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1 Abstract

The introduction of RNA velocity in single-cell studies has opened new ways
of examining cell differentiation and tissue development. Existing RNA ve-
locity estimation methods are based on strong assumptions of either complete
observation of cells in steady states or a predefined dynamics pattern param-
eterized by constant coefficients. These assumptions are violated in complex
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and heterogenous single-cell sequencing datasets and thus limit the applica-
tion of these techniques. Here we present DeepVelo, a novel method that pre-
dicts the cell-specific dynamics of splicing kinetics using Graph Convolution
Networks (GCNs). DeepVelo generalizes RNA velocity to cell populations
containing time-dependent kinetics and multiple lineages, which are
common in developmental and pathological systems. We applied DeepVelo
to disentangle multifaceted kinetics in the processes of dentate gyrus neuro-
genesis, pancreatic endocrinogenesis, and hindbrain development. DeepVelo
infers time-varying cellular rates of transcription, splicing and degradation,
recovers each cell’s stage in the underlying differentiation process and de-
tects putative driver genes regulating these processes. DeepVelo relaxes the
constraints of previous techniques and facilitates the study of more complex
differentiation and lineage decision events in heterogeneous single-cell RNA
sequencing data.

2 Introduction

The concept of RNA velocity refers to the time derivative of the mRNA
abundance in a cell, which reflects the changing rate of RNA processing and
degradation. Current velocity estimation methods leverage the observation
that the abundance and ratio between unspliced pre-messenger RNAs and
spliced mature messenger RNAs can be used to infer changes in gene expres-
sion dynamics. Higher abundance and ratio of unspliced mRNAs to spliced
mRNAs indicates increasing transcription of a certain gene - in other words,
up-regulation/induction and a high velocity estimate. Conversely, a lower
abundance and indicated ratio leads to a low velocity estimate and is asso-
ciated with down-regulation/repression. An equilibrium phase occurs when
this dynamical process reaches a stable steady-state, and the rates of spliced
and unspliced mRNAs are stable. Since unspliced mRNAs can be distin-
guished in common single-cell RNA sequencing (scRNA-seq) protocols [16],
the idea of estimating dynamic RNA velocity using only static sequencing
libraries becomes feasible. The original RNA velocity approach [16] utilized
the assumption that the observed transcriptional phases in scRNA-seq last
long enough to reach both an apex of induction and a quiescent steady-state
equilibrium. This technique infers a per-gene steady-state ratio using linear
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regression, and then RNA velocities are calculated as the deviation of the
observed ratio from the steady-state level. This workflow implies two under-
lying assumptions, (1)the assumption of steady-state: For every gene,
the steady states are well captured; (2)the assumption of cell-agnostic
kinetic rates: The degradation and splicing rate for each gene is shared
across all cells. These assumptions are often violated in complex biologi-
cal systems that single-cell sequencing technologies measure and therefore
bring about limitations in downstream applications, particularly when cell
states are partially observed or undergo transcription dynamics more com-
plex than the steady-state pattern. Although a later approach, scVelo [4],
attempted to generalize the steady-state assumption by replacing these states
with four transcriptional states and modeling them with a dynamical model,
the aforementioned second limitation still remains. Further, scVelo assumes a
cyclic trajectory within the four transcriptional states for all observed genes,
but this assumption also rarely holds in real-world single-cell datasets with
complex differentiation trajectories and multifactorial kinetics [9]. Although
several related works have been further developed, including MultiVelo [20],
Chromatin Velocity [26], protaccel [8] for extending Velocity beyond RNA,
VeloAE [24] for denoising velocity with Deep Neural Nets, Dynamo [25] for
exploiting the metabolic labeling sequencing data, the core velocity compu-
tation follows the original ideas and therefore the aforementioned limitations
still hold.

Overall, existing techniques assume each gene follows a pre-defined trajec-
tory depicted by constant cell-agnostic kinetic rates. This workflow implies
that each gene goes through the same velocity trajectory across all celltypes,
and limits the application in complex real-world systems. To resolve these
limitations, we highlight the need for cell-specific kinetics which enables the
modeling of multi-lineage systems with heterogeneous cell populations. We
propose DeepVelo, a deep neural network based method that models RNA
cellular velocities without pre-defined kinetic patterns. Empowered by deep
Graph Convolutional Networks (GCN), DeepVelo infers gene-specific and
cell-specific RNA splicing and degradation rates. Therefore, compared with
the cell-agnostic parameters used in existing techniques [16, 4], DeepVelo is
able to model RNA velocities for dynamics of high complexity, particularly
for cell populations with heterogeneous celltypes and multiple lineages.

We demonstrate the efficacy of DeepVelo on multiple developmental scRNA-
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seq datasets including dentate gyrus neurogenesis [11], pancreatic endocrino-
genesis [2], and hindbrain development [29]. DeepVelo yields more consistent
velocity estimates and accurately identifies transcriptional states compared
to the existing models. To highlight the improvement introduced by the cell-
specific modeling of DeepVelo, we examine the estimated kinetic rates for in-
dividual genes and show that the cell-specific rates accurately recover known
differentiation trajectories in challenging scenarios of time-dependent and
multi-trajectory gene regulation dynamics. DeepVelo exceeds the capacity
of existing models with cell-agnostic rates in realistic single-cell datasets with
multiple trajectories/lineages, while also scaling better to larger datasets. For
downstream tasks, DeepVelo can identify putative driver genes of these tran-
scriptional changes, which are more likely to characterize and be involved in
dictating lineage fate-decisions. The DeepVelo model is available within the
DeepVelo package (https://github.com/bowang-lab/DeepVelo).

3 Results

3.1 The DeepVelo model

Modeling the transcriptional dynamics in single cells provides the theoretical
basis of RNA velocity. For each cell, the dynamics of transcription, splicing,
and degradation (Fig.1a) can be approximated as the following differential
processes

du(t)
dt

= αi,g (t)− βi,g (t) u (t) ,
ds(t)
dt

= βi,g (t) u (t)− γi,g (t) s (t) .
(1)

where αi,g, βi,g, γi,g are the kinetic rates for cell i and gene g. t denotes a time
coordinate in cell development. Unspliced immature mRNA is first gener-
ated by transcription of DNA and then post-transcriptionally modified and
spliced into mature RNA. The dynamics of unspliced RNA abundance, du(t)

dt
,

is modeled by the first equation where αi,g and βi,g denote the rates of tran-
scription and splicing, respectively. Similarly, the second equation models
the dynamics of spliced RNA abundance, ds(t)

dt
, and γi,g denotes the rate for

RNA degradation. Note that all of the kinetic rates are intrinsically cell-
specific since there is a high degree of variability in transcriptional dynamics
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Figure 1: Overview of the DeepVelo pipeline and velocity predic-
tion method. (a) DeepVelo estimates cell-specific transcription (αi), RNA
splicing (βi) and RNA degradation rates (γi). (b) Overview of the veloc-
ity analysis pipeline using DeepVelo. After read counting of unspliced and
spliced mRNA, preprocessing is done to ensure the stability of model train-
ing (Online methods), followed by training and prediction of cell-specific ki-
netic parameters. These are used to estimate the RNA velocity and perform
downstream analyses, such as visualization of velocity fields and pseudo-time
inference. (c) Overview of the DeepVelo neural network model. Query cells
(dark blue) and similar cells (light blue) within a k-nearest neighborhood
are input into the model. The Graph Convolutional Network (GCN) [15]
encoder module encodes their spliced/unspliced gene expressions into latent
space representations. The decoder module then predicts the kinetic rates for
RNA velocity and extrapolates expressions to future cell states. The model
is optimized to match the extrapolation to observed cell states at later de-
velopmental stages. After training and optimization, these rates can be used
to determine the RNA velocity vector for each cell through cell-specific rates
of transcription, splicing and degradation.
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between cells due to the stochastic ”bursting” nature of gene expression [12].
Further, these intrinsic cell-specific transcriptional dynamics are likely to be
similar for similar celltypes [19], necessitating celltype-specific parameters.
However, previous techniques did not have independent parame-
ters for each cell i, leading to limitations in inferring multi-lineage
dynamics.

Given the unspliced gene counts u(t) and spliced gene counts s(t) for
individual cells, DeepVelo estimates the derivatives of s(t) by modeling cell
and gene-specific coefficients αi,g, βi,g, γi,g using a deep neural network model
(Fig.1b,c). As opposed to previous techniques [16, 4], DeepVelo models the
coefficients per cell and per gene (Fig.1c), providing sufficient expressive
power for more faithful velocity estimates for individual cells.

Specifically, we predict a cell’s velocity vector and extrapolate the cell
state to match the future states extracted from the sequencing data (Fig.1c).
For each cell i in the population, we extract a group of neighbor cells Ni

that have similar expression profiles. Then we compute an initial direction
using the velocity heuristic from the steady-state model and extract a group
of downstream neighbors along the computed direction. These downstream
cells depict the possible future states of cell i. We take the profiles of cell
i and neighbor set Ni as the input to DeepVelo model. The model consists
of stacked layers of GCNs and outputs the coefficients αi,g, βi,g, and γi,g
in the final layer. Using these coefficients, DeepVelo computes the velocity
vi,g = ds(t)

dt
for each cell accordingly as in Eq.1.

To train the DeepVelo model, i.e. to update the parameters for accurate
velocity prediction, we first extrapolate the cell state by adding the velocity
derivative ds(t)

dt
onto the original profile s (t). Then, DeepVelo computes the

difference between the extrapolated state s(t + 1) and the real profiles of
downstream cells. The DeepVelo model parameters are optimized to mini-
mize the difference between the predicted future state and the actual profile
of cells downstream, which works to tune the velocity estimates to be op-
timal for a given dataset (Online methods - 5.4). After sufficient training
iterations, the model is finalized to provide accurate velocity estimates that
take into account the transcriptional dynamics unique to individual cells.

We tested DeepVelo on a number of developmental datasets in the con-
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text of determining RNA velocity, estimating cell-specific RNA kinetics, in-
ferring developmental pseudotime, and prioritizing genes for their potential
role in differentiation through driver gene estimation. We also compared
the efficiency between DeepVelo and other velocity estimation methods. We
also compared the efficiency between DeepVelo and other velocity estimation
methods. In a scRNA-seq dataset of 3,696 cells, DeepVelo is able to finish the
velocity and pseudo time analysis in 140 seconds, which is four times faster
than the dynamical model which took over 9 minutes. A more extensive
comparison over multiple datasets was also performed, which extends these
findings (Supplementary Fig.S4).

3.2 Recovering complex transcription dynamics for in-
dividual cells using DeepVelo

To test the ability to identify complex kinetics, we applied DeepVelo on a
neurogenesis scRNA-seq dataset of the developing mouse dentate gyrus [11].
The data consists of tissue samples from two time points, P12 and P35 (post-
natal day 12 and 35), which are collected by a droplet-based single-cell RNA
sequencing protocol (10x Genomics Chromium Single-Cell Kit V1). After
pre-processing (Online Methods - 5.1), we calculated the RNA velocities
using the proposed DeepVelo model and the dynamical model from scVelo
[4]. The velocity plots are made by projecting the velocity vectors onto the
UMAP [21]-based embedding of the data. In the velocity estimates (Fig.2a),
the granule cell lineage dominates the main structure, where the neurob-
last cells develop into immature and mature granule cells. The directions of
these velocity estimates between celltypes have been validated by existing
literature, based on the temporal differentiation trajectories [11].

When examining the main lineage toward the terminal celltype of granule
cells, although all models capture the principle direction, DeepVelo has the
advantage of showing a more consistent flow from the neurogenic intermediate
progenitor cells (nIPC) to neuroblasts, and finally to granule cells. DeepVelo
particularly indicates that immature granule cells differentiate into mature
granule cells in a manner more faithful to the true trajectory compared with
the dynamical model (Fig.2a - zoom-in panel).
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Figure 2: Fine-grained temporal patterns in neurogenesis predicted
by DeepVelo. (a) Comparison of DeepVelo with the dynamical model from
scVelo [4]. The direction and magnitude of velocities are projected as arrows
onto the Uniform Manifold Approximation and Projection (UMAP) plot of
gene expression values across cells. DeepVelo provides more consistent ve-
locity estimates with respect to the developmental process from immature
granule cells to mature granule cells. (b) The box plot and histogram of the
overall consistency scores, which indicate the consistency of velocity estimates
in a local neighborhood of the data. (c) The box plot and histogram of the
cluster/celltype-specific consistency scores, which utilize the neighborhood
consistency metric on a per cluster/celltype basis. DeepVelo outperforms
the scVelo dynamical methods in both metrics. (d)(e) The spliced/unspliced
phase portrait for Tmsb10 and Ppp3ca, respectively. Celltypes are shown in
the same color as in panel (b). (f)(g) Velocity and gene expression values
projected onto UMAP plots for Tmsb10 and Ppp3ca, respectively. Velocity
and gene expression values show consistent patterns across celltypes: high
velocity values (green in velocity plot) are correctly shown in the subset of
cells with high gene expression values (purple in expression plot), for the
same given gene(s).

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2022. ; https://doi.org/10.1101/2022.04.03.486877doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.03.486877
http://creativecommons.org/licenses/by-nc-nd/4.0/


The estimated velocities by DeepVelo show higher consistency in quan-
titative analysis. The consistency score is computed as follows - we first
compute the average cosine similarity of the velocity vector of each cell to
its neighbors, which is defined as the overall consistency. A similar neighbor-
wise consistency was also proposed in scVelo [4]. However, the overall con-
sistency could be biased toward over-smoothed estimations which don’t ac-
count for branching and/or multiple lineages. Therefore, we propose the
cluster/celltype-wise consistency as a complement to the overall score, which
computes the average cosine similarity of each cell’s velocity to all velocity
vectors of the same celltype. For both metrics, DeepVelo shows significant
improvements over the scVelo dynamical method with higher average scores
and unimodal distributions (Fig.2b,c).

Examined at the individual gene level, DeepVelo shows biologically mean-
ingful velocity patterns. For example, Tmsb10 is one of the major regulators
to the inferred dynamics of granule lineage and it plays an important role in
the development of hippocampal CA1 region [1]. In Fig.2f, velocities derived
from the DeepVelo are consistent across velocities of neighboring cells. The
region of cells showing high velocities of Tmsb10 aligns well with the region
of high Tmsb10 expression. The same alignment is also observed for another
regulatory gene, Ppp3ca (Fig.2g). In further analysis (Fig.3a), we also ob-
served that DeepVelo clearly disentangles the velocity vectors between the
granule (blue) and endothelial lineages (orange), whereas, in the steady-state
and dynamical models, both lineages have intertwined velocities. We discuss
this limitation of previous techniques in further detail in Section.3.3.

3.3 DeepVelo’s cell-specific kinetic rate estimates en-
able accurate quantification of time-dependent and
branching gene dynamics

Due to the cell-specific estimation of (αi,g, βi,g, γi,g in Eq.1 in Eq.1), DeepVelo
for the first time provides a profile of individual kinetic rates for each cell.
This enables new approaches for cell-specific trajectory analysis, visualiza-
tion, and characterization. We show the UMAP projection of all cell-specific
kinetic rates of 2930 cells (Fig.3a). Although DeepVelo is unaware of the
celltypes during training, the learned kinetic rates are naturally clustered
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c.b. Tmsb10 portrait by DeepVelo Tmsb10 portrait by scVelo(dynamical)
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Figure 3: Velocity estimation for branching kinetics and time-
dependent kinetic rates. (a) The UMAP projection of the estimated
kinetic rates of 2930 cells in the dentate gyrus developmental data. Cells
of the same celltypes are clustered together by kinetic rates, reflecting sim-
ilarity in predictions by DeepVelo. Further, clusters of cells from the same
lineage (e.g the outlined Granule lineage) are positioned closely compared
with other cells. In general, the similarity of learned kinetic rates reflects the
biological similarity of cells, although the DeepVelo model is unaware of cell-
type labels. (b) Projection of estimated velocity (arrows) onto the unspliced
and spliced phase portrait of Tmsb10 by DeepVelo. The endothelial cells
undergo a separate trajectory on the phase portrait, aside from the main
trajectory containing neuroblast cells, granule immature and granule mature
cells. DeepVelo successfully captures both trajectories. In the zoomed view,
cells within the same region comprising of different celltypes are correctly
predicted to have distinct velocity directions. (c) Phase portrait of Tmsb10
with RNA velocity predicted by the dynamical model of scVelo. Only the
main trajectory of granule lineage is well captured, but other celltypes in-
cluding endothelial cells are predicted with incorrect direction. (d) Reference
velocity on simulated data with constant kinetic rates. (e)(f) Constant and
time-dependent degradation rates as shown on phase portraits. The gene
with the time-dependent rate (f) undergoes a reversed trajectory. (g)(h)
Estimated velocities by DeepVelo and scVelo, respectively, for a simulated
population of 500 cells for the subset with time-dependent kinetic rates. Col-
ors indicate pseudo-time in the simulated data. DeepVelo correctly recovers
the directions from regions of earlier to later time values.
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into groups aligned with celltypes. Further, clusters of cells from the same
lineage (e.g. the outlined granule lineage) are positioned closely compared to
other cells. Overall, the similarity of learned kinetic rates reflects the biolog-
ical similarity of cells at both the celltype and lineage levels. This indicates
that DeepVelo can estimate kinetics that reflect the dynamics of individual
cell populations as opposed to the entire dataset.

Velocity-associated kinetic rates across cells may vary for genes undergo-
ing dynamic regulation involving multiple processes. For example Battich,
Stoeger, and Pelkmans [3] observed varying kinetic rates in the differentia-
tion of intestinal stem cells. These varying kinetics are often misinterpreted
in existing velocity methods [5]. This stems from the fact that the kinetic
rates in previous methods are modeled as constant cell-agnostic coefficients in
first-order equations (Eq.2), which lack the ability to model complex dynam-
ical variation. In contrast, DeepVelo provides estimates for different celltypes
and states by introducing cell-specific kinetic rates, and the relaxation of the
cell-agnostic constraint leads to better velocity estimation in time-dependent
and complex systems. Here, we show this improvement using two challenging
scenarios:

(1) Estimate velocity for genes that are separately regulated in
two lineages. We used the previously analyzed dentate gyrus cell popula-
tion and determined genes with complex kinetics [11]. Tmsb10 shows multi-
ple kinetic regimes and undergoes multiple trajectories in the phase portrait
of spliced and unspliced reads in this dataset. The cells in the granule lineage
(including neuroblast, granule immature and granule mature celltypes) form
a cyclic trajectory. Meanwhile, the endothelial cells are located outside of
the granule lineage (Fig.2d). These two regimes are possibly regulated by
different kinetic rates. We applied DeepVelo and the dynamical model from
scVelo and computed the velocity estimates (Fig.3b,c).

DeepVelo correctly predicted the patterns for both regimes (Fig.3b). For
the granule lineage, DeepVelo captures the direction of velocity from neu-
roblast cells to granule immature cells and then to granule mature cells. For
the endothelial cells, the predicted velocity direction correctly points to the
position of the same celltype with amplified spliced reads. Additionally, we
found that DeepVelo learns to assign similar velocity directions for cells of the
same type, even though the celltype labels are not available during training.
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This is because cells of the same celltype have similar gene expression pro-
files, and are therefore embedded closer together in representations learned
by the neural network model. In contrast to DeepVelo, scVelo forces the
velocities to follow the assumed cyclic trajectory by the model (Fig.3c). As
a result, although scVelo successfully captures the trajectory for the granule
lineage, it incorrectly points the velocities of endothelial cells to the position
of neuroblasts, (Fig.3c - Zoom-in panel).

However, DeepVelo is capable of predicting different velocity directions
for cells within the same region (Fig.3b). The cells in the zoomed view,
including both the endothelial and neuroblast cells, employ similar RNA
dynamics (through the levels of spliced and unspliced reads) of Tmsb10.
However, the distinct directions for each celltype are correctly predicted by
DeepVelo. This is due to the ability of DeepVelo to estimate distinct sets
of kinetic rates per celltype, as shown in Fig.3a. In contrast, scVelo uses
constant kinetic rates per gene and predicts a uniform direction for the same
region of cells. Overall, a cell-specific model such as DeepVelo broadens the
application of RNA velocity for genes with multifaceted kinetics, such as
Tmsb10 in the dentate gyrus developmental data.

(2) Estimate velocity for genes with time-dependent kinetic
rates. We simulated the population of 500 cells and 30 genes using the
simulator provided by the scVelo package [4]. We first show the reference ve-
locity in the setting of constant kinetic rates (Fig.3d). The color of the cells
indicates their associated pseudo-time in the simulation process. Then, the
degradation rates gamma of 3 out of 30 genes were set to increase over time.
As a result, the genes undergo a reversed trajectory as shown in the phase
portrait (Fig.3f) as opposed to the original phase portrait of constant degra-
dation rates (Fig.3e). This sets up a challenging scenario for the estimation of
velocity. The resulting velocity plots of DeepVelo and the dynamical model
of scVelo are shown in Fig.3g,h, and scVelo struggles to predict constant
velocities across cells while DeepVelo is able to recover the correct velocity
directions from regions of earlier to later timepoints. The DeepVelo model
learns to predict velocity directions toward the possible future cell states
(Eq.3). By correctly predicting the future cell states using all genes, Deep-
Velo was able to correct for the directions of small subset of time-dependent
reversed trajectories in the data.
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3.4 Tracking the ordering of development using DeepVelo-
estimated diffusion pseudo-time

The velocities estimated by DeepVelo can also be used to improve the pre-
diction of pseudo-time for cell states across a developmental trajectory. We
first compute the velocity connectivity graph to represent cell-cell relation-
ships and use this graph as the basis to compute a diffusion pseudo-time [10]
mapping (Online Methods - 5.5). We compared the pseudo-time estimates
(Supplementary Fig.S3a) using DeepVelo with the latent time (Supplemen-
tary Fig.S3c) estimates by the dynamical model from scVelo on a scRNA-seq
dataset of pancreatic endocrinogenesis with ground-truth temporal measure-
ments. DeepVelo pseudo-time provided a more accurate reconstruction of
the pseudo-time trajectory compared to the scVelo estimate (Supplementary
Fig.S3(a,b)). Particularly, DeepVelo more reliably predicts the continuous
ordering of pseudotime values for the terminal states of Alpha and Beta
cells (Supplementary Fig.S3(a,c)). Similar to scVelo, DeepVelo successfully
demonstrates that the main stream of EP cells develop into terminal cell-
types - alpha, beta and delta. However, the earliest-developed cell cluster
at the upper left of the velocity plot, indicating the terminal state for the
alpha cells, is much better captured and assigned with a clearly more dis-
crete and smaller pseudotime value than the terminal state for beta cells.
(Supplementary Fig.S3a). This indicates that the DeepVelo inferred pseudo-
time is better aligned with the ground-truth, as the difference between the
terminal celltypes is emphasized where the alpha-cells are developed earlier
at E12.5 and the beta-cells appear later at E15.5. Although the dynamical
model from scVelo also captures the overall temporal order, this result has
more ambiguity compared to the pseudo-time result of DeepVelo.

3.5 DeepVelo infers functionally relevant lineage-specification
genes and processes in hindbrain development

To test velocity methods in a complex setting with multiple lineages, we ap-
plied all methods on a mouse hindbrain development dataset [29] (Fig.4(a)).
Specifically, we filtered the data corresponding to the junction and differen-
tiation between the GABAergic and gliogenic lineages (Methods.5.1). In a
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a. DeepVelob.

d.

Trajectory Inferencec.

Heatmap of top driver genes

Neural stem cells

Proliferating VZ progenitors

VZ progenitors

Differentiating GABA interneurons

Gliogenic progenitors

GABA interneurons

Developmental orders Pseudo time

trend

trend

trend

trend

e.

Figure 4: Velocity, trajectory, and driver gene estimation of devel-
oping mouse hindbrain cells. (a) The putative development order for 6
celltypes in early mouse hindbrain, reported by Vladoiu et al. [29]. (b) The
velocity projected onto the tsne plot of gene expression. DeepVelo reveals
the temporal order among stem cells and early progenitors in the develop-
ing mouse hindbrain, including cells from early progenitors, GABAergic, and
gliogenic lineages. (c) Trajectory inference using velocity-based PAGA [31]
and velocity-based pseudo-time analysis. The predicted trajectory correctly
reflects the relations shown in (a). Only the direction to gliogenic progenitors
is projected incorrectly, this is due to the sequencing noise within the two
clusters, gliogenic progenitors and VZ progenitors. It can be seen in the tsne
plot the two clusters (green and brown) have a portion of cells mixed up. (d)
The top 60 driver genes predicted through DeepVelo’s velocity estimation,
sorted by the difference of velocity scales across celltypes. (e) Gene phase por-
trait, velocity, gene expression plots and expression trends of selected driver
genes. The expression trend shows the abundance of expression for specific
genes in cells at corresponding pseudo-time estimated timepoints. Tfap2b,
Tfap2a, Lhx5, and Neurod6 are computed among the top driver genes for
the GABAergic lineage.
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complex multi-faceted system such as this, which is typical of developmental
scRNA-seq datasets, considering cell-agnostic kinetic rates is haphazard be-
cause of the presence of multiple lineages which can contain different RNA
velocity dynamics. DeepVelo’s ability to learn cell-specific kinetic rates alle-
viates this assumption and accounts for the multi-faceted differentiation of
GABAergic and gliogenic lineages and their respective celltypes. The result
of DeepVelo (Fig.4(b)) shows the RNA velocity over the developmental pro-
cess from Neural stem cells to the differentiating GABA interneurons and
gliogenic progenitors. We performed trajectory inference using directional
PAGA [31] over the velocity graph of DeepVelo. We found that DeepVelo
was able to recapitulate ground-truth differentiation patterns - specifically
the branching between VZ progenitors and differentiation VZ progenitors
and gliogenic progenitors (Fig.4 (c)). The cluster of neural stem cells is
well recognized as the origin celltype with outward velocity arrows and a low
pseudo-time index, while the GABA interneurons are confirmed as a terminal
celltype with incoming velocity arrows and a high pseudo-time index. Over-
all velocity visualizations were similar for the dynamical and steady-state
methods (Supplementary material).

Using the velocity vector for each cell, we built a connectivity graph
(Methods Section.5.5) of the scRNA-seq data. CellRank [18] is a recent
visualization and analysis toolbox for scRNA-seq data that utilizes the con-
nectivity graph to predict cell’s fate mapping, which corresponds to the prob-
ability of the cell differentiating to a terminal state in the lineage(s). After
determining cell fate, gene importance for differentiation can be calculated
based on the correlation of gene expression with transition and differentiation
probabilities towards all terminal states. The genes that display dynamical
behavior across a lineage are termed putative ”driver genes”, as these are
the genes most likely to be involved in the regulation of the differentiation
process itself. Driver genes are systematically detected via their gene expres-
sion correlation with lineage specification (Online methods). This procedure
presents a dynamics-based alternative to the standard differential expression
paradigm and is thus more likely to capture regulatory genes involved in the
differentiation process. CellRank has been reported to work well with other
velocity methods, such as scVelo, to infer lineage-specific drivers. We in-
corporated this toolbox with the predicted velocity connectivity graph from
DeepVelo and determined driver genes in the variable gene subset of the data
for both the GABAergic and gliogenic lineages.
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Within the top 100 driver genes across both lineages of interest, we ob-
served groups of genes showing particular abundance in specific celltypes
in a temporal manner (Fig.4(d)). For example, Tfap2a, Tfap2b, and Lhx5,
which are two known differentiation genes involved in the specification of
GABAergic interneurons during hindbrain development, are listed in the
top 100 driver genes from DeepVelo for the GABAergic lineage (Fig.4(e))
[33, 23]. Similar results were found for the gliogenic lineage from DeepVelo,
with detection of known glial cell differentiation regulators in Hes1 and Sox9
(Supplementary Table 1) [32, 30]. Within the top 100 driver genes, DeepVelo
also picked up hits that were novel and not detected by scVelo, such as Neu-
rod6 in the GABAergic developmental lineage (Fig.4(e)). Although the role
of Neurod6 in the differentiating GABAergic interneurons and their devel-
opment is unclear, previous literature has indicated the gene’s involvement
in regulating specification of inhibitory GABAergic interneuron subpopula-
tions in the hindbrain and spinal cord [27]. This indicates a testable link
and hypothesis for the differentiation of these cells in the junction within the
GABAergic and gliogenic lineages, highlighting the ability of DeepVelo to
guide searches of functional genes in scRNA-seq data and potential drivers
of the differentiation process.

To compare the results of driver analysis when employing CellRank with
different velocity outputs, we determined driver genes for the gliogenic and
GABAergic lineages using both scVelo and DeepVelo. As the complete set of
genes driving differentiation in the complex hindbrain developmental system
is not known, we sought to infer the relevance of inferred driver genes in
two ways: 1) By considering their overlap with predicted marker genes from
the original analysis, as these genes are characteristic of celltype identity
and should be correlated with lineage specification, and 2) By considering
their overlap with transcription factors (TFs), as TFs are the main elements
responsible for differentiation and establishing transcriptional and cellular
identity. We analyzed and compared the top 100 driver genes for both the
GABAergic and gliogenic lineages predicted by the scVelo and DeepVelo
methods (Supplementary Table 1). DeepVelo predicted driver genes that
overlapped with more of the original markers from Vladoiu et al. [29], for
both the GABAergic and gliogenic lineages (Fig.5(a)) (Supplementary Ta-
ble 2). Although the GABAergic driver genes overlapped with much fewer
marker genes, when examining the density of correlations between the marker
genes that were found for this lineage, DeepVelo had a stronger signal for
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a. b. c.
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Figure 5: Functional enrichment of DeepVelo predicted driver genes.
(a) Overlap of the top 100 driver genes from scVelo and DeepVelo for
GABAergic and gliogenic lineages with annotated lineage marker genes. (b)
Marker-overlapping driver gene correlation values for scVelo and DeepVelo,
separated by the GABAergic and gliogenic lineages, respectively. (c) Over-
lap of top 100 driver genes from DeepVelo and scVelo for both lineages with
annotated transcription factors. (d) Pathway enrichment analysis results for
the top 100 scVelo and DeepVelo driver genes, respectively, in the GABAer-
gic and gliogenic lineages. (e) Functional signal in the enriched pathways for
scVelo and DeepVelo, based on the presence of pathways involved directly
in neurogenesis (”Neurogenesis”), not specific to neurogenesis but involved
in development (”Developmental non-neuronal”), and not specific to either
development or neurogenesis (”Non-specific”). (f) The top 20 DeepVelo path-
way enrichment analysis results, based on FDR corrected p-values, for the
GABAergic and gliogenic lineages, respectively.
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the marker genes (Kolmogorov-Smirnov Test p = 2.423 × 10−09) (Fig.5(b)).
When examining the transcription factor overlap in the top 100 driver genes,
DeepVelo also had more hits than scVelo for both the GABAergic and glio-
genic lineages (Fig.5(c)).

For further examination of the results of driver analysis, we took the top
100 driver genes for the GABAergic and gliogenic lineages from DeepVelo
and sought to determine their functional signal as gene-sets through path-
way enrichment analysis. Overall, 82 and 130 pathways were found to be
significantly enriched for the GABAergic and gliogenic lineages, respectively
for DeepVelo (Fig.5(d)) (Supplementary Table 3). These pathways were an-
alyzed for the presence of neurogenesis and developmental results, for which
we did see a functional enrichment in both lineages (Fig.5(e)). More specif-
ically, the top 20 pathways, ranked in terms of FDR-corrected p values, for
each lineage revealed enrichment of pathways relevant to neuronal differenti-
ation processes (Fig.5(f)). In the GABAergic lineage, enriched pathways in-
cluded: regulation of neuron projection development, neuron differentiation,
and neurogenesis (Fig.5(f)). The results from the gliogenic lineage had an
even more relevant terms, including positive regulation of gliogenesis, oligo-
dendryocyte differentiation, and glial cell differentiation (Fig.5(f)). When
comparing these results with pathway analysis performed on the scVelo top
100 driver genes, we observed a much lower percentage of functional enrich-
ment for neurogenesis and developmental pathways compared to DeepVelo
for the GABAergic lineage (Fisher’s Exact Test p = 4.578×10−08) (Fig.5(e)),
while the difference between the gliogenic results was non-significant. These
functional pathway enrichment results highlight the relevance of the driver
genes predicted by the DeepVelo method and increased functional relevance
compared to those predicted by scVelo.

4 Discussion

DeepVelo offers a novel and more robust velocity estimation framework that
goes beyond assumptions of constant RNA splicing and degradation rates,
and instead estimates these rates at a cell-specific level. By analyzing the
performance of DeepVelo and existing velocity estimation techniques, we have
demonstrated that DeepVelo’s cell-specific estimation through a novel deep
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learning method allows for the detection and specification of multiple lineages
in calculating RNA velocity. Realistic single-cell RNA sequencing settings
will likely have more than one lineage/trajectory in a given sample, and thus
it is imperative to develop methods that can account for these multifaceted
dynamical systems. DeepVelo’s ability to model these multifaceted dynamics
was demonstrated through analysis of complex differentiation systems, such
as the development of the dentate gyrus, pancreatic endocrinogenesis, and
the hindbrain development. Lastly, we demonstrated that DeepVelo can be
utilized to identify functionally relevant genes that are enriched along the
differentiation trajectory of given lineages - potentially having a regulatory
role that can be further validated. We envision that DeepVelo will be more
readily applicable to these realistic developmental settings as compared to
previous techniques.

The kinetic rates of transcription, splicing and degradation of mRNA de-
termine the dynamics of RNA processing in cell differentiation. DeepVelo
highlights this importance in cell-specific modeling of RNA velocities. Apart
from this, we provide a systematic way to estimate the kinetic rates based
on the fact that kinetics are correlated with the complete set of processes
affecting the transcriptomic state of a cell. So, by using the entirety of
the transcriptome-wide information from scRNA-seq data, one can approx-
imately represent the cell status and estimate the kinetic rates accordingly.
DeepVelo, as one of the first attempts, shows positive results of such an
estimation, and we believe the cell-specific modelling of the transcriptional
processes is a promising direction for inference of dynamical information.

DeepVelo internally predicts the first-order derivative of expression per
gene based on the transcriptome-wide reads of all selected genes. The ability
to learn the interaction/regulation between genes could be further explored,
for example by replacing the GCN model with recent transformer networks
[28] which could explicitly model the interaction of internal gene represen-
tations. This could allow for more interpretable velocity and driver-gene
estimates, by considering correlations of kinetics and expression patterns be-
tween genes and cells. Recent work shows promising research directions by
extending the velocity of cellular dynamics from RNA to proteins [8], epige-
nomics [26], and multi-omics velocities [20]. DeepVelo could be naturally
updated and well fitted into these settings by enriching input and output
space with additional -omics information. Ultimately, the estimation of cell-
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specific kinetics across multiple steps in the central dogma may increase the
signal-to-noise ratio [5] and further accurately capture information related to
cellular development.

A major limitation of driver analysis through RNA velocity estimation is
potentially spurious driver genes being picked up due to correlation of gene
expression during differentiation. Although key regulators will display dy-
namical expression behavior during lineage specification, the same is likely to
be true of their downstream targets and other ”passenger” genes, resulting
in high likelihoods towards being a driver/regulator. This is likely the reason
why a significant transcription factor enrichment was not observed in the
top 100 driver genes in the hindbrain developmental data for either scVelo
or DeepVelo. We envision a more comprehensive driver analysis technique
would take into account multi-lineage probabilities (preventing negative cor-
relation between top drivers of two lineages) and would factor in correlations
between driver analysis results, thereby removing spurious hits. Apart from
the driver gene analysis, building up a theorem to verify the confidence of ve-
locity estimation is another challenge. Empirical metrics, such as the consis-
tency of velocity directions among neighbor cells, have been used in existing
techniques [4, 24]. However, there is a lack of probabilistic tools to test the
kinetics estimated by either previous methods or DeepVelo. We leave this to
future works.

RNA velocity techniques have allowed for insights into biological differ-
entiation from single-cell RNA sequencing data that go beyond the over-
simplified trajectory inference models, and instead infer dynamic processes
that indicate the direction and magnitude of differentiation potential. Al-
though many major limitations and assumptions for RNA velocity methods
still exist, we anticipate that continued methodological development in this
relatively novel field will lead to better tools to study differentiation and de-
velopment in a single-cell setting. DeepVelo overcomes limitations of previous
techniques in a major aspect with regards to cell-specific model estimates,
and can be used for more robust velocity estimation in multi-lineage sys-
tems, yielding better biological insights into real and complex developmental
systems.
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5 Online methods

5.1 Preprocessing the scRNA-seq data for DeepVelo

The dentate gyrus neurogenesis [11] and pancreatic endocrinogenesis [2] data
are available at the National Center for Biotechnology Information’s Gene
Expression Omnibus repository. The accession number is GSE95753 and
GSE132188. In this work, we use the zipped data of these two sequencing
datasets provided by the scVelo packageBergen et al. [4](https://scVelo.
org). The data is in h5py file format and contains spliced and unspliced gene
readout.

Mouse hindbrain developmental data from Vladoiu et al. [29] was used to
test velocity techniques for estimation at a lineage junction. As the data was
not available in loom format for velocity analysis, fastq files were reprocessed
into loom files using kallisto reference-free alignment through the loompy
pipeline [6]. This was done individually for each timepoint (E10, E12, E14,
E16, E18, P0, P5, P7, P14) and processed loom files were concatenated.
For the purposes of the analysis, the junction between the GABAergic and
gliogenic lineages was utilized. The following celltypes were subset from
timepoints E10, E12, E14, E16, E18, P0, P5, P7, and P14 - Neural stem
cells, Proliferating VZ progenitors, VZ progenitors, Differentiating GABA
interneurons, gliogenic progenitors, and GABA interneurons. Estimates of
spliced and unspliced counts from the kallisto quantification method were
used for testing DeepVelo and scVelo.

Processing of unspliced and spliced counts in differing formats was done
via three steps and uses the scVelo package. First, the spliced and unspliced
gene matrices are normalized across genes. The preprocessing includes ex-
pression matrix normalization, nearest-neighbor-based smoothing. We used
the scv.pp.filter_and_normalize from scVelo for these steps with default
parameters. We select the top 2000 genes with the most spliced and unspliced
gene counts across cells. The principal components are computed afterward
using logarithmized spliced counts, and then we smooth the expression reads
using the average of 30-nearest-neighbors for each cell.
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5.2 Steady-state estimation of velocity

DeepVelo starts from the heuristics of initial velocity directions and then
the deep learning model updates the prediction for future dynamics on the
individual cell level. Here we employ the steady-state model [16] to com-
pute the initial velocity directions. The steady-state model computes linear
regression over spliced/unspliced expressions per gene and assigns positive
velocity to cells with above-average unspliced reads, and vice versa. This
computation is simple and fast and in experiments works well as the initial
direction heuristics for DeepVelo. In the following, we first briefly review the
concepts of RNA velocity and the steady-state model from La Manno et al.
[16].

The transcriptional dynamics depicts the process from generation to degra-
dation of mRNA molecules. It captures unspliced premature mRNAs u(t)
with transcription rate α, its splicing into mature mRNAs s(t) with rate
β and the degradation of spliced mRNA with rate γ. The simplified gene-
specific dynamics with constant splicing and degradation rates are

du(t)
dt

= α (t)− βu (t) ,
ds(t)
dt

= βu (t)− γs (t) .
(2)

The derivative equations depict the changes of mRNA abundances over
time. RNA velocity is defined as the time derivative of spliced mRNA, i.e.
ν (t) := ds(t)

dt
. In, the steady-state model, it assumes most observed cells are

in saturation stages (ν(t) = 0) and the splicing rate β constantly equals to
1. Then the average degradation rate γ̃ is computed as the ratio of γ̃ =
(u−ū)T (s−s̄)
||s−s̄||2 , where u and s are the unspliced and spliced reads of all cells. ū

and s̄ denote the average. Then the velocity for a cell i is computed as the
difference to the average ratio:

ν̃i = ui − γ̃si, (3)

where ui and si are the unspliced and spliced reads for the cell.
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5.3 Modeling individual transcriptional dynamics

Taking into consideration that the steady-state model heavily depends on the
often violated steady-state assumption, and it omits the difference of kinetic
rates (α, β, γ) across celltypes, we propose a new method using deep learning
to capture individual cell kinetics. DeepVelo assumes that the sequencing
data captures a continuous spectrum of cells in consecutive development
stages, so that the changing rate of mRNA abundance, i.e. the velocity, could
be well captured by the difference of mRNA reads within developmentally
close-by cells. We term this the continuity assumption. In comparison
to the previous strict assumptions (i.e. the observation of steady states or
the global constant rates) in existing approaches, the continuity is commonly
satisfied in sequencing data of large cell populations; hence, it broadens the
scope of application for DeepVelo.

Given a spectrum of cell population satisfying the continuity assumption,
DeepVelo learns cell-specific kinetic rates and predict velocities at current
cellular time t. The velocities extrapolate the gene expressions to the next
time-point to match the future cell states at t+ 1. The future cell states are
depicted by possible cell expressions in the sequencing data. The details of
this computation pipeline are as follows:

First, we build a graph convolutional network model to predict cell-
specific kinetic rates. In this work, we build a nearest neighbor graph based
on the expressions of all sequenced cells G = (V , E). The vertex vi ∈ V in
the graph denotes the expression reads of a cell i, which include its spliced
and unspliced gene expressions vi = [si, ui]. A cell i is connected to cell j
(i.e. Eij = 1) if cell j is the one of top 30 nearest neighbors based on the
Euclidean distance of the gene expressions. We input this neighbor graph
to DeepVelo. We chose the graph representation because it considers the
vicinity of local cell expressions. This has more expressive power than the
expressions of individual cells because of the sparse and noisy nature of gene
expressions. Taking the neighborhood expressions into smooth the velocity
estimation.

Graph convolutional network (GCN) is a type of deep neural networks
that learns node embeddings based on message passing along the graph edges
[15]. Given a graph with nodes V and adjacency matrix A, a multi-layer
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neural network is constructed on the graph with the following layer-wise
propagation rule:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W (l)), (4)

where H(l) denotes the node feature vectors at the l-th layer, Ã = A+ IN is
the adjacency matrix with self-connections, D is the diagonal degree matrix
such that Dii =

∑
j Ãij, W

(l) is the layer-specific trainable parameter matrix,
σ is the RELU activation function.

In this work, the input feature H(0) ∈ RN×2D to GCN is the cellular
gene matrix. Each row in H stands for the aforementioned vertex vi. H
contains the population of N cells and the dimension 2D equals the number
of selected spliced and unspliced genes combined, D = 2000 by default. The
adjacency matrix A ∈ RN×N depicts the aforementioned nearest neighbor
graph, where the element at position i, j has value 1 if the cell j is one of the
nearest neighbors of cell i, otherwise the value is 0. The GCN model consists
of stacked graph convolution layers, i.e. Eq. 4. The output of the final layer
HL is processed by a fully connected neural network, which then yields the
estimated velocity parameters α ∈ RN×D, β ∈ RN×D and γ ∈ RN×D for all
cells and genes.

Finally, the estimated velocity vi ∈ RD for each cell is computed as

vi = βiui − γisi, (5)

where βi and γi are the i-th row in β and γ, ui and si are the unspliced and
spliced reads of cell i.

DeepVelo also supports estimation of the derivative of unspliced RNA,
namely vunsi , which is an estimation for the du(t)

dt
in Eq.1.

vunsi = αi − βisi.

5.4 Training the DeepVelo model

To optimize the parameters in the DeepVelo model, we introduce a combined
loss function with two terms.

L = Lr︸︷︷︸
regression loss

+λ Lc︸︷︷︸
constraint loss

(6)
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The first term, named the regression loss, depicts the difference between
the estimated future cellular state si + vi and the average cellular state of
downstream neighbors. Minimization of this loss promotes the estimated ve-
locities to match the observations of cellular state distribution in the dataset.

Lr(celli) = (si + vi −
1

|N +
i |

∑
j∈N +

i

sj)
2, (7)

where N +
i is the set of cells that have the expression profile most comparable

to the future cell state of i. This is selected by computing the Euclidean
distance between the extrapolation of cell i with initial direction ν̃i (Eq.3)
and every cell j in the sequenced population, i.e. ||si+ ν̃i−sj||, ∀j ∈ U . Then
the k cells with nearest distances are selected. We use k = 30 by default.

The second term, constraint loss, smooths the velocities among similar
cells by minimizing the variance of velocity vectors.

Lc(celli) =

Mgene∑
m=1

Var[v
(m)
j ], j ∈ N (m)

i , (8)

where N (m)
i denotes the set of top k cells that have the most similar expres-

sion counts on gene m as cell i (including cell i itself). For each sequencing
dataset, the DeepVelo model is trained by gradient back-propagation using
the Adam [14] optimizer for 100 to 150 epochs. The updated model at the
last epoch is used to compute the estimated velocities.

5.5 Computing cell-to-cell connectivity graph

The similarity of velocity vectors of cells could model cell-to-cell connectiv-
ities. We use the connectivity graph for downstream tasks including driver
gene analysis and developmental trajectory inference.

The weight in the connectivity graph, wij denotes the estimated magni-
tude of connection. Higher wij means the future state of cell i is close to the
current state of cell j. wij could be computed by possible similarity measures
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between velocity vi and the gene expression difference sj − si. Here, we used
the cosine similarity, which is also adopted in scVelo [4], therefore,

wij =
vTi (sj − si)
||vi|| · ||sj − si||

.

For the visualization of the velocity plot, we adopted the same projec-
tion computation provided by exiting methods [16, 4] to project velocity as
arrows onto low-dimensional embeddings, such as tsne and UMAP. To sum-
marize, the transition probability πi,j from a cell i to possible target cell j
is computed by the Gaussian normalized connectivity weight wij. Then the
velocity vector for vi in a low-dimensional space is computed by the weighted
sum of

∑
j πi,jδij, where δij is the direction vector pointing from cell i to j

in the low-dimensional space.

5.6 Driver gene estimation and comparison

To determine functional signals in the driver genes, the top 100 genes based
on a correlation with each lineage were determined, in particular for the
hindbrain developmental data from [29]. Overlap with marker genes based
on the original analysis used to annotate celltypes was performed, as well as
overlap with transcription factors. Transcription factors were pulled from the
manually annotated Human Transcription Factors list curated by Lambert
et al., and were lifted over to mouse data using orthologous gene-matches
[17].

Analysis of marker overlap was further extended by determining the cor-
relation values of markers in the top 100 driver gene lists for both scVelo
and DeepVelo per lineage in the Vladoiu et al. [29] data. The density of
correlation values for marker genes in the top 100 list was analyzed for sig-
nificant differences using the Kolmogorov-Smirnov (KS) non-parametric test
for significant distributional differences. The KS test utilizes the maximum
difference between the cumulative distributions of the data as a test statis-
tic. The two-sided version of the test was used in this case, allowing either
DeepVelo or scVelo to have a greater or lesser density of correlations.
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5.7 Pathway enrichment analysis

To determine functional signal in the driver gene results, pathway enrich-
ment analysis was done using the ActivePathways R package [22]. The
top 100 driver genes, based on correlation values for both the GABAer-
gic and gliogenic lineages from the Vladoiu et al. [29] data, were input
into the ActivePathways gene-set enrichment analysis model. The latest
Gene-Matrix-Transposed (GMT) files containing gene-set information from
the Gene Ontology Molecular Function, GO Biological Process, and REAC-
TOME databases were used [7, 13]. Pathways were labelled as being involved
in ”Neurogenesis”, as ”Developmental non-neuronal”, and ”Non-specific” us-
ing manual annotation and the presence of known terms (such as ”neuron
projection” or ”proliferation” for ”Neurogenesis” and ”Developmental non-
neuronal”, respectively). ”Non-specific” pathways indicated those that did
not have immediately obvious roles in either neurogenesis or general devel-
opment. To determine significant differences between pathway labelling and
potential enrichment of neurogenic/development specific pathways, a two-
sided Fisher’s exact test based on the hypergeometric distribution was done
for the contingency table comprising of scVelo and DeepVelo pathway re-
sults and functional labels (”Neurogenesis”, ”Developmental non-neuronal”,
”Non-specific”) for the gliogenic and GABAergic lineages independently.
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Timepoint of DG Neurogenesis Timepoint of Mouse Hindbraina. b.

Figure S1: The time points of sequenced cells in datasets. (a) The
dentate gyrus neurogenesis data. (b) The mouse hindbrain data

PCA projection of cell-specific kinetic rates at various training epochs

Epoch 10 Epoch 20 Epoch 30

Epoch 60 Epoch 90 Epoch 120

a. b. c.

d. e. f.

Figure S2: The PCA projection of cell-specific kinetic rates at var-
ious training epochs. (a-f) Scatter plot of the first two PCA dimensions
at training epochs 10, 20, 30, 60, 90, 120. DeepVelo learns to predict simi-
lar kinetic rates for cells of same celltype. For example, the kinetic rates of
Endothelial cells (outlined) are gradually clustered together and locate away
from the less-related granule lineage.
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Start E15.5

E12.5

a. DeepVelo pseudo-time b. DeepVelo velocity

c. d.Dynamical latent time Dynamical velocity

e. Pseudo-time histogram of Beta, Alpha

Figure S3: Velocity and pseudo-time plots for pancreatic endocrino-
genesis [2]. (a) The pseudo-time prediction from DeepVelo accurately as-
signes time indices to different celltypes. Particularly, the starting cell cluster
correctly locates at the upper left. Also, the difference between the terminal
celltypes are well captured, where the group of Alpha-cells were developed
earlier then E12.5 and the Beta-cells appeared later until E15.5. (b) Veloc-
ity values derived from DeepVelo are projected onto the UMAP-based em-
bedding and visualized in arrows. DeepVelo successfully captures the main
stream of EP cells developing into terminal celltypes of alpha, beta and delta
cells. (c),(d) For comparison, the latent time and velocity computed by the
dynamical model from scVelo. (e) The histogram of pseudo-time of Beta and
Alpha cells, using DeepVelo estimated velocities. Beta cells have a larger
percentage of cells with higher pseudo-time values, which correctly reflects
the later development of these cells at E15.5
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Figure S4: Time comparison across datasets. Comparison of computa-
tion time between Dynamical and DeepVelo on three datasets. Here we train
the DeepVelo model on CPU without GPU accelaration. DeepVelo has a 3-5
folds acceleration compared to the dynamical model from scVelo using the
same computation resources.
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Figure S5: Full pathway enrichment analysis results overlap. Over-
lap of scVelo and DeepVelo pathway enrichment analysis results, between
methods, for the top 100 GABAergic and gliogenic driver genes.
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