (IQR) and highest density interval (HDI) of the 246 
posterior mean constraining individual-participant estimates of each parameter. 247 
Route group demonstrated a slower process of evidence accumulation toward a 248 
larger decision criterion; combining drift rates and decision criterion as part of a 249 
sensitivity metric S=(μ1+μ2)/(2B(1+|bcB|)) we observe strong Bayesian evidence 250 
of group-level difference. This effect was primarily driven by the decision criterion, 251 
as the route group boundary (B) was also credibly higher than that of the heuristic 252 
group. In addition, the route group starting point (bcB) was credibly above 0, 253 
indicating a bias toward the low-cost cursor. Asterisk indicates no overlap in 254 
groups' posterior HDIs for a given parameter. All parameters expressed in units of 255 
μ, except t0 (in seconds). Note that t0 and S parameters are aligned with the right 256 
axis for clarity. 257 
 258 

Table 1. Participant groups and DDM parameters 259 
 260 

 non route heuristic 

n (site1:site2) 20 (7:13) 19 (6:13) 14 (3:11) 

p(optimal cursor) [0.477,0.500] [0.668,0.690] [0.706,0.730] 

p(congruent cursor) [0.716,0.736] [0.564,0.587] [0.528,0.555] 

p(catastrophic error) [0.169,0.186] [0.120,0.135] [0.110,0.126] 

median response time (s) [0.779,1.351] [1.873,2.672] [1.485,2.191] 

sensitivity - S 0 [0.192,0.316] [0.330,0.564] 

drift rate, high difficulty - μ1 0 [0.019,0.040] [0.030,0.062] 

drift rate, low difficulty- μ2 0 [0.044,0.073] [0.054,0.093] 
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boundary - B [0.065,0.146] [0.134,0.168] [0.108,0.143] 

starting point - bcB [0.127,0.405] [0.059,0.236] [-0.024,0.164] 

nondecision time - t0 (s) [0.380,0.661] [0.666,0.961] [0.585,0.977] 

route-planning DDM model:  
residual deviance - D2 

0.2 213.3 202.3 

heuristic DDM model:  
residual deviance - D2 

0.1 171.2 238.8 

 261 
Notes: values in square brackets for p(congruent cursor), p(optimal cursor) and 262 
p(catastrophic error) describe the bounds [upper,lower] of the HDI of group-level 263 
probability (θv,g: see methods) from a summary binomial model. Values in square 264 
brackets for all other parameters describe HDI for group-level mean (Μv,g: see 265 
methods) from a summary Gaussian model. Drift rates (μ1 and μ2) describe rates of 266 
evidence accumulation per second toward Boundary (B), which is expressed in 267 
units of drift rate (μ). Starting point bCB is expressed as a proportion from -B to B. 268 
Sensitivity, S=(μ1+μ2)/(2B(1+|bcB|)). Higher values of residual deviances (D2) 269 
reflect better model fits across a group's participants relative to the null model. 270 

 271 
We next tested whether individual-participant DDM parameters were consistent with group 272 
classifications ascribed by the model fit scores to the route and heuristic groups (Table 1, Figure 273 
2h). By definition, route planning incorporates a larger volume of information into decisions, 274 
relative to the heuristic, which can be computationally indexed by more gradual evidence 275 
accumulation and or a broader decision criterion. We employed a Bayesian framework (see 276 
Methods) that estimated group-specific summaries of each DDM parameter listed in Table 1 in a 277 
single model, and further only considered strong Bayesian evidence of between-group parameter 278 
differences, i.e, where the highest density interval (HDI) of deterministic distributions of parameter 279 
differences did not contain zero. We first observed strong evidence of group difference for the 280 
sensitivity metric S=(μ1+μ2)/(2B(1+|bcB|)) that combines the rate of evidence accumulation with 281 
the extent of the decision criterion (S Δ(route-heuristic) HDI=[-0.322,-0.056]). Credibly lower 282 
sensitivity amongst the route group is consistent with the above prediction that their employed 283 
policy integrates a greater volume of information, as this metric is low when decision formation is 284 
jointly constrained by a low rate of evidence accumulation and larger decision criterion (Figure 285 
2f). This effect was primarily driven by the decision criterion, as we additionally observed the 286 
route group to have a credibly higher boundary (B) than the heuristic group (B Δ(route-heuristic) 287 
HDI=[0.002,0.050]), while not credibly differing across the two drift rates (μ1 Δ(route-heuristic) 288 
HDI=[-0.036,0.002]; μ2 Δ(route-heuristic) HDI=[-0.040,0.008]). Also of note, we observed a 289 
credible bias toward the low cost action amongst the the route (bcBroute HDI=[0.057,0.233]), but 290 
not amongst the heuristic group (bcBheuristic HDI=[-0.026,0.161]). Together, these findings provide 291 
parametric plausibility to the DDM classifications, and argue that the route group's lengthier 292 
trialwise decision deliberations stemmed from a greater volume of information integration, 293 
potentially stemming from a stronger bias toward using the low-cost cursor. 294 
 295 
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We next tested whether, on a broader macroscopic level, the route planner's computationally-296 
intensive action selection delayed the emergence of optimality in their choice policy. For this, we 297 
summarised choice optimality across time-on-task using a hierarchical binomial model. The model 298 
estimated parameters of hierarchical Beta posterior distributions that constrained individual-299 
participant binomial posteriors summarising their likelihood of selecting the optimal cursor in a 300 
run of trials, across a two-dimensional space described by group (route, heuristic, nonplanner) and 301 
run (1-6). From hierarchical Beta posteriors we deterministically computed credible ranges of 302 
group-specific choice optimality (θ) for each run, presented in Figure 3a. Consistent with 303 
optimality delay, the route group's choice behaviour (i.e., p(optimal)) did not credibly depart 304 
chance (0.50) until the fourth run of trials (θroute,run4 HDI=[0.533,0.882]), while in contrast, the 305 
heuristic group demonstrated above-chance choice optimality by the second run of trials (θheuristic,run2 306 
HDI=[0.501,0.898]; Figure 3a, see Supplementary Table 1 for each group-by-run θ HDI). This 307 
relative delay-to-optimality of approximately 120 trials provides further support that the route 308 
group mediated over a larger volume of evidence prior to action selection and further suggests a 309 
trade-off between how quickly a policy produces state-relevant choices, and the dimensionality of 310 
constituent planning. 311 
 312 
Finally, in a supplementary analysis (see: Supplementary Materials - Hierarchical logistic choice 313 
model), we confirm that route and heuristic groups uniquely integrate extrinsic state information 314 
into choices (relative to nonplanners), and also confirm that the route group had a more pronounced 315 
bias toward the low-cost action, relative to the heuristic group, mirroring their bias revealed by the 316 
DDM. This supplementary analysis further revealed speculative evidence that the route group's 317 
planning strategy was not born purely out of risk-aversion, and that they instead potentially 318 
reserved high-cost action usage early in the task to states with longer SGs, where, due to nonlinear 319 
temporal task dynamics, state-appropriate choice offered disproportionately greater action value. 320 
 321 
Comparisons of skill between route and heuristic groups 322 
We have so far verified that a DDM framework parsimoniously distinguishes people on their likely 323 
use of forward simulations or heuristics during action selection in a selection-execution task, in a 324 
manner that is both parametrically consistent with the underlying characteristics of each strategy 325 
and in line with trade-offs between the expediency and profundity of policy formation. We next 326 
tested whether these two groups (identified solely using action-selection RT data) also differed in 327 
terms of action-execution skill and skill learning. We again employed a Bayesian framework that 328 
minimised the total number of fitted models and only considered strong evidence. 329 
 330 
We first enumerated performance on each trial in terms of three skill variables: reward, spatial 331 
action execution and temporal action execution. Reward was the proportion of the fuel tank 332 
conserved on each trial, i.e., higher values reflect better performance on this measure which is 333 
modulated by the complete set of action-execution variables. Spatial action execution was the 334 
number of direction changes on each trial, i.e., lower values reflect better performance on this 335 
measure which is modulated specifically by spatial precision. Temporal action execution was the 336 
normalised difference between the cursor's maximum and final velocity, i.e., higher values reflect 337 
better performance on this measure that indexes proficiency in temporal task demands requiring 338 
high max-velocities for more fuel-efficient displacement, while arriving at the goal below the 339 
maximum threshold (Figure 1d), and ideally lower, to further preserve fuel. We next summarised 340 
performance in these three variables across the task using three separate hierarchical Bayesian 341 
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models. Each model estimated hierarchical Gaussian (reward, temporal skill) or Poisson (spatial 342 
skill) posterior distributions that constrained individual-participant posterior distributions. We 343 
further fitted each model's hierarchical structure across a mixed three-dimensional space, i.e., first 344 
between-group (route, heuristic, nonplanner) and then within-group, separately for each run (1-6) 345 
and selected cursor (congruent, incongruent). In other words, each model estimated the credible 346 
ranges of group-mean performance for its given variable, separately for each run, and separately 347 
again for each cursor. Figures 3b-d and Supplementary Table 1 contain each group-by-cursor-by-348 
run mu HDI for each measure and deterministic HDIs collapsed across run. 349 
 350 
In terms of overall performance, the heuristic group garnered higher reward yields with the high-351 
cost (incongruent) cursor (Figure 3b), which were at least partially attributable to a higher level of 352 
spatial skill (Figure 3c). Merging posteriors across runs, the route and heuristic groups showed no 353 
credible differences in reward yielded using the congruent cursor (mu Δ(route-heuristic) HDI=[-354 
0.017,0.025], Figure 3b), however the heuristic group amassed credibly higher yields using the 355 
incongruent cursor (mu Δ(route-heuristic) HDI=[-0.055,-0.006], Figure 3b). This result was 356 
mirrored in spatial skill, where we again observed no credible between-group difference with the 357 
congruent cursor (mu Δ(route-heuristic) HDI=[-0.159,0.142], Figure 3c), but credibly fewer 358 
direction changes amongst the heuristic group with the incongruent cursor (mu Δ(route-heuristic) 359 
HDI=[0.011,0.358], Figure 3c). In contrast, we observed no between-group differences in 360 
temporal skill, with either the congruent (mu Δ(route-heuristic) HDI=[-0.018,0.056], Figure 3d) 361 
or incongruent (mu Δ(route-heuristic) HDI=[-0.068,0.007], Figure 3d) cursor. Given that the 362 
heuristic group reached state optimal choices more quickly (Figure 3a; Supplementary Table 1), 363 
i.e., they performed a higher volume of trials where their cursor selection theoretically reduced the 364 
need for direction changes, we re-ran the model with trialwise direction changes adjusted by the 365 
optimal solution for the cursor selected for each given trial (i.e., observed changes - ideal changes). 366 
This model (see: Supplementary Materials - Hierarchical Poisson with choice-normalised spatial 367 
skill) returned identical results, confirming that notwithstanding their better choices, the heuristic 368 
group independently demonstrated greater spatial precision while piloting the incongruent cursor. 369 
 370 
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 371 
 372 
Figure 3 - Heuristics group reach choice optimality more quickly and show a 373 
spatial-specific skill advantage. a, consistent with classic decision-heuristic 374 
models, low dimensional planning aligns with faster trajectories toward choice 375 
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optimality. Hierarchical binomial model of choice behaviour demonstrates trade-376 
off between the expediency and profundity of policy formation; heuristic group 377 
exceeded chance optimality by run 2, earlier than route group (run 4). ⸸ reflects runs 378 
where HDI of group-level θ posterior did not subtend 0.50, i.e., where group-level 379 
proportion of choices were credibly above chance optimality. b-d skill and skill 380 
learning consistent with yoked dimensionality between planning and motor 381 
plasticity. Collapsing group-level posterior means across runs (skill) heuristic 382 
group yielded more reward with the high-cost cursor (b, histograms bottom panel), 383 
driven by superior spatial skill (c, histograms bottom panel), with no route-heuristic 384 
difference in temporal skill (d, histograms). Asterisk relates to credible difference 385 
between route and heuristic groups, i.e., that the HDI of the deterministic 386 
distribution of their difference (route - heuristic) does not contain 0. Additionally, 387 
while route and heuristic group demonstrated skill learning in terms of reward and 388 
spatial skill (b-c, line plots), route group uniquely demonstrated learning in the 389 
temporal domain (d, line plots). Boxes and thin lines in line plots respectively 390 
represent IQR and HDI of hierarchical posterior means constraining individual-391 
participant posteriors for a given measure, run and cursor. In both histograms and 392 
line plots, reward is the proportion of fuel preserved per trial (higher better), spatial 393 
is the number of direction changes (fewer better) and temporal is the distance-394 
normalized difference between max and final velocity (higher better). Time-on-task 395 
(skill learning) effects estimated from deterministic regression models fitted across 396 
draws from each run's posterior; credible (0 ∉ coefficient HDI) effects depicted by 397 
either a dashed (logarithmic) or solid (linear) line. Absence of any line reflects non-398 
credible effect. 399 

 400 
We next probed whether the route and heuristic groups differed in terms of time-on-task 401 
trajectories of specific skill features (skill learning). For this, we drew samples from each skill 402 
variable's uncollapsed runwise posterior distributions and tested with a deterministic regression 403 
model whether performance in each group-cursor dyad evolved across runs in either a linear or 404 
logarithmic fashion (linear and nonlinear time-on-task effects). Here we again observed 405 
divergence between the route and heuristic groups, with the route group's skill improvements 406 
encompassing a broader range of motor control features (Figure 3b-d, see Supplementary Table 1 407 
for each group-by-run skill measure mu HDI, and HDIs of time-on-task effects). Specifically, the 408 
route group showed either linear or logarithmic improvement with each cursor across all variables, 409 
while in contrast, the heuristic group only showed strong evidence of improvement for reward 410 
yields and spatial skill, i.e., they demonstrated no time-on-task improvements with either cursor in 411 
the realm of temporal skill. To further support this null result, we conducted a follow-up analysis. 412 
This nonparametric analysis used more liberal criteria to establish temporal time-on-task effects at 413 
the individual-participant-level, and a binomial design that could confirm different trajectories 414 
between groups. Using summary values from individual-level posteriors, we quantified the number 415 
of participants from each group that showed either logarithmic or linear temporal time-on-task 416 
improvement, separately for each cursor. Confirmed via Bayesian binomial contrast, a greater 417 
proportion of the route group improved in temporal skill relative to the heuristic group, both using 418 
the congruent boat (10/19 vs 1/14; θ Δ(route-heuristic) HDI=[0.145,0.647]) and using the 419 
incongruent boat (10/19 vs 0/14; θ Δ(route-heuristic) HDI=[0.068,0.600]). This additional 420 
analysis confirmed that the route and heuristic groups diverged in the feature of temporal skill 421 
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learning. In addition, this group-distinguishing feature of skill-learning - temporal dynamics - was 422 
also the feature which separated the two groups' planning styles. In other words, by definition, the 423 
heuristic group did not incorporate temporal dynamics into their action selection, and uniquely 424 
showed no skill learning in this domain. Together with the above findings relating to their overall 425 
superiority in spatial skill, these findings suggest that a yoked dimensionality might exist between 426 
planning and skill. I.e., in complex states, the number of features relevant (or not) for action-427 
selection policy may predict the number of features most likely to undergo learning (or not) during 428 
action execution. 429 
 430 
Discussion 431 
 432 
At least two schools of thought lend plausibility to the idea that humans might achieve optimal 433 
long-term ecological yields by basing goal-oriented decisions on subsets of information available 434 
in complex states. On the one hand, if either time or computational resources are restricted, humans 435 
might pragmatically trade off state-optimal parameterisation for reduced processing requirements 436 
(accuracy-resource trade-off). On the other hand, decisions informed by fewer dimensions are 437 
more robust to the influences of misleading stochastic noise (less-is-more principle). In either case, 438 
extant knowledge on decision heuristics stems predominantly from action-trivial tasks that obviate 439 
intrinsic motor proficiencies in determining choice outcomes. The present work directly addressed 440 
this shortcoming. 441 
 442 
We developed a novel task requiring joint optimisation of action planning (selecting state-443 
appropriate low-cost or high-cost cursors) and action execution (controlling cursors proficiently). 444 
Focusing first on action planning, cursor selection could be shaped by either exhaustive forward 445 
simulations, incorporating both spatial and temporal task dynamics, or a lower-dimension spatial 446 
heuristic strategy. Using a between-group DDM framework we successfully parsed a wide pool of 447 
human participants based on which strategy-specific planning difficulty best modulated their 448 
evidence-accumulation rates. Exploring the dynamics of each group's choice behaviour in greater 449 
detail, we revealed strong group-level Bayesian evidence supporting the model classifications. 450 
Participants allocated to the route group (forward simulations) were constrained by a higher 451 
decision criterion, consistent with the idea that they needed to incorporate a larger volume of 452 
information into their choices. This group also showed an enduring bias toward low-cost actions, 453 
revealed in both a DDM and logistic-choice context, and further demonstrated a more sluggish 454 
trajectory toward choice optimality. 455 
 456 
We next juxtaposed these two groups, who were classified solely on the basis of action-selection 457 
RT, in the separate context of action execution. Specifically, we probed the relation between 458 
decision-heuristic adoption and intrinsic skill, measuring the latter in terms of reward yielded per 459 
trial, and in terms of additional independent skill dimensions of spatial and temporal precision. We 460 
again revealed strong Bayesian group differences; heuristic adoption aligned with higher reward 461 
yields underscored by better spatial skill with high-cost actions, even after correcting for the 462 
influence of selections in state. Together with the route group showing a parametric bias toward 463 
the low-cost cursor, we interpret the combined data across our task's action-execution contexts as 464 
unambiguously supporting heuristic adoption in higher-skilled systems. 465 
 466 
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These core findings extend the remit of the accuracy-resource trade-off and less-is-more models 467 
to include contexts involving non-trivial action. In a task requiring exquisite spatio-temporal 468 
control of selected actions, decision heuristics nonetheless aligned with swifter individual action 469 
selections, faster trajectories to choice optimality and, ultimately, better overall reward yields. The 470 
skill advantage in the heuristic group additionally dissociates our findings from predictions that 471 
integrate a compensatory role of heuristics with theories from the human motor literature. A core 472 
rationale of sensorimotor-based forward models of action selection is that efference copies and 473 
predicted sensorimotor costs provide improved efficiency and robustness in the face of noisy 474 
sensory-prediction errors27,28,29. A corollary is that a low-skill system will struggle to parameterise 475 
forward models, increasing computational requirements (accuracy-resource) and/or generating a 476 
high volume of online noise-driven corrective action (less-is-more)30,31. In either case, a heuristic-477 
as-compensation model would predict that the low skill system is better served by adopting a 478 
simpler heuristic decision strategy. 479 
 480 
We observe that in a selection-execution context humans might not employ heuristics to 481 
compensate for higher intrinsic motor noise. Instead, planning dimensionality might align with 482 
progress along motor-learning trajectories previously observed in forced-choice contexts, (i.e., no 483 
selection required)13,14. Here, early in the acquisition of a novel motor skill, internal models that 484 
simulate action outcomes can expedite learning in exchange for high computational cost13. As 485 
participants then amass a wider cache of state transitions and successful experiences, control shifts 486 
from deliberative model-based planning to less taxing draws of state-appropriate motor outputs 487 
from memory13. Our findings are consistent with action selection following a similar qualitative 488 
trajectory at the cross-phenotypic level; participants with superior skill, i.e., farther along motor-489 
learning trajectories, also used a less taxing policy to select actions. 490 
 491 
In computational terms, the core difference between our task and paradigms previously exploring 492 
heuristics is the source (internal vs external) of its generative model. Trial outcomes in our task 493 
were determined solely by a joint function that integrated participants' cursor selection and its 494 
subsequent execution. In other words, outcome variance was fully determined by parameters 495 
(decision and performance) generated intrinsically by participants. In contrast, forecasting and 496 
computerised emulations typically employ extrinsic generative models, where outcome variance 497 
is a function of parameters beyond participants' control. Recent evidence from bandit tasks (a 498 
computerised emulation with an extrinsic generative model) further suggests that humans might 499 
overparameterise their choices when extrinsic forces determine their fate, resulting in apparently 500 
irrational summary behaviour such as probability matching32. However, probability matching 501 
dissipates as a function of increased agency, for example, with increased motor involvement in 502 
choice execution32. While it is premature to conclude that increased agency will globally drive the 503 
adoption of heuristics, our findings nonetheless predict that a low-skill system (i.e., low agency) 504 
will more likely overparameterise choices in a selection-execution context, than revert to 505 
heuristics. This inverse-agency-parameterisation framework is also consistent with emerging 506 
associations in clinical computational work, where sequelae such as overthinking (in anxiety33) 507 
and rumination (in depression34) align with excess deliberative model-based learning35. 508 
 509 
We reveal additional evidence that planning dimensionality and skill might not simply evolve 510 
independently along separate strands of a learning manifold. In our task, common kinematic 511 
variables parameterised both action value and the motor proficiency of subsequent execution. We 512 
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were therefore able to probe how the depth of planning qualitatively aligned with the motor 513 
dimensions shaping both skill state and skill learning. As mentioned above, in terms of skill state, 514 
we first observed that the heuristic group's skill advantage was localised to the spatial dimension, 515 
with no overall group differences apparent in the temporal dimension. The heuristic group was 516 
therefore more skilled solely in the core feature of their decision policy. In a series of time-on-task 517 
analyses (skill learning) we additionally observed that the route group, employing the more 518 
granular planning, demonstrated skill learning across a broad array of motor-control features, 519 
including learning in temporal task dynamics. The heuristic group, in contrast, only showed skill 520 
learning in either the spatial or overall reward realms, i.e., no skill learning in the temporal domain 521 
(corroborated in a follow-up nonparametric analysis). Of note, a third nonplanner group, who 522 
never incorporated any state parameters into choice, and largely exploited the low-cost action, 523 
nonetheless improved across dimensions of motor-skill, including temporal skill (albeit only with 524 
the congruent cursor). In other words, the only group not showing credible plasticity in any 525 
temporal indices of skill learning was the heuristic group, i.e., the group who singularly used the 526 
spatial dimension of information when selecting actions. 527 
 528 
These combined findings support the idea that a yoked dimensionality might exist between plans 529 
governing the selection of actions and the skill shaping their subsequent execution. In terms of a 530 
bottom-up framework, the spatial dominance in the heuristic group's planning-policy and skill 531 
advantage suggests that such dimensional yoking may be modulated by skill-first credit 532 
assignment36. In other words, higher execution proficiency stemming predominantly from spatial 533 
precision may have overweighted this dimension during planning. Previous research has indeed 534 
shown that human choice policy can be separately influenced by distinct dimensions of error 535 
depending on the reliability of their signals37,38,39, and that increased agency might determine 536 
whether policy integrates either motor or reward-based errors10. A latter top-down framework is 537 
also supported by the apparent absence of temporal learning in the heuristic group. Note that the 538 
route and heuristic groups did not differ in terms of overall temporal skill, just that the heuristic 539 
group uniquely showed no time-on-task evolution in this domain. An intriguing implication of this 540 
pattern of results is that a controller that localises a cardinal subset of information for making state-541 
appropriate action selections might itself be able to influence controllers of what it considers 542 
superfluous features of sensorimotor error. 543 
 544 
Future behavioural enquiry into heuristics could employ advancements on our selection-execution 545 
framework to investigate the yoked dimensionality hypothesis and investigate its potential bottom-546 
up and top-down underpinnings in more detail. An additional key outstanding question relates to 547 
the robustness of heuristic adoption over time. Given the tendency for learning-related 548 
configurations in the human brain to vary more across phenotypes than at the intra-subject level40, 549 
we employed a between-groups analytic approach inspired by an increasing body of work that uses 550 
behavioural variance across the phenotype to increase robustness and reliability of hypothesis-551 
specific brain activity24,41. While our DDM model parsimoniously distinguished human 552 
participants based on planning dimensionality, for power reasons, parameter estimations utilized 553 
all trials performed by participants. Our data therefore cannot inform any within-subject 554 
hypotheses regarding heuristic adoption; whether, for example, the route group would eventually 555 
reduce planning dimensionality with increased time-on-task. Though our logistic models revealed 556 
the route group's bias toward the low-cost cursor endured in later runs, suggesting their planning 557 
strategy may have held firm across the experiment, we cannot confirm whether they demonstrated 558 
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a robust phenotypic trait or a relatively slower evolution along a trajectory of policy formation 559 
mutually traversed by both them and the heuristic group. 560 
 561 
Conclusion 562 
 563 
The association between decision heuristics and intrinsic skill has evaded description due to the 564 
arbitrary nature of action in computerised goal-oriented tasks. Here we used a novel task emulating 565 
both the decisional and motoric demands of goal-oriented behaviour in a dynamic environment. 566 
DDM models parsimoniously identified human participants who adopted heuristics, and later 567 
modeling unambiguously aligned this lower-dimensional planning strategy with higher skill, 568 
consistent with an inverse-agency-parameterisation model. We additionally observe that 569 
phenotypic variance in the intricacy of planning potentially maps onto the granularity of 570 
improvement in motor ability. Advancements in the behavioural assays of actions selected and 571 
executed will hopefully uncover the underlying causality, learning dynamics and neural 572 
underpinnings giving rise to this possible yoked dimensionality. 573 
 574 
Materials and Methods 575 
 576 
Participants and overview 577 
We report data from a multi-site experiment, with 53 right-handed human participants recruited in 578 
total, via both word-of-mouth and the online participant-recruitment portal at the University of 579 
California, Santa Barbara (UCSB). 34 participants reported as female and the group had an average 580 
(standard deviation) age of 21.9 (3.05) years. Participants performed the experiment either in a 581 
behavioural-testing suite (site 1, n=16) or an fMRI context (site 2, n=37). We report only 582 
behavioural data in the present paper from both groups. Visual angle subtended by stimuli was 583 
constant for the two testing sites and neither site differed in terms of eventual DDM group 584 
classifications (see Supplementary Materials: Site-specific DDM group classifications). 585 
Participant remuneration was $10 ($20, site 2) per hour baseline rate, with an additional $10 ($20, 586 
site 2) contingent on performance. Testing at both sites took place during a single session. The 587 
Institutional Review Board at UCSB approved all procedures. Prior to participating, participants 588 
provided informed written consent. All stimuli were presented using freely available functions42,43 589 
written in MATLAB code, and unless otherwise stated all analyses were also conducted using 590 
custom MATLAB scripts. 591 
 592 
Action selection-execution task: boatdock 593 
Paradigm 594 
Our task was a continuous, nonlinear adaptation of the discrete grid-sail task13, extended such that 595 
reward yields require joint optimisation of action selection and action execution. All visual stimuli 596 
appear on a screen with a gray background (RGB[0,1]=[0.500,0.500,0.500]). In each trial (Figure 597 
1a), they select one of two cursors, depicted by equilateral triangles (side length=0.830 °), to pilot 598 
from a start (S) to a goal (G), respectively depicted by a black (RGB[0,1]=[0,0,0]) and white 599 
(RGB[0,1]=[1,1,1]) square (side length=1.37 °). The SG pair appears within a circular grid 600 
(radius=3.82 °) centered on the screen center. Locations of the SG are drawn with uniform 601 
probability on each trial, constrained such that neither element falls within 0.320 ° of the grid 602 
perimeter, and their centres are at least 0.957 ° apart. 603 
 604 
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Each cursor displaces in three deterministic directions (Figure 1b.), mapping onto the same three 605 
separate response buttons ("throttles") operated by the right hand for the duration of the experiment 606 
(Figure 1c). One "congruent" cursor displaces at angles 7π/6 (index finger), π/2 (middle finger), 607 
and 11π/6 (ring finger) in a reference frame where π/2 aligns with the vertical meridian of the 608 
screen (Figure 1c). The other "incongruent" cursor displaces at angles 5π/6, π/6 and 3π/2, via one 609 
of two sets of spatially incongruent throttle-mappings, selected with uniform (p=0.500) probability 610 
for each subject (an example mapping is in Figure 1c). For the entire experiment, the congruent 611 
and incongruent cursors are identified by a different color, green RGB[0,1]=[0,1,0] and blue 612 
RGB[0,1]=[0,0,1], determined with uniform (p=0.500) probability before each participant's session. 613 
 614 
For every frame a single throttle is down, the cursor will accelerate in that direction (see 615 
Supplementary Materials for specific Acceleration dynamics) and a one unit of fuel is also 616 
subtracted from an allocation of 360 units provided for each trial. Participants therefore have a 617 
total 6 s throttle time on each trial before fuel depletes (refresh rate=60 Hz). Following a successful 618 
"dock" (see below) a screen informs participants of the fuel conserved, expressed as a proportion 619 
of the starting tank. No other exogenous cue is provided to participants regarding the size of the 620 
initial fuel allocation, or its rate of depletion. 621 
 622 
Trial structure 623 
Each trial initiates with the action-selection period, signified by the appearance of an SG pair 624 
within a grid ("action selection", Figure 1a). Participants have no time limit to select their desired 625 
cursor with the middle or index finger of their left hand, respectively using "a" or "z" of a standard 626 
keyboard (site 1) or buttons 1 and 2 (i.e., the two most leftward) of a six-button bimanual response 627 
box44 (site 2). Finger-cursor mapping (i.e., index→congruent, middle→incongruent, or vice versa) 628 
is determined every twenty trials by uniform (p=0.500) probability, prompted throughout the 629 
action-selection period by a silhouette of a hand (9.49 °-by-9.49 °) below the grid, with the relevant 630 
cursor above the relevant finger. Once an action is selected, the action-execution period 631 
immediately begins, signified by the silhouette prompt disappearing and the selected cursor 632 
spawning at the centre of S ("trial start", Figure 1a). Participants now pilot the cursor from S to G 633 
with their right hand, using the "v" (index), "h" (middle) or "m" (ring) buttons on the keyboard 634 
(site 1) or buttons 4-6 on the right side of the response box (site 2). Action execution lasts until 635 
one of four possible trial outcomes. A successful "dock" is achieved if the cursor enters a 0.479 °-636 
radius circular threshold (not visible to participants) centred on the centre of G, at a velocity no 637 
greater than 1.920 °/s. Alternatively, three catastrophic errors can occur if participants (i) run out 638 
of fuel, i.e., cumulative throttle time greater than 6 s; (ii) leave the grid; or (iii) enter the circular 639 
G threshold at a velocity greater than 1.920 °/s. Once a trial outcome is achieved, a feedback screen 640 
immediately informs participants of the outcome, respectively, "WELL DONE!", "OUT OF 641 
GAS!","LEFT THE GRID!" or "TOO FAST!", presented at the centre of the screen along with 642 
"SCORE: $", where $ is either the proportion of fuel preserved (for successful docks) or 0 for all 643 
catastrophic errors. The feedback remains on the screen for 1 s, followed by a blank grey inter-644 
trial-interval screen lasting one, two or three seconds (determined on each trial with uniform 645 
probability p=0.333). Participants performed 360 choice trials in total, portioned into six runs of 646 
60 trials. Interlaced between choice runs were 20 practice trials, on which scores do not count 647 
toward the final bonus, forcing ten trials with both the congruent and incongruent cursor in 648 
pseudorandom order. 649 
 650 
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Dependent variables 651 
To enumerate action values derived from route planning we first computed forward simulations of 652 
the optimal routes on each (simulation procedure described in Supplementary materials). We 653 
subtract the total frames spent accelerating during the optimal route (λ) from the starting fuel bank 654 
of 360 units to estimate the maximum reward obtainable on a given trial. To enumerate action 655 
values derived from a simpler spatial heuristic we computed the angles (in °) between the vector 656 
of a trial's SG and each vector on the incongruent cursor. The vector creating the smallest angle 657 
(which we term the "offset") quantifies action value from this heuristic on a raw scale where values 658 
close to 0 reflect an SG perfectly aligning with one of the incongruent vectors and values close to 659 
60 reflect an SG perfectly aligning with one of the congruent vectors. 660 
 661 
We enumerated reaction time (RT) for action selection as the time elapsed between the time of the 662 
first frame of the action-selection screen (described above) and the time of cursor selection. We 663 
coded optimal selection as incongruent cursor on trials with offset<30 and congruent cursor on 664 
trials with offset>30 (optimal cursor selection did not differ depending on which action value 665 
(route vs heuristic) is computed). 666 
 667 
We enumerated skill performance on each trial in terms of reward, spatial action execution and 668 
temporal action execution. Reward was the amount of fuel conserved. All modeling of reward used 669 
raw units (i.e., on a scale of 0 to 360) to allow Gaussian likelihood functions, however for clarity 670 
in reported results we present findings as a proportion of the tank preserved (from 0 to 1). Spatial 671 
action execution was the number of direction changes, i.e., a count of how many times a different 672 
throttle was pressed relative to the one previous. Temporal action execution was the difference 673 
between the cursor's maximum velocity recorded during action-execution (in °/s), and the final 674 
velocity (in °/s) taken at the moment the cursor crossed the circular threshold around G, normalised 675 
by the distance covered by the SG (in °). 676 
 677 
Data analysis 678 
Computational modeling 679 
We modeled action planning leading up to cursor selection with variants of a standard drift-680 
diffusion model45,46,47. The full models included five free parameters: high-difficulty drift rate μ1, 681 
low-difficulty drift rate μ2, boundary B, starting point bCB, and nondecision time t0. The boundaries 682 
for congruent and incongruent choices were defined as B and -B, respectively. Hence a positive 683 
bCB relates to a congruency bias. Parameters were necessarily constrained as follows: 0 ≤ μ1 ≤ μ2, 684 
μ2 ≥ 0, B > 0, -1 < bCB < 1, and t0 > 0. Noise was represented as the standard deviation of diffusion 685 
with a fixed scaling parameter σ=0.1.  686 
  687 
We compared three types of models: two route-planning models (with one or two drift rates), two 688 
heuristic models (with one or two drift rates), and the null (i.e., nonplanning) model. For route-689 
planning models, we determined difficulty by dividing trialwise differences in reward yields 690 
(between the simulated optimal routes for either cursor) into five bins. For the heuristic models, 691 
we determined difficulty by dividing trialwise offsets into five bins. The five difficulty bins 692 
corresponded to drift rates of -μ2, -μ1, 0, μ1, and μ2. We constrained single-drift-rate models such 693 
that μ1=μ2

 to minimise penalties for additional degrees of freedom, and the null model such that 694 
μ1=μ2=0 to represent insensitivity to the onscreen information. 695 
  696 
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We fitted candidate models to empirical distributions of choices and RTs at the level of individual 697 
subjects using maximum-likelihood estimation and the chi-square fitting method48. We calculated 698 
the frequencies of either choice and the 10, 30, 50, 70, and 90% quantiles (i.e., six bins) of their 699 
respective RT distributions for each difficulty level. We optimised free parameters with respect to 700 
overall goodness of fit for given subjects using iterations of the Nelder-Mead simplex algorithm 701 
with randomised seeding49. We adjusted for model complexity when comparing models that 702 
differed in degrees of freedom using the Akaike information criterion with correction for finite 703 
sample size (AICc)25,26. 704 
  705 
Three participant groups were defined by the results of model fitting following penalisation. The 706 
"route" and “heuristic” groups included those who were best fitted by a route-planning or heuristic 707 
model, respectively, according to the AICc. For assignment to the "nonplanner" group, adding free 708 
parameters for planning would not yield a significant improvement in goodness of fit relative to 709 
the null model without sensitivity to either route or heuristic information. 710 
 711 
Bayesian models 712 
We sampled all Bayesian posterior distributions using No U-Turn sampling (NUTS) Hamiltonian 713 
Monte Carlo, implemented with the PyMC3 package50 in custom Python scripts. Unless otherwise 714 
specified, each model's posterior distributions were sampled across four chains of 10000 samples 715 
(40000 total), with an additional initial 10000 samples per chain (40000 total) discarded after 716 
tuning the sampler's step-size to an acceptance threshold of 0.95 (80000 samples combined), with 717 
further convergence criteria that no chains contain any divergences and no posterior's 𝑅$ value, 718 
estimating the ratio of variance within the n=4 chains to the variance of the pooled chains, greater 719 
than 1 (see:51). Unless otherwise stated, dependent variables were z-score normalised across 720 
participants prior to fits. We calculated minimum-width Bayesian credible intervals of relevant 721 
posteriors from their chains, using the default settings for Highest Density Interval (HDI) 722 
calculation in the arviz package52. 723 
 724 
A pair of models first estimated summaries of group-specific behaviour (reported in Table 1). A 725 
single Gaussian model first summarised continuous variables, accounting for eight variables in 726 
total. First, the four variables applicable to each group identified by the DDM framework, 727 
specifically: starting point - bcB, boundary - B, and nondecision time - t0, in addition to median 728 
RT. In addition, the three variables applicable only to the route and heuristic groups, specifically: 729 
drift rate, hi difficulty - μ1, drift rate, lo difficulty- μ2 and sensitivity - S. This model assumed 730 
individual participant (n) values (y) for each variable (v) were characterised by a separate Gaussian 731 
likelihood function, further depending on n's group-allocation (g(n): route, heuristic or 732 
nonplanner), i.e., 𝑦!,#~Ɲ(Μv,g(n),Σv,g(n)). Each variable was z-score normalised separately (but across 733 
all subjects) prior to fitting, and we respectively assigned each Μv,g(n) and Σv,g(n) an uninformed 734 
Gaussian and half-Gaussian prior: Μv,g(n) ~Ɲ(μ=0,𝜎=10) and Σv,g(n) ~halfƝ(𝜎=10). Three separate 735 
binomial models then estimated summaries of behaviour as measured by three binomial variables 736 
that applied to all groups: p(congruent cursor), p(optimal cursor) and p(catastrophic error). For the 737 
n(g) participants in each group (g), each summary model used a Binomial likelihood function 738 
yg~Bin(θg,tg), where yg and tg are n(g)-element vectors, respectively enumerating the number of 739 
observed instances reported by each individual participant in a group (yg) and their total number 740 
of trials (tg). In each model, we assigned each 𝜃$ an uninformed prior from the beta distribution: 741 
𝜃$~ Beta(α=1,β=1). 742 
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 743 
We used a hierarchical Bayesian binomial model to estimate the credible ranges of group-specific 744 
choice optimality (p(optimal cursor)), separately for each run. The hierarchical structure used 745 
Binomial likelihood functions to summarise the number of optimal cursor selections (y) made by 746 
each participant (n) for all trials (t) in a given run (r), yn,r~Bin(θn,r,tn,r). The model constrained 𝜃!,% 747 
posteriors with separate hierarchical group (g(n)) and run-specific Beta distributions, i.e.: 𝜃!,% ~ 748 
Beta(αg(n),r,βg(n),r). Each αg(n),r and βg(n),r were assigned uninformed priors from a half-Student's T 749 
distribution, i.e.: αg(n),r ~ HalfStudentT(𝜎=10,ν=10) and βg(n),r ~ HalfStudentT(𝜎=10,ν=10), 750 
bounded to never draw values of αg(n),r=0 or βg(n),r=0. Run-specific group-level deterministic 751 
posterior estimates of optimal choice (𝜃$(!),%) were calculated by drawing 10,000 independent 752 
samples (k) from relevant αg(n),r and βg(n),r posteriors and computing the mean of the resulting kth 753 
Beta distribution, i.e., 𝜃$(!),%,( =αg(n),r,k / (αg(n),r,k +βg(n),r,k). 754 
 755 
We used two separate hierarchical Bayesian Gaussian models to estimate the credible ranges of 756 
group-mean performance in the two continuous action-execution variables (reward and temporal 757 
skill), separately for each run, and separately again for each cursor. In each model, the hierarchical 758 
structure used Gaussian likelihood functions to summarise each (n) participant's trialwise measures 759 
across all trials in a given run (r), separately for each cursor (c), i.e.: 𝑦!,%,)~Ɲ(μn,r,c,exp(σn,r,c)). The 760 
model constrained μn,r,c and σn,r,c posteriors with separate hierarchical group (g(n)), run (r) and 761 
choice-specific (c) Gaussian distributions, i.e.: μn,r,c ~ Ɲ(Μ(μ)g(n),r,c,Σ(μ)g(n),r,c) and σn,r,c ~ 762 
Ɲ(Μ(σ)g(n),r,c,Σ(σ)g(n),r,c). Each Μ(μ)g(n),r,c and Μ(σ)g(n),r,c were assigned uninformed Gaussian priors 763 
(~Ɲ(μ=0,𝜎=10)), while each Σ(μ)g(n),r,c and Σ(σ)g(n),r,c were assigned uninformed half-Gaussian 764 
priors (~halfƝ(𝜎=10)). Note that the model for reward was fitted to a continuous measure, scoring 765 
fuel conserved on a scale of 0 to 360, but for clarity, we adjusted runwise and collapsed HDIs 766 
(division by 360), also prior to computing any HDIs related to between-comparisons, to express 767 
results as a proportion of fuel preserved. Time-on-task betas, however, relate to unadjusted 768 
posteriors. 769 
 770 
We used a hierarchical Bayesian Poisson model to estimate the credible ranges of group-mean 771 
performance in spatial skill, separately for each run, and separately again for each cursor. In each 772 
model, the hierarchical structure used Poisson likelihood functions to summarise each (n) 773 
participant's trialwise direction changes across all trials in a given run (r), separately for each cursor 774 
(c), i.e.: 𝑦!,%,)~Pois(exp(μn,r,c)). The model constrained μn,r,c posteriors with separate hierarchical 775 
group (g(n)), run (r) and cursor-specific (c) Gaussian distributions, i.e.: μn,r,c ~ 776 
Ɲ(Μ(μ)g(n),r,c,Σ(μ)g(n),r,c). Μ(μ)g(n),r,c and Σ(μ)g(n),r,c were respectively assigned uninformed Gaussian 777 
(~Ɲ(μ=0,𝜎=10)) and half-Gaussian priors (~halfƝ(𝜎=10)). For clarity in reported results, we re-778 
adjusted runwise and collapsed HDIs (exponential transform), also prior to computing any HDIs 779 
related to between-comparisons, to discount the use of exp(μn,r,c) in the likelihood function. Time-780 
on-task betas, however, relate to unadjusted posteriors. 781 
 782 
For both the hierarchical Gaussian and Poisson skill models, separately for each group (g) and 783 
choice (c), we enumerated deterministic posteriors of overall skill level by averaging each 784 
posterior sample across runs, i.e., for each posterior sample, Μ(μ)g,c=1/6∑ Μ(µ)𝑔, 𝑟, 𝑐*

%+, . We then 785 
enumerated deterministic linear and logarithmic time-on-task effects bg,c by drawing posterior 786 
samples from Μ(μ)g,r,c. Specifically, on each (k) of 40,000 draws, we computed the kth column of 787 
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bg,c (bg,c,k), where bg,c,k=(XTX)-1XTYg,c,k. Here, Yg,c,k
 is a six-element column vector containing an 788 

independent draw from each run (r) of Μ(μ)g,r,c and matrix X is a three-column matrix respectively 789 
containing six constant terms (1), z-scored linear x∈(1,2,...,6) and z-scored logarithmic 790 
x∈(ln(1),ln(2),...,ln(6)) regressors. The second and third rows of resulting 3-by-40,000 matrix bg,c 791 
respectively contained deterministic posteriors for linear and logarithmic time-on-task effects. 792 
Where logarithmic time-on-task effects were credible (0 ∉ HDI), we considered that group-cursor 793 
time-on-task effect to be logarithmic even if a linear effect was also observed. Note, as specified 794 
above, that in reported results, we present the HDIs of time-on-task coefficients (linear and 795 
logarithmic) fitted to unadjusted runwise posteriors, i.e., before we made any adjustment to 796 
posteriors for intuitive presentation of runwise/collapsed HDIs. 797 
 798 
For the individual-participant-level nonparametric analysis of temporal skill, we computed the 799 
median of each μn,r,c posterior from the relevant Gaussian skill model. Separately for each cursor 800 
we regressed the six-element vector of participant's run-specific median values, first as a function 801 
of an intercept and a linear time-on-task regressor (z-scored linear x∈(1,2,...,6)), and then as a 802 
function of an intercept and a z-scored logarithmic regressor x∈(ln(1),ln(2),...,ln(6)). If either 803 
model's regressor (x) was significant (determined by 95% coefficient confidence intervals not 804 
containing 0), we considered that participant time-on-task+ for that cursor and skill variable. We 805 
compared proportions of time-on-task+ participants (y) between groups (g), separately for each 806 
cursor, by fitting Binomial likelihood function yg~Binomial(θg,ng), assigning each θg an 807 
uninformed prior from the beta distribution: 𝜃$~ Beta(α=1,β=1). 808 
 809 
In all above cases, we consider strong evidence of credible effects as follows: for comparison of 810 
parameters to criterion values (e.g., a regression coefficient above 0, or a likelihood above 0.50, 811 
etc.) we required the entire HDI of that parameter to not include the criterion value. For comparison 812 
of two parameters we required the HDI of the deterministic distribution of their difference 813 
(posterior A - posterior B) to not contain 0. Note that two HDIs might overlap, but that this 814 
deterministic distribution of difference may yet still not contain 0. 815 
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Supplementary materials 939 

 940 
Nonplanner group 941 
In addition to the 33 participants identified by our DDM framework as likely employing one of 942 
two planning strategies, 20 participants were best fitted by the null model (skill variables of this 943 
group are included in Supplementary Table 1). While our hypotheses principally focused on 944 
parametric and skill differences between the two classes of planners (route and heuristic), we 945 
briefly comment here on the nonplanner group. Of all groups, nonplanners showed the fastest 946 
overall decision time and strongest DDM bias toward the congruent cursor (Table 1), consistent 947 
with an action-selection policy that did not integrate the external state. However, despite 948 
demonstrating no evidence of state-appropriate action selection (Figure 3b.), largely stemming 949 
from an over-reliance on the congruent cursor (Table 1), nonplanners nonetheless exhibited skill 950 
learning during the execution portion of our task (Figure 3a). They improved with both cursors in 951 
terms of reward yield and spatial precision, but only demonstrated improved temporal dynamics 952 
with the congruent cursor, i.e., the cursor they exploited to yield reward. 953 
 954 

Supplementary Table 1: group-by-run skill measure mu HDI, HDIs collapsed 955 
across runs and HDIs of time-on-task effects 956 

 957 
cursor/variable HDI non route heur 

p(optimal choice) θ run 1 [0.279,0.658] [0.354,0.760] [0.366,0.823] 

 θ run 2 [0.307,0.681] [0.433,0.830] [0.501,0.898]⸸ 

 θ run 3 [0.306,0.689] [0.469,0.848] [0.514,0.893]⸸ 

 θ run 4 [0.299,0.667] [0.533,0.882]⸸ [0.543,0.906]⸸ 

 θ run 5 [0.297,0.668] [0.555,0.887]⸸ [0.557,0.908]⸸ 

 θ run 6 [0.321,0.696] [0.536,0.885]⸸ [0.560,0.938]⸸ 
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cong/reward mu run 1 [0.415,0.468] [0.463,0.515] [0.430,0.532] 

 mu run 2 [0.442,0.488] [0.504,0.557] [0.484,0.580] 

 mu run 3 [0.495,0.538] [0.535,0.603] [0.535,0.613] 

 mu run 4 [0.484,0.530] [0.528,0.608] [0.533,0.608] 

 mu run 5 [0.496,0.535] [0.550,0.614] [0.537,0.598] 

 mu run 6 [0.504,0.554] [0.562,0.619] [0.543,0.610] 

 mu (runs coll) [0.487,0.505] [0.542,0.567] [0.533,0.566] 

 β(run) [0.091,0.191]* [0.103,0.218]* [0.058,0.230]* 

 β(log(run)) [0.004,0.397]* [-0.003,0.480] [-0.004,0.714] 

     

incong/reward mu run 1 [0.338,0.410] [0.369,0.449] [0.425,0.537] 

 mu run 2 [0.375,0.462] [0.450,0.532] [0.461,0.568] 

 mu run 3 [0.412,0.493] [0.491,0.584] [0.549,0.615] 

 mu run 4 [0.446,0.510] [0.519,0.584] [0.528,0.608] 

 mu run 5 [0.439,0.499] [0.519,0.598] [0.534,0.600] 

 mu run 6 [0.437,0.533] [0.515,0.601] [0.536,0.690] 

 mu (runs coll) [0.431,0.462] [0.500,0.534] [0.530,0.565] 

 β(run) [0.101,0.268]* [0.146,0.308]* [0.055,0.243]* 

 β(log(run)) [-0.042,0.599] [0.236,0.897]* [0.008,0.763]* 

     

cong/spatial mu run 1 [2.497,3.043] [1.817,2.277] [1.696,2.651] 

 mu run 2 [2.237,2.614] [1.470,1.956] [1.284,2.000] 

 mu run 3 [1.891,2.264] [1.271,1.728] [1.151,1.766] 

 mu run 4 [1.939,2.335] [1.218,1.657] [1.092,1.605] 

 mu run 5 [1.844,2.208] [1.178,1.523] [1.171,1.690] 

 mu run 6 [1.687,2.098] [1.082,1.428] [1.153,1.640] 

 mu (runs coll) [2.114,2.279] [1.433,1.605] [1.406,1.656] 

 β(run) [-0.156,-0.076]* [-0.211,-0.105]* [-0.212,-0.048]* 

 β(log(run)) [-0.303,0.007] [-0.378,0.054] [-0.703,-0.024]* 
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incong/spatial mu run 1 [3.053,3.736] [2.438,3.190] [1.702,2.686] 

 mu run 2 [2.354,3.380] [1.650,2.323] [1.324,2.106] 

 mu run 3 [2.018,2.782] [1.384,1.916] [1.143,1.696] 

 mu run 4 [2.123,2.748] [1.265,1.706] [1.174,1.766] 

 mu run 5 [2.130,2.804] [1.287,1.713] [1.220,1.726] 

 mu run 6 [1.895,2.654] [1.380,1.791] [1.204,1.893] 

 mu (runs coll) [2.439,2.748] [1.662,1.874] [1.452,1.726] 

 β(run) [-0.180,-0.063]* [-0.241,-0.128]* [-0.195,-0.015]* 

 β(log(run)) [-0.458,-0.008]* [-0.728,-0.262]* [-0.744,-0.035]* 

     

cong/temporal mu run 1 [0.650,0.736] [0.579,0.688] [0.598,0.712] 

 mu run 2 [0.619,0.692] [0.609,0.711] [0.555,0.700] 

 mu run 3 [0.640,0.721] [0.628,0.738] [0.571,0.733] 

 mu run 4 [0.674,0.749] [0.643,0.743] [0.610,0.761] 

 mu run 5 [0.688,0.757] [0.659,0.793] [0.637,0.776] 

 mu run 6 [0.710,0.768] [0.665,0.787] [0.621,0.784] 

 mu (runs coll) [0.685,0.716] [0.667,0.712] [0.641,0.700] 

 β(run) [0.027 0.133]* [0.043 0.205]* [-0.018,0.187] 

 β(log(run)) [-0.411,0.034] [-0.250,0.385] [-0.530,0.279] 

     

incong/temporal mu run 1 [0.623,0.819] [0.565,0.676] [0.638,0.798] 

 mu run 2 [0.660,0.787] [0.612,0.713] [0.647,0.780] 

 mu run 3 [0.630,0.757] [0.601,0.701] [0.612,0.750] 

 mu run 4 [0.686,0.848] [0.612,0.741] [0.611,0.751] 

 mu run 5 [0.697,0.835] [0.630,0.763] [0.638,0.811] 

 mu run 6 [0.750,0.862] [0.689,0.814] [0.660,0.783] 

 mu (runs coll) [0.716,0.776] [0.654,0.701] [0.678,0.737] 

 β(run) [-0.004,0.219] [0.048,0.217]* [-0.096,0.114] 

 β(log(run)) [-0.657,0.270] [-0.389,0.256] [-0.592,0.232] 
 958 
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Notes: non=nonplanner; heur=heuristic; cong=congruent cursor; incong=incongruent cursor; 959 
spatial=spatial skill; temporal=temporal skill; coll.=collapsed across runs; runwise and 960 
collapsed HDIs for reward have been re-adjusted (division by 360) to express reward as a 961 
proportion of fuel preserved; *=time-on-task coefficient credibly dearts 0;⸸ proportion of choices 962 
credibly above chance optimality (0.50). 963 
 964 
Hierarchical logistic choice model 965 
We used a hierarchical Bayesian logistic regression model to assess the group-specific modulation 966 
of choice (p(incongruent)) as a function of an intercept (β0), trial offsets (β1; i.e., the trialwise 967 
enumeration of heuristic value) and the Euclidean distance (in screen pixels) of trial SGs (β2). The 968 
hierarchical structure used Bernoulli likelihood functions to characterise choice likelihood for each 969 
individual participant (n) and trial (t), i.e.: yn,t~Bernoulli(pn,t), where pn,t is computed with a 970 
deterministic logistic transition function S(xn,t), where xn,t=β0n+β1n*offsetn,t+β2n*distancen,t. The 971 
model constrained coefficient posteriors fitted to each participant's set of trials with separate 972 
hierarchical group-specific (g(n)) Gaussian distributions, i.e.: β0n ~ Ɲ(Μ(β0)g(n),Σ(β0)g(n)), β1n ~ 973 
Ɲ(Μ(β1)g(n),Σ(β1)g(n)) and β2n ~ Ɲ(Μ(β2)g(n),Σ(β2)g(n)). Each Μ(β0)g(n), Μ(β1)g(n) and Μ(β2)g(n) 974 
were assigned uninformed Gaussian priors (~Ɲ(μ=0,𝜎=10)), while each Σ(β0)g(n), Σ(β1)g(n) and 975 
Σ(β2)g(n) were assigned uninformed half-Gaussian priors (~halfƝ(𝜎=10)). Both regressors were z-976 
score normalised across all trials from all subjects prior to fitting. Finally, we fitted two iterations 977 
of this model, one using trials from the early phase of the task (first three runs), and a second using 978 
trials from the late phase of the task (final three runs). 979 

 980 
Results of this hierarchical logistic regression model are summarised below in Supplementary 981 
Table 2. This model first bolstered the DDM by demonstrating the route and heuristic group 982 
uniquely integrated state information into action selection. During both early and late phases of 983 
the task, the route (β1routemu HDI early=[-0.865,-0.483]; β1routemu HDI late=[-1.559,-1.014]) and 984 
heuristic group (β1heuristicmu HDI early=[-1.466,-0.601]; β0heuristicmu HDI late=[-2.080,-1.201]), 985 
incorporated route offsets optimally into choice; note that their credibly negative coefficient HDIs 986 
reflect increased likelihood of selecting the incongruent cursor when offset angle was low, i.e., 987 
suited to the incongruent cursor (offset was normalised to vectors on the incongruent cursor; see: 988 
Methods - Dependent variables). In addition, this model supported the finding from the DDM 989 
relating to the route group's bias. The route group uniquely showed a bias to the congruent cursor 990 
in both early and late phases of the task, (β0routemu HDI early=[-0.682,-0.240]; β0routemu HDI 991 
late=[-0.423,-0.104]), which was not credibly evident in the heuristic group in either instance 992 
(β0heuristicmu HDI early=[-0.480,0.011]; β0heuristicmu HDI late=[-0.401,0.073]). No groups credibly 993 
modulated their choice by the distance covered by a route's start-goal pairing (SG), in either early 994 
or late phases of the task (all HDIs for β2 subtend 0 in Supplementary Table 2). However, of note, 995 
the trending positive distance parameter estimate for the route group in the early phase suggests 996 
first that their planning strategy was not born out of risk-aversion, (which instead would have been 997 
characterised by incongruent selection on shorter SGs). Though we can only speculate on a non-998 
credible finding, if the route group selectively used the high-cost incongruent cursor early in 999 
primarily longer SGs, they may have been reserving its usage for situations where optimal choice 1000 
was disproportionately beneficial, due to the nonlinear temporal task physics (Figure 1d, Results: 1001 
Forward simulations vs heuristics, Figure 2d).  1002 
 1003 
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Supplementary Table 2: Hierarchical logistic model of choice behaviour 1004 
parameters 1005 

 1006 
task phase parameter non route heur 

early β0 (int.) mu [-1.690,-0.780]* [-0.682,-0.240]* [-0.480,0.011] 

late β0 (int.) mu [-1.471,-0.672]* [-0.423,-0.104]* [-0.401,0.073] 

early β1 (offset) mu [0.016,0.196]* [-0.865,-0.483]* [-1.466,-0.601]* 

late β1 (offset) mu [-0.059,0.172] [-1.559,-1.014]* [-2.080,-1.201]* 

early β2 (distance) mu [-0.092,0.100] [-0.015,0.136] [-0.175,0.045] 

late β2 (distance) mu [-0.127,0.071] [-0.083,0.087] [-0.112,0.123] 
 1007 

Notes: non=nonplanner; heur=heuristic; int.=intercept; *=coefficient credibly dearts 0; 1008 
 1009 

Hierarchical Poisson model with choice-normalised spatial skill 1010 
To dissociate the heuristic group's superior spatial skill with the incongruent cursor from their 1011 
overall more optimal choice behaviour, we used a hierarchical Bayesian Poisson model to estimate 1012 
the credible ranges of group-mean performance in spatial skill, using a measure which had been 1013 
normalised by the optimal number of direction changes in the simulated solution (see 1014 
Supplementary Materials: Optimal route simulations). This normalisation took the number of 1015 
direction changes made on each trial, and subtracted from that the number of direction changes 1016 
made by the optimal solution for the specific cursor chosen on that trial (i.e., not necessarily 1017 
normalised to the optimal cursor for a given route, but the selected cursor). Due to a small number 1018 
of resulting trials (0.3%, across all subjects) containing a negative value (never lower than -1), we 1019 
added a constant (1) to all trials, to ensure the lowest value was 0, suitable for a Poisson likelihood 1020 
function. With this normalisation, higher values reflect worse spatial skill, i.e., more direction 1021 
changes relative to cursor-optimal. As with the unnormalised model, we fitted the model separately 1022 
for each run, and separately again for each cursor. In each model, the hierarchical structure used 1023 
Poisson likelihood functions to summarise each (n) participant's trialwise direction changes across 1024 
all trials in a given run (r), separately for each cursor (c), i.e.: 𝑦!,%,)~Pois(exp(μn,r,c)). The model 1025 
constrained μn,r,c posteriors with separate hierarchical group (g(n)), run (r) and cursor-specific (c) 1026 
Gaussian distributions, i.e.: μn,r,c ~ Ɲ(Μ(μ)g(n),r,c,Σ(μ)g(n),r,c). Μ(μ)g(n),r,c and Σ(μ)g(n),r,c were 1027 
respectively assigned uninformed Gaussian (~Ɲ(μ=0,𝜎=10)) and half-Gaussian priors 1028 
(~halfƝ(𝜎=10)). For clarity in reported results, we re-adjusted runwise and collapsed HDIs 1029 
(exponential transform, followed by subtraction of -1), also prior to computing any HDIs related 1030 
to between-comparisons, to discount first the use of exp(μn,r,c) in the likelihood function, and then 1031 
the constant added to all trials prior to fitting. Time-on-task betas, however, relate to unadjusted 1032 
posteriors. 1033 
 1034 
Results of this model are summarised below in Supplementary Table 3. Crucially, collapsing 1035 
across runs, we see the heuristic group demonstrating credibly fewer direction changes with the 1036 
incongruent cursor (mu Δ(route-heuristic) HDI=[0.005,0.331]), supporting the interpretation of 1037 
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the finding from the main paper (see: Results - Comparisons of skill between route and heuristic 1038 
groups) that their superior incongruent spatial skill is independent to the navigational 1039 
consequences of their choices. 1040 

 1041 
Supplementary Table 3: group-by-run spatial skill, normalised by cursor 1042 

selection 1043 
 1044 

cursor/skill HDI non route heur 

cong/spatial mu run 1 [1.664,2.216] [1.085,1.522] [1.000,1.886] 

 mu run 2 [1.408,1.776] [0.742,1.195] [0.610,1.228] 

 mu run 3 [1.092,1.430] [0.555,0.972] [0.481,1.046] 

 mu run 4 [1.073,1.479] [0.519,0.891] [0.422,0.872] 

 mu run 5 [0.982,1.323] [0.464,0.758] [0.477,0.889] 

 mu run 6 [0.879,1.261] [0.363,0.669] [0.432,0.861] 

 mu (runs coll.) [1.276,1.436] [0.707,0.861] [0.704,0.926] 

 β(run) [-0.148,-0.076]* [-0.173,-0.092]* [-0.178,-0.052]* 

 β(log(run)) [-0.282,0.000] [-0.308,0.029] [-0.546,-0.016]* 

     

incong/spatial mu run 1 [2.190,2.912] [1.664,2.408] [0.912,1.875] 

 mu run 2 [1.568,2.593] [0.943,1.578] [0.629,1.347] 

 mu run 3 [1.166,1.924] [0.674,1.160] [0.456,0.978] 

 mu run 4 [1.266,1.915] [0.640,1.018] [0.534,1.100] 

 mu run 5 [1.217,1.918] [0.594,0.966] [0.516,1.002] 

 mu run 6 [1.032,1.782] [0.611,0.994] [0.489,1.113] 

 mu (runs coll.) [1.586,1.901] [0.953,1.150] [0.749,1.007] 

 β(run) [-0.178,-0.066]* [-0.210,-0.115]* [-0.157,-0.008]* 

 β(log(run)) [-0.421,0.007] [-0.573,-0.185]* [-0.567,0.022] 
 1045 
Notes: non=nonplanner; heur=heuristic; cong=congruent cursor; incong=incongruent cursor; 1046 
spatial=cursor-normalised spatial skill; coll.=collapsed across runs; runwise and collapsed HDIs 1047 
have been re-adjusted (subtraction of -1) to discount the constant added to all trials prior to fitting; 1048 
*=time-on-task coefficient credibly departs 0.  1049 
 1050 
Site-specific DDM group classifications 1051 
To test group allocations from the DDM for each site, we fitted a summary Bayesian multinomial 1052 
model. The model used a k=3 multinomial likelihood function to characterise the counts (#) for 1053 
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each group classification y=[#(route) #(heuristic) #(nonplanner)], separately for the participants 1054 
(ns) each site (s) ys~Multinomial(Θs,ns). We assigned Θs an uninformed prior from a Dirichlet 1055 
distribution Θs~Dirichlet(α=[1,1,1]). Results from this model (summarised in Supplementary 1056 
Table 3 below) confirmed the DDM ascribed similar group allocations for both testing sites. 1057 
 1058 

Supplementary Table 4: site-specific DDM group allocations 1059 
 1060 

parameter HDI (site 1) HDI (site 2) 

Θ p(route) [0.167,0.569] [0.213,0.493] 

Θ p(heuristic) [0.054,0.386] [0.164,0.435] 

Θ p(nonplanner) [0.220,0.633] [0.215,0.492] 
 1061 
Acceleration dynamics 1062 
At a resolution of 60 Hz, cursor position during action execution is updated for each frame f by 1063 
adding a two-element vector (ⅅ) to the cursor's position at frame f-1. ⅅ is computed using 𝐷 =1064 
∑ ℙ# ∗ 𝕍(𝑣)-
#+, . Here, ℙv is the two-element vector (x,y) in screen coordinates describing a 1065 

Euclidean displacement of 0.320 ° in the direction of a given throttle (v). 𝕍(v) scales each 1066 
coordinate in ℙv in accordance with nonlinear acceleration by using 𝕍(v) = 𝑓(𝕋(v)). 1067 
Where𝑓(𝑥) = −0.011𝑥- + 0.167𝑥.. For every frame a given throttle (v) is down, the relevant 1068 
element of three-element vector 𝕋 (i.e., 𝕋(v)) increases by 0.017 s, and for every frame a throttle 1069 
is released, 𝕋(v) decreases by 0.017 s until it reaches 0. Elements of 𝕋 therefore update separately 1070 
and gradually at this fixed rate, meaning non-zero momentum from one vector can continue 1071 
influencing the displacement of the cursor after its release and while another throttle is down, 1072 
allowing curvilinear two-dimensional displacement (see top panel of Figure 1f). However, if more 1073 
than one throttle is down for a given frame, each element of 𝕋 decreases by 0.017 s (unless already 1074 
at 0), precluding participants from using simultaneous throttle pulsing to create additional 1075 
displacement angles outside of the six afforded across the two cursors. 1076 
 1077 
Optimal route simulations 1078 
To enumerate action values derived from route planning we first computed forward simulations of 1079 
the optimal routes (i.e., with the highest reward yield) from S to G for each cursor on each trial. 1080 
Separately for each cursor, we first assessed whether the SG on each trial afforded a single linear 1081 
displacement with one of its vectors from S that would intersect the circular threshold around G 1082 
(point of intersection=G*). If a cursor satisfied this requirement we computed the optimal throttle 1083 
sequence with that vector as a single pulse of length topt that accelerated the cursor to a maximum 1084 
speed at half the distance between S and G*, followed by a release of the throttle to allow the 1085 
cursor's momentum to bring it to G*, arriving at a velocity of 0. topt is estimated to the precision of 1086 
our (60 Hz) screen resolution by finding the lowest number of frames (λ), such that: ∑ 𝐷/∗ > 𝐷/2/

1 , 1087 
where D is the Euclidean distance between S and G* in screen coordinates and 𝐷/∗ =1088 
G𝑆𝑆(ℙ# ∗ 𝑓(𝜆 ∗ 0.017)), where SS denotes sum of squares and 𝑓(𝑥) and ℙv are from the above 1089 
section describing task physics. Expressing optimal pulse length (topt) in frames (λ) automatically 1090 
computes the number of units of fuel depleted by this optimal sequence. We subtract λ from 360 1091 
as our final estimate of the reward obtainable from the optimal route. (Note that we leave this score 1092 
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on a scale of 0 to 360 for modeling purposes, but present score feedback to participants on each 1093 
trial as a more intuitive proportion of preserved fuel). 1094 
 1095 
If a cursor does not provide a single linear displacement solution, its optimal route instead 1096 
comprises a two-pulse sequence using its two vectors that most closely align with the trajectory of 1097 
the SG, i.e., the two vectors (v1 and v2) with the smallest "offset" values (θ1 and θ2) as computed 1098 
in Figure 2b. The shortest combined displacement of these two vectors that moves a cursor from 1099 
S to its most nearby Euclidean point on the circular threshold around G (G**) can be computed by 1100 
first originating v1 at S and v2 at G** and finding where they intersect (∩). Forming an oblique 1101 
triangle with lines |S∩|, |∩G**| and |G**S|, the length of |S∩| and |∩G**| (i.e., the singular 1102 
displacements of v1 and v2) can then be solved using the law of sines, i.e., |𝑆 ∩ | = |𝐺∗∗𝑆| ∗1103 
𝑠𝑖𝑛(𝜃.)/𝑠𝑖𝑛(60) and | ∩ 𝐺∗∗| = |𝐺∗∗𝑆| ∗ 𝑠𝑖𝑛(𝜃,)/𝑠𝑖𝑛(60). Optimal throttle sequence with these 1104 
vectors is a vector of pulses (Topt) containing [tv1, tv2], respectively solved with the lowest [λ1,λ2] 1105 
values such that ∑ 𝐷/∗ > 𝐷#,/2/,

1  and ∑ 𝐷/∗ > 𝐷#./2/.
1 , where Dv1 is the Euclidean distance 1106 

between S and ∩, and Dv2 is the Euclidean distance between ∩ and G**. Given that λ2 is calculated 1107 
from 0 velocity , the optimal sequence pulses v2 immediately upon the release of v1. We subtract 1108 
λtotal from 360 as our final estimate of the reward obtainable from the optimal route, where 1109 
λtotal=λ1+λ2. 1110 
 1111 
In most cases λtotal is the same value whether using the above order, or by originating v2 at S and 1112 
v1 at G**, and estimating [tv2, tv1] relative to the resulting intersection (∩'). The exception occurs 1113 
when one intersection (∩ or ∩') falls outside the grid, requiring more than one direction change to 1114 
avoid catastrophic error with this sequence. However, all trials had at least one sequence with an 1115 
intersection inside the grid for each cursor, i.e., at least one optimal path involving a single 1116 
direction change. Our modeling framework simply required the lowest λtotal for each cursor on each 1117 
trial, i.e., either λ from a single linear displacement, λtotal for either route if both intersections fall 1118 
within the grid, or λtotal corresponding to the route with its intersection inside the grid, if one fell 1119 
outside it. 1120 
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