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Abstract 

Recent COVID-19 vaccines unleashed the potential of mRNA-based therapeutics. mRNA 
optimization is indispensable for reducing immunogenicity, ensuring stability, and maximizing 
protein output. We present mRNAid, an experimentally validated software for mRNA 
optimization and visualization that generates mRNA sequences with comparable if not superior 
characteristics to commercially optimized sequences. To encompass all aspects of mRNA design, 
we also interrogated the impact of uridine content, nucleoside analogs and UTRs on expression 
and immunogenicity.  
 

Main 

Synthetic mRNA-based therapeutics continue to revolutionize vaccine development1, 
immunotherapy2 and targeted degradation methodologies3, advancing the battle of modern 
medicine against infectious diseases4, genetic disorders5 and cancer6. Irrespective of the various 
indications and the diverse mechanisms of action of mRNA-based drugs, all derived therapeutics 
share the same underlying principles. First, the mRNA sequence is designed and optimized in-
silico. Then, the optimized sequence is transcribed with selected chemical modifications in-vitro. 
Finally, the synthetic transcript is packaged and delivered to the cytoplasm of host cells, where it 
is translated into a protein that exerts the desired cellular effect. Therefore, in-silico mRNA design 
is undeniably instrumental to the success of any mRNA-based therapeutic. Transcript design is 
typically initiated with a decoration of the coding sequence (CDS) with flanking 5’ and 3’ UTRs 
(untranslated regions) and other signals (e.g. translational ramps, miRNA binding sites, etc.) that 
can improve stability, translation efficiency and enable tissue-specific expression7,8. Then, 
rigorous sequence engineering is required to eliminate immunogenic properties9 and further 
enhance transcript stability and translation10,11. During in-vitro transcription, chemical 
modifications such as 5’-cap and nucleoside analogs are incorporated to protect against 
degradation and evade host immune surveillance12. At present, mRNA design is largely dependent 
on expert knowledge, manual sequence editing, distributed optimization and visualization tools 
that are often proprietary. Thus, there is no freely available tool specifically tailored for therapeutic 
mRNA design that combines multiple optimization strategies. Here, we present mRNAid, an open-
source, integrated software that bundles several modified and extended algorithms and tools for 
constraint propagation, sequence optimization and secondary structure visualization. Via an 
intuitive and user-friendly interface, mRNAid orchestrates simultaneous optimization of several 
sequence and structural properties including codon usage, GC content, minimum free energy 
(MFE), uridine depletion and exclusion of specific motifs and/or rare codons, thereby providing a 
powerful platform for therapeutic mRNA design.  
 
The DNA Chisel framework was chosen as the core backbone for sequence optimization in 
mRNAid13 (Supplementary Figure S1). DNA Chisel permits global and local optimization of hard 
and soft constraints, which in turn enables the adjustment of desired sequence properties along the 
entire transcript. Hard constraints refer to criteria that must be satisfied in the final sequence, 
whereas soft constraints refer to criteria whose score must be maximized. Furthermore, the ability 
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to flexibly define new constraints makes DNA Chisel an ideal sandbox for probing the effect of a 
multitude of sequence properties on stability and expression. 
 
mRNAid piggybacks on several hard constraints implemented in DNA Chisel that enforce global 
GC content and translation and avoid rare codons and specific motifs. mRNAid extends this list 
with an important uridine depletion constraint that avoids codons with uridine at their third 
position, which reportedly improves expression and reduces immunogenicity9.  
 
Codon usage optimization aims to improve expression by systematic replacement of synonymous 
codons based on the organism’s codon frequency table. Numerous proprietary and freely available 
codon optimization algorithms have been reported to date10 and many show a strong preference 
towards the Codon Adaptation Index (CAI)14 since it highly correlates with gene expression. DNA 
Chisel includes CAI and Matched Codon Usage15 optimizations as soft constraints. We also 
implemented the dinucleotide and codon-pair usage optimizations based on the CoCoPUTs 
database that have been shown to affect translation fidelity and efficiency16. There is a significant 
codon-pair usage bias in all three domains of life and between lowly and highly expressed proteins 
within a species17 that cannot be explained by individual codon bias, pointing towards a distinct 
mechanism of translation modulation. It has been suggested that codon-pair effects on translation 
rate may be mediated by interactions of adjacent aminoacyl-tRNA molecules bound to 
ribosomes18. To account for structural properties, we also incorporated the Vienna-RNA MFE 
optimization19 and the correlated stem–loop prediction approach20, given the pivotal role that 
mRNA secondary structures play in regulating translation efficiency. Multiple studies reported 
correlation between highly structured features in the coding sequence (CDS) and functional 
mRNA half-life21, 22. In contrast, the region around the translation start site is less structured in 
highly expressed genes23, which presumably facilitates ribosome loading and prevents jamming24. 
Thus, different transcript regions possess different structural properties that must be reflected in 
the optimization strategy. Furthermore, transcripts are often fused to already optimized UTRs, 
obviating the need for optimization of these regions. Given the above, and the fact that MFE 
optimization is extremely computationally expensive, we provide users with the flexibility to 
optimize MFE within an adjustable window in the 5’-end of the CDS, while accounting for global 
MFE in our ranking approach. To this end, we ensure that the combination of multiple constraints 
generates optimal sequence properties by applying a novel scoring formula that ranks sequences 
based on weighted scores of uridine depletion, GC content, CAI, local 5’-end and global MFEs.     
 
Next, we selected five distinct optimization strategies in mRNAid that are based on a codon 
optimization approach coupled with uridine depletion, GC and MFE optimizations (Strategies 1-
5: dinucleotide, matched codon-pair usage, matched codon usage with or without uridine depletion 
and CAI, respectively). To experimentally validate these strategies, we adopted NanoLuciferase-
PEST (NLuc-PEST) as the reporter system since the short half-lives of the individually produced 
luciferase proteins prevent confounding effects on interrogation of mRNA properties as they relate 
to translation efficiency or mRNA stability. Indeed, these effects can be conveniently measured 
through kinetic tracking of the target protein’s luminescence. Area under the curve (AUC) and 
luminescence at 48 hours (RLU @ 48h) are represented as indicators of total protein output and 
functional mRNA stability respectively, given that protein sequence and other mRNA features are 
kept constant. A de-optimized mRNA version of NLuc-PEST encoded by the least frequent codon 
for each amino acid (Rare, red, Figure 1A-C) was used as the input for mRNAid and the top 6 
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ranked mRNA sequences generated under each software setting were selected (Supplementary 
Table S1 and S2). These were benchmarked against a proprietary sequence from Promega 
(Promega, blue, Figure 1A-C) as the codon-optimized control.  
 
All 30 mRNAid-optimized sequences resulted in significantly higher expression relative to the de-
optimized input (Figure 1A-C), attesting to the robustness of the tool. Encouragingly, out of these 
30 sequences, 8 (30%) surpassed and 14 (47%) matched the expression of the codon-optimized 
Promega control (Figure 1C). Among the five optimization strategies, all 6 sequences that were 
optimized by Strategy-5 (CAI optimization) expressed better than Promega and exhibited the 
highest GC content, lowest global MFE and lowest uridine content (Figure 1A-C, Supplementary 
Table S2). Similarly, sequences that were optimized by Strategy-2 (matched codon-pair 
optimization) exhibited comparable (4/6) or better expression (2/6) than Promega. The importance 
of codon-pair context for enhanced gene expression was also recognized in previous studies25. 
Conversely, all the 6 sequences that were optimized by Strategy-1 (dinucleotide optimization) 
expressed poorer than Promega (Figure 1A-C, Supplementary Table S2). An in-silico optimization 
of the native SARS-CoV-2 surface glycoprotein gene using mRNAid revealed that among all 
optimization approaches Strategy-5 (CAI optimization) has generated transcripts with the highest 
similarity to the assembled Moderna and Pfizer/BioNtech vaccine sequences (~96.5% and ~90.8% 
similarity, respectively, Supplementary Table S1)26, 27, suggesting that a similar optimization 
strategy was employed for their design. Further analyses revealed that both AUC and RLU @ 48hr 
were strongly correlated with global MFE (r = -0.85 and r = -0.91, respectively, Figure 1D), in line 
with previous reports on the impact of secondary structures on mRNA half-lives and ultimately 
final protein output21. Correlations were also observed with GC (%) and U-ratio, but not 5’-MFE 
(Supplementary Figure S2). These findings highlight the importance of combining a multitude of 
hard, soft, local and global constraints to achieve balanced sequence and structural properties that 
cooperatively define total protein expression. 
 
We next explored additional features that can be incorporated into mRNAid-optimized sequences 
to yield optimal therapeutic mRNAs. The discovery that uridine analogs dramatically reduce 
immune stimulation9 and increase protein production from synthetic mRNA12 marked a 
breakthrough in mRNA-based therapeutics. We evaluated the impact of substituting uridine (U) 
with pseudouridine (pU), 5-methoxyuridine (5moU) or N1-methylpseudouridine (N1m) on NLuc-
PEST protein expression and pro-inflammatory cytokine (IFN-β) release in human BJ fibroblasts. 
For the de-optimized input (Rare) and codon-optimized control (Promega) sequences, pU and N1m 
modifications significantly improved protein expression as compared to U (Figure 2A), in line 
with previous reports. Instead of improving expression, U substitution with 5moU reduced protein 
output from the Promega sequence. Out of 30 mRNAid sequences, we picked the best expressed 
sequence (Strategy-5:output-2, Figure 1C) and were able to recapitulate this improvement 
compared to Rare and Promega in BJ fibroblast using U (black, Figure 2A). However, protein 
levels were not further enhanced using uridine analogs in Strategy-5:output-2 sequence. We 
postulate that since Strategy-5:output-2 sequence had the lowest uridine content (14% in Strategy-
5:output-2; 21% in Promega; 27% in Rare), the effect of uridine substitution on expression may 
be minimal. In terms of immunogenicity, unmodified mRNAs (U) caused the highest cytokine 
release as expected (comparable to positive control poly I:C), followed by pU, N1m and 5moU 
(Figure 2B). Among the 3 sequences tested, mRNAid-optimized Strategy-5:output-2 was 
consistently less immunogenic than Rare and Promega (Figure 2B) under conditions where IFN-β 
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was within detectable range. Thus, our findings demonstrate how sequence optimization combined 
with incorporation of uridine analogs can reduce undesired innate immune responses while 
maintaining high target protein expression. 
 
mRNAs are capped at the 5’-end to protect against degradation, facilitate ribosome loading and 
evade innate immune responses28. Compared to legacy cap analogs such as ARCA, the proprietary 
co-transcriptional capping reagent CleanCap AG from TriLink was shown to have higher capping 
efficiency, increased RNA yield and reduced immunogenicity. We modified the conventional GG 
initiator sequence after the T7 promoter to AG and synthesized mRNAs using CleanCap AG. 
Indeed, the AG initiator significantly improved NanoLuc-PEST expression (Figure 2C) and total 
RNA yield (data not shown). This highlights how protein output can be further boosted and 
emphasizes on the importance of tailoring template design to the desired capping technique. As 
noted, the role of 5’ and 3’-UTRs in modulating mRNA stability and translation is well 
established22. To this end, we selected 4 pairs of UTR sequences that have been reported to boost 
protein expression in human cells (Supplementary Table S3). Indeed, all 4 UTRs increased 
NanoLuc expression compared to plasmid which are default sequences flanking the CDS (Figure 
2D). Together, we present various opportunities to enhance mRNA potency by optimizing key 
mRNA components.  
          
A therapeutic mRNA should ideally be delivered to and expressed at the target site to minimize 
toxicities in unintended recipient cells. Jain et al. previously demonstrated that microRNAs 
(miRNA) with disease or tissue-specific expression profiles can be recruited to achieve selective 
degradation of synthetic mRNAs7. For example, miRNA-122 is abundant in normal liver cells but 
significantly down-regulated in liver carcinoma29, while miRNA-142 is predominantly expressed 
in hemopoietic cells30. Using the same strategy, we incorporated miRNA-122 and miRNA-142 
target sites to the 3’-UTRs of NanoLuc mRNA to act as self-destruct signals (Figure 2E). Our 
results confirmed selective mRNA silencing in normal liver (AML12) and blood (RAW264.7) 
cells by miR122ts and miR142ts respectively, as opposed to unaltered expression in mouse 
(Hepa1-6) and human (HepG2) liver cancer cell lines (Figure 2F). We further demonstrate that a 
combination of miR122ts and miR142ts suppressed expression in both AML12 and RAW264.7, 
highlighting the potential to combine self-destruct signals and possibly other mRNA regulatory 
elements to refine target protein expression.  
 
In summary, this study represents a first attempt to create a comprehensive playbook for rational 
design of therapeutic mRNA transcripts. mRNAid is an open-source software that offers advanced 
sequence and structural optimization strategies that generate transcripts with desired expression 
properties. We also experimentally demonstrate that incorporation of certain uridine analogs, and 
inclusion of key mRNA components can further enhance stability, boost protein output, enable 
tissue-specific expression and mitigate undesired immunogenicity effects.  
 
Despite the encouraging results of mRNAid, it is important to note its limitations. mRNAid does 
not optimize for MFE along the entire transcript and the thermodynamic parameters of uridine 
analogs are not accounted for. Yet the experimental data we presented here clearly indicate that 
global MFE optimization is worthwhile, albeit computationally expensive. However, the flexible 
backbone of mRNAid offers the greater scientific community the opportunity to make such 
improvements by adding more efficient optimization strategies as they emerge or by combining 
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existing optimization methods, constraints or other sequence features that may govern stability, 
immunogenicity, and expression.    
 
Methods  
 
Tool architecture 
 
The application consists of several parts, which are containerized and can be easily built and run 
with ‘docker-compose’ utility (Supplementary Figure S1). The frontend is served as static files 
with the help of Nginx server. It can also be configured as a reverse proxy. Frontend container 
communicates with backend through uwsgi protocol. The backend presents a Python Flask 
application served by uWSGI server. The optimization tasks are handled by celery task queue 
implemented with Redis in-memory database working as message broker. The mounted volume is 
used to keep logs of the backend execution. All individual parts reside within separate containers 
that communicate with each other inside a docker network as represented in Supplementary Figure 
S1. The user interface is written in React.js and consists of an input form and results page. Input 
form allows user to select different optimization strategies, set optimization parameters and submit 
the optimization job. The output form includes visualization of the optimized sequences generated 
via Forna JavaScript visualization container19 combined with MFE mountain-plot and summary 
of optimized sequence properties. User can export the results in a pdf or an Excel format. 
 
Optimization strategies 
 
The core of the tool is the freely available sequence optimization framework for Python, DNA 
Chisel. DNA Chisel allows to use built-in specifications to approach some of the common 
optimization tasks (like matching target codon usage in host or ensuring correct translation to 
protein by using only synonymous codons during the optimization, etc.) and it is very flexible with 
respect to defining completely new optimization specifications. These specifications can either be 
hard constraints, which cannot be violated in the final sequence, or they can be considered as soft 
constraints or objectives, whose score is maximized in the final sequence. Some specifications can 
be used as both constraint and objective depending on user requirements. When multiple objectives 
are defined in the optimization problem, the total weighted score is maximized.  
 
DNA Chisel solves the constraint satisfaction problem using a combination of constraint 
propagation and local search methods. The optimization algorithm consists of two main steps, the 
resolution of all hard constraints and maximization of objectives’ scores with respect to the 
constraints. The solver reduces the optimization problem to the set of local optimization problems, 
which are resolved individually. The optimization is performed either by random mutations on the 
sequence or by exhaustive search through the precomputed mutation space, depending on the size 
of the latter. During the mRNAid optimization, the tool combines all the specified constraints and 
objectives together into the optimization problem and calls the DNA Chisel optimization method 
on it. This procedure is re-executed in parallel until either a user-specified number of sequences 
are produced or until the number of attempts is exceeded. After the optimization is completed, 
mRNAid ranks them based on the scoring function, as described below. 
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In our optimization approach we used following built-in specifications. As hard constraints we 
used AvoidPattern to ensure that certain motifs are excluded, EnforceGCContent to keep GC levels 
in a certain boundary across the sequence, AvoidRareCodons to not use rare codons with codon 
frequency below the threshold and EnforceTranslation to ensure that the optimized sequence is 
translated back to the same protein as the input. As objectives we used built-in 
MatchTargetCodonUsage to be as close as possible to the codon usage frequencies in the host and 
EnforceGCContent to optimize GC content in the sliding window across the sequence. The details 
of these specifications can be found in the DNAChisel documentation13. 
 
We also implemented our own specifications and integrated them into the tool. As hard constraints 
we implemented UridineDepletion which makes sure that no codons with uridine in the third 
position are present. We also implemented three new objectives: MatchTargetPairUsage to 
account for dinucleotide usage, MatchTargetCodonPairUsage to optimize for codon-pair usage 
frequencies and MinimizeMFE to use different algorithms for MFE estimation. 
 
Uridine Depletion 
 
This constraint ensures that there is no Uridine on a third position of all the codons in an optimized 
sequence. This constraint is implemented on the base of DNAChisel’s CodonSpecification class. 
 
Dinucleotides, Codon Pair, CAI and MatchCodonUsage Optimizations 
 
Dinucleotides and codon-pair are custom objectives which have been implemented based on usage 
tables taken from CoCoPUTs database16. These objectives account for the difference between 
dinucleotide or codon-pair frequencies in the host organism (Homo sapiens or Mus musculus) and 
the current sequence. The score is then calculated by the following formula: 
 
  

𝑆! =
|𝑓! − 𝑓!	#$|

𝑓!
, 

𝑆 = −∑ 𝑆!%
!&' , 

 
where 𝑆!  is the score for a given nucleotide pair or codon-pair, 𝑆 is the total score being the 
mean of all the individual scores, 𝑓! is the frequency for a given pair, 𝑓!	#$ is a corresponding 
frequency from the database and 𝑁 is the total number of pairs across the sequence. The total 
score is used by DNA Chisel optimization algorithm as the subject for maximization. 
 
Codon Adaptation Index (CAI) optimization is the built-in objective, which is used if a user 
specifies so. CAI optimization is a common optimization strategy introduced in14.  
 
MatchCodonUsage constraint is a built-in constraint which minimizes the sum of discrepancies 
over all possible codon frequencies in a given sequence and in the target organism. This objective 
is set as the default one in case no other codon optimization strategies are chosen. 
 
All codon optimization objectives are considered mutually exclusive, so it is not possible to use 
any combination of these in our tool. 
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MFE_optimization 
 
We are targeting to maximize the minimal free energy (MFE) at the specified region of the 
sequence starting from the 5’-end of the mRNA molecule. We call this region an entropy window. 
Maximization of MFE in this region enforces a more open structure with fewer base-pairs formed, 
which makes it more accessible to ribosomes. The aim is to have the MFE of the 5'-end as close 
to 0 as possible (it is usually negative). The user can choose between two algorithms for MFE-
estimation. The first one is the RNAfold algorithm19, based on dynamic programming which 
thoroughly explores all possible secondary structures. This process can take up to several seconds 
depending on the size of the sequence of interest and might not be the best option when multiple 
runs are required (which is exactly the case of mRNAid). However, the main benefit of the long 
computational time is the high accuracy of estimations. RNAfold package is also used to provide 
the calculated secondary structures to the frontend for subsequent visualization. 
 
The alternative option is to use a faster MFE estimation algorithm, which is based on correlated 
stem-loop prediction approach proposed in20. In this approach all possible single stem-loop 
conformations are considered, and their interaction energies are averaged. This algorithm has 
quadratic complexity O(n^2), where ‘n’ is the number of nucleotides in sequence, compared with 
cubic complexity O(n^3) of the RNAfold algorithm. The simplified algorithm is used during the 
optimization, when mutation space is explored to estimate the score of the mutated sequence. 
However, when presenting the final value of the best sequence after the optimization is done, its 
MFE value is estimated with RNAfold algorithm. 
 
Scoring function 
 
Once the optimization is done and a list of optimized sequences is generated, they are ranked in 
order. To do so, we developed a scoring function which evaluates sequences for different criteria 
and assign a score for each, so that the final score looks as follows: 
 

𝑆 = 	(!∗*"+	(#∗*$%+(&∗*%'(+()∗**+,+	(-∗**+,	-/	
	(!+	(#+	(&+	()+	(-

, 
 
where 𝑤! – are individual weights of each score (𝑤' = 10,𝑤, = 8, 	𝑤- = 7, 𝑤. = 3,𝑤/ = 1), 
	𝑆0 – uridine depletion score, 𝑆12  – GC content score, 𝑆234 – codon adaptation index score, 𝑆567 
– total MFE score, 𝑆567	/8 - MFE 5’-end score. 
 
Uridine depletion score  
 
Uridine depletion is checked by counting each uridine at third position in a codon and normalizing 
to codon number. Maximum and minimum values are 1 and 0 (all/no codons have uridine at third 
position). When uridine depletion is not specified by the user, this is not included in the final 
scoring function (by setting the weight to 0).  
 
GC Score  
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GC content is calculated for the whole sequence and checked to be within user defined range 
(GC_min and GC_max). The score is calculated as a growing linear function of GC content value 
to favor sequences with larger GC value: 
 

𝑆12 =	
𝐺𝐶 −	𝐺𝐶9!:

𝐺𝐶9;< −	𝐺𝐶9!:
 

 
The score is bounded in the range 0 to 1. As GC content has an influence on properties and 
expression rates of mRNA, we optimize the sequence to fit the GC content in a specified window. 
 
 
Codon Adaptation Index score  
 
This score is calculated as being equivalent to the value of CAI itself. This value is bounded in the 
range 0 to 1. 
 
Total MFE Score  
 
It is preferable to have sequences with lower value of MFE. To sort the sequences according to 
this requirement we use the following score: 
 

𝑆567 =	𝑒=	567//??? − 1 
 
It tends to zero when MFE goes to zero, and does not exceed 1 for MFE values around <=3500 
bp. 
 
5’-MFE score (mfe_5_score) 
 
MFE of the 5'-end is calculated using RNAfold. MFE has a theoretical maximum of 0, but in 
practice does not reach that value. The score is calculated as a decreasing exponential function of 
the 5'-MFE:  
 

𝑆567	/8 =𝑒567/'?? 
 
In this case s -> 0 when MFE -> minus infinity and s -> 1 when MFE -> 0. The score is now 
bounded in the range 0 to 1, with 0 being the worst case and 1 being the best case. The aim is to 
have the 5’-MFE as close to 0 as possible. This means that there are few bonds among nucleotides 
of the 5'-end, therefore the structure is open and more accessible to ribosomes. This is believed to 
improve expression. 
 
Built-in specifications 
 
We also incorporated to mRNAid a set of built-in DNA Chisel specifications. Constraints include 
AvoidPattern that avoids a specified sequence of nucleotides, EnforceGCContent that controls the 
GC content across the sequence, EnforceTranslation that makes sure that the translation to a given 
polypeptide is preserved. Objectives include MatchTargetCodonUsage that ensures that the 
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frequencies of codons are close to the ones in the host organism (in case we do not use other 
frequency optimizations, like MatchTargetPairUsage or MatchTargetCodonUsage) and 
EnforceGCContent that controls the GC content across the specified sliding window.  
 
Comparison to COVID-19 vaccines  
 
The sequence for the spike surface glycoprotein gene was retrieved from NCBI (NC_045512.2) 
and then optimized by mRNAid 10 times under each software setting (Supplementary Table S1). 
The resultant optimized sequences were systematically compared to the relevant segment within 
the Pfizer/BioNtech and Moderna assembled vaccine sequences27. Pfizer/BioNtech and Moderna 
assembled vaccine sequences were downloaded from: https://github.com/NAalytics/Assemblies-
of-putative-SARS-CoV2-spike-encoding-mRNA-sequences-for-vaccines-BNT-162b2-and-
mRNA-1273. Following CAI optimization, the mean Levenstein distance between a given 
mRNAid-optimized sequence and Moderna or Pfizer/BioNtech assembled vaccine sequences was 
131 and 350, respectively, reflecting approximately 3.5% and 9.1% sequence variation, when 3819 
nucleotides of the spike CDS are considered (excluding the stop codon). 
 
Experimental Validation 
 
in vitro transcription 
mRNAs with ARCA or CleanCap® with or without Uridine modification were in vitro transcribed 
using the mMESSAGE mMACHINE® T7 Ultra transcription kit (Ambion, AMB13455). 
Linearized plasmid DNA containing the target gene downstream of a T7 RNA polymerase 
promoter was used as the template and synthesis reactions were performed according to the 
manufacturer’s protocol. For mRNAs with CleanCap®, T7 2X NTP/ARCA was substituted with 
8 mM CleanCap® Reagent AG (TriLink Biotechnologies, N-7113) and 10 mM of each NTP. 
Modified uridines used included pseudouridine-5'-triphosphate (TriLink Biotechnologies, N-
1019), N1-methyl-pseudouridine-5'-triphosphate (TriLink Biotechnologies, N-1081) or 5-
methoxyuridine-5'-triphosphate ((TriLink Biotechnologies, N-1093). mRNAs were subsequently 
purified by the MegaClear Transcription Clean-up kit (Ambion, AM1908) and quantified on the 
NanoDrop spectrophotometer. 
 
Cell culture 
All cell lines were obtained from American Type Culture Collection (ATCC) and grown at 37°C, 
5% CO2. Hepa1-6 (CRL-1830) and RAW264.7 (TIB-71) were maintained in DMEM with high 
glucose and GlutaMAX™ supplement (Gibco), and 10% fetal bovine serum (HyClone). The same 
was used for MIA PaCa-2 (CRL-1420) but with additional 2.5% horse serum (Gibco). HepG2 
(HB-8065) and BJ fibroblasts (CRL-2522) were cultured in MEM with GlutaMAX™ supplement 
(Gibco) and 10% fetal bovine serum (HyClone). AML12 (CRL-2254) were maintained in 
DMEM:F12 (Gibco), 10% fetal bovine serum (HyClone), 10 µg/ml insulin, 5.5 µg/ml transferrin, 
5 ng/ml selenium (Sigma I-1884) and 40 ng/ml dexamethasone (Sigma D-8893).  
 
Realtime NanoLuc expression assay 
Lipofectamine™ MessengerMAX™ (Life Technologies) was diluted in opti-MEM to the desired 
working concentration and dispensed onto 384-well white assay plates (Greiner 781080). A source 
plate (Labcyte LP-0200) containing serial dilutions of the mRNAs was prepared using the Bravo 
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liquid handler (Agilent) and a 10-point 2-fold dose-titration of each mRNA was dispensed onto 
the assay plate using Echo (Labcyte). After a 10 min incubation, 4,000 MIA PaCa-2 or 2,000 
Hepa1-6 or 3,000 AML12 or 4,000 HepG2 or 3,000 RAW264.7 or 6,000 BJ cells were added per 
well followed by 20 µM Endurazine (Promega), an extended time-released live cell substrate. 
Luminescence was measured continuously at 1-hour intervals on the Tecan Spark 10M set to 37ºC, 
5% CO2. 
 
Western blot analysis 
0.08 million MIA PaCa-2 cells were seeded per well in a 24-well poly-D-lysine coated cell culture 
plate (Greiner) and allowed to attach overnight before mRNA transfection with Lipofectamine™ 
MessengerMAX™ (Life Technologies) according to the manufacturer’s protocol. After 24 hours 
incubation, 100 μl of Bolt™ LDS sample buffer supplemented with Bolt™ sample reducing agent 
was added per well of a 24-well plate. The wells were scrapped using wide orifice tips and the 
lysate was transferred into PCR-strip tubes and sonicated for 10 X 10 seconds in a chilled water 
bath sonicator (QSonica). 15 μl of protein extract was separated on 4-12% Bis-Tris plus gels, 
transferred onto nitrocellulose membranes using the Trans-Blot® Turbo™ semi-dry system (Bio-
rad), and blocked for 1 hour at room temperature with Intercept™ (TBS) blocking buffer (Li-Cor). 
Blots were probed with the appropriate primary antibodies overnight at 4°C in blocking buffer 
supplemented with 0.1% Tween-20, followed by the secondary antibodies IRDye® 680RD donkey 
anti-mouse IgG or IRDye® 800CW donkey anti-rabbit IgG (Li-Cor) for 1 hour at room 
temperature. Fluorescent signals were imaged and quantified using Odyssey® CLx. Primary 
antibodies used were: NanoLuc (Promega, N7000) and GAPDH (Cell Signaling Technology, 
#5174) 
 
 
IFN-β detection in BJ fibroblasts 
BJ fibroblasts were seeded in 96-well poly-D-lysine coated cell culture plates (Greiner) at 20,000 
cells per well and transfected the next day with 50 ng per well of the respective mRNA using 
Lipofectamine™ MessengerMAX™ (Life Technologies). The supernatant was harvested 48 hours 
post-transfection and IFN-β levels were determined using the Bio-Plex Pro Human Inflammation 
Panel 1 (BioRad) as per manufacturer’s protocol. Data was acquired on the Bio-Plex Pro 200 
system (BioRad). 
 
Data availability 
All code for this publication is available in the following GitHub repository: 
https://github.com/Merck/mRNAid and as a web application at  https://mrnaid.dichlab.org  . 
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Figure 1.  Impact of various sequence optimization strategies in mRNAid on NanoLuc-PEST 
expression. Effect of 5 different sequence optimization strategies on NanoLuc-PEST expression 
in MIA PaCa-2 was represented as (A) area under the curve, AUC of luminescence over 48 hr and 
(B) relative luminescence, RLU at 48 hr post-transfection. Rare, red denotes the de-optimized 
input and Promega, blue denotes the codon-optimized control. The top 6 outputs from each 
strategy were tested. (C) Western blot analysis of the sequence variants from above 24 hr post-
transfection in MIA PaCa-2 cells. GAPDH was used as a loading control. Band intensities for 
NanoLuc were normalized to GAPDH and represented as fold change over the Promega control. 
(D) Correlation plots for AUC (top) and RLU @ 48 hr (bottom) versus MFE (kcal/mol). AUC and 
RLU @ 48 hr were determined for the 6.25 ng mRNA dose in (A and B) and represented as fold 
change over the Promega control (blue dashed line). The red dot denotes the de-optimized Rare 
input. Pearson r is indicated as determined by GraphPad Prism. 
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Figure 2. Additional ways to engineer mRNA for therapeutic use. (A) Effect of modified 
nucleotides on NanoLuc-PEST expression in BJ fibroblasts. U, uridine; pU, pseudouridine; 5moU, 
5-methoxyuridine; N1m, N1-methyl-pseudouridine. (B) Effect of modified nucleotides on innate 
immune activation in BJ fibroblasts. Cytokine release assay 48 hr post-transfection with 50 ng of 
the indicated mRNAs. IFN-β levels were normalized to the Promega sequence with pU 
incorporated. OOR, out-of-range. The dashed line represents positive control poly I:C. (C) Effect 
of AG versus GG initiator sequence after the T7 promoter on NanoLuc protein expression in MIA 
PaCa-2. (D) Effect of UTRs on NanoLuc protein expression in MIA PaCa-2. (E) Design of 
NanoLuc mRNAs with miRNA target sites in 3’ UTR. (F) Effect of self-destruct signals on 
NanoLuc protein expression in the indicated cell type. 
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