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Abstract
Precise estimation of parameters in a complex dynamical system is often challeng-
ing, even if provided with adequate quality and quantity of data. A major chal-
lenge is the possible presence of large regions in the parameter space over which
model predictions are nearly identical. This property, known as sloppiness, has
been reasonably well-addressed in the past decade, studying its possible impacts
and remedies. However, certain critical unanswered questions concerning sloppi-
ness, its quantification and practical implications in identification still prevail. In this
work, we systematically examine sloppiness at a fundamental level and formalise a
new theoretical definition of sloppiness. Further, we propose a method to quantify
sloppiness for non-linear predictors. The proposed method aids in the character-
isation of a model structure around a point of interest in the parameter space and
detecting local structural unidentifiability. Further, we establish a mathematical
relationship between practical identifiability and sloppiness in linear predictors. Fi-
nally, we demonstrate the proposed formalism and methods on standard models.

Introduction
Parameter estimation is one of the crucial and challenging steps in the computa-
tional modelling of complex dynamical systems. Complex dynamical systems are
often modelled as non-linear ordinary differential equations with a large number of
states and parameters. Whole-cell modelling is an example of complex dynamical
systems [1]. Quantitative systems pharmacology (QSP) is an another example of
complex dynamical systems modeling [2, 3]. In a modelling exercise, often, there
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are many free parameters to be estimated from data. Precise and accurate estima-
tion of parameters depends on the quality and quantity of data, nature of the model
structure, and the estimation algorithm [4]. In complex dynamical systems, there
are often regions in the parameter space over which the model predictions are iden-
tical or nearly identical which result in structural unidentifiabilities [5], and sloppi-
ness [6], respectively. Structural identifiability is a well-established concept in the
domain of system identification [4]. The existence of structural unidentifiability
implies multiple solutions to the estimation problem. Thus it is imperative to check
for structural identifiability prior to parameter estimation. There are several ana-
lytical methods available for assessing structural identifiability of a model structure
[5, 7, 8, 9, 10]. A differential geometric approach using observability condition is
proposed in [11]. However, most of the analytical methods are not scalable to large
models. A numerical method is proposed in [12] to assess local structural uniden-
tifiabilities.

Similarly, the presence of sloppiness often results in huge uncertainties in pa-
rameter estimates [6]. Identifiability is a binary situation, whereas sloppiness lies
somewhere in between identifiability and loss of identifiability; the closer it is to the
loss of identifiability, the more problematic it is. Consider the simple bi-exponential
model in (1), with a true parameter vector, θ =

[
1 10

]T . The model output y(t)
is computed for 5 seconds by fixing one parameter and varying the other one at a
time.

y(t) = e−θ1t + e−θ2t (1)

From Fig.1a, it is evident that for a range of θ2 values in parameter space the model
predictions are nearly identical, and hence, θ2 direction is considered sloppy. How-
ever, in Fig. 1b, the change in parameter θ1 results in clearly distinctive model
outputs. Here, θ1 is stiff direction. From Fig.1c, it is seen that there are certain
directions over which the model predictions are nearly identical and significantly
vary in other directions. However, in many cases, instead of individual parameters
being sloppy and stiff, there will be directions in the parameter space that are sloppy
and stiff. The nearly identical model outputs for a significant range of parameter
sets might reflect as large standard errors in a subset of parameter estimates. These
large standard errors in the parameter estimates are one of the crucial challenges
while modelling sloppy models.
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(a) θ1 = 1 and θ2 varied from 9 to 11
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(b) θ2 = 10 and θ1 varied from 0 to -2
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(c) θ1 and θ2 are varied around the circum-
ference of a circle with radius r = 1 and
θ1 = 1, θ2 = 10 as center

Figure 1: (a) shows the model output while varying θ2 and fixing θ1. The output
of the model does not significantly vary and is qualitatively indistinguishable. (b)
shows the model output while varying θ1 by fixing θ2. The output significantly
varies while changing θ1 in the same range. (c) shows the outputs for a range of
parameters varied over the circumference of a circle with a fixed radius. Visually
evident chunks of outputs that are nearly identical. This implies certain directions
in the parameter space over which model outputs are nearly identical.

Study of sloppy models gained interest because of this counter-intuitive nature
of uniform predictability even with highly uncertain parameter estimates. The im-
pact of sloppiness on various facets of modelling has been extensively studied in the
past decade [6, 12, 13, 14, 15, 16, 17]. Sloppiness in models gives rise to mul-
tiple challenges in each stage of a modelling exercise. One of the most common
challenges encountered is the loss of practical identifiability [6, 18, 12]. Practi-
cal identifiability is defined as the ability to estimate parameters of a structurally
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identifiable model with acceptable precision given a data set [19, 20]. Practical
identifiability is assessed by the width of the confidence interval of the parameter
estimate [19]. However, there are other numerical methods proposed to assess prac-
tical identifiability [21, 22, 9]. The relationship between structural identifiability
and sloppiness is well established in [12]. A sloppy model is always structurally
identifiable. Whereas in the case of practical identifiability, though sloppiness is
closely related to practical identifiability, the exact relationship is still unclear [12].
This has been one of the sources of ambiguity in using sloppiness analysis as a part
of the modelling exercise. The ambiguity is due to measure of sloppiness as it does
not guarantee the loss of practical identifiability[19].

The impact of sloppiness in a modelling exercise has been addressed widely in
the following articles. It has been shown that the sloppy models have nearly flat cost
surfaces in the vicinity of the optimal parameter set [13]. In such cases, it is ob-
served that non-linear optimization algorithms may get stuck in the sloppy region.
A differential geometric approach has been employed to improve the convergence
of the Levenberg-Marquardt algorithm. In the case of validating models, it is ob-
served that the uncertainty estimates are unreliable in the case of sloppy models
[14]. They have suggested modified Markov Chain Monte Carlo (MCMC) sim-
ulations to circumvent this issue. An attempt to design optimal experiments for a
precise estimate of parameters in sloppy models may result in compromising pre-
diction accuracy [18]. The consequences of sloppiness on system identification can
be summarised in the two following points (i) obtaining precise parameter esti-
mates is challenging because the model’s behaviour is highly insensitive to many
parameter combinations/directions in the parameter space (ii) even though many
parameters cannot be estimated with good precision, the prediction uncertainty in
sloppy models is considerably low. The predictions depend only on a few stiff di-
rections in the parameter space. Despite the significant progress, there are some
critical answered questions that call for attention.

Even though the qualitative definition of sloppiness is unambiguous, when a
model is found to be sloppy, the current sloppiness analysis does not answer the key
questions such as (i) what is the source of sloppiness? (ii) what is the relationship
of sloppiness with parameter uncertainty / practical identifiability? (iii) does the
measure of sloppiness indicate the goodness of the estimated parameters? Once we
obtain answers to these questions, the usefulness of sloppiness analysis in modelling
and subsequent applications is significantly enriched. In this work, we attempt to
answer these questions and bring some more clarity to the phenomenon of sloppi-
ness and its role in a modelling exercise.

Numerous attempts have been made to resolve the issues arising from sloppy
models, but very few works have attempted to find the root cause of sloppiness
[23, 19, 15]. Though the source of sloppiness is attributed to both model and
data [6], in most cases, the source of sloppiness is attributed to the model struc-
ture [17, 6, 12, 18, 24, 25, 14]. A computational study is carried out to study the
relationship of sloppiness measure with structural identifiability, practical identifi-

4

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2022. ; https://doi.org/10.1101/2022.04.02.486816doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.02.486816
http://creativecommons.org/licenses/by-nd/4.0/


ability, and experimental design [19]. The result suggests that the relationship of
sloppiness measure with practical identifiability is inconclusive. Tönsing, C. et.al.
have shown that the root cause of sloppiness is both model and experimental condi-
tion [23]. They suggest that by changing the experimental condition, it is possible
to cure sloppiness. Apgar et al. have shown it is possible to estimate parameters pre-
cisely on sloppy models by careful design of experiments [24]. Sloppiness have also
been reported to have connections with biological phenomenon such as robustness
and evolvability [9].

The utility of sloppiness analysis in modelling has been questioned in [19, 26].
They argue through computational study that the presence of sloppiness does not
guarantee either structural or practical unidentifiability. Based on the result, they
conclude that using sloppiness analysis to assess the identifiability of parameters can
be misleading and suggest identifiability analysis as a better tool. Though the study
is convincing, the effect of sloppiness in errors of the parameter estimate is in-
evitable. The relationship of sloppiness with practical identifiability is widely ac-
cepted but not formally established [19, 12]. This motivates us to revisit the defi-
nition and measure of sloppiness to find a remedy.

In this work, we revisit the definition of sloppiness and show that with the cur-
rent measure of sloppiness, in the case of non-linear predictors, it is not possible
to attribute sloppiness to model structure alone decisively. In order to circumvent
the ambiguity, first, we formulate two new theoretical definitions of sloppiness (i)
Sloppiness (ii) Conditional sloppiness. The proposed definitions of sloppiness for
autonomous differential equation systems is defined in an augmented space of pa-
rameter and initial conditions. This implies that both model and experimental con-
ditions together responsible for sloppiness. Secondly, we establish a mathematical
relationship between practical identifiability and sloppiness in the case of linear pre-
dictors. Further, we propose a new measure for sloppiness and a visual tool that can
detect sloppiness and insensitive parameters in addition to structural unidentifiabil-
ity. Given a set of experimental conditions, the insensitive parameters are more
likely to become practically unidentifiable. The proposed definitions of sloppiness
and the visual tool can help identify whether the true model is in a sloppy region
and corresponding insensitive parameters. The benefit of analysing the true model
is two-fold; once we know that the true model is in a sloppy region, the probabil-
ity of the estimated model landing in the sloppy region is high. Then appropriate
experiments can be designed to circumvent the effects. On the other hand, if the
true model is not in the sloppy region and if the estimated model is sloppy, we can
fine-tune the estimation algorithm and other controllable experimental conditions.
The proposed tool can also detect multi-scale sloppiness [12].

The rest of the paper is organized as follows: Section 2 provides perspectives on
sloppiness by revisiting the concept of sloppiness and rightly positioning it relative
to identifiability. Section 3 presents key results including two motivating examples
to highlight the challenges in using the current measure of sloppiness. Further,
it provides two new definitions of sloppiness and their relationship with practical
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identifiability in case of linear predictors. Section 4 illustrates the proposed method
to assess the sloppiness of non-linear predictors. The paper ends with concluding
remarks in Section 5.

Perspectives

Sloppiness and identifiability
The end goal of a modelling exercise is a useful model. The quality and useful-
ness of an estimated model depend on a few crucial properties. Identifiability is one
such property that guarantees the existence of a unique model. The fundamental
requirement is that the model structure being unique with respect to the param-
eters (structural property). This is known as structural identifiability (SI). Given a
structurally identifiable model structure, the ability to recover unique model from
data is associated with practical identifiability (PI). While there are several methods
to assess structural identifiability, practical identifiability is usually assessed from the
precision of the parameter estimates.

Within the class of structurally identifiable models, sloppiness is another impor-
tant model property. Sloppiness at its core quantifies the sensitivity of output with
respect to change in parameters or directions in the parameter space. When the
gradient of the predictor qualitatively does not change as the parameter is varied
significantly, then the system is sloppy. Sloppiness can be observed as pockets of
regions in the parameter space, in such cases, the gradient of the predictor vary
significantly in the parameter directions.

In the existing literature, a method of quantifying this insensitivity of predic-
tions to changes in parameters is captured by (2).

S =
λmin(H)

λmax(H)
(2)

Where H is the Hessian of the cost function, in general, for a non-linear pa-
rameter space, it is difficult to identify all such pockets of sloppy regions. Hence,
sloppiness is determined locally around a parameter of interest by computing the
sensitivity of the output to the change in the parameter. The sloppiness is charac-
terized by equally spaced eigenvalues of the Hessian of the cost function in the log
scale and is quantified by 2.

Even though there is no strict cut-off, a model is considered to be sloppy if
S ≤ 10−6 [25]. The eigenvectors corresponding to maximum and minimum
eigenvalues indicate the stiff and sloppy direction, respectively. It can be observed
that the Hessian of the cost function is representative of the derivative of the output
with respect to the parameters. The current measure of sloppiness is valid only
if the estimation algorithm is least-squares; for a different estimation algorithm,
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the Hessian of the cost function may not be representative of the sensitivity of the
output with respect to the parameters.

Table 1 shows the list of model properties, their definitions, and the correspond-
ing method of assessment. Even though qualitative definition for practical identifi-
ability and sloppiness are available, a formal mathematical framework for defining
sloppiness is not available. In this work, we formalize sloppiness mathematically.

Table 1: List of model properties and their definitions

# Model Property Definition Assessment

1 SI ŷ(t, θ1) = ŷ(t, θ2) ⇐⇒ θ1 = θ2 Direct application

2 PI - trace(Σθ̂)

3 Sloppiness - Hi,j =
∂2C(θ)

∂logθj∂logθi

As a first step in answering the questions raised above, the notion of sloppiness
needs to be rightly positioned relative to well-established concepts such as structural
identifiability and practical identifiability. Additionally, when a model is sloppy, it
is important to attribute the source of sloppiness to the appropriate factors. All
the three properties of interest that are under discussion arise due to either one or
more of data, model, and estimation algorithm. The data itself is characterized by (i)
signal to noise ratio (SNR) (ii) sample size, and (iii) the input. While input and SNR
determine the quality of data, the quantity of data is determined by sample size.
The model’s contribution towards these properties is characterized by predictor
gradient, and finally, the estimation method is generally characterized by the cost
function.

Table 2: Factors influencing model properties

# Model Property SNR Sample size Input ∇(y(θ)) C(θ)

1 SI - - - ✓ -

2 PI ✓ ✓ ✓ ✓ ✓

3 Sloppiness - - ✓ ✓ -

Table 2 lists the factors that affect structural identifiability, practical identifiabil-
ity and sloppiness. Structural identifiability analysis is searching for two or more
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parameter sets that result in identical predictions in the absence of data. Hence,
only the gradient of the predictions with respect to parameters influences structural
identifiability. At the same time, all three factors influence practical identifiability:
the data, model, and estimation algorithm. A structurally identifiable model may
end up practically unidentifiable due to noise, sample size, insufficient excitation,
or a combination of these factors. Sloppiness of the true model is influenced by
both input and gradient of the predictor with respect to parameters. In the case of
autonomous differential equations, the system’s initial conditions can be considered
as impulse inputs. While the sloppiness of the estimated model can be attributed
using the matrix in Fig.2.

Figure 2: Matrix for finding the sources of sloppiness to an estimated model. The
rows of the matrix are sloppy and non-sloppy categories of the true model, while
the columns are sloppy and non-sloppy categories of the estimated model.

When the estimated model is sloppy, and the true model is also sloppy, the
possible reasons are predictor gradient, input, or both. When the true model is
non-sloppy and the estimated model is sloppy, then the only possible reason is the
cost function. The third case is when the true model is sloppy and the estimated
model is non-sloppy, again cost-function is the possible reason. Finally, when both
the models are non-sloppy then we obtain a satisfactory model. The role of the
cost function in sloppiness is indirect. When the true model is not sloppy, the cost
function may push the estimated model into a sloppy region while the cost function
itself does not affect the gradient of the predictor.

The relationship of sloppiness with practical identifiability is still an open prob-
lem [12]. From Table 2 it is clear that both the input and the gradient of the output
with respect to parameters affect sloppiness and practical identifiability. This is the
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reason why most parameters in a sloppy model become practically unidentifiable
when the gradient is large.

Figure 3: The relationship between structural identifiability, practical identifiabil-
ity, and sloppiness

The relationship between sloppiness structural and practical identifiability is de-
picted in the Fig.3. Sloppy models intersect with practically unidentifiable models.
However, how much sloppiness affects practical identifiability is the question that
needs to be answered. In the following section, using two motivating examples, we
show that the current measure of sloppiness does not answer the above question,
and we also argue that the lack of formal mathematical definition is another reason.

Motivating examples
This section provides two motivating examples that illustrate the challenges in the
current measure of sloppiness in answering the questions of interest in this work.
We consider a non-sloppy model and show that it can be turned sloppy by changing
experimental conditions, and a model that is regarded as sloppy can be made non-
sloppy again by changing the experimental condition.

Example 1
Consider the linear predictor given in (3). Let z be a vector of m observations.
The parameters of the model are estimated using the method of least squares. The
Hessian of the cost function is given in (5).

y = a1x1 + a2x2 + ....+ anxn (3)
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Now, let us define

C(a) =
m∑
i=1

(zi − y)2 =
m∑
i=1

(zi − (a1x1i + a2x2i + ....+ anxni))
2 (4)

∇2(C(a)) =


2
∑m

i=1 x
2
1i 0 . . . 0

0 2
∑m

i=1 x
2
2i . . . 0

...
. . . . . .

...
0 . . . . . . 2

∑m
i=1 x

2
ni

 (5)

For the purpose of discussion, we use an existing measure of sloppiness given in (6),
the ratio of smallest to largest eigenvalues of the Hessian of the cost function.

S =
∥xmin∥22
∥xmax∥22

(6)

Linear predictors are not generally observed to be sloppy [18]. However in
the above example, the ratio of eigenvalues in only a function of data and not the
model parameters and hence we can see that it is possible for the linear predictor
to show sloppiness for some experimental condition. Moreover, sloppiness in linear
predictors given in the above example is purely an artefact of data/input, and not
due to the nature of the model structure.

Example 2
Consider the state space model in (7). The Hessian of the least-squares cost function
is given in (8). [

ẋ1
ẋ2

]
=

[
θ1 0
0 θ2

] [
x1
x2

]
(7)

y(t) = x1(0)e
−θ1t + x2(0)e

−θ2t

∇2(C(a)) =

[ ∫ t

0
θ21x1(0)

2e−2θ1tdt
∫ t

0
θ2θ2x1(0)x2(0)e

−(θ2+θ2)tdt∫ t

0
θ2θ2x1(0)x2(0)e

−(θ2+θ2)tdt
∫ t

0
θ22x2(0)

2e−2θ2tdt

]
(8)
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(a) Sloppiness in the parameter space (b) Sloppiness in initial condition space

Figure 4: (a) Shows sloppiness in the parameter space. There are regions in the
parameter space where system is non-sloppy. (b) Shows sloppiness for various initial
conditions. For a subset of initial conditions the model becomes non-sloppy
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Figure 5: Standard errors of the parameter estimates obtained from various initial
conditions (Fig. 4b) plotted against the corresponding sloppiness value. It seen that
there is no specific relationship between sloppiness and standard errors.

Sloppiness is computed in the grid 1 ≤ θ1 ≤ 100 and 1 ≤ θ1 ≤ 100. From Fig.
4a, it is evident that sloppiness is a function of parameter space. In Fig. 4b, sloppiness
is computed over a grid of initial conditions 1 ≤ x1(0) ≤ 100 and 1 ≤ x2(0) ≤ 100
around the point θ1 =1, θ2 = 100. The model is simulated for t = 0 to t = 20
seconds with a sampling interval of 0.5 seconds.
From Fig. 4b, we can observe that the change in experimental condition can cure
sloppiness, which indicates that the sloppiness is a function of information contained
in a data set. In our previous work [27], we have demonstrated using simulation
that parameters contributing to sloppy directions have very low information gain
in the Bayesian framework. For initial condition > 50 of x2, the model becomes
non-sloppy. This has been extensively studied in [23, 24, 9]. Tonsing et al. (2014)
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showed that the structure of the sensitivity matrix is the reason for sloppiness in
ordinary differential equations and also conclude that both experiment and model
structure are the root causes of sloppiness. Fig. 5 shows that the relationship be-
tween sloppiness and standard errors of the parameters does not follow any defini-
tive trend. Though it has been argued that sloppiness and practical identifiability
are two distinct concepts and that they are incorrectly conflated [18], the effect of
sloppiness on practical identifiability cannot be ignored [6].

Following are two important observations emanate from our study: (i) for a
non-linear least-squares estimation problem, it is impossible to attribute sloppiness
to the model structure alone. Sloppiness is a function of both parameter space and
initial conditions and hence, labelling a model to be sloppy with the current analysis
method of sloppiness can be misleading [6, 18] (ii) sloppiness often results in loss
of practical identifiability. However, the exact relationship is not revealed by the
current measure of sloppiness

Problem statement
The demonstrated challenges of the current measure of sloppiness reaffirms the need
to answer the following questions (i) what is the source of sloppiness ? (ii) what is the
relationship of sloppiness with parameter uncertainty / practical identifiability? (iii)
does the measure of sloppiness indicate the goodness of the estimated parameters?
In the following section we propose a new definition of sloppiness to circumvent
these challenges.

Results

A new mathematical definition of sloppiness
The above-perceived challenges of the present sloppiness analysis motivated us to
formulate a new mathematical definition of sloppiness. The new definition of slop-
piness is based on the following remarks.

Remark 1. Sloppiness is assessed across an augmented space (parameters, initial conditions,
and inputs) rather than parameter space alone. In the case of autonomous ODE models, the
augmented space is

ϕ =
[
θ1 θ2 . . . θn

... x1(0) x2(0) ... xm(0)

]
Remark 2. A significant change in the subset of augmented space (parameter space) results
in small change in prediction space.

DM - All possible parameter values the model M can take. I - Identifiable
region, ZM - Set of all experiments for which the model structure M is identifiable.
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Definition 1. A model M is (ϵ, δ) sloppy with respect to experiment space ZM at
θ∗ ∈ I ⊂ DM, if

||θ∗ − θ1||2 > δ ∀ θ ∈ S ⊂ I (9)

||y(θ∗, t)− y(θ1, t)||22 < ϵ ∀Z ∈ ZM (10)

for every (θ1, θ
∗) satisfying (9) & (10). ϵ arbitrarily small. δ ≫ ϵ.

Definition 2. : A model M is conditionally (ϵ, δ) sloppy with respect to an experiment
space ZM at θ∗ ∈ I ⊂ DM, if

||θ∗ − θ1||2 > δ ∀ θ ∈ S ⊂ I (11)

||y(θ∗, t)− y(θ1, t)||22 < ϵ ∀u ∈ Z ⊂ ZM (12)

for every (θ1, θ
∗) satisfying (11) & (12). ϵ arbitrarily small. δ ≫ ϵ.

Equations (8) & (9) say that a model is considered sloppy, if the (ϵ, δ) condition
holds true for all possible experimental conditions ZM. Similarly, (8) & (9) convey
that the model is conditionally sloppy if the (ϵ, δ) condition holds true only for a
subset (Z) of all possible experimental conditions (Z).

No longer the proposed sloppiness and conditional sloppiness is used in a generic
sense, however they have to be used in conjunction with ϵ and δ. By virtue of our
definitions we believe, by itself the sloppiness is qualitative and where ever quan-
titative sloppiness is to be discussed, the (ϵ, δ) from should be used. For a large δ
if the ϵ is negligibly small, then the system is considered to be (δ, ϵ) sloppy. Note
that the proposed measure of sloppiness is different from the multi-scale sloppiness
proposed in [12]. Multi-scale sloppiness is the ratio of maximum to minimum pre-
diction error for a non-infinitesimal perturbation from parameter, whereas in the
proposed definition, sloppiness is a function of both prediction error and parameter
perturbation. Moreover, multi-scale sloppiness is only a function of δ where as, the
proposed sloppiness is a function of both ϵ and δ which is a more natural way to
define and understand the notion sloppiness.

Sloppiness analysis of a linear predictor
Consider a linear predictor in

y(x) = a1x1 + a2x2 + · · ·+ anxn (13)

θ =
[
a1 a2 · · · an

]T
& X =

[
x1 x2 · · · xn

]
y = Xθ (14)

The model is identifiable if X is full column rank. The model is sloppy if X(θ∗−
θ1) = y for ||θ∗ − θ1||2 > δ and ||y||2 < ϵ.
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Let θd = (θ∗ − θ1), ||θd||2 >> ϵ.
Using matrix norm,

||Xθd||p ≤ ||X||||θd||p ∀p ∈ R. (15)

Consider the extreme case for p = 2,

||X|| = ϵ2

δ
(16)

For extremely small ϵ and extremely large δ the ||X|| ≈ 0 will become numerically
unstable and that will result in loss of identifiability. This is the reason why in most
of the cases linear least square problems are observed to be non-sloppy. Once the
system is found practically unidentifiable, then a careful design of experiment will
constrain the parameter uncertain making the matrix norm of data significantly
large, in such case the possibility of sloppiness is almost eliminated.

Relationship between conditional sloppiness and practical iden-
tifiability
For a structurally identifiable model structure M(θ) and a data set z, precision of
parameter estimate θi ∈ θ is a measure of practical identifiability. Practical identifi-
ability is assessed for a data set z given a model structure M. A parameter θi is said
to be practically unidentifiable for a given z, if

σθi > δ̂i

d(z, y(θ̂)) < ϵ

where σθi is the standard error of the parameter estimate θi and d(z, y(θ̂)) is a
prediction error. Practical identifiability can only be assessed post estimation be-
cause it is a function of the data set, whereas sloppiness can be evaluated at any
given unknown space (ϕ), which includes parameter space and data set. Ideally,
the infinite width of the confidence interval for a parameter estimate is considered
practically unidentifiable. However, in practical scenarios, significant standard er-
rors in the estimates are considered practically unidentifiable.

Consider the linear predictor given in (13). Choose another parameter set θ1 =[
b1 b2 · · · bn

]T such that δ =
√
(a1 − b1)2 + · · ·+ (an − bn)2.

(y(x)− y1(x))
2 = ((a1 − b1)x1 + (a2 − b2)x2 + · · ·+ (an − bn)xn)

2 (17)

ϵ = (δ1x1 + δ2x2 + · · ·+ δnxn)
2 (18)

If each of xi is a vector of m observations, then (18) becomes,

ϵ =
m∑
i=1

(δ1x1i + δ2x2i + · · ·+ δnxni)
2 (19)
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Inverse of (5) gives the covariance matrix for the parameter estimates. The standard
error of a parameter ai is given by

σai
=

√
1∑m

i=1 x
2
i

(20)

Using (19), the relationship between the sloppiness and practical identifiability is
derived as

σai =
δi

(
√
ϵ− ((

∑m
k=1 δkxk)

2 + 2
∑m

i=1(δ1δ2x1ix2i + · · · ))
; k ̸= i (21)

This relationship holds if the data is derived from a Gaussian distribution and the
least-squares cost function. From (21), it is clear that there is a relationship between
sloppiness and practical identifiability. The corresponding parameter will become
unidentifiable for a small ϵ and a very large δi. The above result agrees with the
result obtained in (16). For a generalised non-linear predictor, it is challenging to
construct a relationship analytically. Hence, we propose a numerical method to
analyse the non-linear predictor for sloppiness and identifiability.

Sloppiness analysis of non-linear predictors
We provide three numerical examples to demonstrate the sloppiness analysis of non-
linear predictors. We propose a novel numerical method of analyze sloppiness based
on the new definitions. The detailed working of the method is illustrated in the
methods section. The first illustrative example demonstrates all the three differ-
ent scenarios (i) a sloppy region, (ii) a non-sloppy region and (iii) an unidentifiable
region in a toy model. The second example is a high-dimensional biochemical
pathway used in [19]. This example demonstrates the working of the proposed
algorithm in a high-dimensional model. The third example is one of the hallmark
models used by Gutenkunst et al. in [6] to demonstrate sloppiness.

An illustrative example

In this example, we use a simple two-parameter state-space to demonstrate the
working of our method. The proposed visual tool is generated for a linear decou-
pled state-space model. Three different scenarios are considered to cover the loss of
structural identifiability, sloppiness, and an ideal scenario. Consider the state-space
model in (22). [

ẋ1
ẋ2

]
=

[
θ1 0
0 θ2

] [
x1
x2

]
(22)

y(t) = x1(t) + x2(t)
x1(0) = x2(0) = 1
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Table 3: Specifications of various scenarios

Scenario θ∗ δ Region
1 θ1 = 0.4 θ2 = 1 0.3 non-sloppy
2 θ1 = 1 θ2 = 10 0.3 sloppy
3 θ1 = 0.4 θ2 = 0.5 0.3 unidentifiable

Parameters are sampled inside an n-ball with radius δ around θ∗. The model
output y(t, θ) is computed for all the sampled parameters and sum-squared error γ
is computed. Further, the model sensitive index is computed using (28).

Figs. 6a and 6b show the plot for model sensitivity index and minimum devi-
ation from reference θ∗. In case of the non-sloppy region, the curve in Fig. 6b is
monotonically increasing. The model’s behaviour is distinguishable from the ref-
erence point (θ∗) as δ increases. Additionally, the curve in model sensitivity plot in
Fig.6a deviates away from unity value as δ increases. In case of a sloppy region, in
Fig. 6d the curve has an increasing trend, but the curve is almost flat and not dis-
tinguishable as compared to the non-sloppy region from the reference point. In the
third scenario, where the system is locally structurally unidentifiable, from Fig. 6d,
it is seen that γmin is very close to zero/ numerically zero for a non-zero δ. From
Fig. 7, we can infer that both the parameters are unidentifiable in the region be-
cause at an absolute distance δi from the reference value, the prediction error goes
to zero, which indicates that there is another parameter θ ̸= θ∗ for which the pre-
diction error is zero. In addition to that, in Fig. 6e, the curve in model sensitivity
plot touches the unity value for a non-zero δ. In order to asses local structural non-
identifiability, model sensitivity plot in conjunction with γmin plot may be used.
However, a numerically zero value of γmin for a non-zero δ is sufficient to assess
local structural non-identifiability. The model sensitivity index (ψ) quantifies the
asymmetry between most sensitive and least sensitive parameter directions in the
parameter space. The conditional sloppiness can be assessed by the pair (γmin, δ).
For a given δ, which can be chosen as a function of acceptable parameter range
among the set of parameters, if the γmin is too low, then we can say the system is
conditionally sloppy with a high probability of practically unidentifiable parame-
ters.
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(f ) γmin vs δ for unidentifiable region
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Figure 6: Visual sensitivity analysis plot (a) The curve is significantly deviated from
the unity value for the given δ, indicating local structural identifiability. (b) The
slope of curve very close to unity value, indicating a non-sloppy region in the given
delta. (c) The curve is significantly deviated from the unity value indicating local
structural identifiability. (d) The slope of the curve is constant but the value of the
slope is closer to the zero value indicating a sloppy region in the given δ. (e) &
(f ) The curve numerically hits unity and zero value at δ = 0.14 indicating a local
structural unidentifiability. (g) γmin curve for all the three cases.
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Figure 7: γ vs δθi for unidentifiable region. The curves touching the zero value
indicate both the parameters are structurally unidentifiable

High dimensional biochemical pathway model

A linear biochemical pathway with fourteen states, sixteen parameters and one input
is considered for demonstration [19]. The states x1(t) and x14(t) are measured. The
nominal parameter set (θ∗) is taken from [19].

M :



ẋ1 = − vmx1

km+x1
+ p1u

ẋ2 = −p1x1 − p2x2

ẋ3 = −p2x2 − p3x3

ẋ4 = −p3x3 − p4x4

ẋ5 = −p4x4 − p5x5

ẋ6 = −p5x5 − p6x6

ẋ7 = −p6x6 − p7x7

ẋ8 = −p7x7 − p8x8

ẋ9 = −p8x8 − p9x9

ẋ10 = −p9x9 − p10x10

ẋ11 = −p10x10 − p11x11

ẋ12 = −p11x11 − p12x12

ẋ13 = −p12x12 − p13x13

ẋ14 = −p13x13 − p14x14

y(t) = x1(t) + x14(t)

(23)
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Figure 8: (a) The curves indicate uniform slope sensitivity ratio. (b) The curve has
significantly small slope and numerically small ϵ which indicate the sloppiness for
the given δ (c) The curve is significantly deviated form the unity value indicating
local structural identifiability of the model.

From Fig. 8b, the model is locally structurally identifiable. In Fig. 8a, the ratio
of values of γmax

γmin
increases as δ increases; however, the ratio is not numerically sig-

nificant. Hence, the model is not sloppy in the traditional and multi-scale notion
of sloppiness. On the other hand, in Fig. 8b, the for δ > 0.25, the γmin ≈ 0.015.
This observation implies that the system is (ϵ, δ) sloppy, and a sub-set of insensitive
parameters will contribute to the sloppiness.

From Figures 9 to 12, it is seen that the parameters vm, km, p7 and p9 are in-
sensitive for δi > 0.03 compared to other parameters. The sensitivity in maximum
deviation direction is significantly high for the parameters p5, p6, p13 and p14 in the
vicinity of θ∗i . In sum, the biochemical network considered is structurally locally
identifiable, and only 4 out of 16 parameters are insensitive for a particular region
in δ. Further, the model has a moderate multi-scale sloppiness ratio inside the spec-
ified δ, which indicates only an acceptable isotropic sensitivity in the parameter
directions.
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Figure 9: The x-axis depicts the relative distance of the particular parameter θi
from its reference value θ∗i . The y-axis on the left is the minimum sum-square
deviation and on the right maximum sum-square deviation from y∗(t). Parameters
vm and km are insensitive for δi > 0.03. The maximum sensitivity of parameter p1
is linearly increasing as δi increases.
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Figure 11: The x-axis depicts the relative distance of the particular parameter θi
from its reference value θ∗i . The y-axis on the left is the minimum sum-square
deviation and on the right maximum sum-square deviation from y∗(t). The pa-
rameters p7 is insensitive for δi > 0.02 and p9 for δi > 0.05

20

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2022. ; https://doi.org/10.1101/2022.04.02.486816doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.02.486816
http://creativecommons.org/licenses/by-nd/4.0/


0 0.02 0.04 0.06 0.08 0.1 0.12

p3

0

0.005

0.01

m
in

0 0.01 0.02 0.03 0.04

p3

0

5

10

m
a
x

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

p4

0

0.005

0.01

m
in

0 0.01 0.02 0.03 0.04 0.05 0.06

p4

0

5

10

m
a
x

0 0.01 0.02 0.03 0.04 0.05

p5

0

0.005

0.01

m
in

0 0.01 0.02 0.03 0.04 0.05

p5

0

5

10

m
a
x

0 0.005 0.01 0.015 0.02

p6

0

0.005

0.01

m
in

0 0.02 0.04 0.06 0.08 0.1

p6

0

5

10

m
a
x

Figure 10: The x-axis depicts the relative distance of the particular parameter θi
from its reference value θ∗i . The y-axis on the left is the minimum sum-square
deviation and on the right maximum sum-square deviation from y∗(t). While non
of the parameters is insensitive, parameters p5 and p6 are highly sensitive in the
vicinity of the θ∗i (δ∗i < 0.01)
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Figure 12: The x-axis depicts the relative distance of the particular parameter θi
from its reference value θ∗i . The y-axis on the left is the minimum sum-square
deviation and on the right maximum sum-square deviation from y∗(t). The pa-
rameters p13 and p14 are highly sensitive in the vicinity of θ∗i .
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Table 4: Summary of model features analysed in this study

Model States Parameters Identifiable Insensitive parameters

State-space: Case 1 2 2 Yes -
State-space: Case 2 2 2 Yes θ2
State-space: Case 3 2 2 No -
Minimal Cascade 2 10 Yes kd, vd,K1,K2, V4

Biochemical pathway 14 16 Yes vm, km, p7, p9

Mitotic oscillator

Minimal cascade model for mitotic oscillator is a ordinary differential equation
model with 3 states and 10 parameters. This model is one of the 16 system biology
models that were shown to be sloppy [6]. The original model and the nominal pa-
rameters were obtained from [28]. Here, we analyze the behavior of the model by
constructing the visual plot. The model equations are given in (24)

M :



dC
dt = vi − kdC − vdX

C
Kd+C

dM
dt = V 1(1−M)

(K1+(1−M)) −
V2M

K2+M
dX
dt = V 3(1−X)

(K3+(1−X)) −
V4X

X+K4

y(t) = C(t) +M(t) +X(t)

X(0) =M(0) = C(0) = 0.01

(24)
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Figure 13: (a) The curves indicate non-uniform sensitivity in the given δ (b) The
system is initially sloppy till 0 < δ < 0.03 and becomes non-sloppy for 0.05 <
δ < 0.15 and again sloppy for 0.15 < δ < 0.3. The system is locally structurally
identifiable

The true parameters around which the model’s behaviour are analysed is taken
from [28]. It can be observed that from Fig. 13a that for δ < 0.1, there is a huge
asymmetry between minimum and maximum deviation, which implies that the
system will be extremely sloppy with respect to traditional definition of sloppiness
(2) and multi-scale sloppiness [12]. From Fig. 13b, it can be seen that as δ increases,
γmin also increases but goes nearly flat after δ > 0.12, indicating negligible change
in the γmin as δ changes, which implies that the model is (δ, ϵ) sloppy for δ > 0.12.

Fig. 14 and Fig. 15 show how γmin and γmax changes for each parameter as
the absolute value changes. It can be clearly seen that parameters kd, vd,K1,K2 and
V4 are insensitive as there is no significant change in γmin for the relative change
δi > 0.01. On the other hand, the parameters K3, Vi, V2 and V4 are highly sensitive
for δi < 0.01. This gives us a good idea of how the system behave with respect to
the changes in specific parameter intervals. This can be used to fix initial values of
parameter during an estimation exercise to avoid the sloppy region; which is one of
the crucial challenges in a sloppy model [13]. Our method can give a good range
of initial parameter values.

In summary, we found that (i) the model is locally structurally identifiable (ii)
the model is sloppy in the traditional sense of sloppiness also from the proposed
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definition of sloppiness (iii) our method have identified insensitive parameters and
most sensitive parameters (iv) the proposed method have also identified an interval
for each parameter (θi) over which the model is most and least sensitive.
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Figure 14: γmin and γmax changes with respect to the absolute change in each
parameter vi, kd, vd,Kd,K1 from reference values. The parameters K1 and vd are
highly insensitive within the given δ
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Figure 15: The figure shows how the γmin and γmax changes with respect to the
absolute change in each parameters V2,K2,K3, V4,K4 from reference values. The
parameters K4, V4&K2 are insensitive and contributes to the sloppy direction.

Methodology
In this section, we propose a visual tool to detect and quantify conditional sloppi-
ness and detect the loss of structural identifiability for generic ordinary differential
equation models.

Mathematical Model Formulation
We consider the model of the form,

ẋ(t) = f(x(t), θ,u(t)) (25)

y(t) = h(x(t), θ)

x(t0) = x0(θ)
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where x = (x1, x2, . . . xnx) ∈ Rnx is a state vector. u = (u1, u2, . . . unu) ∈ Rnu

is an nu-dimensional input vector, and y = (y1, y2, . . . yny ) ∈ Rny is an ny-
dimensional output vector. The vector θ = (θ1, θ2, . . . θnθ

∈ Rnθ ) is the vector
of parameters. The system has state function (f) and the observation function (h).
The observation function can be modified by an experiment scheme, whereas the
state function is fixed.

Proposed method
The visual tool is based on the definition of sloppiness proposed in the previous
section. The primary idea is to study the behaviour of the model structure around
the point of interest in the parameter space. A Euclidean ball of radius δ is sampled
around the parameter of interest θ∗ using a multivariate Gaussian distribution. The
radius δ is subdivided into l equally spaced segments. The behaviour of the model
is evaluated in each of the sub-Euclidean balls. The maximum and minimum devi-
ation from the chosen parameter vector is plotted against the radius vector.

Procedure

1. Divide the radius δ into l equal segments, δ as δk, k = 1, 2.....l

2. Fix the sample size N for δk = 1 and sample parameters from an Euclidean
ball B of radius δ around θ∗ in the parameter space using uncorrelated multi-
variate Gaussian with standard deviation as δk.

B(θ∗, δ) = {θ| ∥θ∗ − θ∥2 ≤ δ} (26)

3. Simulate the model output y∗(t) at the optimal/true parameter θ∗

4. Simulate the model output for all the parameters in the Euclidean ball and
compute the sum square error γ with the optimal output y∗(t).

γ =
N∑
t=1

(y∗(t, θ∗)− y(t, θ))2

5. Compute γmin and γmax from each increment δk

γmink
= min

N∑
t=1

(y∗(t, θ∗)− y(t, θ))2

,

γmaxk
= max

N∑
t=1

(y∗(t, θ∗)− y(t, θ))2

6. Update sample size

N(k + 1) = N(k) + α

(
δk+1

δk

)n

(27)
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7. Repeat steps 4 to 6 while k ≤ l.

8. Compute the model sensitivity index

ψ = 1− γmin

γmax
(28)

9. Plot (δ,γmin) and (δ,ψ)

Samplingn-ball using multivariate Gaussian distribution is one of the efficient meth-
ods. However, for a sufficiently large dimension, with a high probability, the dis-
tance between all points will be the same, and the volume of the n-ball goes to zero
[29]. To overcome this issue, we need to generate points from independent Gaus-
sian distribution and normalise the each vector [29]. While increasing the radius
δk, the sample size N has to be increased to avoid missing the regions of unidenti-
fiability. For each increment in δk, we derived Eq. (27) to update the sample size.
The parameter α can be used as a turning parameter to attain certain accuracy in
the sampling and n is the dimension of the parameter space. Figure 16 illustrates
the procedure to construct the visual tool.
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Figure 16: Workflow to construct the visual tool
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Discussion
Sloppiness, practical identifiability, and structural identifiability are the most fre-
quently encountered challenges in computational modelling, particularly on com-
plex dynamical systems. Assessing the model structure for sloppiness and parameter
unidentifiability becomes imperative for successful parameter estimation. The con-
cept of structural identifiability is well-established in the domain of system identi-
fication, and hence a great deal of work has been done on assessing the structural
identifiability of a model structure. However, most analytical methods are limited
to a specific type of non-linearity and miniature models. A few numerical meth-
ods also have been developed to assess structural identifiability. On the other hand,
sloppiness has not been investigated with similar rigour.

Though there has been considerable discussion on sloppiness in the literature,
there were still a few crucial unanswered questions: (i) what the source of sloppiness
is? (ii) what is the relationship of sloppiness with parameter uncertainty / practical
identifiability? (iii) does the measure of sloppiness indicate the goodness of the esti-
mated parameters? This work provides definitive answers to all of these questions.

We position the notion of sloppiness relative to well-established concepts such as
structural identifiability and practical identifiability. Further, we show by simula-
tion studies the challenges in applying the current measure of sloppiness in a mod-
eling exercise and propose to argue that the ambiguity in understanding sloppiness
and related questions are due to the lack of mathematical formalism. We developed
two new theoretical definitions of sloppiness, namely sloppiness and conditional
sloppiness. Conditional sloppiness is conditioned on the experiment space. Using
the proposed definition of sloppiness, we showed that the linear predictors cannot be
sloppy but eventually become unidentifiable. A mathematical relationship between
practical identifiability and conditional sloppiness has been derived for generalized
linear predictors.

A numerical method is proposed to assess the conditional sloppiness for gen-
eralized non-linear predictors. The proposed method helps determine the model’s
behaviour around a point of interest in the parameter space. An n-ball of radius δ
is constructed with the centre as a reference parameter. Deviation in the predic-
tion from the reference parameter is computed for all the parameters sampled from
the n-ball. The plot shows the minimum and maximum deviations in the predic-
tion of the delta increases. The proposed tool also helps find the most sensitive and
least sensitive parameters with an interval. The method can also detect structural
unidentifiability

The proposed tool is applied to three different models, including a hallmark sys-
tem biology model. The proposed method detected sloppiness, structural uniden-
tifiabilities, sensitive and insensitive parameters. The analysis gives a holistic pic-
ture of the system’s behaviour in a subset of a region in the parameters space. The
parameter interval obtained from the proposed method can be used to fix the ini-
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tial parameter values for the parameter optimization in sloppy models, primarily to
avoid flat regions where optimization algorithms may get stuck.

In summary, we see four crucial contributions in this study (i) rightly posi-
tioning the concept of sloppiness in relationship with identifiability (ii) finding the
challenges in the current measure of sloppiness (iii) proposed a new mathemati-
cal definition of sloppiness (iv) a unified framework to assess sloppiness, structural
identifiability, and parameter sensitivity.
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