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Abstract— Action potential (AP)-triggered neurotransmitter
release forms the key basis of inter-neuronal communication.
We present a stochastic hybrid system model that captures the
release of neurotransmitter-filled vesicles from a presynaptic
neuron. More specifically, vesicles arrive as a Poisson process
to attach at a given number of docking sites, and each docked
vesicle has a certain probability of release when an AP is gener-
ated in the presynaptic neuron. The released neurotransmitters
enhance the membrane potential of the postsynaptic neuron,
and this increase is coupled to the continuous exponential
decay of the membrane potential. The buildup of potential
to a critical threshold level results in an AP firing in the
postsynaptic neuron, with the potential subsequently resetting
back to its resting level. Our model analysis develops formulas
that quantify the fluctuations in the number of released vesicles
and mechanistically connects them to fluctuations in both the
postsynaptic membrane potential and the AP firing times.
Increasing the frequency of APs in the presynaptic neuron
leads to saturation effects on the postsynaptic side, resulting in
a limiting frequency range of neurotransmission. Interestingly,
AP firing in the postsynaptic neuron becomes more precise
with increasing AP frequency in the presynaptic neuron. We
also investigate how noise in AP timing varies with different
parameters, such as the probability of releases, the number
of docking sites, the voltage threshold for AP firing, and the
timescale of voltage decay. In summary, our results provide
a systematic understanding of how stochastic mechanisms in
neurotransmission enhance or impinge the precision of AP
fringing times.

I. INTRODUCTION

In the nervous system, communication between two neu-
rons often occurs via a chemical synapse where action
potential (AP)-triggered neurotransmitter release from the
presynaptic neuron triggers an AP in the postsynaptic neuron.
The efficacy for synaptic connections has been studied in
several works [1]–[7] since cognitive processes such as
learning, and memory depend on the synaptic efficacy. The
concept of synaptic efficacy has an intuitive definition – the
maximum amount of influence on a postsynaptic neuron from
the presynaptic neuron(s). Previous works have shown that
under some conditions, noise enhances the synaptic efficacy
[8].

Several works investigated stochastic models for synapses
at molecular and network levels, [9]–[11]. Among various
models, the Leaky Integrate and Fire (LIF) models [12],
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[13] are commonly used. In LIF models, neurotransmitters
released from the presynaptic neuron(s) alter the membrane
potential of the postsynaptic neuron, and “leaky” refers to
the fact that the potential can decay back to its resting state
in the absence of synaptic inputs.

Here we apply the formulas of Stochastic Hybrid Systems
(SHS) that effectively combine discrete and continuous ran-
dom processes [14]–[28] to investigate how stochasticity in
neurotransmitter release impacts the timing of postsynaptic
AP generation via the LIF model. This work builds on
our previous work that modeled the presynaptic vesicle
turnover [29]- [30] to understand the downstream impact of
vesicles dynamics on postsynaptic processes. More specially,
we precisely quantify the stochastic dynamic of neuron’s
membrane potential v(t) that increases in jumps based on
neurotransmitter-release events in the presynaptic neuron
and decreases continuously in between events. Using the
framework of first-passage times, where an AP is triggered in
the postsynaptic neuron when potential crosses a threshold
[9]–[11], we develop novel formulas quantifying both the
mean and noise in the timing of AP firing.

Note that the synaptic connections in some neurons do not
depend on the arrival of APs, and they signal through graded
transmission [31]–[33]. In some other neurons, both mecha-
nisms exist [34]–[36]. Here, we focus solely on the neurons
that require APs to evoke neurotransmitter release. Applying
the stochastic hybrid model [29]- [30] and LIF model [37],
we first write the moment dynamics for neurotransmitter-
filled vesicles n(t) in the presynaptic neuron and the mem-
brane potential v(t) in the postsynaptic neuron at time t.
Later on, these dynamics are solved exactly and used to
determine the statistics of postsynaptic AP firing times.
Our results quantify saturation levels in postsynaptic AP
frequency as a function of model parameters and determine
the limits of noise suppression in AP timing.

II. MODEL FORMULATION

The overall model connecting the release of vesicles from
the presynaptic neuron to AP-triggering in the postsynaptic
neuron is illustrated in Fig. 1. We start by first describing
the presynaptic dynamics.

A. Presynaptic neuron

We assume that APs arrive at the axon terminal of the
presynaptic neuron as per a Poisson process with a rate f .
This corresponds to AP inter-arrival times being independent
and identically distributed random variables following an
exponential distribution with mean 1/f . Let the random
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TABLE I
MODEL PARAMETERS

Parameter Description
v Postsynaptic membrane potential (volts)
n Number of docked vesicles
b Number of released vesicles
T First passage time (FPT) (sec)
f Presynaptic AP frequency (Hz)
F Postsynaptic AP frequency (Hz)
pr Release probability per site/vesicle
kv Constant
v0 Membrane resting potential (volts)
k Refilling rate per vesicle (sec−1)
M Total number of vesicles
vth Threshold potential (volts)
τv Membrane time constant (sec)

process n(t) denote the number of release-ready docked
vesicles at time t. Upon AP arrival, b out of n vesicles are
released

Q (b = j|n = n) =

(
n

j

)
pjr (1− pr)

n−j
, j = 0, . . . , n

(1)
with b following a Binomial distribution, where pr is release
probability per vesicle. Since the Poisson arrival of an AP
in the next infinitesimal time interval (t, t + dt) is fdt, the
decrease in n by j ∈ {0, . . . ,n} vesicles is captured by the
probabilistic event

Probability{n (t+ dt) = n (t)− j} = fQ (j) dt. (2)

Between two successive APs, the number n builds up
as a result of vesicle replenishment that occurs with rate
k (M − n(t)), where M is the number of docking sites (i.e.,
the maximum capacity for docked vesicles), and k is the
refilling rate per site. This stochastic refilling is described
by the probabilistic event

Probability{n (t+ dt) = n(t) + 1} = k (M − n(t)) dt.
(3)

In summary, the continuous accumulation of n(t) over time,
and its depletion from binomial release occurring at discrete
AP times are represented by events (3) and (2), respectively.

B. Postsynaptic neuron

Assuming a rapid turnover of neurotransmitters in the
synaptic cleft, a release of j vesicles leads to an instantaneous
increase in the postsynaptic neuron’s membrane potential
v(t) by kvj, where kv is a positive proportionality constant.
As this increase is coupled with the arrival of APs in the
presynaptic neuron, it can be directly combined with (2) to
yield

Probability{n (t+ dt) = n (t)− j & v(t+ dt)

= v(t) + kvj} = fQ(j)dt,
(4)

where fQ(j)dt is the probability of AP occurrence resulting
in j released vesicles in the time interval (t, t + dt]. In
between these discrete voltage jumps, v(t) is assumed to
decay via first-order kinetics

dv(t)

dt
= −v(t)

τv
. (5)
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Fig. 1. Schematic of two neurons communicating through a synapse
and the corresponding SHS model. (A) In response to an AP reaching the
axon terminal, docked vesicles are released emptying their neurotransmitter
content into the synaptic cleft. Once a docked vesicle is released, the
site becomes empty and each empty site gets refilled with vesicles. The
neurotransmitters in the cleft regulate the opening of ion channels on the
postsynaptic neuron’s membrane, resulting in the flow of charged ions
(current) altering the membrane potential. (B)The SHS model of neuro-
transmission where the continuous dynamics within the circle represents
the membrane potential v exponentially decaying over time [13]. The
model has three different resets: The first reset corresponds to the arrival
of AP in the presynaptic neuron with a rate f that causes b of the n
docked vesicle to release. We assume b to follow a Binomial distribution
with release probability pr . This event also corresponds to a jump in the
membrane potential of the postsynaptic neuron by kvb. The second reset
is the replenishment of docked vesicles in the presynaptic axon terminal
with a rate k(M − n). Finally, the third reset that is triggered when
v ≥ vth corresponds to an AP firing in the postsynaptic neuron that resets
the membrane potential back to the resting potential v0.

with τv quantifying the timescale of decay. Stimulation of the
presynaptic neuron with a given frequency f , results in the
buildup of membrane potential over time, and typical time
traces of these random processes are shown in Fig. 2. An AP
in the postsynaptic neuron is triggered when the membrane
potential reaches a prescribed threshold vth. The timing of
these postsynaptic APs can be mathematically formulated as
the first passage time (FPT)

T := inf{t : v (t) ≥ vth}, v(0) = v0. (6)

Here v0 denotes the resting membrane potential, which for
convenience, we assume to be v0 = 0 volts. Once an AP is
triggered in the postsynaptic neuron the membrane potential
resets to v0. An essential goal of this investigation is to quan-
tify the fluctuations in the first passage time T and determine
how its mean 〈T 〉 and noise vary as a function of different
parameters. Throughout the paper, we use bold letters to
indicate random variables/stochastic processes and, 〈.〉 and
〈.〉 to denote the expected value and steady-state expected
value respectively. For instance, the steady-state expected
value of the stochastic process x(t) is 〈x〉 = limt→∞〈x(t)〉.
We also denote f and F = 1/〈T 〉 the frequency of APs
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Fig. 2. Sample trajectories for the number of docked vesicles n(t) in the
presynaptic neuron and the postsynaptic neuron membrane potential
v(t). The arrival of APs in the presynaptic neuron as per a Poisson process
is shown on top together with the corresponding sample runs for n(t) and
v(t) below. The membrane potential v(t) increases by random jumps in
response to presynaptic APs and decays continuously as per (5) in between
APs. When v(t) crosses the threshold level vth, an AP in the postsynaptic
neuron is generated as shown in the bottom plot, and the membrane potential
is reset to the resting value v0. For this plot, the model parameters are taken
as M = 40, k = 5 sec−1, f = 10 Hz , pr = 0.3, τv = 10 sec and
kv = 0.005 volts.

in the presynaptic and postsynaptic neurons, respectively,
and a complete list of model parameters are summarized in
Table. 1.

III. THE PRESYNAPTIC NEURON VESICLES DYNAMICS

The accuracy of the postsynaptic neuron’s response is
critically dependent on stochasticity in neurotransmitters
released from the presynaptic neuron [38]. In the previous
section, we formulated a model that takes into account two
important sources of such stochasticity arising from the
replenishment and release of vesicles. Here we derive exact
analytical expressions for the statistical moments of both
the number of docked vesicle n(t) in the presynaptic axon
terminal and the number b released per AP.

Using standard tools from moment dynamics, the mean

number of docked vesicles 〈n(t)〉 evolves as

d 〈n(t)〉
dt

= 〈k (M − n(t)) [(n(t) + 1)− n(t)]〉 (7)

+

〈
f

n(t)∑
j=0

[(n(t)− j)− n(t)]Q(j)

〉
= kM − (k + fpr) 〈n(t)〉

[39]–[42]. Given 〈n(0)〉 = n0, solving (7) yields

〈n(t)〉 = kM

fpr + k
− e−(fpr+k)t

(
kM

fpr + k
− n0

)
(8)

〈n〉 := lim
t→∞
〈n(t)〉 = kM

fpr + k
. (9)

Assuming all docking sites are filled initially n0 =M , then
presynaptic stimulation will cause a decrease in 〈n(t)〉 over
time, and this vesicle depletion has often been referred to,
in the literature, as synaptic depression [43], [44]. Fitting
(8) to experimental data measuring the number of released
vesicles over time upon presynaptic stimulation with a fixed
frequency has been used to infer parameters across diverse
synapses [45], [46]. Similar to (7), the differential equation
describing the dynamics of the second-order moment is
obtained as

d〈n2(t)〉
dt

=
〈
k (M − n(t)) [(n(t) + 1)

2 − n2(t)]
〉

(10)

+

〈
f

n(t)∑
j=0

[
(
n(t)− j

)2 − n2(t)]Q(j)

〉
= kM + (2kM − k + fpr (1− pr)) 〈n(t)〉
+
(
fp2r − 2fpr − 2k

)
〈n2(t)〉,

that results in the following steady-state solution

〈n2〉 := lim
t→∞
〈n2(t)〉 = kM (2kM − f (pr − 2) pr)

(fpr + k) (2k − f (pr − 2) pr)
.

(11)
Using (9) and (11), we next quantify the extent of fluctua-
tions in n(t) by its squared coefficient of variation

CV 2
n :=

〈n2〉 − 〈n〉
2

〈n〉
2

=
(fpr + k)(2kM − f(pr − 2)pr)

kM(2k − f(pr − 2)pr)
− 1. (12)

Since the number of released vesicles b conditioned on n
follows a Binomial distribution as per (1), it is easy to see
that at steady-state

〈b〉 = 〈n〉pr, 〈b2〉 = 〈n〉pr(1− pr) + 〈n2〉p2r. (13)

Using the above equation along with (9) and (11) yields the
following coefficient of variation squared for b

CV 2
b = CV 2

n +
1− pr
〈n〉pr

. (14)

As expected, CV 2
b > CV 2

n and CV 2
b = CV 2

n when pr = 1
(i.e., all release-ready docked vesicles are released upon a

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2022. ; https://doi.org/10.1101/2022.04.01.486751doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.01.486751
http://creativecommons.org/licenses/by-nd/4.0/


5 10 50 100 500

0.1

0.5

1

5 10 50 100 500

0.05

0.10

0.20

0.50

2 5 10 20 50

0.05

0.10

0.20

0.05 0.10 0.50 1

0.05

0.10

0.50

1

N
oi

se
 in

 th
e 

# 
of

 re
le

as
ed

 v
es

ic
le

s,
 𝐶
𝑉 𝒃"

505
1010.1

𝑝#

𝑘 = 20𝑠𝑒𝑐!"

𝑘 = 5𝑠𝑒𝑐!"

𝑓, 𝐻𝑧

𝑝# = 0.1,
𝑘 = 5𝑠𝑒𝑐!"

𝑝# = 0.1,
𝑘 = 20𝑠𝑒𝑐!"𝑝# = 0.4,

𝑘 = 5𝑠𝑒𝑐!"

𝑝# = 0.1,
𝑘 = 5𝑠𝑒𝑐!"

𝑝# = 0.1,
𝑘 = 20𝑠𝑒𝑐!"

𝑝# = 0.4,
𝑘 = 5𝑠𝑒𝑐!"

𝑀 = 30

𝑀 = 100, 𝑓 = 10𝐻𝑧 𝑀 = 100, 𝑓 = 10𝐻𝑧

𝑝# = 0.5

𝑝# = 0.05

Presynaptic AP frequency

𝑀 = 300

1

0.1

Release probability 

500500 505

(A) (B)

(C) (D)

505

1

0.1

0.2

0.05

Refilling rate 𝑘, 𝑠𝑒𝑐67

0.5

0.05

1

1 1

Fig. 3. Stochasticity in the number of released vesicles per AP as a
function of synaptic parameters. (A) The steady-state noise in the number
of released vesicles CV 2

b as given by (14) varies non-monotonically and is
minimized at an intermediate value of pr . Parameters used to generate the
lines are listed on the plot. (B) CV 2

b monotonically decreases with refilling
rate k. Note that increasing pr increases (decreases) CV 2

b at low (high)
values of k. (C), (D) CV 2

b monotonically increases with AP frequency
f . When M is small (left), increasing pr from 0.1 to 0.4 for fixed k =
5 sec−1 attenuates CV 2

b . In contrast, when M is large (right), increasing
pr for fixed k = 5 sec−1 amplifies CV 2

b .

presynaptic AP). Fig. 3 investigates the dependence of CV 2
b

on key parameters: AP frequency f , release probability pr
and the vesicle refilling rate k. Intriguingly, our results show
that CV 2

b is minimized at an intermediate value of pr. In
contrast, CV 2

b is a monotonically decreasing and increasing
function of k and f , respectively (Fig. 3). How does ran-
domness in the neurotransmitter-release process propagate
downstream to impact AP triggering in the postsynaptic
neuron?

IV. POSTSYNAPTIC NEURON AP FORMATION

The released neurotransmitters result in an enhancement
of the membrane potential, and potential buildup up to a
threshold triggers an AP in the postsynaptic neuron. Recall
from the model formulation that the time T between two
postsynaptic APs is modeled as a first-passage-time (FPT)
problem (6), and the goal here is to explore the output
frequency F = 1/〈T 〉 and stochasticity in T as measured
by its coefficient of variation CVT . Our approach relies on
first studying the impact of neurotransmitter release on the
stochastic dynamics of the membrane potential v(t), and then
connecting fluctuations in the transient buildup of v(t) to
random fluctuations in T .

A. Stochastic dynamics of membrane potential

In the section, we derive formulas capturing the mean and
noise in v(t) over time. Given that the release of j vesicles
results in an instantaneous increase in v(t) by kvj, starting
from the resting membrane potential of 〈v(0)〉 = v0 = 0 the

average potential dynamics follows

d〈v(t)〉
dt

=− 〈v(t)〉
τv

+

〈
f

n(t)∑
j=0

[(v(t) + kvj)− v(t)]Q(j)

〉

= −〈v(t)〉
τv

+ fkvpr〈n(t)〉. (15)

Assuming that the presynaptic dynamics is at equilibrium
implying 〈n(0)〉 = 〈n〉 as per (9), the mean postsynaptic
membrane potential increases exponentially followed by sat-
uration as per first-order kinetics

〈v(t)〉 = vmax

(
1− e−

t
τv

)
, vmax =

fkkvMprτv
fpr + k

(16)

where vmax is the maximum level reached. Note that this
maximum voltage is itself frequency-dependent and mono-
tonically increases with f to reach

vm = lim
f→∞

vmax = kkvMτv. (17)

Since the threshold of AP firing vth is generally much
lower than vmax, v(t) never reaches close to vmax and is
reset back to the resting potential once an AP is triggered.
We next derive the dynamics for the second-order moments
〈n(t)v(t)〉 and 〈v2(t)〉 that are provided in the Appendix.
Solving these linear dynamical system with 〈n(0)v(0)〉 = 0,
〈v2(0)〉 = 0, and 〈n2(t)〉 = 〈n2〉 as given by (11), provides
exact analytical formulas for the variance σ2

v(t) and the
coefficient of variation squared CV 2

v (t) of the membrane
potential over time. Due to space limitation, we only provide
the formula for CV 2

v (t) in (18) (see top of next page).
In the limit of large input frequencies (f → ∞), CV 2

v (t)
asymptotically follows

lim
f→∞

CV 2
v (t) =

coth
(

t
2τv

)
2kMτv

, (19)

where

coth(x) =
e2x + 1

e2x − 1
(20)

and (19) is invariant of the the release probability pr and the
constant kv . While the mean membrane potential increases
over time, it turns out that CV 2

v (t) in (18) is a decreasing
function of time. If we further take the limit τv → ∞ (i.e.,
there is no decay in membrane potential between successive
vesicle-release events), then (19) simplifies to

lim
τv→∞

lim
f→∞

CV 2
v (t) =

1

kMt
(21)

explicitly showing the inverse dependence with time.

B. Postsynaptic neuron’s AP timing

Having derived an exact stochastic dynamics for the mem-
brane potential, we now connect it to random fluctuations in
T . Assuming small fluctuations in v(t) and vth � vmax, the
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CV 2
v (t) =

1

2fkMprτv
(
et/τv − 1

)2(
f
(
pr − 2

)
pr − 2k

)(
(fprτv + kτv)2 − 1

) ×
(
f2(pr − 2

)
p2r
(
e

2t
τv − 1

)(
f2p2rτ

2
v − 1

)
− fk3prτ

2
v

((
2M − 3

)
pr + 4

)(
e

2t
τv − 1

)
+ k2

(
8fprτv

((
M − 1

)
pr + 1

)
e
t
(
−fpr−k+ 1

τv

)
+ e

2t
τv

(
pr
(
M

(
2− 4fprτv

)
+ fτv

(
pr
(
f
(
pr − 4

)
τv + 4

)
− 4

)
− 2) + 2

)
+ pr

(
− 2M

(
2fprτv + 1

)
+ fτv

(
pr
(
4− f

(
pr − 4

)
τv)− 4) + 2)− 2

)
+ fkpr

(
4fprτv

((
M − 2

)
pr + 2

)
e
t
(
−fpr−k+ 1

τv

)
+ e

2t
τv

(
pr
(
M

(
2− 2fprτv

)
+ fτv

(
pr
((
pr − 4

)
τv + 4

)
− 4

)
− 3

)
+ 4

)
+ pr

(
− 2M

(
fprτv + 1

)
+ fτv

(
pr
(
4− f

(
pr − 4

)
τv
)
− 4

)
+ 3

)
− 4

)
− 2k4τ2v

((
M − 1

)
pr + 1

)(
e

2t
τv − 1

))
(18)

mean time 〈T 〉 for AP firing is simply given by solving the
mean potential reaching the threshold. Towards that end

〈v(t)〉|t=〈T 〉 ≈ vth =⇒ vmax

(
1− e−

〈T 〉
τv

)
≈ vth (22)

=⇒ 〈T 〉 = −τv ln
(
1− vth

vmax

)
, vmax =

fkkvMprτv
fpr + k

.

(23)

In this approximation regime, there exists a critical frequency
fcrit that is obtained from solving vth = vmax, such that (23)
is only defined for f < fcrit and 〈T 〉 becomes unbounded
as f → fcrit. However, in the actual stochastic system low
values of f will lead to large 〈T 〉 implying low values of
F = 1/〈T 〉. Moreover, in the limit of high frequency

lim
f→∞

F = − 1

τv ln
(
1− vth

vm

) , vm = lim
f→∞

vmax = kkvMτv

(24)

=⇒ lim
f→∞

F =
kkvM

vth
, vth � vm. (25)

These results show that F is inversely proportional to
the threshold vth, and is invariant of parameters such as τv
and pr. We plot the postsynaptic AP frequency F versus
the input frequency f in Fig. 4A, and the above analytical
formula provides good agreement with frequencies obtained
from stochastic simulation of the SHS model in Fig. 1.

Next, we focus on quantifying the fluctuations in T . To-
wards that end, we employ a useful geometric approximation

σ2
T ≈

(
d〈v(t)〉
dt

|t = 〈T 〉
)−2

σ2
v (〈T 〉) , (26)

where the variance in T is connected to the variance in the
membrane potential at time t = 〈T 〉. The latter variance
is further divided by the square of the slope of the mean
potential buildup at time t = 〈T 〉 implying a “flatter”
approach to the threshold will lead to more fluctuations
in the threshold-hitting time. This approximation has been
widely used for studying timing in stochastic bio-molecular
systems [48]–[52] and we use it here in the context of
neurotransmission. This approximation yields the following
formula for the squared coefficient of variation of T

CV 2
T =

σ2
T

〈T 〉2
≈ v2th
〈T 〉2

(
d〈v(t)〉
dt

|t = 〈T 〉
)−2

CV 2
v (〈T 〉)

(27)
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0

Fig. 4. Noise in the postsynaptic AP timing decreases with increasing
presynaptic AP frequency. (A) The output frequency F in the postsynaptic
neuron as given by (23) is plotted as a function of input frequency f . The
input-output plot follows an increasing sigmoidal that saturates at (25). (B)
The noise CV 2

T as derived in (28) as a function of f . Both F and CV 2
T

as predicted by the approximate formulas show good agreement with exact
values obtained from stochastic simulations. Other parameters are taken as
M = 100, k = 5 sec−1, pr = 0.3, v0 = 0 volts, vth = 0.07 volts,
kv = 0.001 volts and τv = 10 sec is chosen to be large so that the
voltage decay between two APs is relatively small [47].

in which using (16) results in

CV 2
T =

(
vth
vmax

)2
CV 2

v (〈T 〉)(
1− vth

vmax

)2
ln2
(
1− vth

vmax

) , (28)

where CV 2
v (〈T 〉) is given by (18) at t = 〈T 〉 as in (22).

This result highlights the points:
• CV 2

T is proportional to the membrane potential fluctu-
ation CV 2

v (t) at time t = 〈T 〉. Moreover, in the limit
vth/vmax → 0, CV 2

T → CV 2
v (〈T 〉).

• Consistent with stochastic simulation, CV 2
T decreases

with increasing frequency (Fig. 4B) and this is quali-
tatively different from behavior seen in Fig. 3, where
CV 2

b increases with f .
In the limit f → ∞, we substitute F from (24) in (28),
where F = 1/〈T 〉. CV 2

T approaches

lim
f→∞

CV 2
T =

(
vth
vm

)2
CV 2

v (〈T 〉)(
1− vth

vm

)2
ln2
(
1− vth

vm

) (29)

=

(
vth
vm

)2
coth

(
− 1

2 ln
(
1− vth

vm

))
(
1− vth

vm

)2
ln2
(
1− vth

vm

)
2kMτv

,
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Fig. 5. The noise in presynaptic AP timing CV 2
T is minimized at an

optimal threshold. Plot of CV 2
T is given in (29) as a function of vth/vm

assuming 2kMτv = 103.

where vm = limf→∞ vmax. Now further assuming vth �
vm, and using the fact that x2/(1−x)2/ ln2(1−x) ≈ 1+x
for small x, (29) reduces to

lim
f→∞

CV 2
T ≈

(
1 +

vth
vm

)
CV 2

v (〈T 〉) (30)

which after substituting (19) and (25) becomes

lim
f→∞

CV 2
T ≈

(
1 +

vth
vm

) coth
(

1
2τvF

)
2kMτv

≈
(
1 +

vth
vm

) coth
(
vth
2vm

)
2kMτv

. (31)

An interesting observation to note here is that CV 2
T

varies non-monotonically with vth/vm (Fig. 5). In particular,
CV 2

T →∞ as vth/vm → 0, and increasing the threshold first
decreases CV 2

T to reach a minimum, and then CV 2
T increases

with increasing vth/vm. Note this increase is sharper in the
original formula (29) where CV 2

T → ∞ as vth → vm
(Fig. 5). Also note from (31) that making the postsynaptic
membrane potential more “leaky” by decreasing the value of
τv enhances CV 2

T .

C. Frequency dependent release probability and refilling rate

So far, all the analyses have assumed constant values
of the pre-synaptic parameters k and pr, which in reality
itself depend on the frequency f . This mechanically occurs
through the build of calcium in the axon terminal with
increasing frequency that impacts vesicle refilling and release
[53]–[55]. This effect can be modeled by simply having a
frequency-dependent release probability pr(f) and refilling
rate k(f) that follow Hill-type functions

pr (f) =
pmax

1 +
(
F1

f

)h1
, k (f) =

kmax

1 +
(
F2

f

)h2
, (32)

where pmax and kmax are the maximum values, F1 and F2

are numerically equal to the frequency at which pr and k are
half of their maximum values, respectively, and h1 and h2 are
Hill coefficients. Fig. 6 illustrates how frequency-dependent
parameters impact F and CV 2

T and essentially lead to curves
that interpolate between the curves corresponding to fixed
parameters.
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Fig. 6. The postsynaptic AP frequency F and noise in AP timing
CV 2

T for frequency-dependent parameters. Plots of frequency F as
given in (23) and noise (28) for fixed probability of release and vesicle
refilling rates are compared with the case of frequency-dependent parameters
as phenomenologically captured via (32). Parameters are chosen as k =
5 sec−1, pmax = 0.54, F1 = 10 Hz, h1 = 1.41, kmax = 20 sec−1,
F2 = 10 Hz, h2 = 1.56 and pr = 0.3, M = 100, v0 = 0 volts,
vth = 0.07 volts, τv = 10 sec, kv = 0.001 volts.

V. CONCLUSION

In this contribution, we have developed an SHS model to
systematically analyze the interplay of presynaptic and post-
synaptic stochastic processes. Our analysis developed closed-
form expressions for the steady-state statistical moments of
the number of docked vesicles n, the number of vesicles
released per AP b, the postsynaptic membrane potential v
and the postsynaptic AP timing T . While the formulas for
the first three random processes are exact, the formula for T
is approximate as it involves the conversion of voltage-level
fluctuations to threshold hitting-time fluctuations as per (26).

On the presynaptic side, the results show noise in b to vary
non-monotonically with the probability of release pr (Fig. 4),
and monotonically decrease with increasing presynaptic AP
frequency f . This can be intuitively understood from the fact
that in the limit f →∞,

lim
f→∞

CV 2
n ≈

1

〈n〉
(33)

and similarly, it can be shown that

lim
f→∞

CV 2
b ≈

1

〈b〉
. (34)

Thus, at high-frequency stimulation, both n and b follow
Poisson statistics, and the coefficient of variation increases
unboundedly as 〈n〉 → 0 and 〈b〉 → 0 when f →∞.

On the postsynaptic side, the output frequency saturation
as f → ∞ is captured by (25) and this saturation is
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independent of pr. This point is exemplified in Fig. 6A,
where the saturation levels are the same irrespective of
fixed values of pr and frequency-dependent pr. However,
the maximum output frequency critically depends on the
presynaptic vesicle refilling rate k (Fig. 6C). In some of
our recent collaborations, we have uncovered that synapses
involved in the auditory system have much higher values
of k compared to other synapses [45], [46], and this may be
important to enhance the dynamic range of operation needed
for high-fidelity auditory functioning.

Our results also show that noise in AP generation tim-
ing decreases with increasing f (Figs. 4 & 6), and this
is essentially a result of averaging multiple vesicle-release
events that happen more effectively at higher values of
f . This noise buffering is also evident from the fact that
while the coefficient of variation of AP interarrival times
is 1 in the presynaptic neuron due to the Poisson arrival
assumption, the coefficient of variation of AP interarrival
times on the postsynaptic side falls much below 1 (Figs. 4-
6) The fundamental limits of noise suppression is given by
(31) which is independent to pr, decreases with increasing
k, and varies non-monotonically with the threshold vth.
In the context of cell lysis from the random buildup of
a toxin, there have been recent experiment validation of
this U-shape dependence between noise in event timing and
timing threshold [49]. It will be interesting to see if chemical
synapses in-vivo also show similar behaviors and if they
indeed tune the threshold to enhance precision in AP timing.

A part of our future work would be to compute the higher-
order moments and the distribution for different random
processes both at the presynaptic and postsynaptic sides.
Another direction for our future work would be to expand
the model to more complex models, including different types
of vesicle pools, and consider multiple excitatory/inhibitory
synaptic inputs on the postsynaptic neuron.

APPENDIX

The dynamics for 〈n(t)v(t)〉 and 〈v2(t)〉 follow

d 〈n(t)v(t)〉
dt

= −〈n(t)v(t)〉
τv

(35)

+
〈
k
(
M − n(t)

)
[
(
n(t) + 1

)
v(t)− n(t)v(t)]

〉
+ 〈f

n(t)∑
j=0

[
(
n(t)− j

)(
v(t) + kvj

)
− n(t)v(t)]Q(j)〉

= kM〈v(t)〉 − kvfpr(1− pr)〈n(t)〉

+ kvfpr(1− pr)〈n2(t)〉 −
(
k + fpr +

1

τv

)
〈n(t)v(t)〉,

d〈v2(t)〉
dt

= 〈f
n(t)∑
j=0

[
(
v(t) + kvj

)2 − v2(t)]Q(j)〉 (36)

− 2

τv
〈v2(t)〉 = − 2

τv
〈v2(t)〉+ k2vfpr

(
1− pr

)
〈n(t)〉

+ k2vfp
2
r〈n2(t)〉+ 2fkvpr〈n(t)v(t)〉.
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