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Abstract 20 
Alterations in the myeloid immune compartment have been observed in COVID-19, but the 21 
specific mechanisms underlying these impairments are not completely understood. Here we 22 
examined the functionality of classical CD14+ monocytes as a main myeloid cell component in 23 
well-defined cohorts of patients with mild and moderate COVID-19 during the acute phase of 24 
infection and compared them to that of healthy individuals. We found that ex vivo isolated CD14+ 25 
monocytes from mild and moderate COVID-19 patients display specific patterns of costimulatory 26 
and inhibitory receptors that clearly distinguish them from healthy monocytes, as well as altered 27 
expression of histone marks and a dysfunctional metabolic profile. Decreased NFkB activation in 28 
COVID-19 monocytes ex vivo is accompanied by an intact type I IFN antiviral response. 29 
Subsequent pathogen sensing ex vivo led to a state of functional unresponsiveness characterized 30 
by a defect in pro-inflammatory cytokine expression, NFkB-driven cytokine responses and 31 
defective type I IFN response in moderate COVID-19 monocytes. Transcriptionally, COVID-19 32 
monocytes switched their gene expression signature from canonical innate immune functions to a 33 
pro-thrombotic phenotype characterized by increased expression of pathways involved in 34 
hemostasis and immunothrombosis. In response to SARS-CoV-2 or other viral or bacterial 35 
components, monocytes displayed defects in the epigenetic remodelling and metabolic 36 
reprogramming that usually occurs upon pathogen sensing in innate immune cells. These results 37 
provide a potential mechanism by which innate immune dysfunction in COVID-19 may contribute 38 
to disease pathology. 39 
 40 
 41 
Main text 42 
 43 
COVID-19 is a respiratory tract infection caused by severe acute respiratory syndrome corona 44 
virus 2 (SARS-CoV-2). In unvaccinated individuals, the majority of infections are mild or 45 
asymptomatic, but 15% of patients develop moderate to severe disease requiring hospitalisation, 46 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2022. ; https://doi.org/10.1101/2022.04.03.486830doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.03.486830
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

and 5% develop critical disease with life-threatening pneumonia, acute respiratory distress 47 
syndrome (ARDs) and septic shock1. During the acute phase of infection, myeloid cells including 48 
monocytes and macrophages are the most enriched immune cell types in the lungs of COVID-19 49 
patients and play a major role in the pathogenicity of the disease2,3. Moreover, contrasting 50 
observations regarding the development of cytokine storms vs. immunosuppression4,5 and the 51 
overactive or deficient type I IFN response in the lungs and in peripheral blood6-11 have been 52 
described for the role of myeloid cells in COVID-1912. Despite these apparent contrasting works, 53 
most studies have observed dysregulated innate immune responses and reduced expression of 54 
human leukocyte antigen DR isotype (HLA-DR) by circulating myeloid cells, which is considered 55 
a marker of immune suppression10,13-17. 56 
 57 
Monocytes are blood-circulating, phagocytic, innate immune leukocytes with important functions 58 
in pathogen sensing, and innate and adaptive immune response activation during viral infection18. 59 
Despite their heterogeneity19, monocytes are broadly classified into three subsets based on the 60 
expression of CD14 and CD16 into classical (CD14+CD16-), intermediate (CD14+CD16+), and 61 
nonclassical (CD14lowCD16+) monocytes18. During viral infection, circulating monocytes infiltrate 62 
affected tissues and differentiate into inflammatory macrophages and dendritic cells (DCs)20, 63 
contributing to pathogen clearance and tissue regeneration. 64 
 65 
Here we deeply examined the phenotype and functionality of the main monocyte population in 66 
humans, i.e. classical CD14+ monocytes, in patients with COVID-19 and compared them to those 67 
of healthy individuals. We found that ex vivo isolated CD14+ monocytes from mild and moderate 68 
COVID-19 patients are phenotypically different from monocytes from healthy individuals, 69 
displaying differential expression of costimulatory receptors and MHC molecules, epigenetic 70 
alterations and a dysfunctional metabolic profile that is accompanied by decreased ex vivo NFkB 71 
activation, while maintaining an intact type I IFN antiviral response. Subsequent pathogen sensing 72 
ex vivo led to a state of functional unresponsiveness that correlated transcriptionally with that of a 73 
endotoxin-induced tolerance signature. Moreover, monocytes switched their gene expression 74 
signature from canonical innate immune functions to a pro-thrombotic phenotype characterized by 75 
increased expression of pathways involved in immunothrombosis. In response to SARS-CoV-2 or 76 
other viral or bacterial components, monocytes displayed decreased expression of type I IFN 77 
responses, decreased pro-inflammatory cytokine production and costimulatory receptor expression 78 
and defects in the epigenetic remodelling and metabolic reprogramming that usually occurs upon 79 
pathogen sensing. These results provide a potential mechanism by which innate immune 80 
dysfunction in COVID-19 contributes to disease progression and identifies potential therapeutic 81 
targets. 82 
 83 
 84 
Phenotypic and epigenetic alterations in COVID-19 monocytes. 85 
 86 
Global alterations in innate immune cell phenotypes have been identified in severe COVID-1911,21-87 
23. As the main human monocyte population, we focused on deeply characterizing the ex vivo 88 
phenotype of classical CD14+ monocytes in uninfected healthy individuals and patients with 89 
COVID-19 presenting with mild or moderate symptoms (1-2 or 3-4 WHO ordinal scale for 90 
COVID-19 severity, respectively) during the acute phase of disease. The battery of markers 91 
examined by high dimensional flow cytometry included MHC molecules and costimulatory and 92 
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coinhibitory receptors (Figure 1). Dimensionality reduction tools demonstrated that while some 93 
overlap in the global phenotypes was observed among the three study groups, monocytes from 94 
healthy individuals were clearly distinct from both mild and moderate COVID-19 on a tSNE plot 95 
(Figure 1a). In addition, COVID-19 monocytes could also be distinguished based on disease 96 
severity, with main cell clusters for both disease severity groups mapping separately on the tSNE 97 
plots. Moderate COVID-19 monocytes expressed decreased levels of HLA-DR, in agreement with 98 
previous reports10,17, but in contrast, they displayed increased expression of HLA-ABC compared 99 
to both mild disease and uninfected individuals, suggesting a skewed trend towards class I antigen 100 
presentation (Figure 1b). In addition, moderate COVID-19 monocytes expressed increased levels 101 
of the c-type lectin CD301. The decreased expression of the costimulatory receptor CD86 and 102 
increased expression of the inhibitory receptors TIM-324 and PD-125 on moderate COVID-19 103 
monocytes suggest an altered activation profile skewed towards an inhibitory phenotype. 104 
Furthermore, there were significant differences in the expression of certain markers on mild vs. 105 
moderate COVID-19 monocytes. For example, downregulation of HLA-DR and CD86 and 106 
upregulation of TIM-3 and HLA-ABC compared to healthy monocytes were only significant in 107 
moderate but not on mild COVID-19 monocytes, and the increased expression of CD80 in mild 108 
COVID-19 compared to healthy monocytes was not apparent in moderate COVID-19. These 109 
results suggest a more profound dysfunction in moderate than in mild COVID-19 monocytes. 110 
 111 
To further define and quantify the phenotypic differences observed between healthy individuals 112 
and COVID-19 patients, we applied clustering algorithms using the 12 phenotypic markers 113 
previously examined. Cell clustering identified 16 different subpopulations of monocytes that were 114 
distinctively distributed in healthy and COVID-19 monocytes (Figure 1c, d), with 11 clusters 115 
containing more than 88% of the total cells analyzed (Supplementary Figure 1). Interestingly, 116 
expansion of specific monocyte subpopulations were different in mild and moderate COVID-19 117 
monocytes, and while mild monocytes, in contrast to healthy monocytes, predominantly contained 118 
clusters 1, 3 and 4 and did not contain clusters 2 and 5, monocytes from moderate COVID-19 119 
patients significantly had reduced frequency of cells from clusters 1, 3 and 4, and contained 120 
expanded clusters 6 and 8 (Figure 1d and Supplementary Table 2). As a consequence, the 121 
distribution of cells from healthy, mild and moderate COVID-19 monocytes was clearly different 122 
in each cluster, and while some cell clusters were composed of cells from all disease groups, such 123 
as clusters 10, 11 and 13, other clusters predominantly contained cells from one or two particular 124 
disease groups. For example, clusters 1, 3, 4, 12 and 16 were predominantly composed of cells 125 
from mild patients, while clusters 6 and 8 predominantly contained moderate COVID-19 126 
monocytes and were almost absent in monocytes from healthy individuals (Figure 1e). Normalized 127 
expression levels of the markers defining each cluster demonstrated that the phenotype of cluster 128 
6 was mostly driven by downregulation of CD86 and HLA-DR, while that of cluster 8 was mostly 129 
driven by the increased expression of HLA-ABC (Figure 1f). Collectively, these results reveal that 130 
distinct populations of circulating monocytes are enriched in mild and moderate COVID-19 131 
patients. 132 
 133 
 134 
As a measurement of global differences in the patterns of activation/repression of gene expression 135 
we looked at the protein expression of histone marks associated with active gene transcription 136 
(H3K27Ac and H3K4Me326,27, Figure 1g) and gene repression (H3K9Me2 and H3K27Me326,27, 137 
Figure 1h) in monocytes from healthy individuals and patients with COVID-19 ex vivo. Significant 138 
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differences in the expression of epigenetic marks associated with activation of gene expression 139 
were found. Monocytes from mild COVID-19 patients displayed increased levels of both 140 
H3K27Ac and H3K4Me3 compared to healthy individuals as expected considering the in vivo 141 
pathogen sensing and subsequent activation of innate immunity by an ongoing viral infection28. 142 
However, moderate COVID-19 monocytes failed to increase H3K27Ac and H3K4Me3 expression 143 
and displayed similar levels to those of healthy individuals (Figure 1g). Moreover, while no 144 
differences were observed in the expression of the repressive mark H3K9Me2, the increased 145 
H3K27Me3 observed in mild COVID-19 monocytes was not observed in moderate COVID-19. 146 
These results suggest that the epigenetic remodeling associated with virus sensing and subsequent 147 
activation of innate immunity is defective in moderate COVID-19 monocytes. 148 
 149 
Ex vivo RNA-seq uncovers metabolic dysfunction in moderate COVID-19 monocytes. 150 
 151 
The fundamental differences in the phenotype and epigenetic marks in moderate COVID-19 152 
monocytes compared to those of healthy individuals led us to investigate in depth the gene 153 
expression profile of ex vivo isolated classical CD14+ monocytes from patients with moderate 154 
COVID-19 and compare them with those of healthy individuals (Figure 2). Principal component 155 
analysis (PCA) applied to examine the global distribution of gene expression profiles from 156 
COVID-19 monocytes (n=10) and healthy individuals (n=6) demonstrated a clear separation 157 
between groups along PC1 (Figure 2a), with genes encoding a number of soluble factors, 158 
chemokines and class II molecules as the main genes contributing to the separation between 159 
healthy and COVID-19 monocytes (Supplementary Figure 2). Differential gene expression 160 
analysis yielded 422 upregulated and 187 downregulated genes (³1.5-fold change, FDR<0.05) in 161 
COVID-19 monocytes compared to healthy controls (Figure 2b). We used these genes to perform 162 
a pathway enrichment analysis with XGR29 and pathway annotations from Reactome to gain 163 
insight on potential pathways differentially expressed in COVID-19 monocytes (Supplementary 164 
Figure 3). Interestingly, pathway enrichment identified glycolysis as the most enriched pathway 165 
in COVID-19 monocytes together with metabolism of lipids and lipoproteins. Moreover, the 166 
presence of interferon signaling and cytokine signaling in the list of enriched pathways was in 167 
agreement with previous reports on the role of these two pathways in COVID-19 pathogenesis6,17,23 168 
(Supplementary Figure 3 and Supplementary Table 3).  169 
 170 
We subsequently examined the directionality of expression of the enriched pathways by analyzing 171 
downregulated genes and upregulated genes separately. Pathway enrichment analysis of genes 172 
significantly upregulated (³1.5-fold change, FDR<0.05) in COVID-19 compared to healthy 173 
individuals demonstrated a significant increase in the metabolism of a number of lipids, including 174 
sphingolipids, phospholipids and lipoproteins. Other upregulated pathways in COVID-19 175 
monocytes included interferon signaling, cytokine signaling and transmembrane transport of small 176 
molecules. Heatmap showing the top 40 upregulated genes from the enriched pathways 177 
demonstrated a somewhat variable expression patterns among COVID-19 monocytes and included 178 
a number of type I interferon-stimulated genes (IFI27, IFITM2, IFI6, IFITM3, MX1), metabolic 179 
enzymes (ASAH1, CYP27A1, SGPP2, SPHK1) and others (Figure 2d). Interestingly, the highest 180 
expressed IFN-related gene was IFI27, which has been suggested as a biomarker of early SARS-181 
CoV-2 infection30. The increased type I IFN gene signature in COVID-19 monocytes was 182 
confirmed by the increased ex vivo phospho-IRF3 protein expression in moderate COVID-19 183 
patients compared to healthy individuals (Figure 2e) and by the increased expression of IFITM2 184 
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as an IFN-stimulated gene, measured by real-time PCR in an expanded cohort of mild and 185 
moderate COVID-19 patients (Figure 2f). NFkB activation was examined ex vivo indirectly by 186 
IkBa expression and directly by phosphorylation of the p65 NFkB subunit, as a readout for 187 
cytokine signaling31,32. While mild, unlike moderate COVID-19 monocytes displayed a decrease 188 
in the expression of IkBa compared to that of healthy individual monocytes, neither mild or 189 
moderate COVID-19 monocytes displayed an increased expression of phospho-p65 NFkB, 190 
suggesting that other additional mechanisms may be regulating the activation of NFkB, and that 191 
NFkB-driven cytokine responses may be altered in patients with COVID-19, in agreement with 192 
the lack of increased pro-inflammatory cytokine expression by COVID-19 monocytes (Figure 2c) 193 
and with previous single cell transcriptomic data of acute COVID-19 PBMC33. Moreover, several 194 
of the genes contributing to the “Cytokine signaling” pathway enrichment (Figure 2c) were 195 
interferon-stimulated genes (Supplementary Table 4). 196 
 197 
We subsequently selected the set of significantly downregulated genes (³1.5 fold decrease, 198 
FDR<0.05) in COVID-19 monocytes to perform pathway enrichment. The only pathway that was 199 
significantly downregulated in COVID-19 monocytes was glycolysis (Figure 2h, I and 200 
Supplementary Table 5). This metabolic profile with increased metabolism of lipids (Figure 2c) 201 
and decreased glycolysis was unexpected, as glycolysis is an important driver of innate immune 202 
cell function during the recognition of pathogens34. We used SCENITHTM35 to metabolically 203 
profile CD14+ monocytes from COVID-19 patients and healthy controls ex vivo. SCENITHTM uses 204 
protein synthesis as a measurement of global metabolic activity. Puromycin incorporation is used 205 
as a reliable readout of protein synthesis levels (and therefore metabolic activity) in vitro and in 206 
vivo. In agreement with the pathway enrichment results, ex vivo puromycin incorporation was 207 
significantly decreased in moderate COVID-19 monocytes (Figure 2j) compared to healthy 208 
individuals, suggesting decreased metabolic activity. Moreover, the glycolytic capacity of 209 
COVID-19 monocytes was significantly decreased in moderate patients and correlated with 210 
disease severity (Figure 2k), and this was accompanied by a concomitant increase in metabolic 211 
dependency in monocytes from moderate COVID-19 patients. The decreased metabolic activity 212 
and glycolytic capacity was further confirmed by Seahorse analysis of extracellular acidification 213 
rate and oxygen consumption rate as readouts for glycolysis and oxidative phosphorylation, 214 
respectively (Supplementary Figure 4). 215 
 216 
These data suggest that monocytes from COVID-19 patients with moderate disease display 217 
epigenetic alterations and a dysfunctional metabolic profile that is accompanied by decreased 218 
NFkB activation, while maintaining intact type I IFN antiviral responses.  219 
 220 
COVID-19 monocytes display impaired pathogen sensing and activation mechanisms ex vivo. 221 
 222 
The dysfunctional metabolic profile with a downregulation of glycolysis and the defective 223 
activation of NFkB, both pathways heavily involved in the activation of innate immune cells upon 224 
virus encounter32,34, led us to examine the functional capacity of monocytes to sense and respond 225 
to SARS-CoV2 ex vivo (Figure 3). Stimulation of CD14+ monocytes from healthy individuals with 226 
SARS-CoV-2 led to a significant increase in both TNF and IL-10 production (Figure 3a). 227 
However, COVID-19 monocytes significantly produced less TNF as compared to healthy 228 
monocytes, while no differences were observed in IL-10 expression (Figure 3b). Moreover, the 229 
defect in TNF production upon stimulation was not SARS-CoV-2-specific, as stimulation with 230 
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common cold coronaviruses or bacterial lipopolysaccharide (LPS) also led to significantly reduced 231 
TNF production compared to monocytes from healthy individuals (Figure 3c). In addition, the 232 
expression of CD40 (Figure 3d), which is important for monocyte effector function and is 233 
upregulated after virus sensing36, was increased in monocytes from healthy individuals but not on 234 
COVID-19 monocytes (Figure 3e). This decreased expression was confirmed after stimulation 235 
with common cold coronaviruses or LPS (Figure 3f), suggesting that the activation defects in 236 
COVID-19 monocytes in response to pathogen sensing were not specific to SARS-CoV-2. In 237 
addition to CD40, we also examined the expression of other cell surface receptors involved in 238 
antigen presentation and activation of T cells. (Figure 3g) HLA-DR expression levels were not 239 
further upregulated upon SARS-CoV-2 stimulation in any of the patient groups, and stimulation 240 
still maintained the differences in expression observed ex vivo among groups (Figure 1b). 241 
Moreover, while CD80 was significantly upregulated in healthy, mild and moderate COVID-19 242 
monocytes after SARS-CoV-2 stimulation, only healthy monocytes increased the expression of 243 
CD86 after stimulation (Figure 3g). 244 
 245 
Epigenetic reprogramming underlies innate immune cell activation upon pathogen sensing. In 246 
agreement with this, monocytes from healthy individuals significantly increased the expression of 247 
H3K27Ac and H3K4Me3, associated with activation of gene expression26,27, upon SARS-CoV-2 248 
stimulation. In contrast, monocytes from moderate COVID-19 patients did not change the 249 
expression of these histone marks after SARS-CoV-2 sensing.  Monocytes from mild COVID-19 250 
patients demonstrated an intermediate pattern of expression, with significant upregulation of 251 
H3K27Ac but no change in H3K4Me3 upon SARS-CoV-2 stimulation (Figure 3h). Moreover, 252 
mild patient monocytes significantly decreased the expression of repressive H3K27Me3 and 253 
H3K9Me2 marks, while neither healthy or moderate COVID-19 monocytes did after stimulation 254 
with SARS-CoV-2 (Figure 3i).  255 
 256 
The apparent unresponsiveness of COVID-19 monocytes to pathogen sensing was accompanied 257 
by altered metabolic reprogramming. Innate immune cells that sense pathogens increase the rate 258 
of glycolysis over mitochondrial oxidative phosphorylation to enable fast energy availability 37-39. 259 
However, COVID-19 monocyte energetic profile measured by SCENITHTM did not increase upon 260 
LPS stimulation, unlike that of healthy monocytes (Figure 3j). Moreover, moderate COVID-19 261 
monocytes showed a decreased glycolytic capacity and an increase in fatty acid and amino acid 262 
oxidation capacity (Figure 3k) compared to healthy monocytes, that correlated with a slight but 263 
significant decrease in glucose dependency and an increase in mitochondrial dependency 264 
compared to monocytes from healthy individuals (Supplementary Figure 5). These data are in 265 
agreement with the enriched metabolic pathways from RNA-seq data (Figures 2c and 2h). 266 
Seahorse experiments confirmed the defect in glycolysis in stimulated monocytes from COVID-267 
19 patients (Supplementary Figure 6). In summary, monocytes from COVID-19 patients display a 268 
profound defect in pathogen sensing ex vivo that is more evident in moderate than in mild patients 269 
and is characterized by an impairment in pro-inflammatory cytokine production and expression of 270 
activation-related receptors, epigenetic reprogramming and metabolic rewiring. 271 
 272 
SARS-CoV-2-stimulated monocytes from COVID-19 patients display a pro-thrombotic gene 273 
expression signature. 274 
 275 
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To globally characterize the gene expression signature of activated monocytes in COVID-19, we 276 
performed RNA-seq on SARS-CoV-2-stimulated monocytes from healthy individuals and patients 277 
with moderate COVID-19 (Figure 4). PCA clearly separated COVID-19 from healthy monocytes, 278 
although some healthy monocytes clustered with COVID-19 in the principal component space 279 
(Figure 4a, Supplementary Figure 7). Quantification of differentially expressed genes yielded 280 
1,437 upregulated and 2,073 downregulated genes in activated COVID-19 compared to activated 281 
healthy monocytes (³1.5 fold change, FDR<0.05, Figure 4b). Pathway enrichment of differentially 282 
expressed genes (³1.5 fold change vs. healthy monocytes, FDR<0.05) using XGR software and 283 
the Reactome pathway database demonstrated a number of expected pathways involved in the 284 
innate immune response to pathogens, including type I IFN signaling, cytokine signaling, 285 
interactions between lymphoid and non-lymphoid cells, NLR sensing, etc (Supplementary Figure 286 
8 and Supplementary Table 6). However, when we focused our analysis on pathways enriched in 287 
upregulated genes in activated COVID-19 monocytes compared to activated healthy monocytes, 288 
the most significantly enriched pathways were involved in hemostasis and coagulation, including 289 
integrin signaling, extracellular matrix organization, signaling by PDGF, interactions with 290 
activated platelets and general hemostasis (Figure 4c and Supplementary Table 7). Integrin 291 
receptors are used by cells to interact with other cells and with the extracellular matrix, by binding 292 
numerous matrix proteins including collagen, actin and laminin being also involved in hemostasis 293 
and platelet aggregation40. In addition, monocytes actively bind to platelets forming pro-294 
thrombotic aggregates in inflammatory and vascular pathologies41,42. Monocytes from COVID-19 295 
patients expressed increased levels of various collagen subunits (COL1A1, PLOD2, COL6A3, 296 
COL6A1), enzymes involved in collagen triple helix synthesis (COLGALT1) and a number of 297 
matrix metalloproteinases (MMP1, MMP2, MMP14, Figure 4d), which are not only involved in 298 
extracellular matrix remodeling, but they have also been implicated in contributing directly to 299 
platelet activation and priming for aggregation43,44. These results are in agreement with the clinical 300 
observations of hypercoagulability and acquired coagulopathies in patients with COVID-1945-48, 301 
and suggest that monocytes from moderate COVID-19 patients upregulate a pro-thrombotic gene 302 
expression signature upon further SARS-CoV-2 sensing. 303 
  304 
Interestingly, downregulated pathways in stimulated COVID-19 monocytes included most of the 305 
canonical immunological functions expected for innate immune cells upon virus sensing, i.e. 306 
interferon signaling, RIG-I/MDA5-mediated induction of interferons, activation of TCR signaling 307 
in T cells, innate immune functions and interactions with non-lymphoid cells (Figure 4e and 308 
Supplementary Table 8). The majority of the top 40 genes significantly downregulated in COVID-309 
19 monocytes from these downregulated pathways consisted of different interferons (IFNA1, 310 
IFNA2, IFNA14 and IFNB1), interferon-stimulated genes (IFIT3, ISG15, IFIT2, ISG20, IRF7 and 311 
MX2) and pathogen-sensing receptors (TLR7, AIM2, Figure 4f). This gene signature was 312 
functionally confirmed by examining the activation pattern of IRF3 in response to LPS in 313 
monocytes from healthy individuals and patients with mild and moderate COVID-19 (Figure 4g). 314 
While healthy and mild COVID-19 monocytes significantly increased the expression of the 315 
phosphorylated form of IRF3 upon LPS stimulation compared to baseline levels, monocytes from 316 
moderate patients did not. This inability to activate IRF3 correlated with decreased expression of 317 
the interferon-stimulated gene IFITM2, examined in an expanded cohort of healthy, mild and 318 
moderate COVID-19 monocytes after stimulation with SARS-CoV-2 (Figure 4h). Of note, 319 
examination of NFkB p65 activation, as a main transcription factor involved in cytokine signaling 320 
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in innate cells, demonstrated a defective activation in both mild and moderate COVID-19 as 321 
compared to healthy individuals (Figure 4i). 322 
 323 
These findings are consistent with an unexpected transcriptional and functional switch of COVID-324 
19 monocytes from canonical innate immune functions to a pro-thrombotic phenotype and 325 
potential cross-talk with other cells involved in hemostasis, which suggests that activated 326 
monocytes may contribute to COVID-19 severity by actively impacting hemostasis and by a 327 
reduction in innate immune functions necessary for efficient virus clearance. 328 
 329 
Endotoxin tolerance signature enriched in activated COVID-19 monocytes. 330 
 331 
A number of works have suggested similarities between the characteristics of the immune response 332 
in COVID-19 patients and those of septic individuals, including multiple organ dysfunction, 333 
immunosuppression, coagulopathies and acute respiratory failure49. To determine the similarities 334 
between the transcriptional signature of COVID-19 monocytes with that of sepsis monocytes, we 335 
utilized publicly available microarray gene expression data on sepsis monocytes and healthy 336 
controls50 and we tested the estimated fold changes for correlation with those from our ex vivo 337 
(Figure 5a) and activated (Figure 5b) COVID-19 and healthy monocytes. No clear correlation was 338 
observed in any of the two contrasts, which suggest that the transcriptional signature of CD14+ 339 
monocytes in moderate COVID-19 is not similar to that of monocytes in sepsis. 340 
 341 
The lack of cytokine expression, activation of costimulatory receptors, impaired antigen 342 
presentation potential and metabolic impairments displayed by moderate COVID-19 monocytes 343 
resembled the phenotype observed in LPS-induced tolerance51. We have previously defined an 344 
endotoxin tolerance gene expression signature from publicly available microarray data on 345 
monocytes stimulated in vitro with LPS52 that comprises 398 genes. Out of these, 318 genes were 346 
detected in our RNA-seq dataset. We tested for correlation of the endotoxin tolerance signature 347 
with ex vivo (Figure 5c) and activated (Figure 5d) COVID-19 monocytes, and while ex vivo 348 
COVID-19 monocytes did not display a clear correlation with the tolerance signature, activated 349 
COVID-19 monocytes displayed similar directionality of expression in those genes from the 350 
tolerance signature that were detected in the dataset. These data were further confirmed in barcode 351 
plots (Figure 5e), showing a statistically significant enrichment of the endotoxin tolerance gene 352 
signature in the list of differentially expressed genes from stimulated COVID-19 monocytes 353 
compared to healthy controls, for both upregulated and downregulated genes.  354 
 355 
Discussion. 356 
Here we employed metabolic, transcriptomic and functional assays to identify a number of 357 
phenotypic and functional alterations of COVID-19 monocytes that characterize moderate disease 358 
and we have provided the functional characteristics of monocyte responses in mild SARS-CoV-2 359 
infections as an example of an efficiently and successfully cleared infection without excessive 360 
immunopathology. Important alterations in epigenetic marks, metabolism and transcriptional 361 
signatures characterize moderate COVID-19 monocytes and are important aspects of a global 362 
unresponsiveness phenotype upon pathogen sensing characterized by a transcriptional switch from 363 
canonical innate immune functions to a pro-thrombotic signature. Epigenetic and metabolic 364 
defects probably underlie the observed dysfunctional phenotype as they modulate innate immune 365 
functions including cytokine expression, activation, phagocytic capacity, etc34,53,54. Moreover, it 366 
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would be plausible that these two mechanisms are interlinked. For example, the defects in histone 367 
acetylation could be due to a lack of acetyl groups, which are mostly provided by acetyl-CoA 368 
generated as a glycolysis product55, which is inhibited in COVID-19 monocytes (Figures 2 and 3).  369 
 370 
A question that remains to be answered is the driver(s) of the described circulating monocyte 371 
dysfunction. Ex vivo, pathogen sensing triggers a switch in COVID-19 monocyte gene expression 372 
signature from canonical innate immune functions to pro-thrombotic phenotype. It remains to be 373 
determined whether other soluble factors in the microenvironment contribute to this 374 
reprogramming, or even the direct infection of monocytes by SARS-CoV-2, which has been 375 
previously suggested56. The phenotype we observed in circulating monocytes is in clear contrast 376 
with the functionality of monocyte-derived macrophages in the lung of COVID19 patients10. In 377 
this regard, our study is limited by the lack of bronchoalveolar lavage fluid (BALF) paired samples 378 
to compare the phenotype and function of circulating monocytes with those infiltrating the target 379 
tissue. However, some previous publications examining paired airway and blood samples have 380 
shown differences in the signatures of circulating and lung innate immune cells, with low HLA-381 
DR expressing, dysfunctional monocytes in the blood and hyperactive airway monocyte and 382 
macrophages producing pro-inflammatory cytokines10,33,57. The underlying mechanisms for these 383 
differences remain elusive. During the course of viral infections, circulating monocytes rapidly 384 
leave the bloodstream and migrate to target tissues, where after pathogen sensing and/or other 385 
microenvironmental stimuli, they differentiate into macrophages and/or dendritic cells. In this 386 
study we examined the functionality of monocytes during the acute phase of disease, early after 387 
symptom onset. It remains to be determined whether these dysfunctional monocytes have the 388 
capacity to migrate to the lungs and contribute to lung inflammation, or whether their dysfunction 389 
is such that migration is impaired and monocyte migration only occurred during the very initial 390 
phases of infection before monocyte acquired the impairments observed in this study. Of note, 391 
some of the defective pathways displayed by COVID-19 monocytes, as for example glycolysis, 392 
have been shown to be essential for migration of other cells to target tissue58,59. Finally, the results 393 
described in this study beg the question of whether the functional impairments observed in 394 
monocytes during the acute phase of infection are COVID-19-specific. While stimulation with 395 
other viruses and bacterial products led to similar altered immune phenotypes in COVID-19 396 
monocytes (Figure 3), it seems likely that these processes occur with other moderate respiratory 397 
viral infections, as is the case during seasonal Influenza vaccination60. Longitudinal studies of 398 
monocyte dynamics during SARS-CoV-2 and other respiratory viral infections using both blood 399 
and BALF samples are warranted to answer these questions. 400 
 401 
Main references 402 
 403 
 404 
1 Fu, L. et al. Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A 405 

systematic review and meta-analysis. J Infect 80, 656-665, doi:10.1016/j.jinf.2020.03.041 406 
(2020). 407 

2 Bost, P. et al. Host-Viral Infection Maps Reveal Signatures of Severe COVID-19 Patients. 408 
Cell 181, 1475-1488 e1412, doi:10.1016/j.cell.2020.05.006 (2020). 409 

3 Merad, M. & Martin, J. C. Pathological inflammation in patients with COVID-19: a key 410 
role for monocytes and macrophages. Nat Rev Immunol 20, 355-362, doi:10.1038/s41577-411 
020-0331-4 (2020). 412 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2022. ; https://doi.org/10.1101/2022.04.03.486830doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.03.486830
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

4 Jafarzadeh, A., Chauhan, P., Saha, B., Jafarzadeh, S. & Nemati, M. Contribution of 413 
monocytes and macrophages to the local tissue inflammation and cytokine storm in 414 
COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life 415 
Sci 257, 118102, doi:10.1016/j.lfs.2020.118102 (2020). 416 

5 Remy, K. E. et al. Severe immunosuppression and not a cytokine storm characterizes 417 
COVID-19 infections. JCI Insight 5, doi:10.1172/jci.insight.140329 (2020). 418 

6 Hadjadj, J. et al. Impaired type I interferon activity and inflammatory responses in severe 419 
COVID-19 patients. Science 369, 718-724, doi:10.1126/science.abc6027 (2020). 420 

7 Lee, J. S. & Shin, E. C. The type I interferon response in COVID-19: implications for 421 
treatment. Nat Rev Immunol 20, 585-586, doi:10.1038/s41577-020-00429-3 (2020). 422 

8 Ramasamy, S. & Subbian, S. Critical Determinants of Cytokine Storm and Type I 423 
Interferon Response in COVID-19 Pathogenesis. Clin Microbiol Rev 34, 424 
doi:10.1128/CMR.00299-20 (2021). 425 

9 Zhang, J., Zhao, C. & Zhao, W. Virus Caused Imbalance of Type I IFN Responses and 426 
Inflammation in COVID-19. Frontiers in Immunology 12, 427 
doi:10.3389/fimmu.2021.633769 (2021). 428 

10 Liao, M. et al. Single-cell landscape of bronchoalveolar immune cells in patients with 429 
COVID-19. Nat Med 26, 842-844, doi:10.1038/s41591-020-0901-9 (2020). 430 

11 Schulte-Schrepping, J. et al. Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell 431 
Compartment. Cell 182, 1419-1440 e1423, doi:10.1016/j.cell.2020.08.001 (2020). 432 

12 McKechnie, J. L. & Blish, C. A. The Innate Immune System: Fighting on the Front Lines 433 
or Fanning the Flames of COVID-19? Cell Host Microbe 27, 863-869, 434 
doi:10.1016/j.chom.2020.05.009 (2020). 435 

13 Giamarellos-Bourboulis, E. J. et al. Complex Immune Dysregulation in COVID-19 436 
Patients with Severe Respiratory Failure. Cell Host Microbe 27, 992-1000 e1003, 437 
doi:10.1016/j.chom.2020.04.009 (2020). 438 

14 Payen, D. et al. A Longitudinal Study of Immune Cells in Severe COVID-19 Patients. 439 
Front Immunol 11, 580250, doi:10.3389/fimmu.2020.580250 (2020). 440 

15 Silvin, A. et al. Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate 441 
Severe from Mild COVID-19. Cell 182, 1401-1418 e1418, doi:10.1016/j.cell.2020.08.002 442 
(2020). 443 

16 Spinetti, T. et al. Reduced Monocytic Human Leukocyte Antigen-DR Expression Indicates 444 
Immunosuppression in Critically Ill COVID-19 Patients. Anesth Analg 131, 993-999, 445 
doi:10.1213/ANE.0000000000005044 (2020). 446 

17 Lucas, C. et al. Longitudinal analyses reveal immunological misfiring in severe COVID-447 
19. Nature 584, 463-469, doi:10.1038/s41586-020-2588-y (2020). 448 

18 Kapellos, T. S. et al. Human Monocyte Subsets and Phenotypes in Major Chronic 449 
Inflammatory Diseases. Front Immunol 10, 2035, doi:10.3389/fimmu.2019.02035 (2019). 450 

19 Villani, A. C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, 451 
monocytes, and progenitors. Science 356, doi:10.1126/science.aah4573 (2017). 452 

20 Serbina, N. V., Jia, T., Hohl, T. M. & Pamer, E. G. Monocyte-mediated defense against 453 
microbial pathogens. Annu Rev Immunol 26, 421-452, 454 
doi:10.1146/annurev.immunol.26.021607.090326 (2008). 455 

21 Saichi, M. et al. Single-cell RNA sequencing of blood antigen-presenting cells in severe 456 
COVID-19 reveals multi-process defects in antiviral immunity. Nat Cell Biol 23, 538-551, 457 
doi:10.1038/s41556-021-00681-2 (2021). 458 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2022. ; https://doi.org/10.1101/2022.04.03.486830doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.03.486830
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

22 Zhou, R. et al. Acute SARS-CoV-2 Infection Impairs Dendritic Cell and T Cell Responses. 459 
Immunity 53, 864-877 e865, doi:10.1016/j.immuni.2020.07.026 (2020). 460 

23 Arunachalam, P. S. et al. Systems biological assessment of immunity to mild versus severe 461 
COVID-19 infection in humans. Science 369, 1210-1220, doi:10.1126/science.abc6261 462 
(2020). 463 

24 Zhang, Y. et al. Tim-3 regulates pro- and anti-inflammatory cytokine expression in human 464 
CD14+ monocytes. J Leukoc Biol 91, 189-196, doi:10.1189/jlb.1010591 (2012). 465 

25 Pagliano, O. et al. Tim-3 mediates T cell trogocytosis to limit antitumor immunity. J Clin 466 
Invest, doi:10.1172/JCI152864 (2022). 467 

26 Kimura, H. Histone modifications for human epigenome analysis. J Hum Genet 58, 439-468 
445, doi:10.1038/jhg.2013.66 (2013). 469 

27 Shahbazian, M. D. & Grunstein, M. Functions of site-specific histone acetylation and 470 
deacetylation. Annu Rev Biochem 76, 75-100, 471 
doi:10.1146/annurev.biochem.76.052705.162114 (2007). 472 

28 Hoeksema, M. A. & de Winther, M. P. Epigenetic Regulation of Monocyte and 473 
Macrophage Function. Antioxid Redox Signal 25, 758-774, doi:10.1089/ars.2016.6695 474 
(2016). 475 

29 Fang, H., Knezevic, B., Burnham, K. L. & Knight, J. C. XGR software for enhanced 476 
interpretation of genomic summary data, illustrated by application to immunological traits. 477 
Genome Med 8, 129, doi:10.1186/s13073-016-0384-y (2016). 478 

30 Gupta, R. K. et al. Blood transcriptional biomarkers of acute viral infection for detection 479 
of pre-symptomatic SARS-CoV-2 infection: a nested, case-control diagnostic accuracy 480 
study. Lancet Microbe 2, e508-e517, doi:10.1016/S2666-5247(21)00146-4 (2021). 481 

31 de Marcken, M., Dhaliwal, K., Danielsen, A. C., Gautron, A. S. & Dominguez-Villar, M. 482 
TLR7 and TLR8 activate distinct pathways in monocytes during RNA virus infection. Sci 483 
Signal 12, doi:10.1126/scisignal.aaw1347 (2019). 484 

32 Liu, T., Zhang, L., Joo, D. & Sun, S. C. NF-kappaB signaling in inflammation. Signal 485 
Transduct Target Ther 2, doi:10.1038/sigtrans.2017.23 (2017). 486 

33 Wilk, A. J. et al. A single-cell atlas of the peripheral immune response in patients with 487 
severe COVID-19. Nat Med 26, 1070-1076, doi:10.1038/s41591-020-0944-y (2020). 488 

34 Kelly, B. & O'Neill, L. A. Metabolic reprogramming in macrophages and dendritic cells in 489 
innate immunity. Cell Res 25, 771-784, doi:10.1038/cr.2015.68 (2015). 490 

35 Arguello, R. J. et al. SCENITH: A Flow Cytometry-Based Method to Functionally Profile 491 
Energy Metabolism with Single-Cell Resolution. Cell Metab 32, 1063-1075 e1067, 492 
doi:10.1016/j.cmet.2020.11.007 (2020). 493 

36 Kuroiwa, T. et al. CD40 ligand-activated human monocytes amplify glomerular 494 
inflammatory responses through soluble and cell-to-cell contact-dependent mechanisms. J 495 
Immunol 163, 2168-2175 (1999). 496 

37 Dominguez-Andres, J. et al. Rewiring monocyte glucose metabolism via C-type lectin 497 
signaling protects against disseminated candidiasis. PLoS Pathog 13, e1006632, 498 
doi:10.1371/journal.ppat.1006632 (2017). 499 

38 Lachmandas, E. et al. Microbial stimulation of different Toll-like receptor signalling 500 
pathways induces diverse metabolic programmes in human monocytes. Nat Microbiol 2, 501 
16246, doi:10.1038/nmicrobiol.2016.246 (2016). 502 

39 Schmidl, C. et al. Transcription and enhancer profiling in human monocyte subsets. Blood 503 
123, e90-99, doi:10.1182/blood-2013-02-484188 (2014). 504 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2022. ; https://doi.org/10.1101/2022.04.03.486830doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.03.486830
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

40 Nolte, M. A. & Margadant, C. Activation and suppression of hematopoietic integrins in 505 
hemostasis and immunity. Blood 135, 7-16, doi:10.1182/blood.2019003336 (2020). 506 

41 Mollnau, H. et al. Mechanisms of increased vascular superoxide production in an 507 
experimental model of idiopathic dilated cardiomyopathy. Arterioscler Thromb Vasc Biol 508 
25, 2554-2559, doi:10.1161/01.ATV.0000190673.41925.9B (2005). 509 

42 Shantsila, E. & Lip, G. Y. The role of monocytes in thrombotic disorders. Insights from 510 
tissue factor, monocyte-platelet aggregates and novel mechanisms. Thromb Haemost 102, 511 
916-924, doi:10.1160/TH09-01-0023 (2009). 512 

43 Galt, S. W. et al. Outside-in signals delivered by matrix metalloproteinase-1 regulate 513 
platelet function. Circ Res 90, 1093-1099, doi:10.1161/01.res.0000019241.12929.eb 514 
(2002). 515 

44 Versteeg, H. H., Heemskerk, J. W., Levi, M. & Reitsma, P. H. New fundamentals in 516 
hemostasis. Physiol Rev 93, 327-358, doi:10.1152/physrev.00016.2011 (2013). 517 

45 Al-Samkari, H. et al. COVID-19 and coagulation: bleeding and thrombotic manifestations 518 
of SARS-CoV-2 infection. Blood 136, 489-500, doi:10.1182/blood.2020006520 (2020). 519 

46 Middeldorp, S. et al. Incidence of venous thromboembolism in hospitalized patients with 520 
COVID-19. J Thromb Haemost 18, 1995-2002, doi:10.1111/jth.14888 (2020). 521 

47 Klok, F. A. et al. Incidence of thrombotic complications in critically ill ICU patients with 522 
COVID-19. Thromb Res 191, 145-147, doi:10.1016/j.thromres.2020.04.013 (2020). 523 

48 Rosen, R. J. Early thromboembolic events in hospitalized COVID-19 patients. Thromb Res 524 
192, 1, doi:10.1016/j.thromres.2020.05.004 (2020). 525 

49 Olwal, C. O. et al. Parallels in Sepsis and COVID-19 Conditions: Implications for 526 
Managing Severe COVID-19. Front Immunol 12, 602848, 527 
doi:10.3389/fimmu.2021.602848 (2021). 528 

50 Shalova, I. N. et al. Human monocytes undergo functional re-programming during sepsis 529 
mediated by hypoxia-inducible factor-1alpha. Immunity 42, 484-498, 530 
doi:10.1016/j.immuni.2015.02.001 (2015). 531 

51 Wolk, K., Docke, W. D., von Baehr, V., Volk, H. D. & Sabat, R. Impaired antigen 532 
presentation by human monocytes during endotoxin tolerance. Blood 96, 218-223 (2000). 533 

52 del Fresno, C. et al. Potent phagocytic activity with impaired antigen presentation 534 
identifying lipopolysaccharide-tolerant human monocytes: demonstration in isolated 535 
monocytes from cystic fibrosis patients. J Immunol 182, 6494-6507, 536 
doi:10.4049/jimmunol.0803350 (2009). 537 

53 Mehta, S. & Jeffrey, K. L. Beyond receptors and signaling: epigenetic factors in the 538 
regulation of innate immunity. Immunol Cell Biol 93, 233-244, doi:10.1038/icb.2014.101 539 
(2015). 540 

54 Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals 541 
metabolic modules that regulate macrophage polarization. Immunity 42, 419-430, 542 
doi:10.1016/j.immuni.2015.02.005 (2015). 543 

55 Yu, X., Ma, R., Wu, Y., Zhai, Y. & Li, S. Reciprocal Regulation of Metabolic 544 
Reprogramming and Epigenetic Modifications in Cancer. Front Genet 9, 394, 545 
doi:10.3389/fgene.2018.00394 (2018). 546 

56 Junqueira, C. et al. SARS-CoV-2 infects blood monocytes to activate NLRP3 and AIM2 547 
inflammasomes, pyroptosis and cytokine release. Res Sq, doi:10.21203/rs.3.rs-153628/v1 548 
(2021). 549 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2022. ; https://doi.org/10.1101/2022.04.03.486830doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.03.486830
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

57 Szabo, P. A. et al. Longitudinal profiling of respiratory and systemic immune responses 550 
reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity 54, 797-551 
814 e796, doi:10.1016/j.immuni.2021.03.005 (2021). 552 

58 Kishore, M. et al. Regulatory T Cell Migration Is Dependent on Glucokinase-Mediated 553 
Glycolysis. Immunity 47, 875-889 e810, doi:10.1016/j.immuni.2017.10.017 (2017). 554 

59 Shiraishi, T. et al. Glycolysis is the primary bioenergetic pathway for cell motility and 555 
cytoskeletal remodeling in human prostate and breast cancer cells. Oncotarget 6, 130-143, 556 
doi:10.18632/oncotarget.2766 (2015). 557 

60 Wimmers, F. et al. The single-cell epigenomic and transcriptional landscape of immunity 558 
to influenza vaccination. Cell 184, 3915-3935 e3921, doi:10.1016/j.cell.2021.05.039 559 
(2021). 560 

61 Vergis, N. et al. Multi-arm Trial of Inflammatory Signal Inhibitors (MATIS) for 561 
hospitalised patients with mild or moderate COVID-19 pneumonia: a structured summary 562 
of a study protocol for a randomised controlled trial. Trials 22, 270, doi:10.1186/s13063-563 
021-05190-z (2021). 564 

62 Levine, J. H. et al. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like 565 
Cells that Correlate with Prognosis. Cell 162, 184-197, doi:10.1016/j.cell.2015.05.047 566 
(2015). 567 

63 Leibowitz, J., Kaufman, G. & Liu, P. Coronaviruses: propagation, quantification, storage, 568 
and construction of recombinant mouse hepatitis virus. Curr Protoc Microbiol Chapter 569 
15, Unit 15E 11, doi:10.1002/9780471729259.mc15e01s21 (2011). 570 

64 Dent, S. & Neuman, B. W. Purification of coronavirus virions for Cryo-EM and proteomic 571 
analysis. Methods Mol Biol 1282, 99-108, doi:10.1007/978-1-4939-2438-7_10 (2015). 572 

65 Kelley, J. L., Rozek, M. M., Suenram, C. A. & Schwartz, C. J. Activation of human blood 573 
monocytes by adherence to tissue culture plastic surfaces. Exp Mol Pathol 46, 266-278, 574 
doi:10.1016/0014-4800(87)90049-9 (1987). 575 

66 Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21, 576 
doi:10.1093/bioinformatics/bts635 (2013). 577 

67 Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for 578 
assigning sequence reads to genomic features. Bioinformatics 30, 923-930, 579 
doi:10.1093/bioinformatics/btt656 (2014). 580 

68 DeLuca, D. S. et al. RNA-SeQC: RNA-seq metrics for quality control and process 581 
optimization. Bioinformatics 28, 1530-1532, doi:10.1093/bioinformatics/bts196 (2012). 582 

69 genefilter: methods for filtering genes from high-throughput experiments v. R package 583 
version 1.76.0 (2021). 584 

70 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion 585 
for RNA-seq data with DESeq2. Genome Biol 15, 550, doi:10.1186/s13059-014-0550-8 586 
(2014). 587 

71 Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing 588 
and microarray studies. Nucleic Acids Res 43, e47, doi:10.1093/nar/gkv007 (2015). 589 

72 Davenport, E. E. et al. Genomic landscape of the individual host response and outcomes 590 
in sepsis: a prospective cohort study. Lancet Respir Med 4, 259-271, doi:10.1016/S2213-591 
2600(16)00046-1 (2016). 592 

73 Pena, O. M., Pistolic, J., Raj, D., Fjell, C. D. & Hancock, R. E. Endotoxin tolerance 593 
represents a distinctive state of alternative polarization (M2) in human mononuclear cells. 594 
J Immunol 186, 7243-7254, doi:10.4049/jimmunol.1001952 (2011). 595 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2022. ; https://doi.org/10.1101/2022.04.03.486830doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.03.486830
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

74 Dominguez-Villar, M., Baecher-Allan, C. M. & Hafler, D. A. Identification of T helper 596 
type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat Med 17, 673-597 
675, doi:10.1038/nm.2389 (2011). 598 

 599 
Tables 600 
Supplementary Table 1. Participant characteristics. 601 
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Supplementary Table 3. Pathway enrichment of all differentially expressed genes from COVID-603 
19 vs. healthy monocytes. 604 
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Supplementary Table 5. Pathway enrichment of downregulated genes from COVID-19 vs. healthy 607 
monocytes. 608 
Supplementary Table 6. Pathway enrichment of all differentially expressed genes from stimulated 609 
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Supplementary Table 7. Pathway enrichment of upregulated genes from stimulated COVID-19 vs. 611 
stimulated healthy monocytes. 612 
Supplementary Table 8. Pathway enrichment of downregulated genes from stimulated COVID-19 613 
vs. stimulated healthy monocytes. 614 
 615 
Figure legends 616 
 617 
Figure 1. Unique phenotype of COVID-19 monocytes. a. tSNE plots obtained from a 618 
concatenated sample consisting of PBMC from n=15 healthy individuals, n=15 mild and n=15 619 
moderate COVID-19 patients. b. Box and whiskers plots summarizing the median gMFI of the 620 
receptors analyzed. The box extends from the 25th to the 75th percentile and the whiskers are drawn 621 
down to the 10th percentile and up to the 90th percentile. Points below and above the whiskers are 622 
drawn as individual points (n=25 healthy, n=15 mild and n=17 moderate COVID-19 individuals). 623 
c. tSNE plots depicting the cell clusters identified by Phenograph from the concatenated sample in 624 
a. d. Pie charts show the fraction of cells within each identified cell cluster in each patient group. 625 
e. Bars graph show the distribution (percentage) of cells from each patient group in each identified 626 
cell cluster. f. Heatmap of the expression of receptors per cell cluster displayed as modified z-627 
scores using median values. g and h. Summary of expression of activating (g) and repressive (h) 628 
histone marks in monocytes from healthy individuals (n=20), mild (n=15) and moderate (n=11) 629 
COVID-19 patients. One-way ANOVA with Tukey’s correction for multiple comparisons for b, 630 
g, h. *P<0.05, **p<0.005, ***p<0.001, ****p<0.0001. 631 
 632 
Figure 2. Gene expression signature of COVID-19 monocytes ex vivo. a. Principal component 633 
analysis (PCA) of the gene expression data computed from all genes from ex vivo healthy 634 
individual (white dots) and moderate COVID-19 (blue dots) monocyte samples. PC2 plotted 635 
against PC1 to explore overall variation across samples. The variance explained by each 636 
component is stated in brackets. b. Volcano plot of differentially expressed genes for ex vivo 637 
COVID-19 vs healthy monocytes. Red coloring shows genes with fold change ³1.5 and 638 
FDR<0.05. c. Bar plots depict significantly enriched (FDR<0.05) pathways from Reactome for 639 
COVID-19 vs. healthy individual monocytes using upregulated genes in COVID-19 vs healthy 640 
(³1.5 fold increase, FDR<0.05), with the fold enrichment plotted on the x axis as log2 (FC) and 641 
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the bars labelled with the adjusted p value. d. Significantly upregulated genes in the COVID-19 642 
vs healthy monocyte contrast that are members of the pathways in c, shown in a heatmap. Gene 643 
expression values are scaled by row, with red indicating relatively high expression and blue low 644 
expression. Both rows and columns are clustered using Euclidean distance and Ward’s method. e. 645 
Phospho-IRF3 (Ser 396) expression measured by flow cytometry and plotted as gMFI for healthy 646 
(n=14), mild (n=15) and moderate (n=10) COVID19 monocytes. f. IFITM2 relative gene 647 
expression (to GAPDH) measured by real-time PCR in sorted CD14+ monocytes from healthy 648 
individuals (n=7), mild (n=7) and moderate (n=13) COVID-19. g. IkBa (left) and phospho-NFkB 649 
p65 (right) expression measured by flow cytometry as gMFI in healthy individuals (n=14), mild 650 
(n=15) and moderate (n=10) COVID-19 monocytes. h. Bar plots depict significantly enriched 651 
(FDR<0.05) pathways from Reactome for COVID-19 vs. healthy individual monocytes, using 652 
downregulated genes in COVID-19 vs. healthy (³1.5 fold decrease, FDR<0.05), with the fold 653 
enrichment plotted on the x axis as log2 (FC) and the bars labelled with the adjusted p value. i. 654 
Significantly downregulated genes in the COVID-19 vs. healthy monocyte contrast that are 655 
members of the pathways in h, shown in a heatmap. Gene expression values are scaled by row, 656 
with red indicating relatively high expression and blue low expression. Both rows and columns 657 
are clustered using Euclidean distance and Ward’s method. j. Representative example of ex vivo 658 
expression of puromycin in CD14+ monocytes measured by flow cytometry (left) and summary of 659 
puromycin gMFI on healthy individuals (n=10), mild (n=8) and moderate (n=10) COVID-19 660 
monocytes (right). k. Glycolytic capacity (left) and mitochondrial dependency (right) of 661 
monocytes from healthy individuals (n=10), mild (n=8) and moderate (n=10) COVID-19 662 
monocytes ex vivo. One-way ANOVA with Tukey’s test for multiple comparisons in e, f, g, j, k. 663 
*p<0.05, **p<0.005. 664 
 665 
Figure 3. Impaired ex vivo pathogen sensing by COVID-19 monocytes. a. Representative 666 
example of the production of TNF and IL-10 by CD14+ monocytes from healthy individuals, mild 667 
and moderate COVID-19 patients after ex vivo stimulation with SARS-CoV-2. b. Summary of 668 
percentage of TNF- and IL-10-producing CD14+ from CD14+ monocytes after SARS-CoV-2 669 
stimulation in healthy individuals (n=19), mild (n=18) and moderate (n=19) COVID-19 patients. 670 
c. Summary of percentage of TNF- and IL-10-producing CD14+ from CD14+ cells after stimulation 671 
with a mixture of heat-inactivated common cold coronaviruses (CCCoV, left) or LPS (right) in 672 
healthy individuals (n=12 for CCCoV and n=13 for LPS stimulation), mild (n=21 for CCCoV and 673 
n=18 for LPS stimulation) and moderate (n=12 for CCCoV and n=19 for LPS stimulation) 674 
COVID-19 patients. d. Representative histograms of CD40 expression by healthy individual, mild 675 
and moderate COVID-19 monocytes stimulated with vehicle (grey histogram) or SARS-CoV-2 676 
(orange histogram). Numbers represent percentage of CD40+ monocytes relative to vehicle-677 
stimulated cells. e. Summary of percentage of CD40+CD14+ from CD14+ cells after SARS-CoV-678 
2 stimulation in healthy individuals (n=20), mild (n=22) and moderate (n=16) COVID-19 patients. 679 
f. Summary of percentage of CD40+CD14+ from CD14+ cells after stimulation with a mixture of 680 
heat-inactivated common cold coronaviruses (CCCoV, left) or LPS (right) in healthy individuals 681 
(n=17 for CCCoV and n=14 for LPS stimulation), mild (n=18 for CCCoV and n=22 for LPS 682 
stimulation) and moderate (n=13 for CCCoV and n=10 for LPS stimulation) COVID-19 patients. 683 
g. Summary of HLA-DR (left), CD80 (middle) and CD86 (right) expression measured by flow 684 
cytometry and plotted as gMFI of CD14+ monocytes from healthy individuals (n=15),  mild (n=22) 685 
and moderate (n=9) COVID-19 patients stimulated with vehicle (white dots) or SARS-CoV-2 686 
(CoV2, orange dots). Lines link paired samples. h. Summary of H3K27Ac (left) and H3K4Me3 687 
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(right) expression measured by flow cytometry and plotted as gMFI of CD14+ monocytes from 688 
healthy individuals (n=20),  mild (n=15) and moderate (n=11) COVID-19 patients stimulated with 689 
vehicle (white dots) or SARS-CoV-2 (CoV2, orange dots). Lines link paired samples. i. Summary 690 
of H3K27Me3 (left) and H3K9Me2 (right) expression measured by flow cytometry and plotted as 691 
gMFI of CD14+ monocytes from healthy individuals (n=20),  mild (n=15) and moderate (n=11) 692 
COVID-19 patients stimulated with vehicle (white dots) or SARS-CoV-2 (CoV2, orange dots). 693 
Lines link paired samples. j. Energetic status measured by puromycin expression (gMFI) of 694 
monocytes from healthy individuals (n=10), mild (n=8) or moderate (n=10) COVID-19 patients 695 
stimulated with vehicle (open bars) or LPS (colored bars). k. Glycolytic capacity (%, left) and fatty 696 
acid and amino acid oxidation capacity (%, right) of CD14+ monocytes from healthy individuals 697 
(n=10), mild (n=8) and moderate (n=10) COVID-19 patients stimulated with LPS. One-way 698 
ANOVA with Tukey’s correction for multiples comparisons in b, c, e, f and k. Two-way ANOVA 699 
with Tukey’s correction for multiple comparisons in g, h, i, j. *p<0.05, **p<0.005, ***p<0.001, 700 
****p<0.0001. 701 
 702 
Figure 4. Gene expression signature of COVID-19 monocytes upon pathogen sensing. a. 703 
Principal component analysis (PCA) of the gene expression data computed from all genes from 704 
healthy individual (white dots) and moderate COVID-19 (blue dots) monocyte samples stimulated 705 
with SARS-CoV-2. PC2 plotted against PC1 to explore overall variation across samples. The 706 
variance explained by each component is stated in brackets. b. Volcano plots of differentially 707 
expressed genes for activated COVID-19 vs. activated healthy monocytes. Red coloring shows 708 
genes with fold change ³1.5 and FDR<0.05. c. Bar plots depict the top 10 significantly enriched 709 
(FDR<0.05) pathways from Reactome for COVID-19 vs. healthy individual monocytes stimulated 710 
with SARS-CoV-2 using upregulated genes in COVID-19 vs healthy (³1.5 fold increase, 711 
FDR<0.05), with the fold enrichment plotted on the x axis as log2 (FC) and the bars labelled with 712 
the adjusted p value. d. Top 40 significantly upregulated genes in the COVID-19 vs healthy 713 
monocyte contrast that are members of the pathways in c, shown in a heatmap. Gene expression 714 
values are scaled by row, with red indicating relatively high expression and blue low expression. 715 
Both rows and columns are clustered using Euclidean distance and Ward’s method. e. Bar plots 716 
depict the top 10 significantly enriched (FDR<0.05) pathways from Reactome for COVID-19 vs. 717 
healthy individual SARS-CoV-2-stimulated monocytes, using downregulated genes in COVID-19 718 
vs healthy (³1.5 fold decrease, FDR<0.05), with the fold enrichment plotted on the x axis as log2 719 
(FC) and the bars labelled with the adjusted p value. f. Top 40 significantly downregulated genes 720 
in the SARS-CoV-2-stimulated COVID-19 vs. healthy individual monocyte contrast that are 721 
members of the pathways in e, shown in a heatmap. Gene expression values are scaled by row, 722 
with red indicating relatively high expression and blue low expression. Both rows and columns 723 
are clustered using Euclidean distance and Ward’s method. g. Phospho-IRF3 (Ser 396) expression 724 
measured by flow cytometry and plotted as fold change to baseline (gMFI) for healthy (n=14, 725 
white dots), mild (n=15, light blue dots) and moderate (n=10, dark blue dots) COVID-19 726 
monocytes stimulated with LPS for 60 minutes. h. IFITM2 relative gene expression (to GAPDH) 727 
measured by real-time PCR in sorted CD14+ monocytes from healthy individuals (n=14), mild 728 
(n=7) and moderate (n=23) COVID-19 stimulated with SARS-CoV-2. i. Phospho-NFkB p65 (Ser 729 
529) expression measured by flow cytometry and plotted as fold change to baseline (gMFI) for 730 
healthy (n=14, white dots), mild (n=15, light blue dots) and moderate (n=10, dark blue dots) 731 
COVID-19 monocytes stimulated with LPS for 60 minutes. Mixed model with Tukey’s post-test 732 
for multiple comparisons for g and i. One-way ANOVA with Tukey’s test for multiple 733 
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comparisons in h. For g and i, statistical significance of only baseline vs. other time points within 734 
the same patient groups are shown. *p<0.05, ***p<0.001 for healthy individual comparisons, 735 
#p<0.05, ##p<0.005 for mild COVID-19 patient comparisons, $$$p<0.001 for moderate COVID-736 
19 patient comparisons. ****p<0.0001. 737 
 738 
Figure 5. Endotoxin-induced tolerance signature significantly enriched in COVID-19 739 
monocytes. a. Correlation plot of sepsis vs. healthy individual gene expression signature and ex 740 
vivo COVID-19 vs. healthy individual monocyte gene expression signature. Each point represents 741 
a gene detected in both the public sepsis dataset and our COVID-19 RNA-seq dataset. The log2FC 742 
between sepsis and healthy controls is plotted against the log2FC for ex vivo COVID-19 monocytes 743 
vs. healthy control monocytes, and the points are colored according to the significance and 744 
direction of effect in the COVID-19 contrast (grey, not significant; red, significantly upregulated, 745 
blue, significantly downregulated). b. Correlation plot of sepsis vs. healthy individual gene 746 
expression signature and SARS-CoV-2-stimulated COVID-19 vs. healthy individual monocyte 747 
gene expression signature. c. Correlation plot of endotoxin-induced tolerance gene signature and 748 
ex vivo COVID-19 vs. healthy monocyte signature. Each point represents a gene detected in both 749 
the endotoxin gene signature and our COVID-19 vs. healthy RNA-seq dataset. The log2FC 750 
between endotoxin tolerance and LPS-response is plotted against the log2FC for ex vivo COVID-751 
19 vs. healthy monocytes, and the points colored according to the significance and direction of 752 
effect in the COVID-19 contrast. Some of the most differentially expressed genes in the COVID-753 
19 vs. healthy monocyte dataset are identified in the plot. d. Correlation plot of endotoxin-induced 754 
tolerance gene signature and SARS-CoV-2-stimulated COVID-19 vs. healthy monocyte signature. 755 
Each point represents a gene detected in both the endotoxin gene signature and our COVID-19 vs. 756 
healthy RNA-seq dataset. The log2FC between endotoxin tolerance and LPS-response is plotted 757 
against the log2FC for SARS-CoV-2-stimulated COVID-19 vs healthy monocytes, and the points 758 
colored according to the significance and direction of effect in the COVID-19 contrast. Some of 759 
the most differentially expressed genes in the COVID-19 vs. healthy monocyte dataset are 760 
identified in the plot. e. Barcode plot showing enrichment of the endotoxin tolerance gene set (ET) 761 
in the differential gene expression results for SARS-CoV-2-stimulated COVID-19 vs healthy 762 
monocytes. The ranked test statistics from DESeq2 for the SARS-CoV-2-stimulated COVID-19 763 
vs. healthy contrast are represented by the central shaded bar, with genes downregulated in 764 
COVID-19 on the left and upregulated genes on the right. The ranks of the endotoxin tolerance 765 
gene set within the COVID-19 contrast are indicated by the vertical lines in the central bar. The 766 
weights of the endotoxin tolerance genes (log2 (FC) from the ET differential expression analysis) 767 
are indicated by the height of the red and blue lines above and below the central bar. The red and 768 
blue lines at the top and bottom indicate relative enrichment of the endotoxin tolerance genes (split 769 
into genes with positive and negative FCs in the ET contrast) in each part of the plot. 770 
 771 
Supplementary Figure 1. Number of cells per cluster identified by Phenograph. 772 
 773 
Supplementary Figure 2. PCA gene loadings for RNA-seq of ex vivo isolated CD14+ 774 
monocytes from healthy individuals and moderate COVID-19 patients. The features 775 
contributing most to PC1 and PC2 (both positively and negatively) were identified using gene 776 
loadings, and the top 10 features for each PC are indicated, with arrows drawn from the origin 777 
illustrating their relative weights. 778 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2022. ; https://doi.org/10.1101/2022.04.03.486830doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.03.486830
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

Supplementary Figure 3. Pathway enrichment of COVID-19 monocyte RNA-seq data. 779 
Significantly enriched (FDR <0.05) pathways from Reactome for the ex vivo COVID-19 vs. 780 
healthy control monocytes differentially expressed genes are displayed as a bar plot, with the fold 781 
enrichment plotted on the x axis (log2(FC)) and the bars labelled with the adjusted p value. 782 
 783 
Supplementary Figure 4. Seahorse analysis of COVID-19 monocytes ex vivo. Basal 784 
extracellular acidification rate (ECAR, left) and basal oxygen consumption rate (OCR, right) were 785 
measured in sorted CD14+ monocytes from healthy individuals (n=5) and COVID-19 patients 786 
(n=5). **p<0.005 by paired t-test. 787 
 788 
Supplementary Figure 5. Ex vivo monocyte glucose metabolism and mitochondrial oxidation 789 
dependency. Glucose dependency (left) and mitochondrial oxidation dependency (right) 790 
calculated using SCENITHTM in healthy individuals (n=10, white bar), mild (n=8, light blue bar) 791 
and moderate (n=10, dark blue bar) COVID-19 monocytes. 792 
 793 
Supplementary Figure 6. Seahorse analysis of activated COVID-19 monocytes. Extracellular 794 
acidification rate (ECAR, left) and oxygen consumption rate (OCR, right) were measured in sorted 795 
CD14+ monocytes from healthy individuals (n=5) and COVID-19 patients (n=5) stimulated or not 796 
with 100 ng/ml LPS for 18 hours. ECAR and OCR shown as fold increase relative to unstimulated 797 
controls **p<0.005 by paired t-test. 798 
 799 
Supplementary Figure 7. PCA gene loadings for RNA-seq of SARS-CoV-2-stimulated CD14+ 800 
monocytes from healthy individuals and moderate COVID-19 patients. The features 801 
contributing most to PC1 and PC2 (both positively and negatively) were identified using gene 802 
loadings, and the top 10 features for each PC are indicated, with arrows drawn from the origin 803 
illustrating their relative weights. 804 
 805 
Supplementary Figure 8. Pathway enrichment of SARS-CoV-2-stimulated COVID-19 806 
monocyte RNA-seq data. Significantly enriched (FDR <0.05) pathways from Reactome for 807 
SARS-CoV-2 COVID-19 vs. healthy control monocytes differentially expressed genes are 808 
displayed as a bar plot, with the fold enrichment plotted on the x axis (log2(FC)) and the bars 809 
labelled with the adjusted p value. 810 
 811 
Materials and Methods. 812 
 813 
Participants and clinical data collection. 814 
Disease severity was categorized based on the WHO ordinal classification of clinical 815 
improvement, where 0 (uninfected) describes people with no clinical or virological evidence of 816 
infection, 1-2 describe ambulatory patients without (1) or with (2) limitation of activities, and 3-4 817 
corresponds to hospitalized patients with no oxygen therapy (3) or oxygen by mask or nasal prongs 818 
(4). Peripheral blood was collected from all participants and processed following a common 819 
standard operating protocol. For inpatients, clinical data were abstracted from the electronic 820 
medical records into summary participant sheets.  Participant group characteristics are summarized 821 
in Supplementary Table 1.  822 
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Healthy donors (WHO 0) were Imperial College staff with no prior diagnosis of or recent 823 
symptoms consistent with COVID-19, and where possible, were matched in age and sex 824 
distribution with COVID-19 patients.  825 
 826 
Blood samples from the COVID-19 patients examined in this work come from two different 827 
studies. COVIDITY study is a prospective observational serial sampling study of whole blood to 828 
observe the evolution of SARS-CoV-2 infection to characterize the host response to infection over 829 
time in peripheral blood (ethics approval obtained from the Health Research Authority, South 830 
Central Oxford C Research Ethics Committee). The population of study were >18 year old patients 831 
and/or staff at Imperial College Healthcare NHS Trust/Imperial College London with confirmed 832 
COVID-19 from a positive SARS-CoV-2 RT-PCR testing from NHS laboratories or Public Health 833 
England. Samples were taken 3-14 days after symptom initiation and were classified as 1 or 2 834 
disease severity.  835 
 836 
Samples from patients with moderate COVID-19 admitted to hospitals in London (Hammersmith 837 
Hospital, Charing Cross Hospital, Saint Mary’s Hospital) and eligible to participate in the MATIS 838 
trial61 provided consent (ethics approval by the Health Research Authority, London-Surrey 839 
Borders Research Ethics Committee) and blood was collected 3-14 days after disease onset and 0-840 
2 days after hospitalization and positive PCR, and before study treatment initiation. Moderate 841 
patients displayed mild of moderate COVID-19 pneumonia, defined as grade 3 or 4 WHO severity. 842 
Samples were collected from March 2020 to February 2021 and none of the participants had 843 
received a COVID-19 vaccine. 844 
 845 
Cell Isolation and storage. 846 
Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll Hypaque (GE Healthcare) 847 
gradient centrifugation <4 hours after blood collection. The PBMC layer was collected, washed 848 
with PBS, resuspended at 20 million cells/ml in fetal bovine serum supplemented with 10% DMSO 849 
and stored at -150 ºC or liquid nitrogen. 850 
 851 
Flow cytometry stainings. 852 
 853 
PBMCs were thawed and rested for 2 hours at 37 ºC in RPMI 1640 media supplemented with 2 854 
mM L-glutamine, 5% human AB serum, and 1x Penicillin and Streptomycin. For ex vivo 855 
phenotypic characterization, 300,000-500,000 PBMC were stained with LIVE/DEAD Fixable 856 
Dead Cell Dyes (Thermo Fisher Scientific) according to the manufacturer’s specifications. A Fc 857 
receptor (FcR) blocking step was performed using FcR Blocking Reagent Human (Miltenyi 858 
Biotec) before cell surface antibody staining. The antibodies used in the stainings were the 859 
following: CD14 (61D3, eBioscience), CD3 (UCHT1, BD), CD19 (HIB19, BD), CD1c (L161, 860 
Biolegend), CD40 (5C3, Biolegend), CD141 (M80, Biolegend), CD304 (12C2, Biolegend), CD86 861 
(BU63, Biolegend), CD80 (BB1, BD Pharmigen), HLA-DR (L243, Biolegend), CD301 (H037G3, 862 
Biolegend), HLA-ABC (W6/32, Biolegend), TIM-3 (F38-2E2, Invitrogen), PD-1 (EH12.2H7, 863 
Biolegend), and CD16 (3G8, BD). Cells were subsequently fixed using the Foxp3 staining buffer 864 
kit (Thermo Fisher Scientific) following the manufacturer’s recommendations and resuspended in 865 
250 ul of PBS. 866 
 867 
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For intracellular staining, the abovementioned protocol was used and an additional step for 868 
intracellular staining was added after fixation. The antibodies used for intracellular staining were 869 
the following: H3K27Ac, H3K9Me2, H3K4Me3, H3K27Me3 (all from Cell Signaling 870 
Technology), TNF (Mab11, Biolegen) and IL-10 (JES3-907, Thermo Fisher Scientific). 871 
Intracellular staining was performed using the the Foxp3 staining buffer kit. 872 
 873 
Samples were run on a Fortessa instrument (BD Biosciences) and analyzed using FlowJo v.10.  874 
Dimensionality reduction and tSNE plots were obtained by downsampling each of the 15 samples 875 
per group (healthy, mild COVID-19 and moderate COVID-19) to 1,500 events per sample, and 876 
the concatenated sample was used to calculate tSNE axes using 1,000 iterations, perplexity of 40 877 
and the default learning rate (4734). In order to obtain cell clusters, we used Phenograph62 plugin 878 
in FlowJo, with k=166 and all compensated parameters.  879 
 880 
Generation of virus stocks. 881 
 882 
SARS-CoV-2 virus (SARS-CoV-2/England/IC19/2020 isolate, kindly provided by Wendy S 883 
Barclay) was expanded in Vero-E6 cells. Briefly, Vero-E6 cells were plated in serum-free medium 884 
(OptiPRO SFM containing 2x GlutaMAX) in T75 flasks and infected with SARS-CoV-2 at a 885 
multiplicity of infection of 0.1 and a final volume of 5 ml. Cells were incubated for 2 hours at 37 886 
°C, 5% CO2, after which the inoculum was removed and complete medium without serum was 887 
added to the culture. Cells were incubated for 3-5 days (until cytopathic effects were observed). 888 
Subsequently, cell culture supernatant was collected, centrifuged at 1000 xg, 4 °C for 15 minutes 889 
and transferred to a new 50 ml tube for a second centrifugation at 1000 xg, 4 °C for 15 minutes. 890 
Viral supernatant was collected, filtered through 0.45 µm and an aliquot was taken for titration. 891 
The rest of the supernatant was UV-inactivated and concentrated using Retro-X concentrator 892 
(Takara Bio), following manufacturer’s recommendations and published protocols63,64. 893 
 894 
Human coronaviruses (CCCoV) 229E, OC43 and NL63 strains (Public Health England) were 895 
expanded in MRC-5 (kindly provided by Dr Rob White, Imperial College London), BSC-1 (Public 896 
Health England) and LLCMK2 (Public Health England), respectively. Briefly, cell lines were 897 
plated in serum-free medium (DMEM, 1x non-essential amino acids)  in T75 flasks and infected 898 
with CCCoV (229E, OC43 or NL63) at a multiplicity of infection of 0.1 and a final volume of 5 899 
ml. Cells were incubated for 2 hours at 37 °C, 5% CO2, after which the inoculum was removed 900 
and medium without serum was added to the culture. Cells were incubated for 3-5 days (until 901 
cytopathic effects were observed). Subsequently, cell culture supernatant was collected, 902 
centrifuged at 1000 xg, 4 °C for 15 minutes and transferred to a new 50 ml tube for a second 903 
centrifugation at 1000 xg, 4 °C for 15 minutes. Viral supernatant was collected, filtered through 904 
0.45 µm and an aliquot was taken for titration. The rest of the supernatant was heat-inactivated 905 
and concentrated using Retro-X concentrator (Takara Bio), following manufacturer’s 906 
recommendations and published protocols63,64. 907 
 908 
Titration of virus stocks. 909 
For SARS-CoV-2 titration, samples were serially diluted in OptiPRO SFM, 2X GlutaMAX (1:10) 910 
and added to Vero cell monolayers for 1 hour at 37 °C, 5% CO2. The inoculum was subsequently 911 
removed and cells were overlayed with DMEM containing 0.2% w/v bovine serum albumin, 912 
0.16% w/v NaHCO3, 10 mM HEPES, 2 mM L-Gutamine, 1X P/S and 0.6% w/v agarose. Plates 913 
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were incubated at 37 °C, 5% CO2 for 3 days. The overlay was then removed and monolayers were 914 
stained with crystal violet solution for 1 hour at room temperature. Plates were washed with water, 915 
dried and virus plaques were counted.  916 
 917 
For CCCoV titration, viral supernatants were serially diluted in DMEM, non essential amino acids 918 
(1:10) and added to MRC-5 (229E strain), BSC-1 (OC43 strain) or LLCMK2 (NL63 strain) cell 919 
monolayers for 1 hour at 37 °C, 5% CO2. The inoculum was subsequently removed and cells were 920 
overlayed with DMEM medium for 4-5 days (until cytopathic effects were observed). An endpoint 921 
dilution assay was used to determine viral infectivity titers63. 922 
 923 
Ex vivo stimulation assays. 924 
PBMC were thawed and rested for 2 hours at 37 ºC in complete media. 250,000 PBMC were plated 925 
in polysterene plates (Corning) to prevent unspecific stimulation of monocytes by adherence to the 926 
plastic plate65. Cells were stimulated with vehicle, UV-inactivated SARS-CoV-2 (CoV-2), 100 927 
ng/ml LPS or a mixture of heat-inactivated common cold coronaviruses consisting of the 229E, 928 
OC43 and NL63 strains (CCCoV) at 106 viral particles per 106 cells for 20 hours. For intracellular 929 
stainings, GolgiStopTM (BD Biosciences) was added to the cultures 10 hours after stimulation for 930 
a total of 10 hours. 931 
 932 
RNA isolation, RNA quality control, and sample preparation for RNA-seq analysis. 933 
Sorted CD14+ monocytes from total PBMC either ex vivo or after a 20 hour stimulation with 106 934 
UV-inactivated SARS-CoV-2 viral particles per 106 cells were lysed with RLT Plus buffer 935 
(QIAGEN). RNA was isolated using the RNeasy Micro Plus Kit (QIAGEN) following the 936 
manufacturer’s guidelines in Appendix D of the QIAGEN RNeasy handbook. RNA quality was 937 
quantified using the Agilent RNA 6000 Pico Kit (Agilent Technologies) following the 938 
manufacturer’s guidelines. RNA samples were stored at -80 °C until further processing. 939 
 940 
RNA-seq analysis. 941 
RNA-sequencing was performed by the Oxford Genomics Centre. PolyA-enriched strand- specific 942 
libraries were prepared using NEBNext Ultra II Directional RNA Library Prep Kits (Illumina). All 943 
samples were pooled together and 150bp PE reads were sequenced on a Novaseq system, resulting 944 
in a median read count of 28M per sample. 945 
 946 
Raw data was processed using the Sanger Nextflow RNA-seq pipeline (https://github.com/wtsi-947 
hgi/nextflow-pipelines). Briefly, reads were aligned to the reference genome (GRCh38.99) using 948 
STAR v2.7.366 in the two-pass mode (ENCODE recommended parameters) and gene expression 949 
was quantified using featureCounts67. Mapping statistics and quality control metrics from FastQC 950 
and RNA-SeQC68 indicated high data quality for all samples with no outliers detected.  951 
RNA-seq data analysis was performed in R v4.1 in Rstudio Server. Features that did not have at 952 
least 10 reads in at least 6 samples (the size of the smallest biological subgroup) were filtered out 953 
using the genefilter package69, resulting in a processed data set on 16,328 features. Principal 954 
component analysis (PCA) with the prcomp function was used to explore the relationship between 955 
samples, after the filtered gene counts were transformed using a regularized log transformation 956 
from the DESeq270 package.  957 
 958 
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Differential gene expression analysis was carried out using DESeq2, comparing unstimulated 959 
monocytes from COVID-19  patients (n=10) to unstimulated monocytes from healthy controls 960 
(HC) (n=6), and SARS-CoV-2-stimulated monocytes from COVID-19 patients (n=14) to 961 
stimulated monocytes from HC (n=12). Genes with FDR<0.05 and a fold change (FC)>1.5 were 962 
deemed significantly differentially expressed. Pathway enrichment analysis was performed using 963 
Fisher’s exact test in XGR29 with annotations from Reactome, using all genes retained in the 964 
processed RNA-seq data as the background, and employing the xEnrichConciser options. An 965 
adjusted p-value (BH FDR) threshold of 0.05 was used to identify significantly enriched pathways. 966 
Pheatmap package was used to draw heatmaps illustrating variation in gene expression across 967 
samples. 968 
 969 
For testing the enrichment of the sepsis signature in our datasets, publicly available microarray 970 
gene expression data on sepsis patients and healthy controls were accessed using GEOquery 971 
(GSE46955)50. Gene expression between patients and controls was compared using limma71, for 972 
both the unstimulated and stimulated conditions. Subsequently, the estimated fold changes were 973 
tested for correlation with those from the COVID-19 vs HC results. Where multiple probes were 974 
available for the same gene in the microarray dataset, the top ranked probe was selected for the 975 
comparison. 976 
 977 
For comparison to the endotoxin-induced tolerance signature, we have previously defined an 978 
endotoxin tolerance gene signature72 from publicly available microarray data on in vitro LPS-979 
stimulated monocytes. Briefly, two datasets (GSE1521952 and GSE2224873) were accessed 980 
through GEO. Genes that were differentially expressed following a single LPS treatment (LPS 981 
response genes), and that were also differentially expressed between singly- and doubly-stimulated 982 
cells were identified. This resulted in an endotoxin tolerance gene signature comprising 398 genes, 983 
of which 318 were detected in the RNA-seq dataset. We tested for enrichment of this gene set in 984 
the COVID-19 versus healthy contrasts using the geneSetTest function and barcodeplot functions 985 
from limma.  986 
 987 
Quantification of mRNA expression by RT-PCR. 988 
Isolated RNA was converted to complementary DNA by reverse transcription (RT) with random 989 
hexamers and Multiscribe RT (TaqMan Reverse Transcription Reagents; Thermo Fisher 990 
Scientific). For IFITM2 expression assays, the Hs00829485_sH probe was used from Thermo 991 
Fisher Scientific. The reactions were set up using the manufacturer’s guidelines and run on a 992 
StepOnePlue Real-Time PCR Machine (Thermo Fisher Scientific). Values are represented as the 993 
difference in cycle threshold (Ct) values normalised to GAPDH expression (Hs02786624_g1) for 994 
each sample as per the following formula: Relative RNA expression = (2-ΔCt) x 100074. 995 
 996 
Metabolic profiling using SCENITHTM. 997 
SCENITHTM is a flow cytometry-based method for profiling energy metabolism with single cell 998 
resolution35 ex vivo or after in vitro stimulation in sorted cells or complex cell mixtures. It uses 999 
puromycin incorporation to nascent proteins as a measurement for protein translation, which is 1000 
tightly coupled to ATP production and therefore can be used as a readout for the energetic status 1001 
of the cells at a given time.  1002 
 1003 
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PBMC were plated at 250,000-300,000 cells per well in 96 well plates and rested for 2 hours at 37 1004 
°C, 5% CO2 for ex vivo stainings, or rested for 2 hours and stimulated for 20 hours with 100 ng/ml 1005 
LPS. Subsequently, cells were treated for 45 minutes at 37 °C, 5% CO2 with Control (vehicle, Co), 1006 
100 mM 2-deoxy-D-glucose (DG, Sigma-Aldrich), 1 µM oligomycin (O, Sigma-Aldrich) or a 1007 
combination of both drugs (DGO). 10 µg/ml puromycin was added to all conditions for the same 1008 
amount of time. Cells were subsequently washed with room temperature PBS and stained for 1009 
viability, cell surface markers and fixed as described above. Intracellular staining of puromycin 1010 
was performed using the anti-puromycin monoclonal antibody (1:600 dilution, clone R4743L-E8) 1011 
for 45 minutes at 4 °C. The anti-puromycin antibody and metabolic inhibitors for SCENITHTM 1012 
were kindly provided by Dr Argüello. 1013 
 1014 
For the analysis of the energetic status of cells, puromycin geometric mean fluorescence intensity 1015 
was analyzed in each of the four abovementioned conditions (Co, DG, O, DGO). To calculate the 1016 
percentage of glucose dependence, the following formula was used: 100*((Co-DG)/(Co-DGO). 1017 
Mitochondrial dependence (%) was calculated as 100*((Co-O)/(Co-DGO). Glycolytic capacity 1018 
(%) was calculated as 100-Mitochondrial dependence. Fatty acid and amino acid oxidation 1019 
capacity (%) was calculated as 100-Glucose dependence. 1020 
 1021 
Metabolic profiling using Seahorse. 1022 
Sorted CD14+ monocytes from unstimulated or SARS-CoV-2-stimulated (20 hours at 37 °C, 5% 1023 
CO2) PBMC were plated at a range of 80,000-120,000 in duplicates for healthy and COVID-19 1024 
sample pairs, based on the minimum cell number obtained for each pair of samples in individual 1025 
experiments. An XFp real-time ATP rate assay kit (Agilent Technologies) was used following 1026 
manufacturer’s recommendations and samples were run in a Seahorse XF HS Mini Analyzer 1027 
(Agilent Technologies). For basal oxygen consumption rate (OCR) and extracellular acidification 1028 
rate (ECAR) measurements, 10 cycles were run and their average was taken as basal values per 1029 
subject tested. 1030 
 1031 
Phosphorylation assays by flow cytometry. 1032 
For ex vivo phosphorylation assays, thawed PBMC were plated at 250,000 cells per well in 96 well 1033 
polypropylene plates and rested for 2 hours at 37 °C, 5% CO2. PBMC were fixed with pre-warmed 1034 
(37 °C) Cytofix (BD Biosciences) for 20 minutes at 37 °C, 5% CO2 and permeabilized with Perm 1035 
III buffer (BD Biosciences) overnight at -20 °C. Cultures were subsequently stained with CD3 1036 
(UCHT1, BD Biosciences), CD20 (H1, BD Biosciences), CD14 (M5E2, Biolegend), CD16 1037 
(B73.1, BD Biosciences), phospho-IRF3 (Ser 396, Bioss), phospho-NFkB p65 (Ser 529, BD 1038 
Biosciences) in PBS for 1 hour at room temperature, washed with PBS and resuspended in 250 µl 1039 
PBS. 1040 
 1041 
For phosphorylation assays after LPS stimulation, PBMC were plated as above and stimulated 1042 
with 100 ng/ml LPS for a total of 1 hour. Samples were fixed at 0, 5, 15, 30, 45 and 60 minutes 1043 
after LPS addition for 20 min at 37 °C, 5% CO2 and stained as above. 1044 
 1045 
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