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Abstract 14 

Transcription factor binding across the genome is regulated by DNA sequence and chromatin features. 15 

However, it is not yet possible to quantify the impact of chromatin context on genome-wide 16 

transcription factor binding affinities. Here we report the establishment of a method to determine 17 

genome-wide absolute apparent binding affinities of transcription factors to native, chromatinized 18 

DNA. Our experiments revealed that DNA accessibility is the main determinant of transcription factor 19 

binding in the genome, which largely restricts nanomolar affinity binding of YY1, SP1 and MYC/MAX 20 

to promoters, while FOXA1 also interacts with non-promoter elements with high affinity. 21 

Furthermore, whereas consensus DNA binding motifs for transcription factors are important to 22 

establish very high-affinity binding sites, these motifs are not always strictly required to generate 23 

nanomolar affinity interactions in the genome. Finally, we uncovered transcription factor 24 

concentration dependent binding to specific gene classes, suggesting transcription factor 25 

concentration dependent effects on gene expression and cell fate. Importantly, our method adds a 26 

quantitative dimension to transcription factor biology which enables stratification of genomic targets 27 

based on transcription factor concentration and prediction of transcription factor binding sites under 28 

non-physiological conditions, such as disease associated overexpression of (onco)genes. 29 

Introduction 30 

Gene expression is regulated by a complex interplay between DNA sequence, chromatin structure and 31 

transcription factor binding1–3. A plethora of methods to characterize cellular epigenomes have been 32 

developed in recent years4–6. Furthermore, various methods to determine how transcription factors 33 

recognize DNA sequence motifs have been described7,8. DNA sequence, chromatin context, co-factors 34 

and DNA compaction are thought to have an important regulatory role on transcription factor binding 35 

and gene regulation9,10, while it is proposed that binding of different transcription factors is not all 36 

regulated in the same way11. Importantly, genome chromatization is predicted to regulate up to 98% 37 

of all transcription factor binding events in human cells12 and is, in addition to DNA sequence, the 38 

largest determinant of transcription factor binding13.  39 
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Observing where proteins bind in the genome does not explain when they bind certain loci. To 40 

biochemically understand transcription factor binding, the binding specificity and the affinity of a 41 

transcription factor14 for each DNA sequence must be determined. Binding specificity helps to predict 42 

which genomic sites are potential transcription factor binding sites, while the affinity determines for 43 

each genomic site at what transcription factor concentration it will be bound. In recent years, several 44 

in vitro techniques have been developed to determine global protein-DNA interaction specificities8, 45 

affinities15, or a combination of both16. Furthermore, many algorithms have been developed to predict 46 

transcription factor binding in silico, based on DNA accessibility, DNA sequence or gene expression 47 

data17. However, no existing technique is capable of quantifying absolute transcription factor binding 48 

affinities in the chromatinized genome (reviewed in18). 49 

Here we present a method to determine Binding Affinities to Native Chromatin by sequencing (BANC-50 

seq), in which native chromatinized DNA is used to determine genome-wide absolute transcription 51 

factor binding affinities. To this end, transcription factor concentration dependent binding to 52 

regulatory elements is quantified by either ChIP-seq or CUT&RUN5 to determine genome-wide binding 53 

affinities in a native chromatin context. BANC-seq enabled quantification of thousands of nanomolar 54 

apparent binding affinities for multiple transcription factors in multiple cell types, thereby allowing us 55 

to investigate the role of chromatin context and DNA sequence in regulating absolute genome-wide 56 

transcription factor binding affinities. BANC-seq adds a quantitative dimension to transcription factor 57 

biology, which confirms that chromatin context is the major determinant of transcription factor 58 

binding affinity13. Our data reveal that pre-existing, permissive chromatin architecture is a pre-59 

requisite for high and low affinity transcription factor binding to occur. In addition, our results indicate 60 

that, by and large, the presence or absence of canonical transcription factor binding motifs 61 

differentiate high and low affinity transcription factor binding sites, respectively. Importantly, we 62 

show that chromatin context is interpreted differently by the pioneering transcription factor FOXA1 63 

compared to YY1, SP1 and MYC. Finally, our data reveal that specific gene classes are bound at 64 

different transcription factor concentrations, suggesting concentration dependent effects on 65 

transcription and cell fate. These findings underscore the importance of incorporating binding 66 

affinities when investigating gene regulatory networks, and we therefore anticipate that BANC-seq 67 

will be an important tool for the gene expression, chromatin and quantitative systems biology 68 

community.  69 

Results 70 

To determine genome-wide transcription factor-DNA binding affinities while retaining in vivo 71 

chromatin context, we established the BANC-seq workflow, in which intact chromatin is incubated 72 

with a titration-series of a purified epitope-tagged transcription factor (Fig. 1a). Next, the genomic 73 

binding sites at each transcription factor concentration are determined by either ChIP-seq or 74 

CUT&RUN, using an antibody against the tag-epitope. The nuclear isolation procedure is based on 75 

protocols for genome-wide DNA accessibility profiling, a well-established technique known to retain 76 

in vivo nucleosome positioning and transcription factor binding4. To investigate whether the BANC-77 

seq workflow results in a loss of chromatin and co-factors for transcription factor binding, we used 78 

mass spectrometry to quantify the proteome before and after nuclear isolation. Importantly, while 79 

cytoplasmic proteins were lost, we observed no decrease in the abundance of nuclear transcription 80 

factors after nuclear isolation (Extended Data Fig. 1a). 81 
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82 

Next, we set out to benchmark BANC-seq by adding 1, 10, 100 and 1000 nM FLAG-tagged YY1 to freshly 83 

isolated nuclei, followed by nuclear permeabilization, ten-minute incubation at 37°C and crosslinking. 84 

YY1 is a zinc finger transcription factor that binds enhancers and promoters to regulate gene 85 

expression and enhancer-promoter interactions19. Given the fact that the core sequence motif for 86 

specific YY1 binding is short, the amount of theoretical binding sites in the human genome is several 87 

orders-of-magnitude larger than actual binding sites observed by ChIP-seq. Therefore, we expected 88 

genome-wide YY1 binding affinities to be highly dependent on chromatin context. Sequencing 89 

revealed increased binding of YY1 at a known YY1 binding site with increasing transcription factor 90 

concentration (Fig. 1b; qPCR validation in Extended Data Fig. 1b). To quantify binding affinities, we 91 

used spike-in normalized ChIP-seq signal at the tested transcription factor concentrations to infer the 92 

apparent dissociation constant (Kd
App) at each identified binding site. To this end, we fitted parameters 93 

Figure 1 | BANC-seq enables determination of genome-wide apparent binding affinities to native chromatin. (a) 

Overview of the experimental procedure. Isolated nuclei are incubated with a titration series of purified FLAG-tagged 

transcription factor, after which binding is quantified by anti-FLAG ChIP-seq or CUT&RUN, both including heterologous 

spike-in DNA. Spike-in normalised sequencing reads at each binding site and transcription factor-titration point are fitted 

to a Hill-curve to determine apparent binding affinities (Kd
Apps). (b) Spike-in normalised sequencing reads per titration 

point of FLAG-YY1 at the human PTBP1 promoter, relative to the highest signal (top; dotted line indicating the Kd
App), and 

visualized in the genome browser (bottom). (c) Distribution of Kd
Apps of FOXA1 in MCF-7, SP1 in MCF-7 and YY1 in mESC 

cells F121. Dotted lines indicate the tested transcription factor concentrations per experiment. (d) Heatmap representing 

spike-in normalised sequencing reads relative to the highest signal for the same experiments as in (c). Each row 

represents one transcription factor binding site. The overlap of each binding site with peaks from endogenous ChIP-seq 

experiments of the same transcription factor is shown on the left of each heatmap, while Kd
Apps are shown in the right 

column. (e) Overlap of identified binding sites with known regulatory features in the Ensembl Regulatory Build for 

different BANC-seq experiments. 
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of a Hill-like curve to the observed signal over known transcription factor concentration (Fig. 1a; see 94 

Methods) and were able to determine high confidence apparent binding site affinities ranging from 95 

36 to 156 nM for 5,372 genomic loci. Previously reported in vitro binding assays to determine affinities 96 

between YY1 and DNA have reported Kd values ranging from 3 to 4000 nM20–24, although most Kds were 97 

found to be in the order of 100 nM, which is in good agreement with our measurements, providing a 98 

benchmark to profile additional transcription factors. 99 

Encouraged by this pilot experiment, we performed BANC-seq with the pioneering transcription factor 100 

FOXA1, and transcription factors YY1 and SP1, and transcription factor heterodimer MYC/MAX in 101 

human breast cancer cells (MCF-7) and mouse embryonic stem cells. As ChIP-seq requires large 102 

amounts of cells as input material, we also adapted the protocol to be compatible with CUT&RUN to 103 

reduce the required number of input cells. These experiments revealed between 2,601 and 17,462 104 

quantified binding affinities for per experiment (with a total of 48,220 quantified sites across the 105 

human and mouse genome), which span the entire nanomolar affinity range, equating to transcription 106 

factor expression of 100 to up to 100,000 molecules per nucleus (depending on the nuclear volume, 107 

see Discussion, Fig. 1c-d). The range of observed Kd
Apps appeared to be dependent on the transcription 108 

factors we studied as well as and cell type (Fig. 1c, Extended Data Fig. 2a-b). However, using different 109 

methods (ChIP-seq and CUT&RUN) did not drastically influence the measured Kd
Apps, as one would 110 

expect (Extended Data Fig. 2a). Reassuringly, 83.6±7.6 % (mean ± SD) of the identified binding sites of 111 

exogenously added FLAG-tagged transcription factors overlapped with binding sites previously 112 

identified by endogenous ChIP-seq experiments for the tested transcription factors in the respective 113 

organism (Fig. 1d, Extended Data Fig. 2b), and 92.1±4.8% (mean ± SD) of the binding sites overlapped 114 

with annotated regulatory elements (Fig. 1e). This indicates that the exogenously added FLAG-tagged 115 

transcription factors exhibit physiological genomic binding in BANC-seq experiments, enabling faithful 116 

determination of genome-wide binding kinetics to regulatory elements by BANC-seq.  117 

Chromatin context impacts binding affinities 118 

Next, we investigated the relationship between transcription factor binding affinities and chromatin 119 

context. We observed that almost all genomic sites for which we could determine high confidence 120 

transcription factor binding affinities are enriched for active histone marks, while being devoid of 121 

repressive and heterochromatin marks (Fig. 2a), illustrating that accessible chromatin is a prerequisite 122 

for transcription factor binding to occur. Nanomolar binding of SP1, YY1 and MYC/MAX appears to be 123 

almost exclusively restricted to promoter regions (Fig. 1e, mean ± SD = 86,7±0.71; and illustrated by 124 

the close proximity of peaks to transcription start sites depicted in Extended Data Fig. 2c). Strikingly, 125 

high affinity binding of these transcription factors is not often observed at enhancers, suggesting that 126 

chromatin is organized in such a way to facilitate binding of these transcription factors at promoters 127 
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 128 

at low concentrations. Interestingly, low affinity binding sites for SP1, YY1 and MYC/MAX overlap more 129 

frequently compared to high affinity binding sites, suggesting that low affinity binding is largely 130 

controlled by DNA accessibility (Extended Data Fig. 2d). In contrast, nanomolar binding affinities for 131 

FOXA1 are not restricted to promoters (Fig. 2a): more than half of its quantified binding affinities are 132 

detected outside promoter regions, and identified binding sites are more distal to transcription start 133 

sites compared to those for the other tested transcription factors (Extended Data Fig. 2c). This 134 

observation may be explained by the fact that the pioneering factor capabilities of FOXA111,25 make it 135 

less dependent on pre-existing chromatin architecture and DNA accessibility.  136 

To further investigate the correlation between DNA accessibility and high affinity transcription factor 137 

binding, we investigated whether promoters are more accessible in general compared to enhancer 138 

regions. Indeed, we observed that hyper-accessible regions in promoters are nearly twice as large 139 

compared to other types of regulatory elements (Fig. 2b), indicating that SP1, YY1 and MYC 140 

preferentially interact with larger accessible DNA elements. In contrast, FOXA1 bound sites are 141 

generally characterized by narrower and reduced accessibility (Fig. 2b, Extended Data Fig. 3a), 142 

possibly reflecting its ability to open condensed chromatin26. Here, FOXA1 was able to bind both 143 

promoters and enhancers with reduced accessibility, in particular at high affinity binding sites 144 

Figure 2 | Chromatin context regulates transcription factor binding affinities. (a) Heatmap showing matched 

epigenome dynamics at binding sites with high-confidence Kd
Apps  fitted for FOXA1, SP1, YY1 and MYC in MCF-7, or 5,000 

random promoters. Signals of ChIP-seq and DNA accessibility (by ATAC-seq) tracks for MCF-7 are shown as log2 fold 

change over the mean signal in five matched control tracks. Sites are ranked by assigned regulatory feature (first column 

per heatmap) and apparent binding affinity (second column heatmap). (b) Boxplots showing the size of DNA accessibility 

peaks at sites with high-confidence Kd
Apps fitted per transcription factor (top), or per assigned regulatory feature 

(bottom). (c) Boxplots showing Kd
Apps per assigned regulatory feature for the same transcription factors as in (a). 

Numbers at the bottom of each plot represent the number of sites in each group.  (d) Boxplots showing Kd
Apps for FOXA1 

at sites that gain or retain FOXA1 binding after FOXA1 overexpression in MCF-7. * are used to indicate significance 

according to a two-sided Wilcoxon test (ns: p > 0.05, *: p <= 0.05, **: p <= 0.01, ****: p <= 0.0001). Box plots were 

drawn with the center line as the median, the hinges as the first and third quartiles, and with the whiskers extending to 

the lowest and highest values that were within 1.5 × interquartile range. 
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(Extended Data Fig. 3a), indicating that regulation of FOXA1 binding in the genome is fundamentally 145 

different compared to binding of SP1, YY1 and MYC.  146 

In agreement with the enhancer binding function of FOXA127,28, we found that almost half of its binding 147 

sites are characterized by high levels of the active enhancer mark H3K4me1, while the majority of 148 

binding sites of all other transcription factors did not overlap with this histone modification (Fig. 2a, 149 

Extended Data Fig. 3a). Interestingly, high affinity FOXA1 sites were remarkably less accessible 150 

compared to low affinity sites (Extended Data Fig. 3a), which is in agreement with the ability of this 151 

transcription factor to bind and subsequently open compacted chromatin, rendering it accessible to 152 

other transcription factors25,26. The fact that binding affinities of FOXA1 showed a strong correlation 153 

with H3K4me1 (Extended Data Fig. 3 a-c), indicates that this epigenetic mark is permissive for FOXA1 154 

binding. In contrast, levels of DNA accessibility and H3K4me3 were relatively stable (and higher than 155 

for FOXA1) at binding sites of the other transcription factors over the complete range of Kd
Apps, 156 

indicating that these require hyper-accessible sites for binding to occur, regardless of transcription 157 

factor concentration.  158 

Finally, we observed that FOXA1 binding at promoters is characterized by significantly lower affinities 159 

(higher numerical Kd
Apps) compared to binding at other regulatory elements (Fig. 2c). This indicates 160 

that these sites are only bound at very high FOXA1 concentrations. To validate this finding, we 161 

intersected our genome-wide FOXA1 binding affinities with previously identified28 sites that gain 162 

FOXA1 binding upon FOXA1 overexpression, and found that FOXA1-gained sites displayed significantly 163 

lower affinity compared to retained sites (Fig. 2d). In addition, sites that gain FOXA1 binding primarily 164 

consisted of promoters (75 %), while only 25 % of sites that retained pre-existing FOXA1 binding 165 

mapped to promoters (Extended Data Fig. 4b) and displayed higher DNA accessibility and H3K4me3 166 

levels, but lower H3K4me1 levels (Extended Data Fig. 4c-e). These results demonstrate that chromatin 167 

context greatly influences binding affinities of transcription factors to DNA, thereby emphasizing the 168 

added value of investigating transcription factor binding affinities in a native chromatin context 169 

compared to naked DNA. Furthermore, for the transcription factor FOXA1, we observed an anti-170 

correlation between binding affinities and DNA accessibility, which is the opposite from what we 171 

observed for SP1, YY1 and MYC/MAX, thus providing evidence for fundamentally different molecular 172 

interactions with the genome by different transcription factors.  173 
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Concentration dependent target binding 174 

Inspired by the observed dynamic binding of genomic targets at different transcription factor 175 

concentrations, we investigated the correlation between apparent binding affinities and regulation of 176 

distinct biological processes. To this end, we performed permutation-based gene set enrichment 177 

analyses to identify processes and pathways associated with specific transcription factor 178 

concentrations. For each transcription factor, we detected between 780 and 1603 significantly 179 

enriched gene sets from various databases at an FDR of 0.05 (Fig. 3a), revealing widespread gene 180 

regulation dynamics through transcription factor concentrations. Interestingly, gene modules that 181 

Figure 3 | Concentration dependent binding of transcription factor target genes. (a) Pie charts representing the 

proportions of significantly enriched gene sets (FDR<0.05) per Molecular Signatures Database collection for the different 

transcription factors. (b-d) Heatmaps representing enrichment of genes from various gene sets over the range of Kd
Apps 

for SP1, FOXA1 and MYC/MAX complex in MCF-7. Sites are ranked by Kd
Apps (top heatmap per experiment) and gaussian 

kernel density estimates of the density of highly significant gene sets (FDR<0.001) over the ranked Kd
Apps values are 

visualized to show that some gene sets are enriched at certain transcription factor concentrations. 
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182 

associate with high affinity transcription factor binding are often related to essential cellular processes 183 

such as energy production, translation and metabolism (Fig. 3b-d), which could suggest that these are 184 

ubiquitously active gene modules and only require minimal regulation. In contrast, biological 185 

processes that are specific for specialized cell types are more frequently associated with lower affinity 186 

binding sites, indicating that they can be activated in the cells that require them by increasing the 187 

transcription factor concentration towards the higher nanomolar range. In addition to biological 188 

processes, we identify hundreds of gene sets for transcription factor targets (TFT database) (Fig. 3a), 189 

which implies that depending on their concentration, transcription factors can cooperate with other 190 

transcription factors to activate target genes to establish complex gene regulatory networks. The most 191 

prominent example of this in our data is FOXA1, which associates with 203 transcription factor target 192 

modules. This is in line with the pioneering function of FOXA1, known to cooperate with other 193 

transcription factors to enable and regulate binding at their respective target genes25. Moreover, 194 

analysis of target gene sets of FOXA1 highlighted histone H3 acetylation and ATP-dependent 195 

chromatin remodelling, suggesting that positive feedback loops at the level of chromatin remodelling 196 

may stimulated by FOXA1 transcription factor activity in MCF-7. Together, these results underscore 197 

the potential of concentration dependent binding of transcription factors to their targets and 198 

subsequent activation of distinct biological processes in a concentration dependent manner. 199 

DNA sequence fine-tunes binding affinities 200 

Given the fact that most if not all transcription factors interact with specific DNA motifs, we 201 

investigated the contribution of DNA sequences to transcription factor binding affinities by performing 202 

motif searches on high and low affinity binding sites for all transcription factors used in this study 203 

(Extended Data Fig. 5). Interestingly, while high affinity binding motifs were specific for the different 204 

examined transcription factors and consisted of the consensus motifs of the respective transcription 205 

Figure 4 | Consensus motifs are not the major determinants of transcription factor binding affinities. (a) Top; analysis strategy 

for the determination of allele-specific Kd
Apps. Sequencing reads were mapped to two alleles based on the presence of SNPs and 

separately processed further as described for the other experiments to determine allele-specific Kd
Apps. Bottom; scatterplot 

showing allele-specific Kd
Apps, for sites at which high confidence Kd

Apps could be determined for both alleles, colour coded for 

whether or not a SNP was overlapping with the YY1 core consensus motif ATGG/CCAT. (b) Scatterplot representing the 

difference in allele-specific Kd
Apps (y-axis) relative to the difference in alleles-specific YY1 motif-match score (x-axis) for sites at 

which high confidence Kd
Apps could be determined for both alleles. (c) Scatter plot showing the difference in allele-specific Kd

Apps 

(y-axis) relative to the smallest distance of a SNP to a YY1-core consensus motif within each site. (d) Summary illustrating 

transcription factor binding affinity regulation by the chromatin context and DNA sequence, as well as concentration dependent 

binding of transcription factor targets. 
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factors, motifs associated with low affinity binding sites were similar in the different experiments (e.g. 206 

the common promoter CCAAT motif, which was enriched in low affinity binding sites of SP1, YY1 and 207 

MYC). This was in line with our earlier observation that low affinity binding of YY1, SP1 and MYC 208 

frequently map to the same promoter region (Extended Data Fig. 2d). Together, this indicates that at 209 

high expression levels, transcription factors will bind accessible chromatin regions independently of 210 

the presence of transcription factor binding motifs, underlining the dominant effect of the epigenome 211 

landscape of transcription factor binding.  212 

Next, we hypothesized that small variations in the DNA sequence in or around consensus motifs may 213 

fine-tune apparent binding affinities. To investigate this, we made use of Castaneus/129/Sv hybrid 214 

mouse embryonic stem cells29 (further referred to as F121) to identify apparent binding affinity 215 

quantitative trait loci (QTLs). After aligning sequencing reads to either Castaneus or 129/Sv based on 216 

SNPs, we were able to determine allele-specific Kd
Apps for 6066 sites (Fig. 4a). We identified 1272 QTLs 217 

that contain SNPs in the core consensus motif of YY1 (ATGG/CCAT). In the example shown in Extended 218 

Data Fig. 6a, we identified an almost two-fold higher apparent binding affinity in the Castaneus allele 219 

for Qars promoter, which contained two additional YY1 binding motifs in the tested site. We could 220 

validate these results by DNA affinity purifications followed by quantitative mass spectrometry, in 221 

which Yy1 showed a two-fold enrichment when bound to this sequence compared to the sequence 222 

from the 129/Sv allele (Extended Data Fig. 6b). However, almost 5000 sites that displayed allele-223 

specific Kd
Apps carry SNPs outside the core YY1 motif, indicating that for most sites, sequence variations 224 

in the YY1 motif alone does not account for the observed allele-specific variation in Kd
Apps. Indeed, 225 

differences in allele-specific motif-scores of the YY1 motif did not correlate with differences in allele-226 

specific Kd
Apps (Fig. 4b, Spearman correlation r = 0.00, p-value = 0.87; Χ2-test p-value = 0.94). However, 227 

when we further investigated sites in which SNPs were adjacent to, but not overlapping with the YY1 228 

motif, we observed that differences in allele-specific Kd
Apps were larger for sites where the SNP and YY1 229 

motif were located close to each other (Fig. 4c). This finding suggests that binding of other 230 

transcription factors in the vicinity of putative YY1 binding sites influence the binding of YY1 itself. 231 

Together, this indicates that small sequence variations influence the binding of YY1 and its co-factors 232 

or interaction partners, thereby fine-tuning the binding affinity of YY1. However, this DNA sequence-233 

based fine-tuning process is in turn subjugated to epigenetic marking at cis-acting regulatory regions 234 

for YY1. 235 

In summary, we have established a sequencing based method called BANC-seq that adds a 236 

quantitative dimension to genome-wide transcription factor biology. By employing BANC-seq to 237 

transcription factors FOXA1, SP1, YY1 and MYC/MAX in different cellular contexts, we show that the 238 

chromatin landscape is the major determinant for high affinity transcription factor binding, while 239 

sequence motifs appear to be secondary in the regulation of binding to DNA (Fig. 4d). Furthermore, 240 

we have identified Kd
App-range specific gene sets for different transcription factors, strongly supporting 241 

the model that the expression level of a transcription factor influences activation of larger subsets of 242 

target genes as a function of its apparent affinity range for the pre-existing chromatin environment. 243 

Discussion 244 

The in vivo protein-DNA interaction landscape is affected by different factors including DNA sequence, 245 

chromatin state and organization, and transcription factor abundances. The BANC-seq method that 246 

we have developed here allows a quantitative assessment of the interplay between these three 247 
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factors in a genome-wide manner. The ability to profile genome-wide absolute binding affinities in a 248 

native chromatin context provides a currently missing quantitative link between transcription factor 249 

expression and target gene regulation.  250 

A key principle of the BANC-seq methodology is exogenous addition of a tagged transcription factor 251 

to permeabilized native nuclei, which also contain the endogenous transcription factor of interest. 252 

Here, the exogenous and endogenous transcription factor will compete for protein and DNA binding 253 

and in time a binding equilibrium is established in which the fraction of bound FLAG-tagged 254 

transcription factor at any given time will be steady, depending on the added concentration. 255 

Importantly, residence time for most transcription factors at their binding sites is in the order of 256 

seconds30, which indicates there is sufficient time to establish a binding equilibrium using our protocol. 257 

In practice this means that, as long as a binding equilibrium is established, the expression level of the 258 

endogenous transcription factor will not affect the Kd
App determination.  259 

While we show that the chromatin context has a strong impact on genome-wide transcription factor 260 

binding affinities, we cannot exclude that BANC-seq potentially underestimates binding affinities due 261 

to technical reasons. For example, the experimental conditions in which binding assays are performed 262 

greatly influence the detected apparent Kd
Apps. We performed our BANC-seq experiments in near 263 

physiological conditions, that is at 37°C, with high salt, protein and DNA concentrations. Indeed, 264 

performing assays at lower temperatures or salt concentrations, greatly influences observed binding 265 

affinities20,21,31,32. This is further illustrated by the binding affinity of MYC/MAX to the E-box motif, 266 

which reduces 20-fold when tested in phosphate-buffered saline (PBS, used in this study) compared 267 

to tris-buffered saline (TBS)33. Therefore, since the determined affinities are apparent to this method 268 

and possibly deviate from in vitro assays because we measure in complex protein mixtures, with 269 

additional unknown effectors, we refer to apparent dissociation constants (Kd
Apps) throughout this 270 

manuscript.  271 

Nevertheless, it is important to evaluate previously reported low nanomolar Kd values in the context 272 

of the size of the genome. For example, there are over 250,000 CACGTG and 25,000,000 CCAT 273 

(MYC/MAX and YY1 binding motif, respectively) motifs in the human genome, while (depending on 274 

the nuclear volume34 used for the calculation) only ~400 transcription factor molecules are expected 275 

to be present in the nucleus at a concentration of 3nM (lowest reported Kd for YY124). If high affinity 276 

binding to consensus motifs could already occur at this concentration, MYC and YY1 would be 277 

outnumbered by the number of potential binding sites by several orders of magnitude, creating a 278 

regulatory system that would be completely dominated by stochasticity. These observations also 279 

highlight the essentiality of measuring binding affinities in the context of chromatinized DNA at near 280 

physiological conditions to obtain a fundamental understanding on how epigenome organization 281 

regulates transcription factor binding. 282 

In summary, BANC-seq represents a powerful technology to generate quantitative maps of 283 

transcription factor binding affinities across the genome and its associated epigenetic landscape. As 284 

exemplified in this study, these maps reveal fundamental insights concerning transcription factor 285 

biology and epigenetics. In addition, BANC-seq will aid the interpretation of future studies that 286 

observe epigenome remodelling or transcription factor expression dynamics. Such data will bridge 287 

absolute transcription factor expression dynamics, as determined absolute mass spectrometry-based 288 

proteomics35–38, to regulatory networks and substantially improve the accuracy of predicting genome-289 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 5, 2022. ; https://doi.org/10.1101/2022.04.04.486948doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.04.486948
http://creativecommons.org/licenses/by-nc-nd/4.0/


wide transcription factor binding. The observation that gene expression patterns are regulated by 290 

distinct binding affinities at regulatory elements indicates that it is essential to incorporate BANC-seq 291 

data and epigenome profiling data in order to build relevant gene regulatory networks that accurately 292 

model gene regulation by a transcription factor. 293 
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  385 

Methods 386 

 387 

Cell culture 388 

Human MCF-7 cells were grown in DMEM (Gibco) supplemented with 10% fetal bovine serum (GE 389 

Healthcare Life Sciences) and 1X penicillin–streptomycin (Gibco). F121 mouse embryonic stem cells 390 

were grown on 0.15% gelatin coated dishes in DMEM (Gibco) supplemented with 15 % fetal bovine 391 

serum (GE Healthcare Life Sciences), 5 μM beta mercaptoethanol (Sigma), 1X non-essential amino 392 

acids (Lonza), 1X Glutamax, 1 mM sodium pyruvate (Gibco), 10 mM Hepes, 1X penicillin–streptomycin 393 

(Gibco) and in-house generated Leukemia Inhibitory Factor (LIF). At ~80% confluency, the cells were 394 

washed once with PBS, scraped from the plate, collected and washed twice with cold PBS, after which 395 

they were aliquoted and cryopreserved in HyClone fetal bovine serum with 10 % DMSO at -80°C until 396 

further processing.  397 

For DNA pulldown followed by mass spectrometry, we harvested cells and prepared nuclear extracts 398 

as described previously39. 399 

Transcription factor binding 400 

Cryopreserved cells were thawed quickly at 37°C and washed twice with ice-cold PBS. All subsequent 401 

steps were performed on ice unless stated otherwise. Cell membranes were lysed by adding 900 μl of 402 

ice-cold hypotonic lysis buffer containing 10 mM Tris/HCl at pH 7.5, 10 mM NaCl, 3 mM MgCl2 and 0.1 403 
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% IGEPAL ca-630. Nuclei were isolated by pipetting up and down 20 times, followed by centrifugation 404 

at 250 x g for 10 minutes at 4°C. Isolated nuclei were resuspended and counted in ice-cold PBS, to 405 

aliquot 2 x 106 or 2.5 x 105 nuclei per concentration in separate tubes for either ChIP-based or 406 

CUT&RUN-based follow up, respectively. Each tube with nuclei was resuspended in the following ice-407 

cold incubation buffer to a volume of 20 μl: 1 % BSA, 1 mM CaCl2, 5 mM MgCl2, 1 μM ZnCl2, 0.1 % 408 

IGEPAL ca-630, 1× EDTA-free protease inhibitor cocktail (cOmplete, Roche), 1× PBS, supplemented 409 

with protein-of-interest at a designated concentration in diluted protein storage buffer. Recombinant 410 

FLAG-YY1 (Active Motif, Cat. nr. 81119), FLAG-MYC/MAX (Active Motif, Cat. nr. 81087), FLAG-SP1 411 

(Active Motif, Cat. nr. 81181) or FLAG-FOXA1 (OriGene Technologies Inc, Cat. nr. TP306045), were 412 

diluted to the highest tested concentration with ddH2O, and further diluted in protein storage buffer 413 

of the respective supplier to ensure that the buffer conditions of all concentrations were identical. To 414 

improve complete nuclear permeabilization and diffusion of the protein of interest into the nuclei, the 415 

nuclei were briefly sonicated for 5 seconds at 4°C in a Bioruptor Pico sonicator (Diagenode). 416 

Permeabilized nuclei were incubated for 10 minutes at 37°C in a thermoshaker, rocking at 1000 rpm. 417 

Chromatin immunoprecipitation (ChIP)-based follow up 418 

While shaking the nuclei at 37°C, chromatin was cross-linked by adding 1% formaldehyde to a final 419 

concentration of 1% (v/v) followed by incubation for 4 minutes and quenching by adding 0.1 volumes 420 

of 1.25 M glycine. Chromatin was recovered with an ethanol precipitation with 0.1 volumes of sodium 421 

acetate and 3 volumes of ice-cold ethanol at -20°C for 15 minutes, followed by ten minutes 422 

centrifugation at max speed. After washing once with ice-cold 70% ethanol, the purified chromatin 423 

was dissolved by shaking at 37°C in the following sonication buffer: 20mM Hepes at pH 7.6, 1% SDS 424 

and 0.25× EDTA-free protease inhibitor cocktail (cOmplete, Roche). Chromatin was sheared in a 425 

Bioruptor Pico sonicator (Diagenode) at 4°C by 5 cycles of 30 s ON, 30 s OFF. 426 

A ChIP master mix was added to each chromatin sample to achieve the following final conditions for 427 

each ChIP reaction: 0.1% BSA, 1 x EDTA-free protease inhibitor cocktail (cOmplete, Roche), 1 μg anti-428 

Flag antibody (clone M2, Sigma), 1 μg anti-H2Av antibody (spike-in antibody, Active Motif), 10 ng 429 

spike-in chromatin (D.melanogaster, Active motif) and 1× incubation buffer (0.15% SDS, 1% TritonX-430 

100, 150mM NaCl, 1mM EDTA, 0.5mM EGTA, 20mM HEPES). ChIP reactions were incubated by 431 

rotating overnight at 4 °C. To each sample, 15 μl of a 1:1 mix of Protein A and Protein G Dynabead 432 

(Invitrogen) was added followed by a 90 minute incubation at 4 °C. On ice, the beads were washed 2× 433 

with Wash Buffer 1 (0.1% SDS, 0.1% sodium deoxycholate, 1% Triton, 150 mM NaCl, 1 mM EDTA, 434 

0.5 mM EGTA, and 20 mM HEPES), 1× with wash buffer 2 (wash buffer 1 with 500 mM NaCl), 1× with 435 

wash buffer 3 (250 mM LiCl, 0.5% sodium deoxycholate, 0.5% NP-40, 1 mM EDTA, 0.5 mM EGTA, and 436 

20 mM HEPES), and 2× with wash buffer 4 (1 mM EDTA, 0.5 mM EGTA, and 20 mM HEPES). After 437 

washing, chromatin was eluted from the beads at room temperature by incubating them for 20 438 

minutes in a thermoshaker at 1400 rpm in 100 μl of the following buffer: 1% SDS, 0.1 M NaHCO3. The 439 

supernatant was decrosslinked overnight at 65°C in a thermoshaker at 1000 rpm by adding 20 μg of 440 

proteinase K and 4 μl of 5M NaCl. Decrosslinked DNA was purified by column purification (Zymo) and 441 

used for quantitative reverse transcription PCR (qPCR; hPTBP1 promoter: 442 

GTTTCCTGCCCGACTCCAAGAT and GAGGGGGAGAAAATGGGATCACG; gene desert: 443 

AACTGGCTAGTAAGGAGTGAATG and GGGAATGGAAAGAAGTCCACTAT) or next-generation 444 

sequencing sample preparation. 445 

CUT&RUN-based follow up 446 
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Nuclei were placed on ice immediately after the 10-minute incubation with the transcription factor of 447 

interest. Ice-cold wash buffer 1 (150 mM NaCl, 20 mM Hepes pH 7.5, 0.5 mM Spermidine, 0.2 mM 448 

TritonX-100, 2 mM EDTA pH 8, 1 x EDTA-free protease inhibitor cocktail) containing 1 μg anti-Flag 449 

antibody (clone M2, Sigma) was added to the nuclei to a total volume of 400 μl and incubated in a 450 

rotation wheel overnight at 4 °C. Then, inspired by the original CUT&RUN protocol5, each sample was 451 

washed 2x with 300 μl of ice-cold wash buffer 2 (150 mM NaCl, 20 mM Hepes pH 7.5, 0.5 mM 452 

Spermidine, 0.2 mM TritonX-100, 1 x EDTA-free protease inhibitor cocktail), followed by incubation 453 

with 150 μl of wash buffer 2, supplemented with 1.5 μl in-house generated recombinant pAG-MNase 454 

(diluted in wash buffer 2 to the working concentration), rotating at 4 °C for one hour. Samples were 455 

washed again 2x with wash buffer 2, and MNase was activated by adding 100 μl of wash buffer 3 (150 456 

mM NaCl, 20 mM Hepes pH 7.5, 0.5 mM Spermidine, 0.2 mM TritomX-100, 2 mM CaCl2). The digestion 457 

reaction was performed for 30 minutes at 4 °C, and stopped by adding 100 μl 2X Stop buffer (final 458 

concentration 170 mM NaCl, 10 mM EDTA, 2.5 mM EGTA, 0.025 % digitonin), supplemented with 15 459 

pg spike-in DNA per sample (S.cerevisae, Cell Signaling Technologies), with exception of the YY1 460 

experiment in MCF-7. Samples were incubated at 37 °C for 30 minutes to release digested DNA 461 

fragments, followed by max speed centrifugation at 4 °C for 5 minutes and DNA purification by column 462 

purification (Zymo) prior to sample preparation for next-generation sequencing. 463 

Library preparation and sequencing 464 

BANC-seq libraries were prepared using the Kapa Hyper Prep Kit (Kapa Biosystems) according to 465 

manufacturer’s protocol, with the following modifications. All input material after column purification 466 

was used to prepare libraries and depending in the concentration of the starting material, 2.5 μl or 5 467 

μl of the NEXTflex adapter stock (600nM, Bioo Scientific) was used for adapter ligation of each sample. 468 

Libraries were amplified with 12 PCR cycles, followed up with one reverse and a double post-469 

amplification clean-up was used to ensure proper removal of adapters. Samples were analyzed for 470 

purity using a High Sensitivity DNA Chip on a Bioanalyzer 2100 system (Agilent). Libraries were paired-471 

end sequenced on an Illumina NextSeq500.  472 

Mass spectrometry based whole cell or nucleus proteomics 473 

Sample pellets from 2 million cells were taken before and after the hypotonic lysis step in the nuclear 474 

isolation procedure. Pellets were dissolved in 50 uL lysis buffer (4 % SDS, 0.1 M Hepes at pH 7.6 and 475 

0.1 M DTT) by boiling at 95°C for 5 minutes followed by 5 sonication cycles of 30 s ON / 30 s OFF on 476 

the Bioruptor Pico sonicator (Diagenode) at 4°C. We added 1.25ug Universal Proteomics Standard-2 477 

(Sigma) spike-in to each sample for absolute copy number quantification per cell and nucleus. Proteins 478 

were digested and cleaned for mass spectrometry analysis using the filter assisted sample preparation 479 

(FASP40). In short, dissolved proteins were denatured in 8 M urea, loaded on a 30 kDa filter, and 480 

alkylated with 50 mM iodoacetic acid. The filter was washed three times with urea buffer and three 481 

times with 50 mM ammonium bicarbonate buffer, followed by overnight trypsin digestion (Promega) 482 

and collection in ammonium bicarbonate buffer. Peptides were acidified with trifluoroacetic acid and 483 

desalted on C18 (Empore) StageTips41. For each sample, peptides were separated on an online Easy-484 

nLC 1000 (Thermo Scientific) using a 4-minute (7 % to 9 %) acetonitrile gradient, followed by a 214 485 

min gradient of acetonitrile (9 % to 32 %), followed by washes at 50 % and 95 % acetonitrile for 240 486 

min of total data collection. Mass spectra between 350 to 1300 m/z were collected on a Q-Exactive 487 

HFX mass spectrometer (Thermo Scientific) in Top20 mode with a full-MS and dd-MS2 resolution of 488 

120,000 and 15,000, respectively. Acquired mass spectra were analyzed with MaxQuant 1.6.0.142 with 489 
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default settings and by searching the human Uniprot protein database downloaded in June 1017, and 490 

with the spike-in protein database supplied by the manufacturer. Intensity based absolute 491 

quantification was performed as described in35, by extrapolating the absolute abundance of each 492 

protein from a linear regression between the log-transformed iBAQ43 values and the log-transformed 493 

concentrations of the spike-in proteins. Detected transcription factor proteins were identified with 494 

the TFCheckpoint database44, version ‘TFCheckpoint_download_180515’, by selecting proteins in the 495 

class ‘TFclass’. 496 

Sequence data processing, quantification and spike-in normalisation 497 

Pre-processing of generated sequencing data was performed automatically with workflow 498 

tool seq2science v0.5.445. Briefly, paired-end reads were trimmed with fastp v0.20.1 with default 499 

options. Reads were aligned to the hg38 or mm10 reference genome, as well as to the respective 500 

spike-in genome for each experiment (S.cerevisiae-74-D694-2.0, dm6 or E.coli_C142) with bwa-mem2 501 

v2.1 with options '-M'. Mapped reads were removed if they did not have a minimum mapping quality 502 

of 30, were a (secondary) multimapper or aligned inside the ENCODE blacklist. Afterwards, duplicate 503 

reads were removed with Picard MarkDuplicates v2.23.8. Peaks were called with macs2 v2.2.7 with 504 

options '--keep-dup 1 --buffer-size 10000 --call-summits' in BAMPE mode. Samtools v1.9 was used to 505 

quantify total read counts per sample for target (hg38 or mm10) and designated spike-in (S.cerevisiae-506 

74-D694-2.0, dm6 or E.coli_C142) genome. Subsequent analyses were performed in R (v 4.0.3) and 507 

data was visualised with the ggplot2 and ComplexHeatmap46 packages, unless stated otherwise. 508 

For read quantification at transcription factor binding sites, we used the peak locations of the sample 509 

with the highest transcription factor concentration. To prevent peak size bias in downstream analyses 510 

we trimmed peaks to the median peak length of all peaks around the peak summit. For samples of 511 

each concentration we used featureCounts47 v1.6.3 to count reads per peak (with options -p -C -O -g 512 

GeneID -s 0 -F SAF -B), and normalized raw counts to reads per million spike-in reads. In addition, we 513 

used bedtools to generate bigwig files that represent the spike-in normalized signal of BANC-seq 514 

samples to be visualized in the UCSC genome browser. 515 

Kd
Apps determination 516 

Transcription factor binding parameters were calculated with a similar approach as we reported 517 

previously for proteomics workflows7. For every peak, we scaled the normalized read counts to the 518 

sample with the highest signal. These relative fractions bound over transcription factor concentration 519 

was fitted to the following Hill-like curve: 520 

θ =
1

(
𝐾𝑑
𝐴𝑝𝑝

[𝐿]
)

𝑛

+ 1

 521 

In this formula θ represents the observed relative fraction of bound transcription factor, [L] represents 522 

the known transcription factor concentration, Kd
App is the apparent dissociation constant describing 523 

the concentration at which half of the DNA is bound by the transcription factor, and n is he Hill 524 

coefficient describing the rate at which binding saturates. The unknown parameters n and Kd
App were 525 

fit using non-linear least squares regression with the nlsLM function in the minpack.lm R package48. 526 

Starting values of n and Kd
App were set to 1 and a maximum of 50 iterations were performed. For 527 

follow-up analyses and visualisations, we included high confidence sites only (p < 0.01, r > 0.9). 528 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 5, 2022. ; https://doi.org/10.1101/2022.04.04.486948doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.04.486948
http://creativecommons.org/licenses/by-nc-nd/4.0/


Allele-specific Kd
App analysis 529 

To determine allele-specific Kd
Apps we used information on SNP locations from either 129S1/SvImJ 530 

(hereafter referred to as 129/Sv) or CAST/EiJ (hereafter referred to as Castaneus) and the GATK49 tool 531 

FastaAlternateReferenceMaker to create two references genomes based on mm10, in which each 532 

base overlapping with a SNP was replaced by the alternative base. Sequencing data from the 533 

experiment performed with F121 mESC were then processed for both references with the seq2science 534 

tool as described above. Before quantifying reads at peak locations, we removed reads (and their 535 

respective read mate) that had at least one mismatch to retain only reads perfectly aligning to either 536 

new reference with samtools. 537 

Peak annotation 538 

The predicted regulatory function of identified binding sites was inferred by overlapping them with 539 

regulatory features in the Ensembl Regulatory Build50 of version GRCh38.MCF_7.20210107 for MCF-7 540 

experiments and GRCm39.ES_Bruce4_embryonic.20201021 for F121 experiments. To overlap the 541 

latter, we first converted the mm10 mapped peak coordinates to mm39 via the UCSC liftOver tool. If 542 

a peak overlapped with more than one regulatory feature, it was assigned the one feature that had 543 

the highest rank in the order of ‘Promoter, Enhancer, Promoter flanking region, Open chromatin 544 

region, CTCF binding site, Transcription factor binding site’. To detect overlap between high and low 545 

affinity assigned promoters per transcription factor, we first combined YY1 bound sites from both the 546 

ChIP-seq and CUT&RUN-based follow up experiment. Then, we selected promoters only, and 547 

separately for the 20% lowest and highest affinity promoters we used the intervene51 tool to generate 548 

upset plots. 549 

Motif analysis 550 

To identify enriched motifs in high- and low affinity binding sites, we used the binding sites with the 551 

500 lowest and highest Kd
Apps for each experiment as input for gimme motifs52 and selected the top 552 

enriched motifs per transcription factor in either high or low affinity binding sites for visualisation. To 553 

assess the effect of motif perturbations on Kd
Apps, we determined the YY1 motif match score in both 554 

alleles of the hybrid mESCs with the scan function of gimme motifs and combined the differences in 555 

allele-specific Kd
Apps with differences in allele-specific motif match scores. Finally, we determined the 556 

minimal distances between consensus motifs and SNPs in each binding site to combine this with 557 

differences in allele-specific Kd
Apps, and used the SNP location closest to YY1 motifs (+/- 50 bp) as input 558 

for gimme motifs to find motifs in the vicinity of these SNPs. 559 

Concentration dependent target binding 560 

We used GREAT53 to assign each identified binding site to a single gene whose transcription start site 561 

is the closest within 1,000,000 bp. We used the GO, GO-BP, IMMUNO, TFT, ONCO, KEGG and 562 

REACTOME data sets from MSigDB v7.254 for gene set enrichment analysis. To identify gene sets that 563 

associate with a certain transcription factor concentration, we tested if Kd
Apps assigned to the genes 564 

within each gene set vary significantly less compared to random. To this end, we calculated the 565 

coefficient of variation of Kd
Apps that could be assigned to genes within each gene set. Next, we shuffled 566 

the Kd
Apps values 100,000 times and determined how often the actual coefficient of variation would be 567 

smaller than by chance, to determine a permutation based false discovery rate. 568 

Integrating epigenome data 569 
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To integrate information on genome-wide transcription factor binding affinity with epigenome data, 570 

we downloaded hg38-mapped MCF-7 as well as mm10-mapped mESC ChIP-seq and ATAC-seq data 571 

from the ENCODE-portal. When more than one experiment for the same bait was available, we 572 

selected the experiment that had most reads sequenced. Samples that were treated with drugs or 573 

genetically modified were excluded from integration. Aligned reads were quantified with 574 

featureCounts at either transcription factor binding sites or random genomic loci, normalised to reads 575 

per million mapped reads and the average signal of 5 control samples was used to compute fold 576 

changes over control. Normalised signal of ATAC-seq or ChIP-seq data at transcription factor binding 577 

sites for which we could define high confidence Kd
Apps were visualized with ComplexHeatmap to 578 

visualize the histone landscape alongside different regulatory features and their associated Kd
Apps. In 579 

addition, we divided high confidence sites into quintiles based on Kd
App, and visualized the epigenome 580 

data per quintile for each experiment as boxplots. Rho (r) and p-value from Spearman correlation of 581 

the respective epigenome signal and Kd
Apps are included in the boxplots. 582 

Overlap with endogenous ChIP-seq data 583 

To determine the overlap between binding sites of FLAG-tagged transcription factors in BANC-seq with 584 

endogenous transcription factor binding sites, we retrieved hg38-mapped ChIP-seq data from the 585 

ENCODE-portal for SP1, FOXA1, MYC and YY1. For FOXA1, we also included peaks identified after 586 

FOXA1 overexpression28. For overlap of FLAG-YY1 with endogenous mYy1 binding sites in mESCs, we 587 

computed the overlap with one ChIP-seq sample19, which we downloaded and processed with 588 

seq2science to define Yy1 binding peaks. For all data sets and experiments, bedtools was used to 589 

identify peaks that overlapped between our experiments and endogenous ChIP-seq peaks. 590 

DNA pulldown followed by mass spectrometry 591 

To validate sequence specific binding of Yy1, a DNA pulldown was performed as described previously39 592 

with nuclear extracts of F121 mESCs and the following DNA oligos:  593 

Cast_Fw: TCCTATTGGTCCATGAGCAAAGGTCGCTGTTCAGATGGGGCCCAAAGT, Cast_Rv: 594 

ACTTTGGGCCCCATCTGAACAGCGACCTTTGCTCATGGACCAATAGGA, 129Sv_Fw: 595 

TCCTATTGGTCAATGAGCAAAGGTCGCTGTTCAGATGAGGCCCAAAGT, 129Sv_Rv: 596 

ACTTTGGGCCTCATCTGAACAGCGACCTTTGCTCATTGACCAATAGGA. DNA oligos were ordered via 597 

custom synthesis from Integrated DNA Technologies with 5’ biotinylation of the forward strand and 598 

annealed using a 1.5 X molar excess of the reverse strand. DNA affinity purifications were performed 599 

as described previously39. In short, 500 pmol of DNA oligonucleotides were immobilized using 20 l of 600 

Streptavidin-Sepharose bead slurry (GE Healthcare, Chicago, IL). Then, 500 g of nuclear extract and 601 

10 g of non-specific competitor DNA (5 g polydAdT, 5 g polydIdC) were added to each pulldown. 602 

After extensive washing, samples were prepared for mass spectrometry analysis or western blotting.  603 

For mass spectrometry analysis, beads were resuspended in elution buffer (2 M urea, 100 mM TRIS 604 

(pH8), 10 mM DTT) and alkylated with 50 mM iodoacetamide. Proteins were digested on beads with 605 

0.25 g of trypsin for 2 hours. After elution of peptides from beads, an additional 0.1 g of trypsin was 606 

added and digestion was continued overnight. Peptides were labelled on Stage tips using dimethyl 607 

labelling as described previously39. Each pulldown was performed in duplicate and label swapping was 608 

performed between duplicates to avoid labelling bias. Matching light and heavy peptides were 609 

combined and analysed on an Orbitrap Exploris (Thermo) mass spectrometer with acquisition settings 610 

described previously55. RAW mass spectrometry data were analysed with MaxQuant 1.6.0.1 by 611 

searching against the UniProt curated mouse proteome (released June 2017) with standard settings. 612 
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Protein ratios obtained from MaxQuant were used for outlier calling. An outlier cut-off of 1.5 inter-613 

quartile ranges in two out of two replicates was used and results were visualized with python. 614 

 615 
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 690 
 691 
Extended Data Figure 1 | Technical support for the pilot BANC-seq experiment. (a) Heatmap showing copy numbers per 692 
cell or nucleus of detected transcription factors before and after nuclear isolation. (b) Recovery (as percentage (%) of input 693 
chromatin) at the human PTBP1 promoter and a random genomic site by ChIP-qPCR per titration point of FLAG-YY1 in MCF-694 
7 cells.  695 
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 696 
Extended Data Figure 2 | Overview of results of additional BANC-seq experiments. (a) Distribution of Kd

Apps of c-MYC and 697 
YY1 in MCF-7 cells. YY1 apparent binding affinities were probed either by ChIP-seq or CUT&RUN-based follow up of the 698 
protocol. Dotted lines indicate the tested concentrations per experiment. (b) Heatmap representing spike-in normalised 699 
sequencing reads relative to the highest signal for the same experiments as in (a). Each row represents one transcription 700 
factor binding site. The overlap of each binding site with peaks from endogenous ChIP-seq experiments of the same 701 
transcription factor is shown to the left of each heatmap, while Kd

Apps to the right. (c) Distance (bp) of identified transcription 702 
factor binding sites relative to the nearest transcription start site (TSS). (d) Blue and red barplot representing the overlap 703 
between promoters bound by YY1, MYC or SP1, separately for promoters assigned to be 20% highest or lowest affinity 704 
binding sites for all possible combinations of the three transcription factors. Grey barplot to the left representing the total 705 
size of each promoter set.  706 
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 707 
Extended Data Figure 3 | Overview of the chromatin context and correlation with Kd

Apps for all transcription factors. 708 
Boxplots representing log2 fold change of ATAC-seq (a), H3K4me1 ChIP-seq (b) or H3K4me3 ChIP-seq (c) signal over the mean 709 
signal in matched control tracks for all tested transcription factors at sites with high confidence Kd

Apps fitted. Values are 710 
ranked by Kd

App and divided into quintiles based on Kd
Apps per experiment. Rho ( r ) and p-value from Spearman correlation 711 

of the respective epigenome signal and KdApps are included in the boxplots. Box plots were drawn with the center line as 712 
the median, the hinges as the first and third quartiles, and with the whiskers extending to the lowest and highest values that 713 
were within 1.5 × interquartile range..  714 
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 715 
 716 
Extended Data Figure 4 | FOXA1 binds hyperaccessible promoters with low affinity upon overexpression in MCF-7. (a) 717 
Heatmap showing the matched epigenome dynamics at sites with high-confidence Kd

Apps fitted for FOXA1 at either gained or 718 
retained sites after FOXA1 overexpression. Signal of ChIP-seq and ATAC-seq tracks for MCF-7 is shown as log2 fold change 719 
over the mean signal in all matched control tracks, sites are ranked by apparent binding affinity (second column), and 720 
assigned regulatory features are depicted in the first column. (b) Overlap of gained or retained FOXA1 binding sites with 721 
known regulatory features. (c - e) log2 fold change of ATAC-seq, H3K4me1 ChIP-seq or H3K4me3 ChIP-seq signal over the 722 
mean signal in matched control tracks, separated by sites being gained and retained sites after FOXA1 overexpression. * are 723 
used to indicate significance according to a two-sided Wilcoxon test (****: p <= 0.0001). (f) Distance (bp) of gained or 724 
retained sites to the nearest transcription start site (TSS). Box plots were drawn with the center line as the median, the hinges 725 
as the first and third quartiles, and with the whiskers extending to the lowest and highest values that were within 1.5 × 726 
interquartile range. 727 
  728 
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 729 
Extended Data Figure 5 | Transcription factor specific motifs versus generic motifs in high versus low affinity binding sites. 730 
Bar plot representing p-vales (-log10) of top motifs per transcription factor for either high or low affinity binding sites. Motif 731 
logos on the left of the plot, names of associated transcription factors (if known) to the right..  732 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 5, 2022. ; https://doi.org/10.1101/2022.04.04.486948doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.04.486948
http://creativecommons.org/licenses/by-nc-nd/4.0/


 733 
 734 
Extended Data Figure 6 | Minor sequence variations in and near the consensus motif of YY1 fine-tune apparent binding 735 
affinities. (a) Spike-in normalised sequencing reads per allele and titration point of FLAG-YY1 in F121 mESCs relative to the 736 
highest signal at the Qars promoter. (b) Binding ratios (log2 scale) of proteins identified by DNA-pulldown followed by mass 737 
spec with oligos identical to the sequences in (a) Red arrow indicates Yy1. 738 
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