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Abstract
Direct-to-consumer (DTC) genetic testing companies have provided personal genotyping
services to millions of customers. Customers mail saliva samples to DTC service providers to
have their genotypes analyzed and receive back their raw genetic data. Both consumers and the
DTC companies use the results to perform ancestry analyses, relative matching, trait prediction,
and estimate predisposition to disease, often relying on genetic databases composed of the data
from millions of other DTC-genotyped individuals. While the digital integrity risks to this type
of data have been explored, we considered whether data integrity issues could manifest upstream
of data generation through physical manipulation of DNA samples themselves, for example by
adding synthetic DNA to a saliva sample (“spiked samples”) prior to sample processing by a
DTC company. Here, we investigated the feasibility of this scenario within the standard DTC
genetic testing pipeline. Starting with the purchase of off-the-shelf DTC genetic testing kits, we
found that synthetic DNA can be used to precisely manipulate the results of saliva samples
genotyped by a popular DTC genetic testing service and that this method can be used to modify
arbitrary single nucleotide polymorphisms (SNPs) in multiplex to create customized doctored
genetic profiles. This capability has implications for the use of DTC-generated results and the
outcomes of their downstream analyses.

Main Text
Since the advent of high-density genotyping and next-generation DNA sequencing, there has
been tremendous growth in the amount of genetic data that is collected, processed, and stored
(1-3). Some of the biggest producers of genetic data have been low-cost consumer facing
genotyping services, so called direct-to-consumer (DTC), that process samples from the general
public using high-density genotyping arrays. DTC companies use this data to give customers
insights into their ancestry, find close relatives, predict traits, and find predisposition to disease
(4,5). Presently, millions of customers have been genotyped via DTC testing providers, with the
largest DTC providers having processed and stored data from over 10 million individuals (6).
Given this scale, there is a lot at stake in the design and implementation of the DTC genomics
ecosystem. Any genotypes or metadata stored in DTC databases are at risk of unauthorized
access or data theft (7,8). In addition to typical cybersecurity concerns, like data breaches, poorly
designed analysis tools and visualizations specific to DTC genomics have also been shown to
leak private genetic information (9-11). DTC design not only affects those that are tested but can
impact close relations or broader society. Genetic genealogy databases have repeatedly been
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shown to be sufficient to infer the identity of unknown DNA samples or data — including
criminal forensic samples and anonymous research subjects (12-14).
In this work, we consider a different aspect of genetic testing risk that has received less attention:
the underlying assumption that genetic results stored in DTC databases are genuine and could not
have not been doctored in an adversarial manner prior to the data generation process. This is
especially important in the DTC industry because there is extensive digital data sharing by
individuals to third-parties and, most relevant to this work, there is no sample provenance (4).
Samples are collected and submitted to the DTC services directly by the general public with
minimal sample verification. This means that essentially anyone with moderate technical means
could submit anonymous, forged, or pseudoanonymous saliva samples directly to a DTC genetic
testing service and obtain apparently authentic genetic results. This data could then ultimately be
used in downstream analyses (Fig. 1).

The most popular DTC genomic testing technologies are DNA microarray machines (e.g.,
Illumina’s Global Screening Array), which are capable of characterizing hundreds of thousands
of sites of genetic variation, so called single nucleotide polymorphisms (SNPs), that are known
to vary throughout the human population according to ancestry and contribute to a range of
phenotypes, from appearance to disease predisposition (15,16). Thus, the ability to manipulate
microarray results would make it possible to generate, for example, customized physical
phenotype profiles. Motivated by this possibility, we decided to explore the potential for
manipulating microarray results generated by a DTC genetic testing service at the physical level.

Here, we show that synthetic DNA can be mixed with saliva to manipulate the results of
otherwise natural consumer samples genotyped by a DTC service. We find that simply mixing
negligible volumes of specifically designed synthetic DNA into a saliva sample is sufficient to
arbitrarily modify SNPs to a desired genotype and that different synthetic DNA strands can be
combined in an additive manner to change at least dozens of individual SNPs simultaneously.
These altered genotypes led to different phenotypic predictions by the DTC service,
demonstrating that physical sample spike-ins can alter downstream interpretation in commercial
pipelines.

To develop this methodology, our first objective was to create a simple saliva spiking protocol
that minimized prepwork and would allow sets of target SNPs to be modified arbitrarily by
people with minimal resources and expertise. We began with a synthetic DNA construct design
that could be used to target specific SNP locations in the human genome. In this design, each
synthetic DNA strand was 200-bp in length with the middle 160-bp encoding for the human
genome reference sequence (GRCh37) surrounding a particular SNP. Invariant 20-bp sequences
were also included on each end of the DNA construct as universal PCR priming sites for
fragment amplification. The middle nucleotide of each strand was then used to encode for the
desired SNP. Importantly, this construct design would make it possible to forge multiple SNPs at
once, as the desired fragments could be pooled together before mixing into the saliva sample.
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Fig 1. DNA spike-ins and possible effects on the DTC ecosystem. (A) Synthetic DNA strands
from a preconfigured spike-in library are selected, pooled, and spiked into a saliva to forge a
desired genotype. (B) The spiked-in tissue sample is sent to a DTC service for genotyping or
sequencing. The left side of the dotted line denotes the phase where genetic data is in a physical
form and contains no integrity checks. On the right portion of the figure genetic information is
shared and processed as digital information, raising typical data security concerns.
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To test this design, we constructed a 48-SNP spoofing library with two possible alleles per SNP,
for a total of 96 strands. We chose SNPs with previously known correlations to physical traits or
appearance (Supplement Table S1). The ssDNA library was ordered using a commercial oligo
service and each strand amplified into dsDNA via PCR (Supplement Table S2). Since the middle
160-bp of each strand in the library is complementary to the adjacent genomic sequence nearby
the SNP, any SNPs within +/- 80-bp of each other will have overlapping sequences and could
potentially cross-react with microarray probe binding. To understand this effect, 8 of the 40
SNPs in the library were specifically chosen to be overlapping.

In the subsequent experiments described here, specific SNP fragments from this synthetic DNA
library were spiked into saliva samples collected from two different individuals1 and submitted to
a major DTC genetic testing service for genotyping. A total of 25 saliva samples from these two
individuals were submitted between November 2020 - June 2021. These include 2 controls (no
spike-in), 5 for protocol debugging/testing, 8 to test the effect of spike-in concentration, and 10
to explore multiplex SNP spike-ins. To minimize the impact on the DTC company, we chose
options that excluded the samples from research studies and relative matching functionality.

We started with the simplest case of forging a single SNP (rs17822931) in saliva from one
individual at various concentrations. The individual was naturally homozygous CC at this locus
(determined from the control sample with no spike-in DNA). We used a spike-in strand encoding
the T allele. In this experiment, there are four possible genotype outcomes: no change (CC),
single base flip (CT), double base flip (TT), or no call (--). We consider a SNP successfully
modified if the SNP is called and the genotype has at least one base flip towards the synthetic
allele (i.e., CT or TT in this example). Note, if the individual was heterozygous CT then only a
single base flip is possible — TT. The synthetic T-allele fragment for rs17822931 was serially
diluted and spiked-in at a wide range of DNA quantities (1000 ng - 0.01 ng) in 8 unique saliva
samples for the same individual and mailed to the DTC company (Supplementary Table S3A).
After several weeks, we received the genotyping results for each of these samples from the
company. As anticipated, at higher spike-in quantities (> 10 ng) the SNP was flipped to
homozygous TT, intermediate quantities (0.1-1 ng) the SNP was either partially flipped (CT) or
was a no call, and at low quantities (< 0.01 ng) there was no modification to the natural SNP
(CC). These results show that synthetic DNA can be used to manipulate DTC genotyping
outcomes. It also suggests that spike-in DNA concentration may be adjusted to provide either
homozygous or heterozygous results.

Next, we performed multiplexed SNP forging experiments by pooling multiple synthetic strands
for different SNPs into each saliva sample. This was tested across ten samples using saliva from
both individuals. Each sample was spiked with between 20-48 strands from the synthetic SNP
library at three dilutions (1X, 0.1X, 0.01X); The first individual was spiked with 20 SNPs and
the second individual with 39 or 48 SNPs (Supplementary Table S3B). The spoofed allele of
each SNP was chosen to be different from the genotype at that locus for each individual; when
naturally heterozygous, a homozygous allele was arbitrarily chosen.

After analysis using the DTC service, we found that the synthetic DNA spike-ins altered the
allele of the targeted SNP in all cases when a genotype was called. Specifically, we observed that
the genotypes for the 10 samples were split between completely successful modifications
(45.5%; 155/341), i.e., the genotype was modified to the desired homozygous result, no-calls

1 The two individuals were co-authors of this work. The DTC Terms-of-Service required that submitted saliva come
from the person registering the sample or with their consent.

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2022. ; https://doi.org/10.1101/2022.04.01.486752doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.01.486752
http://creativecommons.org/licenses/by-nc-nd/4.0/


(52.2%; 178/341), and a small number (2.3%; 8/341) were heterozygous calls with one base
altered (Supplementary table S3C). The average no-call rate of 52.2% for the spiked-in SNPs is
higher than the average overall no-call rate of 0.27%, indicating that the addition of synthetic
DNA SNP fragments are lowering the quality of SNPs that are targeted. However, the spiked-in
DNA did not seem to otherwise affect data quality for the non-targeted SNPs because there was
little relationship between spike-in quantity and no call rate (r2 - 0.141) or miscall rate (r2 -
0.055), where a miscall is any SNP with a different genotype than the control sample
(Supplementary Fig. S1).

For the 8 overlapping SNPs, we found that they had a particularly high no-call rate (89.6%;
43/48), likely due to interference between adjacent SNPs (i.e., within +/- 80bp). Due to poor
amplification, one of the SNPs (rs1800414) had an abnormally low concentration, and thus, was
spiked-in at lower concentrations than the other SNPs. Similar to what was seen in the single
SNP concentration experiment with lower concentrations, a heterozygous genotype was called.
Of the remaining 39 SNPs, whenever a SNP was called (50.3% call rate) it was always
homozygous with the spike-in allele, further indicating that the probes are likely saturated with
the spike-in strands (outcompeting the natural genomic DNA fragments), resulting in a
homozygous genotype when the call passes quality controls.

Taken together, these results indicate that a simple SNP spike-in, with non-adjacent SNPs and at
sufficient concentration, can be pooled together to alter at least dozens of SNPs in a single
sample with around 50% effectiveness. The partial effectiveness (high probability of no calls)
would not be an issue in many contexts because most SNP-based interpretation tools manage
no-calls gracefully, as they commonly occur in normal genotype results. To manage this, models
simply drop the no-calls and rely on the subset of the SNPs in the model which have been called.
To see how the DTC service would interpret the forged SNPs we relied on it's built in phenotype
prediction to see how the results were affected. While the underlying models were not public, we
attempted to include SNPs in the spoofing library which are known to relate to tested
phenotypes. These include markers for pigmentation (e.g., eye, hair, and skin color), facial
features (e.g., ear lobe shape and cleft chin), and others (e.g., finger ratio, unibrow). Due to the
underlying variability in flipping a given spike-in SNP, traits were forged only some of the time.
However, for all but two of the traits (male hair loss and unibrow) all of the targeted traits were
forged in at least some of the samples, with many samples having multiple forged traits (Table
1). We also found that the spike-in samples’ heritage prediction results were altered relative to
the control sample. These results indicate that forging SNPs with publicly known phenotypic
effects may be sufficient to change digital predictions offered by DTC services, highlighting the
link between physical sample manipulation and possible digital impacts.

In summary, we have described here the first demonstration, to our knowledge, of how the DTC
genetic testing pipeline can be doctored at the physical level. Data integrity issues can affect all
stages of the DTC pipeline from sample processing to storage, analysis, and data sharing.
Cryptographic techniques like digital signature schemes are a good approach to ensure the
authenticity of digital data, but these results highlight the need to consider the integrity of the
physical sample channel as well (12). Whenever DNA is processed in potentially adversarial
environments it may be worthwhile to confirm that samples do not contain synthetic DNA (e.g.,
methylation analysis), as has been suggested in other genetic contexts, like forensics (17). While
the emphasis of this work was on the DTC testing ecosystem, we believe there are broader
lessons for the larger sequencing industry. Most data processing equipment and algorithms are
likely not robust to adversarial manipulation because they are only designed to tolerate naturally
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occurring noise. Therefore, the vulnerabilities raised in this work are likely to impact most types
of genotyping, sequencing, and associated analysis pipelines.

A
Individual 1 Individual 2

Orig M1 M2 M3 M4 Orig M5 M6 M7 M8 M9 M10

Cleft Chin Yes No No No No No No Yes Yes No Yes Yes

Eye Color Dark Dark Dark Dark Dark Dark Blue Dark Blue Light Blue Dark

Hair Color Dark Dark Dark Dark Dark Brown Red Red Blond Red Red Brown

Skin Pigment
Light /
Med Dark Dark

Light /
Med

Light /
Med

Light /
Med

Light /
Med

Light /
Med

Light /
Med

Light /
Med

Light /
Med

Light /
Med

Facial Hair
Thickness Less More More Less More Less Less Less Less Less More Less

Iris Patterns C,R C,R C,R,F C,R C,R,F C,R,F C,R C,R C,F C,R,F C C,R

Male Hair Loss Low Low Low Low Low Low Low Low Low Low Low Low

Earlobe Type Unatt. Attach Attach Attach Attach Attach Unatt. Attach Unatt. Attach Unatt. Attach

Earwax Type Wet Dry Dry Dry Dry Wet Wet Wet Wet Wet Wet Wet

Digit Ratio Ring Ring Index Ring Ring Index Index Index Ring Index Ring Ring

Freckles No No No No No No Yes No Yes Yes Yes No

Hair Thickness Avg Avg Thick Avg Thick Avg Avg Avg Avg Avg Thick Avg

Hair Type Wavy Wavy Str. Wavy Str. Wavy Str. Wavy Wavy Str. Str. Str.

Unibrow No No No No No No No No No No No No
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B

rssid Trait
Original
Genotype

Spike-in
Allele M1 M2 M3 M4

rs11684042 Cleft Chin AG G GG GG GG GG

rs4864809
Facial Hair
Thickness GG A AA AA -- AA

rs4900109

Iris Pattern

TG G GG GG GG GG

rs10235789 CC T -- -- -- --

rs3739070 AC A -- AA -- AA

rs2080401 Earlobe Type AA C CC CC CC CC

rs17822931 Earwax Type CC T TT TT TT TT

rs2395845 Unibrow CC A AA AA AA AA

rs756853

Male Hair Loss

AA G -- GG -- GG

rs2180439 TC T TT TT -- TT

rs2497938 TT C CC CC CC CC

rs11158820

Digit Ratio

AG A AA AA AA AA

rs2332175 AG A AA AA -- AA

rs314277 CC A -- AA -- --

rs3827760
Hair
Thickness/Type AA G -- GG -- GG

rs11803731

Hair Type

AA T TT TT -- TT

rs17646946 GG A AA AA AA AA

rs7349332 CC T TT TT TT --

rs12896399

Eye Color, Hair
Color, Skin Color,
Freckles

TG T No Spike No Spike -- TT

rs1470608 TG T -- TT No Spike No Spike

rs12913832 AG G N/A -- --

rs1426654 AA G GG GG No Spike No Spike

Table 1. Spike-In Effect on Predicted Traits. (A) Predicted traits reported by the DTC testing company for the 10
multiplex spike-in samples for the two tested individuals. The four samples for Individual 1 are denoted as samples
M1-M4 and the six for Individual 2 as samples M5-M10. Key for observed phenotypes: cleft chin (yes/no), eye
color (blue/light/dark), hair color (blond, brunette, red, dark), skin pigment (light-to-medium, dark), facial hair
thickness (less thick, thicker), iris patterns (crypts, rings, and furrows), male hair loss (low chance), earlobe type
(attached, unattached), earwax type (wet, dry), digit ratio (index finger longer, ring finger longer), freckles (yes, no),
hair thickness (average, thicker than average), hair type (wavy, straight), unibrow (no). (B) Raw spike-in effect on
the 22 SNPs altered in Individual 1 (samples M1-M4). Two dashes (--) indicate a no call and “No spike” indicates
that specific SNP was not spiked into that sample.
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Methods

Synthetic SNP fragment preparation

Single-stranded DNA oligonucleotides were ordered from Integrated DNA Technologies (IDT).
To prepare oligos for spiking experiments, each oligo was amplified by PCR (KAPA) using the
universal primers, purified with AMPure XP magnetic beads (Beckman), and quantified with
qPCR prior to spiking experiments.

DTC saliva genotyping kit spike-in

DTC saliva genotyping kits were ordered from a commercial vendor. Saliva samples were
submitted to the DTC company according to the recommended protocol except with the
additional step of adding the desired synthetic SNP DNA fragment(s) at the appropriate
concentrations. Water was used to dilute the synthetic DNA stocks prior to addition to the saliva
sample when required.
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