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Summary14

Pleiotropy and genetic correlation are widespread features in GWAS, but they are often difficult15

to interpret at the molecular level. Here, we perform GWAS of 16 metabolites clustered at the16

intersection of amino acid catabolism, glycolysis, and ketone body metabolism in a subset of UK17

Biobank. We utilize the well-documented biochemistry jointly impacting these metabolites to ana-18

lyze pleiotropic effects in the context of their pathways. Among the 213 lead GWAS hits, we find a19

strong enrichment for genes encoding pathway-relevant enzymes and transporters. We demonstrate20

that the effect directions of variants acting on biology between metabolite pairs often contrast with21

those of upstream or downstream variants as well as the polygenic background. Thus, we find22

that these outlier variants often reflect biology local to the traits. Finally, we explore the implica-23

tions for interpreting disease GWAS, underscoring the potential of unifying biochemistry with dense24

metabolomics data to understand the molecular basis of pleiotropy in complex traits and diseases.25
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Introduction26

A central challenge in the field of human genetics is understanding the mechanism of how genetic27

variants influence complex traits and diseases. Genome-wide association studies (GWAS) have28

begun characterizing the genetic architecture of complex traits, but the molecular mechanisms29

connecting genetic variants to these traits are rarely understood. This is particularly true for30

understanding pleiotropy, when a variant affects multiple traits [1]. It is possible to estimate the31

genetic correlation between traits [2, 3], but it is often unclear what contributes to this at a molecular32

or physiological level. A handful of in vitro disease-focused “post-GWAS” studies have convincingly33

shown the mechanisms driving pleiotropy of individual key associations [4, 5]; however, these studies34

are highly specific and time-consuming. Developing statistical and computational approaches to35

identify putative molecular mechanisms is invaluable to advancing our understanding of where and36

how pleiotropic GWAS variants act.37

In this study, we use metabolites as model traits to understand pleiotropic features of genetic38

architecture. Metabolites are small molecules interconverted by a series of biochemical pathways,39

and are an appealing model system for studying pleiotropy because their pathways are typically40

well-documented and biologically simpler than those underlying other complex traits [6, 7]. Previ-41

ous work in Mendelian genetics has identified inborn errors of metabolism (IEM) in many enzymes42

[8]. Metabolite GWAS, which have long observed pervasive pleiotropy at these IEM genes and43

other loci [9, 10], offer a potential opportunity to further explore the relationships between inter-44

mediate molecules and disease outcomes at scale. Here, we jointly analyzed GWAS results of 1645

plasma metabolites from the Nightingale Health Nuclear Magnetic Resonance (NMR) Spectroscopy46

platform in nearly 100,000 individuals in the UK Biobank [11] (Figure 1; see Methods). These 1647

metabolites included glucose, pyruvate, lactate, citrate, isoleucine, leucine, valine, alanine, pheny-48

lalanine, tyrosine, glutamine, histidine, glycine, acetoacetate, acetone, and 3-hydroxybutyrate. They49

were chosen based on their biochemical proximity to each other, their relevance to health and dis-50

ease, and because the genes and enzymes involved in their metabolism are well-characterized. They51

play especially important roles in energy generation and energy storage pathways such as glycol-52

ysis, the citric acid cycle, amino acid metabolism and ketone body formation. They are relevant53

to many metabolic diseases including type 2 diabetes [12, 13, 14], cardiovascular disease [15], and54

non-alcoholic fatty liver disease [16].55

Numerous GWAS have begun characterizing the genetic architecture of metabolites and found56

them to be heritable and polygenic [17, 18]. Recent metabolite studies have shown that leveraging57

information about the biochemical pathways relevant to a given metabolite [19, 20, 21, 7] can allow58

for more interpretable gene annotation of GWAS hits. This has led to the dissection of individual59

associations of biomarkers, such as lipids [22], glycine [23], and intermediate clinical measures [24],60

with cardiometabolic and other diseases. The pervasive pleiotropy at these GWAS loci with other61

metabolites as well as disease [24, 25] suggests the potential of utilizing these data for investigating62

the mechanism of pleiotropic effects as a core component of genetic architecture. While recent63

GWAS have begun jointly investigating multiple metabolites [26, 27, 28], they have yet to do so in64

the context of their biochemical pathways.65

In this paper, we demonstrate that investigating the effects of pleiotropic variants on biologically-66

related metabolites allows for a better understanding of why these variants have their observed67

joint effects. Our results reveal striking heterogeneity in genetic correlation across the genome and68

provide a biologically intuitive basis for understanding this heterogeneity. Together, this allows us69

to dissect the molecular basis of metabolic disease GWAS variants and enables us to directly define70

the mechanism relating an example variant to its associated disease.71
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Results72

Insights into the shared genetic architecture of biologically-related metabolites73

We chose 16 metabolites from the 249 available through the Nightingale NMR platform in a subset74

of the UK Biobank (Figure 1; see Methods). These 16 metabolites were selected based on their bio-75

chemical proximity, relevance to health and disease, and because the genes and enzymes involved in76

their metabolism are well-characterized. We classified the 16 metabolites into four groups based on77

shared biochemistry: Glycolysis (glucose, pyruvate, lactate, citrate), Branched Chain Amino Acid78

(BCAA; isoleucine, leucine, valine), Other Amino Acid (alanine, phenylalanine, tyrosine, glutamine,79

histidine, glycine), and Ketone Body (acetoacetate, acetone, 3-hydroxybutyrate). Trait measure-80

ments were log-transformed and adjusted for relevant technical covariates. After outlier removal,81

we obtained a primary dataset of 94,464 genotyped European-ancestry individuals with data for all82

16 metabolites. Additionally, we performed an ancestry-inclusive GWAS of all 98,189 individuals83

with complete metabolite data for followup analysis.84

We first sought to characterize the genetic architecture underlying these metabolites by perform-85

ing GWAS for each (Supplementary Figure S1). Hits from individual GWAS were clumped with86

an r2 of 0.01 per megabase, combined across metabolites, then pruned to the SNP with the most87

significant P-value within 0.1 cM. This resulted in 213 lead variants with a genome-wide significant88

association in at least one metabolite, referred to as the metabolite GWAS hits. Glycine had the89

largest number of significant associations with 77 hits (Figure 2a). There were 47 variants with90

significant associations in more than one metabolite, including rs2939302 (near the gene GLS2 )91

which was significant in 9 of the 16 metabolites, and rs1260326 (GCKR) which was significant92

in 8. Glycine also had the highest total SNP heritability of 0.284 (Supplementary Table S1 and93

Supplementary Figure S2).94

To understand the shared genetics of these metabolites, we then investigated the extent of95

pleiotropy between and within biochemical groups. In order to examine this, we first calculated96

pairwise LDSC genetic correlation across the 16 metabolites. We found substantial genome-wide97

sharing for many pairs of metabolites, especially for metabolites within the same biochemical group98

(Figure 2b; phenotypic correlation in Supplementary Figure S3). We then explored pleiotropic ef-99

fects beyond the polygenic background by examining the structure within the metabolite GWAS100

hits. Pairwise Mendelian Randomization (MR) between the metabolites emphasized the intertwined101

nature of these traits (Figure 2c). Despite only taking into account genetic effects, MR largely clus-102

tered metabolites in a way that reflects their biochemical groups. The extensive pleiotropy across the103

16 traits, with similar sharing inside biochemical groups, is also illustrated by the structure visible104

in the normalized effect sizes for each metabolite GWAS hit (Figure 2d). Together, these analyses105

support substantial, but not always consistent, genetic overlap between the traits, particularly in106

the polygenic components. In the remainder of this paper, we will seek a deeper understanding of107

the biochemical relationships between genotypes and metabolite levels.108
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Figure 1: Biochemistry of relevant metabolites. Pathway diagram and molecular structure
of relevant metabolites, colored by their biochemical groups. The pathway diagram was curated from
multiple resources (see Methods). All solid lines represent a single chemical reaction step. Dotted
lines represent a simplification of multiple steps. For simplicity, only a subset of all the reactions each
metabolite participates in is shown. Genes encoding the enzymes that catalyze the above chemical
reactions are known and presented in Supplementary Figure S4.
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Figure 2: Overview genetic architecture of metabolites. a. Number of GWAS hits per
metabolite. b. Pairwise LDSC genetic correlations between the metabolites, clustered by genetic
correlation. c. Mendelian Randomization weighted results between the metabolites. d. Biclustered
standardized effect size in each metabolite for the 213 metabolite GWAS hits. For visualization,
effect sizes were divided by the standard error then inverse normal transformed and standardized.
Each variant was aligned to have a positive median score across metabolites.

Characterizing the biological functions of candidate genes109

An important step in understanding the pathway level mechanisms of variants is knowing which gene110

a variant is affecting and how that gene relates to the biology of the pathway. Different types of genes111

influence trait biology through distinct mechanisms. Metabolite biology is documented in genetic112

and biochemical databases based on the extensive history of biochemical research (Supplementary113

Table S2). Thus, we developed a pipeline for annotating the 213 metabolite GWAS hits with a single114

most likely gene using gene proximity and manual curation of these databases (Supplementary Table115

S3 and Supplementary Figure S5; see Methods). We annotated 68 variants with genes encoding116

pathway-relevant enzymes (25-fold enrichment, Poisson rate test P < 2e-16), 46 with genes encoding117

transporters (5.2-fold enrichment, P = 9e-16), and 30 with genes encoding transcription factors (7-118

fold enrichment among liver marker TFs, P = 3e-5; Figure 3). Overall, 69% of variants were assigned119

to the closest gene and 49% of variants assigned to a pathway-relevant enzyme gene were assigned120

known inborn errors of metabolism (IEM) genes [8]. The substantial enrichment for biologically121

interpretable variants suggests that examining the genetic basis of these traits will allow for the122

development of hypotheses around relevant molecular mechanisms underlying pleiotropy.123
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Figure 3: Gene annotation of metabolite GWAS hits. Each gene is colored based on the
biochemical group with the most associated metabolites (P < 1e-4). If multiple biochemical groups
are tied for the most associations for a given gene, they are all shown. a. Expanded pathway diagram
with all genes (italicized) that encode pathway-relevant enzymes and were a metabolite GWAS hits.
b. List of all genes of the metabolite GWAS hits that encode transporters and TFs. There were 69
metabolite GWAS hits that are not shown. Of these, 60 were annotated with genes assigned to the
gene type general cell function (14 of these 60 were related to lipid function), and 9 were assigned
to a gene of unknown function or that did not have any genes nearby (see Methods).
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Next we sought to understand which genes and subpathways were most relevant to each biochem-124

ical group. We assigned each gene to the biochemical group with the most associated metabolites125

(Supplementary Table S4; see Methods). Genes were largely assigned to the group whose relevant126

biology was nearest the protein encoded by the gene. For example, BCAT2 encodes an enzyme127

responsible for the first step in the breakdown of all three BCAAs and was assigned to the BCAA128

group. OXCT1 encodes an enzyme responsible for the conversion of acetoacetyl-CoA to the ke-129

tone body acetoacetate and was assigned to the Ketone Body group. Similarly, SLC7A9 encodes130

a protein that transports amino acids and was assigned to the Other Amino Acid group, while131

TCF7L2 is a TF assigned to the Glycolysis group and involved in blood glucose homeostasis. These132

results confirm that these variants are affecting known trait-relevant biology and reflecting the local133

structure of these pathways.134

Interestingly, a large fraction of the genes involved in trait-relevant biology were genome-wide135

significant hits for at least one of the 16 metabolites. Specifically, of the 139 total genes encoding136

enzymes in the pathway diagram for these metabolites (Supplementary Figure S4), 51 genes had at137

least one GWAS hit. In the followup ancestry-inclusive analysis, we identified 41 additional hits not138

found in the European-only GWAS, including associations at 7 additional pathway-relevant genes139

(Supplementary Table S5). This highlights the potential for large-scale, ancestry-inclusive GWAS140

to discover more biochemically-relevant associations among these traits. Together, these findings141

suggest that GWAS reflect, and have the potential to illuminate, the complex biochemical pathways142

interconverting these metabolites.143

Investigating the mechanisms of pleiotropy in trait pairs144

Given the overlap between the biology of these metabolites and their hits, we next sought to under-145

stand the molecular causes of pleiotropy in trait pairs. We found 26 genetically correlated metabolite146

pairs at a local false sign rate < 0.005. For example, alanine and its strongest genetic correlation147

partner, isoleucine, share a genetic correlation of rg = 0.52 (P = 9e-23). Similarly, plotting the148

effects of the 213 GWAS variants on these two traits indicates a strong positive correlation (Fig-149

ure 4a). Nonetheless, we noted several outlier loci, including rs370014171 (PDPR) and rs77010315150

(SLC36A2 ), which have strong discordant effects. We were intrigued to understand why these two151

variants had discordant effects on alanine and isoleucine relative to their overall positive genetic152

correlation, while the majority of other variants had concordant effects.153

Outlier variants are appealing case studies for understanding the molecular basis of pleiotropy154

because they affect traits in an exceptional way. Thus, we reasoned that understanding large-effect155

variants inconsistent with the global genetic correlation would reflect interesting biology relevant to156

the traits. For example, the proteins encoded by PDPR and SLC36A2 are both located between157

alanine and isoleucine in the biochemical pathway (Figure 4b). This suggests that where variants act158

in the pathway may influence the direction of effect they have on metabolites. To better understand159

how these two variants affect alanine and isoleucine and explain their outlier behavior, we examined160

their effect size and direction in the context of their location in the pathway. We then used the161

variants’ metabolite associations to develop candidate mechanisms for how each variant could be162

jointly influencing the levels of these metabolites.163

As an illustration, we first consider variant rs370014171. This variant was assigned to gene164

PDPR because it was the second closest gene, the closest pathway-relevant enzyme, and within 100165

kb (12.3 kb to its gene boundaries). PDPR activates the enzyme that catalyzes the conversion of166

pyruvate to acetyl-CoA (Figure 4c; Supplementary Figures S6 and S7). A candidate mechanism167
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the GWAS results in relevant metabolites for each of these discordant variants. Data are shown
in circles with the coloring corresponding to the effect (beta) of that variant on that metabolite. A
black outline represents an association with P < 1e-4. Orange text and arrows represents a hypoth-
esized increase (direction, not magnitude) in flux and blue corresponds to a decrease. c. Results for
rs370014171 near the gene PDPR which encodes a protein that activates the conversion of pyruvate
to acetyl-CoA. d. Results for rs77010315 in the gene SLC36A2 which encodes a small amino acid
transporter.
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for this variant, supported by the effect size and direction for the 16 metabolites where relevant,168

is that it increases PDPR activity. This would lead to increased conversion of pyruvate to acetyl-169

CoA and thus decreased pyruvate (β = -0.023 SDs, P = 3e-20). To compensate for the subsequent170

decreased pyruvate levels, there would be increased conversion of alanine to pyruvate causing a171

decrease in alanine. In response to the increased acetyl-CoA, there would be decreased breakdown172

of metabolites normally catabolized for its production, including isoleucine, resulting in an increase173

in isoleucine levels. Thus, this variant has an opposite effect on alanine and isoleucine, despite their174

overall positive genetic correlation, likely because it affects the activity of an enzyme that acts in175

the pathway between the pair of metabolites. As expected due to the high correlation between the176

levels of the three BCAAs, this variant is also a discordant variant for alanine with valine (rg =177

0.51, P = 2e-21), and alanine with leucine (rg = 0.49, P = 1e-16).178

As a second example, variant rs77010315 is a missense variant in SLC36A2. SLC36A2 encodes179

a transporter for small amino acids such as alanine (Figure 4d; Supplementary Figures S8 and S9).180

A candidate mechanism explaining the observed metabolite associations in our data and outlier181

behavior for this variant is that it increases transport of alanine into cells by SLC36A2. This would182

result in a decrease in levels of alanine in the blood, but an increase of alanine in cells. This addi-183

tional intracellular alanine would then allow for increased conversion of alanine to pyruvate, thereby184

increasing levels of downstream metabolites in the blood, including isoleucine. Thus, this variant185

has an opposite effect on alanine and isoleucine, despite their overall positive genetic correlation,186

but in this case because it affects biology between the metabolites at the transporter level.187

Quantifying global properties of molecular pleiotropy188

Based on these results, we hypothesized that the two variants described above, and others like them,189

exhibit outlier behavior because they affect biology between the two metabolites (Figure 5a). We190

consider biology “between” a given pair of metabolites as the shortest realistic biochemical path191

converting one to the other, and any alternative paths of reasonably similar distance and likelihood192

(see Methods for details). Genetic correlation reflects the direction of effect that most associated193

variants have on two traits. However, when two metabolites are biologically near each other, the194

region containing “between” biology is relatively small, such that only a minority of variants directly195

affect the “between” region.196

Thus, we hypothesized that the genetic correlation of two biologically-related metabolites mostly197

reflects the effects of variants upstream or downstream of the metabolites, masking the effects of198

those between. We developed an analogous hypothesis that variants affecting biology upstream199

or downstream of the two metabolites have concordant effects (Figure 5b). While less common,200

the overall genetic correlation for two biologically-related metabolites can also be negative due to201

factors such as feedback loops. In this case, variants acting between the two metabolites would have202

the same direction of effect on both metabolites, making them discordant with the negative overall203

genetic correlation (Supplementary Figure S10).204

To evaluate these models, we defined outliers based on the consistency of their effects with the205

overall LDSC genetic correlation. If a variant had an effect direction opposite the overall LDSC206

genetic correlation in at least one significant metabolite pair (P < 5e-8 in one, P < 1e-4 in the207

other), it was classified as “discordant”. For example, a discordant variant for a metabolite pair208

with a positive genetic correlation would have a negative association in one of the metabolites and209

a positive association in the other. If a variant had an effect direction consistent with the overall210

genetic correlation for its significant metabolite pairs, it was classified as “concordant”. Variants211
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Figure 5: Characterization of discordant and concordant variants. a. Proposed model for
the mechanism of a discordant variant. This example is for a discordant variant that has opposite effect
directions on a pair of metabolites with a positive overall genetic correlation because it affects biology between
them. b. Proposed model for the mechanism of a concordant variant. This example is for a concordant
variant that has the same effect direction on a pair of metabolites with a positive overall genetic correlation
because it affects biology upstream both metabolites. c. Fraction of the discordant and concordant variants that
have a pathway-relevant enzyme or transporter gene type annotation versus those with a different gene type
annotation. Discordant variants are enriched for the gene types of pathway-relevant enzyme or transporter,
as would be expected in the model of discordant variants generally affecting biology between metabolites. d.
Fraction of the discordant and concordant variants annotated with a pathway-relevant enzyme that affect
biology between versus not between their significant metabolite pairs. Significance tests were performed using
Fisher’s Exact method and the plotted SEs are from 95% CI calculated by binomial sampling variance.

without multiple associations, or where associated traits were not significantly genetically corre-212

lated, were classified as “neither”. In total, of the 62 metabolite GWAS hits that had at least one213

significant metabolite pair, we found 26 total discordant variant-metabolite pairs across 14 variants214

(Supplementary Table S6).215

We then investigated overall properties of discordant variants relative to concordant ones. We216

discovered that discordant variants are more likely to affect genes encoding enzymes and transporters217

than all other genes types, including TFs, general cell function genes, and those of unknown function218

(Odds Ratio = 4.09, P = 0.034; Figure 5c). This is in contrast to concordant variants, which do not219

show an enrichment for enzymes and transporters relative to other gene types (Odds Ratio = 0.75,220

P = 0.42). These observations are consistent with our model that discordant variants tend to affect221

biology between relevant pairs of metabolites since TFs and general cell function genes generally222

act outside these metabolic pathways. Thus, they are more likely to affect biology upstream or223

downstream of both metabolites. In addition, for variants affecting pathway-relevant enzymes,224

where the location in the pathway that the variant is acting relative to the metabolites is clear,225

we were able to directly test our hypothesis. We found that discordant variants affecting pathway-226

relevant enzymes are much more likely to act between, rather than upstream or downstream, the227

metabolites for which they are discordant (Odds Ratio = 23.0, P = 0.0072; Figure 5d).228
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Figure 6: Local genetic correlation. a. Model of expected local genetic correlation direction, with
contrasting effects of variants affecting “between” versus outside biology at a pathway and genome-wide level.
b. LD Score showing the polygenic correlation of alanine and glutamine. For the x axis, LD Scores were
binned into 25 bins. The y axis shows the mean and SE within each bin. c. Results for the local genetic
correlation of alanine and glutamine for variants within 100 kb of genes in each pathway. Standard errors
are shown. Genesets listed below the dotted line include only enzymes and are considered pathway-relevant
enzymes for these metabolites. Summary statistics for BOLT-REML and other methods can be found in
Supplementary Table S7. d. Pathway diagram showing the pathways included in the local genetic correlation
analysis and the positioning of their genes relative to alanine and glutamine. *Ketone Body Genes were
omitted from panel c because the limited number of genes meant they failed to robustly converge. All arrows
and nodes in the gray section are hypothetical and shown for illustration purposes.
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We then sought to extend this finding by developing a model contrasting the effects of all229

variants affecting between versus outside biology at a pathway and genome-wide level (Figure 6a).230

In aggregate, this model predicts that pathways overlapping biology between two metabolites will231

have a local genetic correlation opposite that of nearby adjacent pathways and that the magnitude232

of both will exceed that of the global polygenic background. As a case study, we focused on alanine233

and glutamine, which have a weak positive overall genetic correlation (rg = 0.16, P = 0.08; Figure234

6b; Supplementary Figure S11). We then ran BOLT-REML [29] on variants within 100 kb of genes235

in each pathway and estimated the corresponding local genetic correlations (see Methods).236

We found that the local genetic correlations around genes in the Glycolysis, Gluconeogenesis237

and Citric Acid Cycle Pathway and around genes in the Other Amino Acid Pathway were negative238

(Figure 6c). Both of these pathways encompass genes affecting biology between alanine and glu-239

tamine (Figure 6d). In striking contrast, nearby pathways, such as the Urea Cycle, had a positive240

local genetic correlation for these metabolites (rg,l = 0.45; P = 0.003). Similarly, we found that241

regions overlapping genes encoding metabolite associated transporters and TFs had strong positive242

genetic correlations consistent with their shared role in the upstream regulation of these two traits243

(rg,l = 0.44, P = 1e-20; rg,l = 0.55, P = 2e-20). All genes outside the core pathways had a weak244

positive genetic correlation, perhaps reflecting that they are embedded in the global gene regulatory245

network (rg,l = 0.068; P = 0.003). Our findings were broadly consistent using individual level data246

with Haseman-Elston regression [30], and summary statistics with ρ-HESS [3], stratified LD score247

regression [31] and a non-parametric Fligner-Killeen variance test (see Methods; Supplementary248

Table S7). These results support the model that variants affecting biology between the metabolites249

frequently contrast with the contributions of upstream and downstream pathways. This emphasizes250

that the heterogeneity in genetic effects reflecting local biology shared by the traits can be masked251

in the global genetic correlation. In addition, these results offer biological intuition for interpreting252

genetic correlation of molecular traits at a pathway and genome-wide level.253

Using metabolites to understand the mechanism of a disease-associated variant254

Motivated by the interpretability of these results, we applied this logic to understand the mechanism255

underlying disease-associated variants. We developed an example model for a disease-associated256

variant impacting a relevant subpathway and consequent metabolite levels in a way that is con-257

sistent with disease etiology (Figure 7a). To apply this model to our data, we considered variants258

that were annotated with pathway-relevant enzymes and associated with increased risk for coronary259

artery disease (CAD) [32, 33]. The strongest variant we identified, rs61791721, was assigned the260

nearest pathway-relevant enzyme gene, PCCB. PCCB encodes a protein that catalyzes the con-261

version of propionyl-CoA to succinyl-CoA at the intersection of BCAA and fatty acid oxidation262

(Supplementary Figure S12).263

We combined results from the literature and incident analysis to understand the association264

of relevant metabolites with CAD (Supplementary Figure S13). We then compared these to the265

effects of this variant on these metabolites (Figure 7b). In this analysis we included high density266

lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), total fatty acids,267

and total triglycerides, due to the extensive evidence implicating their association with CAD, and268

because they are directly adjacent to the biology of the other 16 metabolites. Consistent with the269

metabolites’ corresponding risk for CAD, this PCCB variant was negatively associated with glycine270

and HDL-C, and positively associated with isoleucine, leucine, valine, tyrosine, total fatty acids,271

total triglycerides and LDL-C (P < 1e-5; Supplementary Tables S8 and S9).272
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Figure 7: Pathway impact and pathology of example disease GWAS hit. a. Proposed
model for the impact of a disease hit on a relevant pathway, contributing to an increased risk in
the disease. b. This variant is associated with an increase in levels of metabolites that have been
implicated with increased risk of CAD, and a decrease in the levels of metabolites that have been
implicated with decreased risk. Parentheses indicate nonsignificant associations, "NA" indicates no
evidence was found, and "-" indicates a placeholder because CAD is being compared with itself.
c. Results for rs61791721 with gene assignment PCCB which encodes a protein that catalyzes the
conversion of propionyl-CoA to succinyl-CoA. The hypothesized mechanism is that the variant is
decreasing the activity of PCCB, resulting in the above metabolite associations. Ammonium is
represented by its chemical formula (NH+

4 ).

This PCCB variant has been associated with CAD in multiple prior GWAS [32, 33], yet neither273

the gene this variant affects nor the mechanism explaining this association are known. However,274

this variant affects many metabolites associated with CAD in a direction consistent with increased275

risk. Thus, we can begin to understand why this variant is associated with CAD by understanding276

the pleiotropic effects of this variant on the metabolites.277

The hypothesized mechanism resulting in this pathogenic constellation of metabolite effects is278

that the variant decreases PCCB activity, resulting in lower levels of succinyl-CoA and increased279

propionyl-CoA (Figure 7c; Supplementary Figure S14). The increased propionyl-CoA would result280
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in excess ammonium being produced, and because alanine is a reservoir for nitrogen waste, this281

would increase conversion of pyruvate to alanine to capture the toxic ammonium [34, 35]. More282

glycine would be broken down in response to the decrease in pyruvate levels, decreasing glycine283

levels. Conversely, the increased levels of propionyl-CoA mean less valine, isoleucine, fatty acids,284

and thus triglycerides, would need to be broken down, resulting in an increase in their levels. This285

increase in fatty acids may stimulate the activity of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA)286

reductase and synthase, resulting in an increase in HMG-CoA and cholesterol [36, 37]. Increased287

HMG-CoA would lead to increased leucine because less leucine would need to be broken down to288

produce HMG-CoA, while increased cholesterol would lead to an increase in LDL-C and a decrease289

in HDL-C. Therefore, this variant is potentially associated with CAD because it is decreasing PCCB290

activity, resulting in myriad deleterious downstream metabolic consequences.291

This example demonstrates that we can begin to dissect the molecular basis underlying disease292

GWAS hits by understanding the mechanism of relevant pleiotropic effects on metabolites. In addi-293

tion, the pathways implicated by this analysis can also be independently prioritized as potentially294

playing an important role in cardiometabolic disease by leveraging the molecular basis of genetic295

correlation discussed in Figure 6. For example, alanine and glutamine have opposite associations296

with CAD and type 2 diabetes despite having an overall positive phenotypic correlation [38, 39].297

This suggests that the pathways described above with a negative local genetic correlation for alanine298

and glutamine are likely relevant to the molecular basis of these diseases. Thus, understanding the299

molecular basis of pleiotropy and genetic correlation of metabolites can improve our understanding300

of the variants and pathways contributing to complex disease biology.301

Discussion302

In this work, we investigate the joint effects of pleiotropic variants on 16 biologically-related metabo-303

lites in the context of their biochemical pathways. We build on prior studies examining the genetic304

architecture of metabolites by characterizing the genes and mechanisms through which variants305

affect these metabolites, and find a strong enrichment for genes encoding pathway-relevant enzymes306

and transporters. Our results offer biological intuition for the interpreting genetic correlation of307

molecular traits at a pathway and genome-wide level.308

We demonstrate the effects of variants acting on biology between metabolites often contrast309

substantially with the contributions of upstream and downstream pathways, as well as the polygenic310

background. Perhaps paradoxically, while the overall genetic correlation between two traits provides311

a global view of shared effects, the genes that are directly involved in the traits’ core biology are312

most likely to have divergent effects. We show that one explanation of this is the substantial outlier313

contributions from variants acting directly between metabolites of interest. We anticipate that314

further mechanisms, such as context-specific variant effects and differential regulation by peripheral315

genes, will be discovered in future studies.316

In addition, we show specific examples of candidate molecular mechanisms explaining the associ-317

ation of variants with multiple biologically-related metabolites. These include associations at PDPR,318

SLC36A2, and PCCB, where we show that the direction and magnitude of their effects is consistent319

with metabolite biochemistry and disease etiology. These proposed molecular mechanisms enable320

biological prioritization of interesting candidates for future post-GWAS in vitro studies. Overall,321

these results suggest specific genetic and molecular underpinnings of complex disease variants, and322

provide a roadmap for further discovery through the interpretation of pleiotropic variant effects on323

disease-relevant metabolites.324
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In this work, we focus on metabolites clustered at the intersection of amino acid catabolism,325

glycolysis, and ketone body metabolism. However, the approaches and results from this paper326

have the potential to reveal novel insights into genetic effects on many biochemical pathways and327

molecular traits. In addition, integrating this work with proteomic and intermediate metabolomic328

data will offer additional evidence to develop and support these hypothesized mechanisms. These329

data may also clarify the relevance of additional mechanisms – such as buffering, feedback, and330

kinetics – in controlling the plasma levels of these metabolites. Finally, expanding the sample331

size and diversity of ancestries included in future GWAS, measurements of which are currently332

underway on the Nightingale platform and others, will increase power to detect novel findings such333

as important associations for variants with low allele frequency.334

One limitation of this study is that the metabolites were measured in the blood, while most of the335

relevant biology and pathways occurs within cells in various tissues throughout the body. Thus, we336

anticipate extensions of this work to include biomarker measurements from additional cell types and337

tissues, such as urine, saliva, biopsy samples, and in vitro-differentiated cells. Further, longitudinal338

analysis of relevant disease cohorts will allow insights into disease progression and subtyping.339

In conclusion, this work underscores the potential of unifying biochemistry with genetic data to340

understand the molecular basis of complex traits and diseases and the mechanism through which341

variants impact these traits.342
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Online Methods343

Population Definition344

We defined our GWAS population as a subset of the UK Biobank [40]. For our cohort, we use the345

individuals for which Nightingale plasma metabolite data was available after filtering based on trait346

QC characteristics (see "Trait QC and Covariate Adjustment"). We then filtered individuals by the347

following QC metrics:348

1. Not marked as outliers for heterozygosity and missing rates (het_missing_outliers column)349

2. Do not show putative sex chromosome aneuploidy (putative_sex_chromosome_aneuploidy350

column)351

3. Have at most 10 putative third-degree relatives (excess_relatives column).352

4. No closer than second degree relatives.353

From these, we defined 3 cohorts: White British, non-British White, and everyone. We identified354

White British individuals using the in_white_British_ancestry_subset column in the sample355

QC file. We identified non-British White individuals through self-identification as White, excluding356

individuals marked as in_white_British_ancestry_subset (n = 30,116 who passed QC metrics357

1-4 above). As was done for the White British in the initial UK Biobank study design [40], we358

identified global principal components of the genotype data, and then defined ancestry clusters359

using aberrant with the strictness parameter λ = 20. Non-British White individuals who were360

outliers for any of projected principal component pairs PC1/PC2, PC3/PC4, and PC5/PC6 were361

excluded (n = 25,137 remaining). We performed our first GWAS on the set of individuals in these362

White British and non-British White cohorts.363

The combination of the two sources of European and White British ancestry individuals resulted364

in a total of 433,390 European ancestry individuals in UK Biobank, of whom 94,464 had available365

quality controlled Nightingale data. Our main goal for this study was to understand general prin-366

ciples of genetic architecture, which are not expected to vary among human populations, and thus367

in the main analysis we excluded non-European individuals on the basis of power and concerns368

about structure confounding. However, this analysis is significantly limited by the allele frequency369

differences between populations, and we sought to develop an alternative, inclusive strategy that370

did not rely on self-identity.371

For the ancestry-inclusive analysis, we performed the same QC steps 1-4 without filtering in-372

dividuals on the basis of self-identified race/ethnicity or on the basis of their ancestry PC outlier373

status. This resulted in a total of 98,189 individuals for the GWAS. This was inspired by recent374

“mega-analysis” studies [41].375

Metabolomics Data Generation376

The metabolomics data was generated by Nightingale Health using a high-throughput NMR-based377

platform developed by Nightingale Health Ltd. Randomly selected EDTA non-fasting (average 4h378

since last meal) plasma samples (aliquot 3) from approximately 120,000 UK Biobank participants379

were measured in molar concentration units. The included participants are therefore meant to be380

representative of the 502,543 participants in the full cohort. The measurements took place between381
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June 2019 and April 2020 using six spectrometers at Nightingale Health, based in Finland. The382

Nightingale NMR biomarker profile contains 249 metabolic measures from each plasma sample in383

a single experimental assay, including 168 measures in absolute levels and 81 ratio measures. The384

biomarker coverage is based on feasibility for accurate quantification in a high-throughput manner385

and therefore mostly reflects molecules with high concentration in circulation, rather than selected386

based on prior biological knowledge. Additional details about the data generation can be found at387

https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/nmrm_companion_doc.pdf.388

Trait Selection and Grouping389

Sixteen metabolites were chosen from the available Nightingale metabolites based on their biochem-390

ical proximity, relevance to health and disease, and because the genes and enzymes involved in their391

metabolism are well-characterized. Specifically, we first filtered to the 168 metabolites that were392

not metabolite ratio measurements (n=81) because we wanted to focus on absolute metabolites lev-393

els. We then filtered out the lipids and lipoprotein measures, including cholesterol and fatty acids,394

because the complexity of their biochemistry make it difficult to map out the chemical reactions395

directly interconverting one to another, and because many of these metabolites have already been396

extensively studied in large GWAS [42, 20]. However, many of these are important metabolites in397

the discussion of cardiometabolic disease so we additionally ran GWAS for total triglycerides, total398

fatty acids, HDL cholesterol, and LDL cholesterol as part of the interpretation of the PCCB variant399

using the same pipeline as for the sixteen metabolites below.400

Finally we removed remaining derived measures (such as total combined concentration of BCAA)401

and those primarily reflecting physiological conditions such as fluid balance (creatinine and albu-402

min) and GlycA (inflammation). One exception to this filtering was the three ketone bodies (3-403

hydroxybutyrate, Acetone and Acetoacetate) which were included due to their proximity and clear404

direct interconversions connecting them to the metabolic pathways of the remaining amino acid405

and glycolysis-related metabolites. Metabolites were classified into four biochemical groups based406

on biochemical similarity. The three branched chain amino acids: valine, leucine and isoleucine407

were classified as “BCAA”, the remaining amino acids in the dataset: glycine, glutamine, tyro-408

sine, phenylalanine and histidine were classified as “Other Amino Acid”, the three ketone bodies:409

3-hydroxybutyrate, acetone and acetoacetate were classified as “Ketone Body” and the four metabo-410

lites in or immediately adjacent to glycolysis: glucose, pyruvate, lactate and citrate were classified411

as “Glycolysis”.412

Trait QC and Covariate Adjustment413

Trait measurements were filtered to only include baseline samples then log-transformed. Outlier414

removal was performed by dropping any sample that had a metabolite level greater than 20 fold the415

interquartile range or greater than 10 fold below the median across all samples for that metabolite.416

PCA was run for the remaining samples and outliers were dropped using aberrant (lambda = 20)417

on the top two PCs [43]. Remaining log transformed measurements were adjusted for spectrometer,418

week, and weekday. Samples were subset to the GWAS population defined above resulting in419

94,464 individuals for the European ancestry GWAS and 98,189 individuals for the ancestry-inclusive420

GWAS.421
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GWAS422

We performed GWAS in BOLT-LMM v2.3.2 [29] adjusting for sex, array, age, and genotype principal423

components 1-10 using the following command (data loading arguments removed for brevity):424

bolt --phenoCol= [Metabolite] \425

--covarCol=sex \426

--covarCol=Array \427

--qCovarCol=age \428

--qCovarCol=PC{1:10} \429

--lmmForceNonInf \430

--numThreads=24 \431

--bgenMinMAF=1e-3 \432

--bgenMinINFO=0.3433

The resulting GWAS summary statistics were then filtered to minor allele frequency greater than434

0.01 and INFO score greater than 0.7 for further analyses (referred to as the Filtered Metabolite435

Sumstats). The LDSC munge_sumstats.py script was then use to munge the data (referred to as436

the Munged Metabolite Sumstats) [2].437

GWAS Hit Processing438

To evaluate GWAS hits, we took the Filtered Metabolite Sumstats and ran the following command439

using plink version 1.9 [44]:440

plink --bfile [] --clump [GWAS input file] --clump-p1 1e-4 --clump-p2 1e-4441

--clump-r2 0.01 --clump-kb 1000 --clump-field P_BOLT_LMM --clump-snp-field SNP442

We greedily merged GWAS hits across the 16 metabolites located within 0.1 cM of each other443

and took the SNP with the minimum p-value across all merged lead SNPs. In this way, we avoided444

potential overlapping variants that were driven by the same, extremely large, gene effects. This445

resulted in 213 lead GWAS variants, referred to as the metabolite GWAS hits.446

For the ancestry-inclusive analysis, we used the European ancestry LD matrix as European-447

ancestry individuals were the overwhelming majority in the study. Here, we identified 238 lead448

GWAS variants.449

Gene and Gene Type Annotation450

We defined all genes in any GO [45, 46], KEGG [47], or Reactome MSigDB [48, 49] pathway as our451

full list of putative genes (in order to avoid pseudogenes and genes of unknown function). We initially452

extended genes by 100 kb (truncating at the chromosome ends) and used the corresponding regions,453

overlapped with SNP positions, to define SNPs within range of a given gene. Gene positions were454

defined based on Ensembl 87 gene annotations on the GRCh37 genome build. We then performed455

manual curation using GeneCards [50] to validate gene assignments and prioritize a single gene per456

SNP. Gene boundaries for genes encoding pathway-relevant enzymes in KEGG were extended up to457

500 kb and assigned to a variant if the gene was biologically relevant to the metabolites the variant458
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was significant in. If there were multiple genes within 100 kb of the variant, then gene assignments459

were made based on the following priority order: any genes encoding a pathway-relevant enzyme,460

genes encoding transporters, genes involved in translation/transcription regulation (referred to as461

TF for brevity), any genes whose function is known. If there were multiple genes of the same gene462

type, then the assignment was made based on the relevance of the gene to the metabolites the463

variant was significant in, proximity of the gene to the variant, and, if applicable, any additional464

evidence in the literature (Oxford BIG [51] and Open Target Genetics [52, 53]). However, even for465

these cases where there was not high confidence in the exact gene assignment, for instance because466

there were multiple genes from the same gene family nearby, the top gene candidates all had the467

same gene type. Thus, because the major downstream analyses were designed in a way that only468

the gene type assigned to each variant mattered, the accuracy of the exact gene assignment should469

not affect the findings. If no genes with known function were within 100 kb of the variant then the470

window was extended up to 200 kb. The distance of a variant to a given gene was defined as the471

number of base pairs from the variant to the closer of the start or end of the gene boundaries or472

was set to 0 if the variant was within the gene boundaries.473

We classified each gene using GeneCards [50] into one of five gene types: pathway-relevant en-474

zyme, transporter, TF, general cell function and unknown. Genes encoding enzymes that catalyze475

a reaction in or adjacent to the direct synthesis or degradation of one of the 16 metabolites were476

defined as pathway-relevant enzymes using manual curation from GO, KEGG, REACTOME and477

Stanford’s Human Metabolism Map [54], in addition to GeneCards. Genes encoding known trans-478

porters were classified as transporters. Genes involved in translation/transcription regulation were479

classified as TF. Genes whose function is known but not already classified as a pathway-relevant480

enzyme, transporter, or TF, were classified as “general cell function”. Genes with unknown function481

or if there were no genes within 200 kb of the SNP were classified as “unknown”. See S3 for each482

metabolite GWAS hit’s gene and gene type annotations.483

Gene type enrichments were calculated with a Poisson rate test. The baseline was the total of the484

GWAS hits among the 1.95 Gb of the genome within 100 kb of a gene in any pathway, and the test485

was performed with the number of GWAS hits within 100 kb of each pathway of interebst. There486

were 2.8 GWAS hits per megabase within 100 kb of a pathway-relevant enzyme versus 0.1 GWAS487

hits per megabase among all genes (25-fold enrichment, Poisson rate test P < 2e-16). There were488

0.58 GWAS hits per megabase within 100 kb of a transporter versus 0.1 GWAS hits per megabase489

for all genes (5.2-fold enrichment, Poisson rate test P = 9e-16). We also repeated this analysis using490

closest genes rather than assigned genes, which allowed us to use a Fisher exact test (as each variant491

has a single closest gene). This resulted in a 27-fold (P < 2e-16) enrichment for pathway-relevant492

enzymes and an 11-fold (P < 2e-15) enrichment for transporters, respectively.493

For TF enrichments, we used TF-Marker [55] to annotate tissue-specific marker gene TFs. We494

considered “TF” (n = 1316) and “TFMarker” (n = 18) genes as relevant genes, and TF Pmarker (n =495

1424) genes as putatively relevant. We considered enrichment among the 628 genes not associated496

with cancer or stem cell biology (of which 267 are putative) as our set of tissue-specific TFs for497

downstream analysis. We consider our background in all cases to be our total GWAS hits number498

(n = 213) compared to the effective genome size (2.86 Gb). In specifically this TF set, we observed499

a 5.96-fold enrichment over the genome wide background (0.44 GWAS hits per megabase, p = 4e-6)500

among relevant gene bodies and 2.50-fold enrichment (0.19 hits/Mb, P = 0.0007) within 100 kb501

of a relevant gene, which was comparable for putatively relevant genes (4.85-fold and 2.86-fold,502

respectively). This was substantially higher than that of all genes in the genome (1.69-fold within503

gene bodies and 1.36-fold within 100kb of genes in any pathway) and comparable to that of all TFs504

regardless of their function in cancer or stem cells (4.82-fold within gene bodies and 2.18-fold within505
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100kb).506

We next filtered tissue-specific TFs to those acting in Liver (28 relevant and 30 putative), Kidney507

(25 relevant and 20 putative), or Pancreas (14 relevant and 3 putative). Kidney and Pancreas TFs508

had no more than 1 GWAS hit each and were excluded for these analyses. For Liver TFs, we509

observed a 18-fold enrichment (1.3 GWAS hits per megabase, P = 0.0057) within gene bodies and510

a 7.6-fold enrichment (0.56 hits/Mb, P = 0.002) within 100kb of genes. Results were similar when511

removing the cancer and stem cell filter (1.23 hits/Mb and 0.51 hits/Mb respectively) and dropped512

slightly when further including putatively relevant TFs (0.71 hits/Mb and 0.48 hits/Mb). Together,513

this suggests that liver marker TFs are specifically enriched for variants affecting our metabolite514

levels.515

HESS Trait Heritability and Pathway Enrichments516

We ran HESS [56] using the following commands:517

hess.py --local-hsqg {\filtsumstats} --chrom {chrom} \518

--bfile 1kg_eur_1pct_chr{chrom} --partition EUR/fourier_ls-chr{chrom}.bed \519

--out {Metabolite}_step1520

hess.py --prefix {Metabolite}_step1 --out {Metabolite}_step2521

Where 1kg_eur_1pct_chr{chrom} were downloaded from:522

https://ucla.box.com/shared/static/l8cjbl5jsnghhicn0gdej026x017aj9u.gz523

and EUR/fourier_ls-chr{chrom}.bed were downloaded from:524

https://bitbucket.org/nygcresearch/ldetect-data/src/ac125e47bf7f/?at=master525

We intersected the resulting heritability estimates per LD block with gene lists from each path-526

way (see Local ρ-HESS; within 100 kb of the gene boundary was used as the tested window) and527

calculated the total heritability within the pathway as the sum of the heritabilities across LD blocks528

and the variance of the heritability within the pathway as the sum of the variances within each529

LD block. Overall, this gave a per-pathway estimate. We generated genome-wide estimates of530

heritability as well as heritability estimates for the subset of the genome nearby any coding gene in531

MSigDB as background controls from which to estimate the heritability enrichments, and used the532

coding gene numbers for reporting as they are more conservative.533

LDSC Genetic Correlation534

LD Score regression [2] was used to generate genetic correlation estimates. The following command535

was used:536

ldsc.py --rg {\mungsumstats} --ref-ld-chr eur_ref_ld_chr537

--w-ld-chr eur_w_ld_chr538

eur_*_ld_chr were downloaded from https://data.broadinstitute.org/alkesgroup/LDSCORE/.539
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Mendelian Randomization540

The Rücker model selection framework was applied. Briefly, MR was run with inverse-variance541

weighted (IVW) and MR-Egger with fixed and random effects, and selection between different542

methods for results to present was based on the goodness-of-fit and heterogeneity parameters for543

the individual MR regressions as previously described [57, 58].544

Discordant Variant Analysis545

All pairwise combinations of LDSC Genetic Correlation (as described above) were performed for546

the 16 metabolites. Pairs were filtered to those that had a genetic correlation significantly different547

than 0 using ashR [59] with a local false sign rate of 0.005. We then annotated all metabolite548

GWAS hits with pairs of metabolites for which the variant had a P < 1e-4 association with both549

metabolites and a P < 5e-8 association with at least one, defined as significant metabolite pairs.550

A variant was classified as “discordant” if it had the same effect direction in both metabolites of551

at least one significant metabolite pair that had a negative global genetic correlation, or if it had552

opposite effect directions in the two metabolites of at least one significant metabolite pair that had a553

positive global genetic correlation. 14 variants of the 62 that had at least one significant metabolite554

pair were classified as discordant. Variants that had the same set of effect directions as the sign555

of the global LDSC genetic correlation for all of its significant metabolite pairs were classified as556

“concordant”. Variants that had no significant metabolite pairs were classified as “neither”.557

The “between” region for a given pair of metabolites was defined as the shortest realistic biochem-558

ical path converting one to the other, and any alternative paths of reasonably similar distance and559

likelihood. Genes were defined as acting between a given metabolite pair either if they encoded an560

enzyme catalyzing a reaction in the “between” region defined above or if they encoded a transporter561

that primarily transports either of the two metabolites themselves or an intermediate metabolite in562

the “between” region. Variants were defined as acting between a given metabolite pair if the gene563

they affect was defined as between. Pathways were defined as between a given metabolite pair if564

many of the genes defined as between the metabolites were part of the pathway or if many of the565

genes in the pathway were defined as between. Note that even if a pathway is defined as “between”,566

not all genes in the pathway will always be between and vice versa; however, this is likely to only567

make the resulting differences in genetic correlation for “between” vs not “between” pathways more568

conservative.569

Local ρ-HESS570

We ran HESS [3] using the following commands:571

hess.py --local-rhog {Met1_sumstats}572

{Met2_sumstats} --chrom {chrom} --bfile 1kg_eur_1pct_chr{chrom} \573

--partition EUR/fourier_ls-chr{chrom}.bed --out {Met1_Met2}_step1 \574

hess.py --prefix {Met1_Met2}_step1_trait1 \575

--out {Met1_Met2}_step2_trait1576

hess.py --prefix {Met1_Met2}_step1_trait2 \577

--out {Met1_Met2}_step2_trait2578

hess.py --prefix {Met1_Met2}_step1 \579

--local-hsqg-est {Met1_Met2}_step2_trait1 {Met1_Met2}_step2_trait2 \580
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--num-shared 94464 \581

--pheno-cor {gcov_int from LDSC genetic correlation for Met1_Met2} \582

--out {Met1_Met2}_step3583

Where 1kg_eur_1pct_chr{chrom} were downloaded from:584

https://ucla.box.com/shared/static/l8cjbl5jsnghhicn0gdej026x017aj9u.gz585

and EUR/fourier_ls-chr{chrom}.bed were downloaded from:586

https://bitbucket.org/nygcresearch/ldetect-data/src/ac125e47bf7f/?at=master587

We then used the local rho HESS results and estimated the local genetic covariance and corre-588

lation across all LD blocks overlapping pathway regions.589

We defined the pathway regions based on gene boundaries of relevant genes in Supplementary590

Figure S4 as follows: "Other Amino Acid Genes" includes all genes colored orange, "Ketone Body591

Genes" includes all genes colored purple, "Glycolysis, Gluconeogenesis and TCA Genes" includes592

all genes colored red, and "Urea Cycle Genes" includes all genes colored green. "BCAA Genes" in-593

cluded all genes in KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION except594

OXCT2, HMGCL, HMGCS1, HMGCS2, ACAT1, ACAT2, OXCT1, DLD, AGXT2, ABAT, and595

AACS and also included ECHDC1. "All Regions Outside Pathway Genes" was defined as all LD596

blocks not overlapping any of the regions defined above. "Metabolite Associated TF Genes" and597

"Metabolite Associated Transporters Genes" were defined as all LD blocks overlapping any of TFs598

or Transporters respectively annotating the Metabolite GWAS Hits.599

Fligner-Killeen Variance Test600

Rather than aggregating variant effects and estimating total genetic covariance and heritability per601

pathway, which is not robust to outlier effects, we additionally tried a non-parametric approach.602

Individual rg and h2 estimates for LD blocks were compared between the baseline (all coding genes)603

and the pathway of interest by listing all per-block genetic covariance scores and computing a604

Fligner-Killeen Variance Test within each pathway in R. This enables direct evaluation of genetic605

covariances between the pathways, at the cost of simultaneously capturing the enrichment of heri-606

tability and genetic covariance therein.607

BOLT-REML608

Genotyped variants within 100 kb of genes in each pathway were aggregated, and the resulting609

matrices were tested using the following command in BOLT-LMM:610

bolt611

--remove {non-European ancestry individuals}612

--phenoFile={Technical-adjusted metabolites} \613

--phenoCol=Ala \614

--phenoCol=Gln \615

--covarCol=sex --covarCol=Array --qCovarCol=age --qCovarCol=PC{1:10} \616

--geneticMapFile=genetic_map_hg19_withX.txt.gz ‘# downloaded with bolt‘ \617

--numThreads=24 --verboseStats \618

--modelSnps {pathway SNPs} \619

--reml \620
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--noMapCheck621

622

Standard errors were as reported by BOLT-REML.623

Haseman-Elston Regression624

Genotyped variants were pruned to MAF > 1% and approximate linkage equilibrium among in-625

dividuals included in the GWAS using --indep 50 5 0.5. The resulting variants were used to626

construct genetic relatedness matrices (GRMs) that included the genotyped SNPs within 100 kb627

of genes in each pathway, and the resulting matrices were tested using the following command in628

GCTA:629

{GCTA} --HEreg-bivar {trait1} {trait2} --thread-num 16 --grm {GRM}630

Results using multiple GRMs (--mgrm) to jointly test all pathways were qualitatively similar631

outside of the genome-wide GRM, which no longer captured the within-pathway component.632

Stratified LD Score Regression633

Analyses were performed as described in LDSC Genetic Correlation, except that rather than634

eur_ref_ld_chr as the reference LD Scores, instead LD Scores computed on variants within 100635

kb of genes in each pathway were utilized.636

Disease Variant Analysis637

The metabolite GWAS hits annotated with pathway-relevant enzymes were overlapped with sig-638

nificant hits for CAD, identifying the variant rs61791721 as the most significant variant [32, 33].639

Incident coronary artery disease cases were defined among UK Biobank participants as those indi-640

viduals who received a first diagnosis of myocardial infarction (MI) using the analytical MI model641

(field 42000) after the date of baseline assessment. Prevalent cases (individuals with a first diag-642

nosis before date of assessment) were excluded. A Cox proportional hazard model was run with643

the technical-covariate-adjusted, log-transformed metabolite levels predicting incident MI status,644

adjusted for age, age2, age * sex, age2 * sex, and statin usage (defined based on a list of individual645

drug codes as previously described [7]). Effect sizes presented are based on the estimates from these646

models run independently for each metabolite.647

Colocalization analysis648

We wanted to evaluate the extent to which our associations might represent single causal variants649

across multiple traits and used conditional association at the locus to evaluate this. For each variant650

within 500 kb of our lead SNPs in at least one metabolite, we ran a conditional analysis for the651

variants within 1 Mb of the gene body of our putative target gene. Then we ran the following652

association test in plink2:653

plink2 --glm cols=chrom,pos,ref,alt,a1freq,firth,test,654

nobs,orbeta,se,ci,tz,p hide-covar omit-ref655
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--pfile <imputed genotypes>656

--covar <age/sex/PCs>657

--keep <94464 European-ancestry individuals in the BOLT-LMM GWAS>658

--out conditional/$gene/$snp659

--pheno <technical-residualized traits>660

--extract <(variants within 1Mb of gene body)661

--condition <conditional SNP>662

For single SNP conditioning tests and --condition-list for conditioning on multiple variants.663

Associations were visually inspected to detect highly linked variants and conditioning tests were664

repeated with top associations in any of the key traits until there were no significant variants665

remaining.666

For the PCCB vignette, additional traits were included in the analysis, including fatty acids and667

lipids in the Nightingale-assayed individuals and clinical biomarkers in the full cohort of European-668

ancestry UK Biobank participants, where traits were residualized as previously described [7]. We669

further included a GWAS for “hard” CAD as previously defined [60], for which results were qualita-670

tively similar when evaluating “soft” CAD (including angina cases) and employing only EHR-based671

diagnoses (rather than additionally including self reported case status). Results for “hard” CAD are672

shown in the supplement.673

Pathway diagrams674

Diagrams were drawn using Affinity Design, and molecular structures were made using ChemDraw.675

Pathway information was curated from GO [45, 46], KEGG [47], or Reactome MSigDB [48, 49],676

and Stanford’s Human Metabolism Map [54], along with manual curation from public domain677

biochemistry knowledge (Supplementary Table S2).678
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Data availability694

GWAS summary statistics generated for this study will be deposited on GWAS Catalog. There695

will also be an interactive website app made available for interested readers to project the GWAS696

results for these 16 metabolites for their variant of interest onto the pathway diagram in Figure 1.697
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Supplementary Figures and Tables698

Supplementary Figures699

(a) (b)

(c) (d) Ketone Overlayed Manhattan PlotAmino Acid Overlayed Manhattan Plot

BCAA Overlayed Manhattan Plot Glycolysis Overlayed Manhattan Plot

Figure S1: Manhattan plots. Manhattan plots for each metabolite overlayed by biochemical
group. Coloring reflects gene type assignment for where relevant.
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Figure S2: HESS heritability plots. Cummulative HESS heritability plots for the 16 metabolites,
colored by biochemical group.
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Figure S3: Phenotypic correlation. Correlation matrix of the residualized phenotype levels for
the 16 metabolites. Metabolites are colored by biochemical group.
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Figure S4: Genes in the pathway. Pathway diagram showing the genes in the pathway, regardless
of whether there was a variant annotated with them or not.
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Figure S5: Quantile-quantile plots. Quantile-quantile plots showing the observed -log10(P-
value) from the 16 GWAS in each metabolite for the 213 Metabolite GWAS Hits. The most significant
trait for each SNP is excluded, and the plots are faceted by gene type. Note that for plotting purposes,
P-values were set to a minimum of 1e-300. Variants with quantile < 0.005 were labeled with their
gene annotation.
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Figure S6: PDPR locus colocalization. Colocalization results for PDPR locus demonstrating
pleiotropic effects of variant rs370014171 on alanine (one of multiple independent associations at
this locus), pyruvate, isoleucine, valine, and leucine.
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Figure S7: Full Pathway Results for PDPR. Full pathway results and possible mechanism for
discordant variant rs370014171 with gene annotation PDPR.
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rs370014171 (PDPR): The discordant variant rs370014171 had gene annotation PDPR, which700

encodes the regulatory unit of the protein pyruvate dehydrogenase phosphatase which is responsible701

for the activation of the pyruvate dehydrogenase (PDH) complex that catalyzes the conversion of702

pyruvate to acetyl-CoA (Supplementary Expanded Pathway Figure S7). One possible mechanism703

for this variant is that it is increasing PDPR activity leading to increased conversion of pyruvate to704

acetyl-CoA, resulting in decreased pyruvate levels and, by compensation, decreased lactate levels. In705

addition, to compensate for the decreased pyruvate levels, there could be an increased conversion of706

alanine to pyruvate and glutamate. This would cause a decrease in levels of alanine and an increase707

in levels of glutamate. In response to the increased acetyl-CoA, there could be decreased breakdown708

of metabolites that are normally broken down for its production, including isoleucine and leucine,709

resulting in an increase in their levels. With the increase in acetyl-CoA levels, less HMG-CoA is710

broken down to acetyl-CoA. The reaction of HMG-CoA to acetyl-CoA also produces acetoacetate,711

so this decrease results in a decrease in acetoacetate, as well as the other ketone bodies (acetone712

and β-hydroxybutyrate), which are directly downstream of acetoacetate. Some of the increase in713

HMG-CoA (from its decreased breakdown) leads to an increase in cholesterol. Meanwhile, alanine714

to glutamate is an important regulator of BCAA levels since the first step in BCAA breakdown715

is a reversible conversion to glutamate. An increase in glutamate’s levels means again less BCAA716

will need to be broken down, which is another potential reason for increased levels of the BCAAs717

(isoleucine, leucine, and valine).718
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Figure S8: SLC36A2 locus colocalization. Colocalization results for SLC36A2 locus demon-
strating pleiotropic effects of variant rs77010315 on alanine, pyruvate, isoleucine, valine and leucine.
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Figure S9: Full Pathway Results for SLC36A2. Full pathway results and possible mechanism
for discordant variant rs77010315 with gene annotation SLC36A2.
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rs77010315 (SLC36A2): The discordant variant rs77010315 is a missense variant in SLC36A2,719

which encodes a transporter for small amino acids such as alanine (Supplementary Expanded Path-720

way Figure S9). We hypothesize this variant is discordant because it increases the activity of721

SLC36A2, leading to increased transport of alanine into cells. This results in a decrease in levels722

of alanine in the blood, but results in increased intracellular conversion of alanine to pyruvate and723

glutamate. Pyruvate can then be reversibly converted to lactate, resulting in an increase in lactate724

levels, as well as converted to acetyl-CoA. The increased pyruvate results in an increase in glycine725

levels because less needs to be broken down to produce it. The increase in acetyl-CoA leads to an726

increase in its downstream citric acid cycle intermediates including citrate, fumarate, succinyl-CoA727

and alpha-ketoglutarate. The increased glutamate leads to an increase in glutamine and the in-728

crease in fumarate leads to an increase in tyrosine and phenylalanine. The increase in acetyl-CoA729

also leads to an increase in isoleucine, HMG-CoA and leucine since less needs to be broken down730

to produce it, and to increased acetoacetyl-CoA since more acetyl-CoA is available to be converted731

to it. Acetoacetyl-CoA can then be converted to acetoacetate leading to an increase in all three732

ketone bodies (acetoacetate, acetone and β-hydroxybutyrate) as well as succinyl-CoA. Finally, the733

increased succinyl-CoA leads to an increase in valine because less valine needs to be broken down734

to produce it.735
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Figure S10: Negative Genetic Correlation Variant Models. Model for an example discordant
a. and an example concordant b. variant when there is an overall negative genetic correlation.
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Figure S11: Genetic correlation results. P-values for all metabolite pairs for all pathway
regions for Haseman-Elston regression genetic correlation analysis.
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Figure S12: Full Pathway Results for PCCB. Full pathway results and possible mechanism
for disease-associated variant rs61791721 with gene annotation PCCB.
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rs61791721 (PCCB): The variant rs61791721 has gene assignment PCCB, which encodes a pro-736

tein that catalyzes the conversion of propionyl-CoA to succinyl-CoA (Supplementary Expanded737

Pathway Figure S12). The hypothesized mechanism is that the variant decreases PCCB activity,738

resulting in lower levels of succinyl-CoA and increased propionyl-CoA. The increased propionyl-CoA739

results in excess ammonium being produced because propionyl-CoA inhibits N-acetylglutamate syn-740

thase, which is an important cofactor for the enzyme (carbamoyl phosphate synthetase) that cat-741

alyzes the first step in the urea cycle for ammonium capture. Alanine is a reservoir for nitrogen742

waste so there is an increase in pyruvate and glutamate to alanine and alpha-ketoglutarate to cap-743

ture the toxic ammonium [34, 35]. More glycine is then broken down in response to the decrease in744

pyruvate levels and more glutamine is converted to glutamate, leading to a decrease in glycine and745

glutamine levels. Conversely, the increased levels of propionyl-CoA mean less valine and isoleucine746

need to be broken down, resulting in an increase in their levels. In addition, the increased alpha-747

ketoglutarate increases downstream citric acid cycle intermediates meaning less tyrosine needs to be748

broken down to produce fumarate. Also in response to increased propionyl-CoA, fewer fatty acids749

are broken down, resulting in decreased acetyl-CoA, which is typically the downstream product,750

decreased citrate, which is one step downstream of acetyl-CoA, increased total fatty acid levels and751

increased total triglyceride levels. This increase may stimulate the activity of HMG-CoA reductase752

and synthase, resulting in increased conversion of ketone bodies to acetoacetyl-CoA to HMG-CoA753

and cholesterol. This results in decreased levels of ketone bodies and increased HMG-CoA and754

cholesterol. Increased HMG-CoA leads to increased leucine, while increased cholesterol leads to an755

increase in LDL-C and a decrease in HDL-C. While it is not necessarily intuitive that an increase in756

cholesterol levels would decrease HDL-C, it is possible that this increase activates the Rho A signal757

transduction pathway and suppresses peroisome proliferator-activated receptor alpha which then758

decreases the amount of ApoA1, as the reverse may explain why patients on statins may experience759

an increase in HDL-C despite a decrease in total cholesterol [61]. ApoA1 is an essential protein760

for HDL and thus a decrease in its levels would result in a decrease in HDL-C. We also found that761

PCCB was the strongest eGene in GTEx for rs61791721, with an effect shared across most tissues762

(Supplementary Figure S15). Note, we additionally ran GWAS for total triglycerides, total fatty763

acids, HDL cholesterol, and LDL cholesterol as part of the interpretation of the PCCB variant be-764

cause they are important metabolites in the discussion of cardiometabolic disease (Supplementary765

Figure S16).766
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Figure S13: Incident analysis. Forest plot for CAD incident analysis for the 16 metabolites as
well as HDL-C, LDL-C, total triglycerides, cholesterol, and total fatty acids in the UK Biobank.
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Figure S14: PCCB locus colocalization. Colocalization results for PCCB locus demonstrating
pleiotropic effects of variant rs61791721 on alanine, glycine, pyruvate, isoleucine, valine, leucine,
total fatty acids, total triglycerides, total free cholesterol, the UK Biobank clinical measures of HDL-
C, LDL-C and triglycerides, and CAD.
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Figure S15: rs61791721 eQTL effects. Tissue eQTL effects for the PCCB variant (rs61791721)
in GTEx.
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(a) HDL_C LDL_C(b)

(c) (d)Total Triglycerides Total Fatty Acids

Figure S16: Additional manhattan plots. Manhattan plots for (a) HDL_C, (b) LDL_C, (c)
total triglycerides, and (d) total fatty acids. Blue coloring represents metabolites belonging to the
lipid group and green belongs to fatty acid group.
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Supplementary Tables767

Table S1: Metabolite HESS heritabilities. Heritibility results from HESS for each metabolite.
(File: hess_scaled_heritabilities.tsv)

768

Table S2: Gene function sources. Sources for biochemical characterization of genes mentioned
in the variant vignettes.
(File: gene_biochemistry_sources.xlsx)

769

Table S3: Metabolite GWAS hits annotation. Annotation for the 213 metabolite GWAS hits,
including the assigned gene, assigned gene type, variant classification, and nearest gene.
(File: rigidmetabolites_sig_pruned_snplist_manual_annotation_closestgene_disttss.tsv)

770

Table S4: Gene biochemical groups. The number of significant (P < 1e-4) metabolite associa-
tions each metabolite GWAS gene had for each biochemical group. For a given gene, only biochemical
groups that had at least one significant metabolite association were listed.
(File: gene_metgroup_assignments_all.tsv)

771

Table S5: Ancestry-inclusive GWAS hits. List of additional metabolite GWAS hits from the
ancestry-inclusive analysis that were not present in the European-only GWAS results.
(File: newsnps_annotated_rigid_novel_withsumstats.tsv)

772

Table S6: Discordant variant annotation. List of each discordant variant-metabolite associa-
tion, including the variant annotations and relevant metabolite pair genetic correlation and GWAS
summary statistics.
(File: disvar_annotation.tsv)

773

774

775

776
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Table S7: Local genetic correlation results. Combined results for different methods of calcu-
lating the local genetic correlation for different pathways for alanine and glutamine, demonstrating
the consistency across the different approaches.
(File: combined_localgencor_methods.tsv)

Table S8: Metabolite associations with CAD. Literature evidence and citations for metabolite
associations with CAD.
(File: met_to_disease.xlsx)

Table S9: PCCB GWAS results. GWAS summary statistics for rs61791721 (PCCB) in the 16
metabolites.
(File: PCCB_sumstats.tsv)
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