Systematic identification of unannotated ORFs in *Drosophila* reveals evolutionary heterogeneity

Eric B Zheng¹, Li Zhao¹*

Affiliations: ¹Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA

*Correspondence to: lzhao@rockefeller.edu

Abstract

De novo gene origination, where a previously non-genic genomic sequence becomes genic through evolution, has been increasingly recognized as an important source of evolutionary novelty across diverse taxa. Many *de novo* genes have been proposed to be protein-coding, and in several cases have been experimentally shown to yield protein products. However, the systematic study of *de novo* proteins has been hampered by doubts regarding the translation of their transcripts without the experimental observation of protein products. Using a systematic, ORF-focused mass-spectrometry-first computational approach, we identify almost 1000 unannotated open reading frames with evidence of translation (utORFs) in the model organism *Drosophila melanogaster*, 371 of which have canonical start codons. To quantify the comparative genomic similarity of these utORFs across *Drosophila* and to infer phylestratigraphic age, we further develop a synteny-based protein similarity approach. Combining these results with reference datasets on tissue- and life-stage-specific transcription and conservation, we identify heterogeneity amongst these utORFs. Contrary to expectations, the fastest-evolving utORFs are not the youngest evolutionarily. We observed more utORFs in the brain than in the testis. Most of the identified utORFs may be of *de novo* origin, even accounting for the possibility of false-negative similarity detection. Finally, sequence divergence after an inferred *de novo* origin event remains substantial, raising the possibility that *de novo* proteins turn over frequently. Our results suggest that there is substantial unappreciated diversity in *de novo* protein evolution: many more may exist than have been previously appreciated; there may be divergent evolutionary trajectories; and *de novo* proteins may be gained and lost frequently. All in all, there may not exist a single characteristic model of *de novo* protein evolution, but rather complex origins and evolutionary trajectories for *de novo* proteins.
Introduction

In the early years of the genomic era, the observation of species-specific orphan genes that lacked homologs in closely-related species raised the possibility of another mechanism for gene birth beyond that of gene duplication and divergence (Domazet-Loso and Tautz 2003; Schlötterer 2015). Later work revealed that de novo gene birth is a contributor to genetic novelty: occasionally in evolutionary history, previously non-genic genomic sequence acquires genic function, thus yielding a de novo gene that is characterized by its lineage-specificity (Begun et al. 2006; Levine et al. 2006; McLysaght and Hurst 2016; Van Oss and Carvunis 2019). Examples of such de novo genes have been reported in diverse contexts ranging from fruit flies (Levine et al. 2006), to yeast (Cai et al. 2008) and even humans (Knowles and McLysaght 2009; Xie et al. 2012).

Understanding the possible biological effects (and thus, putative function) of a de novo gene can be challenging due to the lack of homology to previously-studied genes. Nevertheless, empirical studies and population genomics work found that de novo genes may have important functions (Levine et al. 2006; Cai et al. 2008; Reinhardt et al. 2013; Zhao et al. 2014; Lange et al. 2021). Whether these genes function as RNAs or as proteins is often an area of debate. While many de novo genes have been proposed to be protein-coding, and in several cases have been empirically shown to yield protein products (Knowles and McLysaght 2009; Bungard et al. 2017; Zhang et al. 2019), evidence for the translation of de novo genes as a class into polypeptides is often lacking (Van Oss and Carvunis 2019). Proteomics approaches like shotgun mass spectrometry (MS) can be a powerful tool for the rapid identification of such translational evidence for many potential proteins at once, but standard shotgun MS analysis approaches require a priori assumptions about the sequences of the proteins to be detected (Sinitcyn, Rudolph, and Cox 2018).

In the case of discovering possible de novo proteins, this a priori requirement can be confounding, as de novo proteins may be systematically under-annotated due to their lack of homology.

Here, we employ a systematic, ORF-focused MS-first computational approach, to identify unannotated open reading frames with evidence of translation (utORFs) in Drosophila melanogaster. Combined with reference datasets on tissue- and life stage-specific transcription and conservation, this data suggests heterogeneity amongst these utORFs with respect to their evolutionary and functional properties. We further develop a synteny-based protein similarity approach to quantify the comparative genomic similarity of these utORFs across Drosophila, to estimate their phylostratigraphic age, and finally to infer possible de novo origin for the vast majority of these utORFs. Finally, we independently support a subset of these utORFs via additional MS empirical data and ribosome profiling data.
Results

A comprehensive database of all possible open reading frames in the *Drosophila melanogaster* genome

As a first step towards the systematic discovery of unannotated proteins in *Drosophila melanogaster*, we generated a comprehensive database of all possible open reading frames (ORFs) in the *D. melanogaster* genome. This comprehensive database is the result of translating the entire annotated genome in all six frames; we also included the annotated transcriptome to enable discovery of non-canonical translation phenomena such as alternate frame ORFs (de Klerk and ’t Hoen 2015). In this database, each potential ORF is defined as a contiguous span of amino acid-coding codons; so, these potential ORFs do not necessarily begin with or contain a canonical start codon. This is necessary in order to account for unannotated splicing events, as a six-frame translation of the genome cannot correctly associate the exons of a gene. Since no coding exon within the coding sequence of a gene can contain a stop codon, the set of all codon spans between stop codons is a superset of the set of all exons in the genome. In addition to annotated ORFs (FlyBase r6.15 release), this comprehensive potential ORF database contains 4,582,998 unique potential ORFs that are not otherwise annotated. Of these additional potential ORFs, the median length is 32 amino acids and the 95th percentile is 96 amino acids. Considering solely the 2,597,794 potential ORFs that contain a canonical start codon, the median length following the start codon remains 32 amino acids, and the 95th percentile is 112 amino acids. In total, this suggests that the *D. melanogaster* genome has substantial latent potential for generating new protein-coding genes. Of course, the overwhelming majority of these potential ORFs are neither transcribed nor translated and are thus not functional (Durand et al. 2019), but considering these will allow us to scan the potential proteomic diversity in *D. melanogaster*.

Two-round MS search improves discovery of unannotated ORFs without compromising FDR

A comprehensive proteome of *D. melanogaster* was recently published (Casas-Vila et al. 2017), including data from 15 stages of the whole lifecycle of the fruit fly, as well as sharper time-resolution data covering 14 hourly or bihourly stages of embryogenesis. We analyzed the Casas-Villa et al. data by searching for the complete potential ORF database described above to discover evidence of translation of unannotated ORFs in *D. melanogaster*. Because the number of potential ORFs is several orders of magnitude greater than the number of annotated proteins, the search space is enormously expanded, and thus a traditional one-round search is likely to miss a very large number of identifications at a given false-discovery rate (FDR). Accordingly, to improve total sensitivity while maintaining an acceptable FDR, we used two rounds of analysis (Methods). We identify dramatically more novel unannotated protein groups with statistical significance in this two-round approach than in a traditional single-round search, while the
number of false positive identifications is comparable (Supplemental Table 1). The substantial enrichment (around ten-fold) of unannotated ORFs relative to either the observed number of false positives or the desired FDR strongly supports the validity of the two-round approach.

In total, after additional filtering (see Methods), our two-round search identified 3123 unannotated unique peptides that underlie 993 unannotated ORFs without homology to annotated proteins (Figure 1A; Figure 1B; Supplemental Data File 1; Supplemental Data File 2), which we hereafter refer to as unannotated translated ORFs (utORFs). utORFs range in length from 14 amino acids (aa) to over 100 aa, with the longest being 1748 aa (Figure 1C). The median length of a utORF is 37 aa, and the mean is 48.6 aa. Among these utORFs, 331 proteins have canonical start codons with 1027 peptides that originate from sequence after the canonical start codon, implying that on average each protein has 3 supporting peptide-spectrum matches. The mean and median lengths of a utORF starting with a canonical start codon are 53.5 aa and 37 aa, respectively, which is very similar to utORFs overall. Unless specifically mentioned, we analyze henceforth the set of 993 utORFs and not the 331 with canonical start codons.

Compared to the annotated D. melanogaster proteome, utORF sequences have qualitatively similar amino acid composition (Figure 1D). The amino acid composition for those utORFs with start codons is also highly similar. Some hydrophobic and positively-charged amino acids, such as leucine, arginine, and tryptophan are overrepresented relative to annotated proteins, while negatively-charged amino acids, such as aspartate and glutamate are underrepresented. Overall, the distribution of positively-charged to negatively-charged amino acids is significantly different among utORFs versus annotated D. melanogaster protein sequences (Chi-squared test with Yates’s correction, Chi-sq = 1463.55, df=1, p < machine epsilon). In addition, the distribution of hydrophobic amino acids versus polar amino acids is also highly significantly different (same test, Chi-sq = 44.96, df=1, p < 1E -10). These differences may be explained by the amino acid composition of potential ORFs, as the implied amino acid composition of all potential ORFs is qualitatively more similar to utORFs than annotated proteins.

All 993 utORFs have unique genomic locations (Supplemental Data File 3). Unannotated translated ORFs reside in a range of genomic locations, including intergenic, intronic, or UTRs (Figure 1E). About one-third of utORFs are located intergenically; of these, about one-third again are longer than 50 aa and contain a canonical start codon. We propose that these may be single-exon unannotated proteins. A considerable number of utORFs overlap with annotated genes, with an even distribution between sense and anti-sense directions relative to the annotation. Of the former, several are located either upstream or downstream of the canonical CDS; these may be instances of uORFs or translation read-through, which have been previously described as having important biological functions (Andrews and Rothnagel 2014). Notably, with the exception of a modest reduction in the relative proportion of sense utORFs, the
distribution of locations is not different for those utORFs with a canonical start codon. The genomic sequences that make up utORFs on average have greater GC content compared that of the overall D. melanogaster genome (X and autosomes; mean utORF GC content 43.4% vs. X and autosome GC content 42.15%; 1-sample two-tailed t-test, \(p<1\text{E}-4 \)), but they have wide variety, with some with as much as 62% GC content and others as few as 21% (Fig 1G). Intriguingly, the GC content of annotated genes (annotated gene GC content 42.9%) is between that of the genome and utORFs, and utORFs do not have significantly different GC content compared to annotated genes (1-sample two-tailed t-test, \(p > 0.05 \)).

This suggests either that a selective pressure may act towards increasing the GC content in utORFs, or that utORFs may be more likely to originate from regions from higher GC content.

Approximately half of utORFs (566 of 993; 57.0%) have a majority coiled-coil secondary structure, with the remainder a mixture of beta sheets and alpha helices. Notably, this remains true even when normalizing for length, as the weighted proportion of sequence in a predicted coiled-coil structure is on average about half (Figure 1F). Predictions of structural disorder of utORFs suggest that while they are rather disordered, most retain a substantial proportion that is ordered. The median proportion of disordered utORFs is 24.5%.

Novel peptides identified are not artifacts caused by polymorphism in conserved genes

It is possible that polymorphisms within a population can yield unique peptides due to amino acid substitutions, thus resulting in inaccurate attribution of such peptides to utORFs (Faridi, Purcell, and Croft 2018). However, such polymorphisms can contribute at most a small fraction of the peptides that support the identified utORFs. To quantify this, using a trie, we calculated the minimum distance between the peptides that uniquely support utORFs and the expected set of peptides from the reference proteome (see Methods). Of the 3123 tryptic peptides that are uniquely identified from utORFs, only 1 could possibly result from a single amino acid substitution of a tryptic peptide from an annotated protein; none could result from a single amino acid insertion or deletion. A simultaneous double amino acid substitution could explain an additional 5 peptides; 24 more peptides could result from a double insertion or deletion. Thus, single or double amino acid substitutions can explain at most 30 of 3123 unique tryptic peptides (< 1%). As a result, it is exceedingly likely that the peptides detected here are the product of utORFs rather than polymorphisms at the identified loci.

Inferring ages of unannotated translated ORFs

In order to compare the conservation of utORFs across species, it is necessary to find the orthologous sequence with near base-pair-level resolution. Due to the algorithmic compromises necessary for whole-genome searches, BLAST homology searches do not guarantee that they will return optimum results,
especially for short sequences that may be highly diverged. Moreover, any homology search that solely relies on searching for a given query sequence necessarily neglects broader genomic context like synteny. Conversely, common genomic utilities like UCSC’s liftOver are explicitly not recommended for fine-detailed genomic coordinate conversions. To address these issues, we used a pre-existing multiple-sequence-alignment (MSA) to guide a maximally-optimal local genome alignment (Figure 2 AB). This allows the combination of both whole genomic contexts as well as the algorithmic guarantees of the Smith-Waterman alignment.

To estimate a null model of protein similarity scores, we calculated control distributions with varying assumptions. Assuming amino acids drawn from the distribution of amino acids in the annotated D. melanogaster proteome, 10000 simulated pairs of randomly-generated protein sequences have a mean expected similarity score ranging from 1.7 to 2.0 (Figure 2C). We chose a conservative threshold of 2.5 points as a threshold for determining significant sequence similarity, as it is approximately at least 2 standard deviations above the mean expectation.

We used the above-described protein similarity score to identify significant orthologs across related Drosophila and insect species using the UCSC 27-way MSA (Figure 3A). We inferred gene ages for each utORF, where the inferred origin of a utORF corresponded to the last common ancestor between Drosophila melanogaster and the most distantly-related species where a significant ortholog was identified. We find that utORFs have a wide range of inferred gene ages, ranging from utORFs specific just to D. melanogaster to utORFs that may be conserved broadly through ancient insect taxa (Figure 3B). The plurality of utORFs likely predate the last common ancestor of Drosophila with the most-distant significant ortholog in D. grimshawi or any of its sister species; the next largest group predate the last common ancestor of the Drosophila species group, with the most-distant significant ortholog in D. ficusphila or its sister species. Notably, gene age inferences are not dramatically affected by choice of significance threshold.

Latent class analysis reveals subpopulations of unannotated translated ORFs

Latent class analysis (LCA) is a statistical method that supposes that the population under study is comprised of a mixture of distinct subpopulations – the “latent” classes (Collins and Lanza 2009). Importantly, this is the only major assumption necessary, so the analysis is robust to the shape of distributions or correlations between variables. Moreover, LCA can be used both deductively and inductively; its primary output is a table of probabilities for categorical variables conditional on class membership. Thus, these conditional probabilities can be used deductively to describe differences in the
inferred classes, and they can be used inductively to predict class membership given an individual set of observations.

Due to the unbiased strategy of identification, it is likely that the unannotated translated ORFs identified here consist of a mixture of loci resulting from different, distinct evolutionary processes, ranging from intergenic \textit{de novo} genes to alternative open reading frames of conserved annotated genes (Samandi et al. 2017). In addition, certain key variables, like inferred gene age and genomic location, are inherently categorical. Rather than simple inter-variable correlations, LCA is a valuable lens for understanding the unannotated loci identified here.

Accordingly, latent class analysis suggests that the population of high-confidence unannotated translated ORFs can be subdivided into five classes (Methods; \textbf{Table 1}; Supplemental Data File 4) and interpretations assigned based off differences in the various factor probabilities conditional on class membership (Collins and Lanza 2009).

Class 1 loci are notable for minimal transcription (\textbf{Figure 4C}) as well as a marked bias of being intergenic or antisense (\textbf{Figure 4A}). They also are almost exclusively of intermediate length between 20 and 50 residues (\textbf{Figure 4B}). This supports an interpretation as putatively nonfunctional loci. Class 2 loci are remarkable for monophyly (\textbf{Figure 4C}), likely due to very recent inferred emergence (\textbf{Figure 4D}), suggesting that these may be \textit{melanogaster}-specific loci. Dramatic differences in overall conservation (\textbf{Figure 4E}) as well as subtler ones in inferred emergence times (\textbf{Figure 4D}) distinguish classes 3, 4, and 5. Class 5 is also remarkable for strong bias towards locations overlapping existing, annotated genes, as well as high conservation, supporting an interpretation as ORFs in alternative reading frames. Finally, class 3 can be distinguished from class 4 through a more recent inferred age of emergence approximately at the last common ancestor of the \textit{melanogaster} subgroup (\textbf{Figure 4D}) and through remarkably low conservation that is even more frequent than that of \textit{melanogaster}-specific ORFs. This supports a distinction between class 3 as fast-evolving ORFs and class 4 as general unannotated ORFs.

With inferred classes in hand, it is possible to use the classes for forward inferences. The posterior probabilities of class membership for each utORF suggest generally clean partitioning between classes, as each utORF generally has a high posterior probability of belonging to only a single class (\textbf{Supp. Fig. 1}). The exceptions are utORFs with membership in either class 4 (unannotated ORFs) or class 5 (alternative-frame ORFs). However, allowing an additional sixth class leads to overfitting (see \textbf{Methods}). Accordingly, we use the maximum posterior probability per utORF to assign class membership for further analysis.
For certain parameters, differences by inferred class membership recapitulate expected trends. For example, phastCons conservation scores vary by class, with the lowest conservation in fast-evolving and \textit{melanogaster}-specific utORFs (Figure 5A). Alternative-frame utORFs are very well conserved due to the additional constraints imposed by their overlapping annotated genes. Despite not being included as a variable in LCA, phyloP conservation scores also vary significantly by class (Figure 5B). Negative phyloP scores are consistent with faster evolution; 61.4% (27 of 44) are from fast-evolving utORFs and 24.1% (15 of 44) are from \textit{melanogaster}-specific utORFs. Importantly, while phastCons and phyloP scores are significantly correlated, only phyloP scores can differentiate between relative low conservation and accelerated evolution. This recapitulation of faster evolution supports the overall latent class analysis approach. Finally, consistent with the assigned interpretation, \textit{melanogaster}-specific and fast-evolving utORFs are the youngest according to phylostratigraphy (Figure 5C).

For other parameters, differences between inferred classes reveals surprising trends. Fast-evolving utORFs and putatively nonfunctional utORFs are significantly shorter than all others (one-sided Brunner-Munzel nonparametric test of lengths vs. all other utORFs, \(p < 0.001 \) for both). Interestingly, \textit{melanogaster}-specific utORFs are not significantly shorter (same test, \(p = 0.11 \)), despite prior reports that younger genes tend to be shorter. With regards to maximum observed transcription, alternative-frame utORFs tend to be significantly better-transcribed than all other utORFs (one-sided Brunner-Munzel nonparametric test of log-transformed TPMs vs. all other utORFs, \(p << 0.001 \)). This is likely due to active transcription of the overlapping pre-existing loci. In contrast, fast-evolving utORFs are significantly less well-transcribed (same test, \(p < 0.001 \)), while differences in \textit{melanogaster}-specific and utORFs are statistically insignificant. Consistent with these trends, alternative-frame utORFs are less tissue- and developmentally-specific (one-sided Brunner-Munzel test of tau across FlyAtlas2 tissues, \(p < 0.001 \); same test of tau across modENCODE developmental stages, \(p < 0.001 \)) while fast-evolving utORFs are more specifically-expressed (tau across FlyAtlas2 tissues, \(p = 0.0039 \); tau across modENCODE developmental stages, \(p < 0.001 \)). Unusually, a plurality of fast-evolving utORFs (33 of 96, 34.4%) have their highest expression in adult fly tissues in the brain, with the next most common location the testis (10 of 96, 10.4%). Moreover, while transcription of annotated genes is high in both the brain and testis, fast-evolving utORFs are dramatically less-transcribed in the testis than in the brain (75th percentile log\(_{10}\) of TPM in brain, fast-evolving utORFs: 0.172; vs. annotated genes: 1.320; in testis, fast-evolving utORFs: -0.662; vs. annotated genes 1.177; Supp. Fig 2). Indeed, with the exception of alternate-frame utORFs, most utORFs are not transcribed in the testis but are transcribed in the brain, while most annotated genes are highly transcribed in both (Supp. Fig 2). This is highly surprising as previous work suggests that evolutionarily young genes emerge in the testis.
Many unannotated translated ORFs have evidence consistent with a *de novo* origin

A genetic locus emerging through *de novo* gene birth from nongenic sequence would be expected to be detected in a lineage-specific manner with detectable genomic homology despite evidence inconsistent with functional conservation. That is, a utORF may be of *de novo* origin if there exists at least one species where an orthologous ORF is not significant despite genomic homology. Many of our utORFs have substantial evidence consistent with a *de novo* origin (**Figure 6A**). Between 70 and 90% of identified loci across all inferred classes may be *de novo*, with the greatest proportion in the fast-evolving, *melanogaster*-specific, and unannotated ORFs. These differences between classes are statistically significant (Pearson’s Chi-squared test, 4 degrees of freedom, $X^2 = 69.012$, $p << 0.001$).

Ideally, the strongest inferences of *de novo* origin would rely on multiple outgroup species. This protects against an erroneous *de novo* inference due to a homology detection failure rather than true functional changes, which has been extensively described as a potential source of erroneous identifications (Moyers and Zhang 2015, 2016, 2018). For all utORFs with potential *de novo* origin, 709 (85.2%) have 2 or more such supporting outgroup species. The number of such supporting outgroup species appears to be more affected by the availability of such than by genomic divergence, as the youngest classes (*melanogaster*-specific and fast-evolving) have more supporting outgroup species than the comparatively older alternative-frame class (**Figure 6B**).

Observed retention times of many peptides underlying unannotated translated ORFs are similar to those of peptides underlying annotated proteins

One possible weakness of the methodology used in this study is that peptide-spectrum matches (PSMs) are prone to false identifications (Nesvizhskii and Aebersold 2005). One method that has been proposed to evaluate PSMs is to use the retention time of identified peptides on the liquid chromatography system upstream of the mass spectrometer; retention time should vary as a function of the peptide’s sequence. While calculating retention time of a given peptide *a priori* remains an unsolved problem, substantial progress has been made on predicting retention times of sets of peptides *a posteriori*. To evaluate the validity of PSMs of utORFs, we used AutoRT (Wen *et al.* 2020) to predict retention times of peptides supporting annotated FlyBase proteins as well as utORFs. While some peptides supporting utORFs have drastically larger differences from the predicted retention times (**Supp. Figure 3**), a sizeable number have observed retention times that are similar to peptides from annotated FlyBase proteins. Specifically, 385 of 3123 peptides (12.3%) supporting utORFs have at least one PSM with a delta retention time that is smaller than the 95th percentile of the delta retention times of all PSMs that support annotated FlyBase proteins; within this subset, the difference between predicted and observed retention times is modest.
(Figure 7A). These peptides are sufficient to support 270 utORFs, where melanogaster-specific ORFs are slightly more likely and nonfunctional ORFs somewhat less likely to be supported (Supp. Table 2); however, this observation is not statistically significant (Chi-squared test with 4 degrees of freedom; Chi-sq = 4.45; p > 0.05).

Some utORFs can be independently validated

To further validate that the discovered utORFs are not artifactual, we collected our own data to develop independent empirical support for these utORFs. We collected shotgun MS data from D. melanogaster 0–24-hour embryos (RAL517 strain). We also collected targeted MS data from embryos, targeting a manually-curated set of 15 target utORFs (see Methods) chosen for suitability. Of these 15 targeted utORFs, we were able to detect supporting evidence for 1 through the observation of 3 transitions (Figure 7B). In addition, we were able to detect supporting evidence for 3 additional utORFs from the shotgun MS data at a FDR of 1%. Given the low sensitivity of MS, having evidence for utORFs from independent datasets supports an unneglectable translation level for at least a subset of the utORFs. Finally, we re-analyzed published ribosome profiling data (Patraquim et al. 2020; Zhang et al. 2018) and identified supporting evidence from an additional 243 utORFs. Of these, alternate-frame ORFs are unsurprisingly the most frequently supported, perhaps due to translation of the canonical ORF, but the other classes are well-represented with the exception of the putatively nonfunctional utORFs (Supplemental Figure 4). The biases across classes are statistically significant (Pearson’s Chi-squared test, 4 degrees of freedom, $\chi^2 = 41.569, p << 0.001$), and they are consistent with our proposed interpretation of the classes. Together, this evidence supports our identification of the pool of utORFs overall.

Discussion

Identification of hundreds of potential protein products of de novo origin

In this work, we identify almost one thousand possible utORFs from a systematic, ORF-focused MS-first computational approach. These utORFs are unlikely to be annotation failures due to the lack of sequence homology to annotated proteins. Instead, like many similar “orphan genes”, these may be of de novo origin: the vast majority have a syntenic sequence conservation pattern that is consistent with de novo origin (Figure 6). The total number of identifications is larger than previous studies of de novo genes within a relatively short timescale in Drosophila, (Begun et al. 2006; Chen, Zhang, and Long 2010; Zhao et al. 2014), and is consistent with the identification of thousands of possible de novo polypeptides from systematic studies in other biological systems (Ruiz-Orera et al. 2018; Stein et al. 2018; Durand et al. 2019). Moreover, while evidence of translation of proposed de novo genes is generally lacking
(McLysaght and Hurst 2016), in this case, the method of identification may allow a stronger inference of translation.

Calling de novo origin for a given gene is challenging, as the call is almost wholly dependent on negative results in the outgroup lineages. For example, in small phylogenies with a single outgroup, it is possible for a single false negative call to lead to an incorrect inference of de novo origin. Recent studies have demonstrated that false negatives may be alarmingly likely, especially when using simple BLAST-based phylostratigraphy (Moyers and Zhang 2015, 2016). Here, our method of calling de novo origin employs proposed best practices of incorporating syntenic information (Arendsee et al. 2019; Vakirlis and McLysaght 2019) and is robust to individual sequence homology calls, improving our confidence in our inferences.

Our confidence in our identifications of utORFs is supported by our confirmatory results from mass spectrometry and published ribosome profiling. While the absolute number of recapitulated utORF detections is relatively low, mass spectrometry has notoriously low power, even in well-studied proteomes like humans (Baker et al. 2017). Thus, it is not particularly surprising that we were unable to recapitulate most utORFs in a relatively heterogenous sample, as we expect utORFs to be of low abundance and potentially only expressed under specific time- and tissue- limited conditions.

Class inference reveals heterogenous evolutionary dynamics

In contrast to previous work, our approach of applying latent class analysis allows additional refinement beyond that achievable by simple per-variable analyses. For example, previous studies have described an association between gene age and length: namely, that younger genes tend to be shorter (Carvunis et al. 2012; Neme and Tautz 2013; Wilson et al. 2017). Here, we find that the youngest class of utORFs (the melanogaster specific class) are not significantly shorter; instead, the fast-evolving and the nonfunctional classes are the shortest overall (Figure 5C). Importantly, while length is an input into the latent class analysis, it is not the most obvious differentiator between the classes, nor is it the primary basis upon which we interpreted the classes. Since the fast-evolving class is still quite young, it is possible that previous reports of an association between gene age and length are related to a conflation of fast evolution with gene age. Importantly, our analysis is not able to evaluate whether there is a direction in the historical evolutionary trajectory of the length of a given utORF. Thus, we cannot distinguish between the possibilities that shorter utORFs are faster evolving or that faster evolving ORFs require a shorter length. This question merits further examination in future.

Previous studies, including our own, have suggested that evolutionarily young genes tend to be expressed in the testis (Levine et al. 2006; Begun et al. 2007; Soumillon et al. 2013; Zhao et al. 2014; Luis
In contrast to that, the utORFs identified here are expressed more in the brain than in the testis (Supp. Fig. 2) in each inferred class. Moreover, while most annotated genes are highly expressed in the testis, most utORFs are not expressed at all in the testis, yet they are expressed in the brain (Supp. Fig. 2). Considering that most previously-reported de novo genes also tend to be expressed in the testis (Levine et al. 2006; Begun et al. 2007; Zhao et al. 2014; Luis Villanueva-Cañas et al. 2017; Witt et al. 2019), our results may suggest that the proportion of protein-coding de novo genes might be higher in brain than in testis, or that our MS-first approach allows the detection of otherwise-missed protein-coding de novo genes. Furthermore, these utORFs may have biologically significant effects in the brain. For example, the maximum observed expression of a plurality of the relatively short, fast-evolving ORFs is in the brain, suggesting that some could act as neuropeptides.

Despite the success of our latent class analysis approach in elucidating distinct evolutionary trajectories, half of our identified utORFs of interest remain consolidated in a single class. However, additional classes cannot be safely supported due to overfitting. Additional approaches may be necessary in order to further characterize these utORFs.

Turnover in utORFs may be frequent

While de novo gene birth has been increasingly well-studied over recent years, de novo gene death has been examined less-closely. It is obvious that de novo gene death must be relatively frequent, as otherwise the net size of proteomes would be unrealistically large relative to the annotation. Consistent with this intuition, we observe that most de novo genes diverge by enough to be indistinguishable from random sequences in at least part of the clade descended from the last common ancestor after the de novo gene birth event (Figure 6). Since we consider conservation of the protein-coding sequence to be approximately equivalent to the function of the locus, we consider such sequence divergence as evidence of gene death.

An implication of most models of de novo gene origins is that de novo gene birth is rare at the individual gene level and thus occurs only once in evolutionary history. However, the very large number of gene death events suggests a second possibility. It is possible that the rates of gene birth and death may be more balanced; that is, instead of being born once and recurrently lost, a subset of de novo genes may be born, die, and subsequently reborn (Schmitz et al., 2018; Stein et al., 2018; Durand et al., 2019). Thus, some de novo gene evolution may not proceed unidirectionally, but rather like a random walk along a continuum. This is consistent with to the proto-gene model (Carvunis et al. 2012) or the pre-adaptation model (Wilson et al. 2017). Under the proto-gene model, the frequent deaths of our utORFs would imply...
that they are proto-genes and not genes. However, with the exception of the *melanogaster*-specific utORFs, our utORFs are often conserved across species with significant divergence times, which implies that some may have evolutionary constraints and may in fact be functional genes. It is difficult to make strong conclusions here without getting trapped in the philosophical quagmire of the nature of “gene-ness”; nevertheless, it is possible that no single “grand unified theory” of *de novo* gene origination can describe all phenomena.

Methodological considerations in our approach

One innovation of this work was to use mass-spectrometry to directly identify utORFs, which is more direct evidence compared to ribosome profiling or analysis of transcripts. However, despite our rigorous analyses, this approach makes certain critical assumptions. Most critically, unlike sequencing approaches, the empirical readout of mass spectrometry is not directly mappable to information (i.e., the underlying nucleotide sequence); false identifications of peptide-spectrum matches are a notorious problem in the field (Nesvizhskii and Aebersold 2005). Despite this technical challenge, our results show that the peptides underlying our identification of utORFs are not artifacts caused by polymorphism in conserved genes. Moreover, our current results suggest that the reverse-decoy approach for controlling the number of false-positive peptide-spectrum matches remains valid for our utORF identifications. Indeed, the power for the identification of annotated Drosophila genes is nearly the same between a standard MS approach and our two-round approach (Supplemental Table 2). There were high retention time shifts versus those estimated by AutoRT, but we are reassured by the supporting transcriptional and ribosome-profiling data (Figure 5). Moreover, our supporting empirical observation of certain utORFs (Figure 6C) significantly supports our findings. Further direct empirical observation of utORF products would be an obvious potential extension of this work.

Another point is the use of phylostratigraphy to determine the significance of an orthologous ORF. Phylostratigraphy infers the age of genes (Domazet-Loso, Brajković, and Tautz 2007); however, the common BLAST-based method has drawbacks. False identifications of evolutionary novelty can result from nonsignificant homology calls, for example, directly due to BLAST (Moyers and Zhang 2015). In response, others have proposed incorporating syntenic information to improve the detection of true homologs (Arendsee et al. 2019; Vakirlis and McLysaght 2019). Here, we incorporate syntenic information through the use of a MSA as a first pass to guide our later local alignment. Importantly, our inferences of gene age and potential *de novo* origin do not rely solely on the absence of sequence from the MSA, which would be analogous to the lack of a significant BLAST hit. Instead, our inferences of *de novo* origin rely on protein similarity scores below our threshold of significance (Figure 6B), which ensures that these inferences are not simply due to extensive genomic divergence beyond the limit of...
detection. Our formulation of the protein similarity score, if anything, may be vulnerable to calling spurious similarity due to shared genomic ancestry between closely-related species. However, such errors would cause us to infer systematically-older de novo origin dates for each gene; given that we still conclude that many utORFs are of potential de novo origin, the impact of such possible errors is low.

Alternatively, a recent publication proposed that a simple null model of constant genomic evolution eroding homology can explain a very large proportion of apparent lineage-specific genes (Weisman, Murray, and Eddy 2020). We do observe a relationship between the underlying genomic similarity and our calculated protein similarity scores, so it is possible that our use of a fixed significance threshold may pre-dispose us to such inferences of genetic novelty if the underlying genomic divergence drives the potential ORF’s coding sequence to diverge in turn. However, we remain confident in our inferences for several reasons. First, because by definition the gene product is a protein or peptide, we believe that it is most appropriate to evaluate it on the basis of protein sequence. An orthologous protein sequence that is no longer more similar to the focal sequence of interest than any randomly-generated sequence (that is, a nonsignificant similarity score) is to us ipso facto a different entity. Thus, we would conclude that this is meaningfully unique lineage-specificity, and whether this scenario is more accurately described as simple divergence, de novo gene birth, or appropriation of a pre-existing locus is an open question. Second, we observe multiple instances of a nonsignificant similarity score despite high genomic similarity, which cannot be explained by constant genomic evolution. Finally, we note that Weisman et al. assume constant evolution, but at a locus-specific rate. This null model may not be appropriate for rapidly-evolving loci (Prabh and Tautz 2021): specifically, if a de novo birth event has occurred at a certain locus, it is possible that the rate of evolution at that locus will accelerate. This will violate the assumption of constant evolution at that locus. Even when imposing the assumption of constant evolution, we expect that the null model will not meaningfully distinguish between uninteresting evolution or novelty-driven evolution.

Outlook

Together, our results show that evolution of young proteins may progress along different, distinct trajectories in Drosophila. Whether similarly distinct trajectories are apparent in other model species such as yeast or mammals remains to be seen. Of note, Drosophila is a taxon of multicellular organisms with a large effective population size, so selective processes are more efficient; mammals – especially primates and Homo – are evolutionarily young and have a smaller effective population size, while yeasts are unicellular. If these factors affect general evolutionary properties, such as the selective cost of translation of lowly functional proteins and the probability of fixation by drift, it is possible that they may affect the evolution of de novo proteins. In the case of Homo, all these factors may be more favorable to the fixation of new de novo proteins, and the availability of broad and varied -omics data is unparalleled. It would
therefore be an obvious extension to employ a similar approach to investigate possible utORFs and de novo proteins in humans.

Methods

Comprehensive Drosophila melanogaster ORFeome

To generate the comprehensive database of potential ORFs in Drosophila melanogaster, we translated the repeat-masked genome (UCSC Aug. 2014 BDGP Release 6 + ISO1 MT/dm6) and transcriptome (FlyBase, r6.15). We used the repeat-masked genome to control the number of transposable elements and other degenerate candidates. We retained only ORFs of at least 8 residues; for ORFs not containing a canonical start codon, only those of at least 20 residues were retained. We deduplicated potential ORF sequences, leaving 4,583,941 unique potential ORFs.

Discovery of utORFs in published shotgun MS data

To identify evidence of utORFs, we reanalyzed a published proteome of D. melanogaster (PRIDE accession numbers PXD005691 and PXD005713; respectively, whole lifecycle and hourly/bihourly embryogenesis stages; (Casas-Vila et al. 2017)) using MaxQuant v. 1.6.1.0 (Tyanova, Temu, and Cox 2016). To speed computation, we divided analysis of the overall proteome into 4 subsets (Supplemental Data File 6). As in (Casas-Vila et al. 2017), we used standard parameters (namely, methionine oxidation and N-terminal acetylation as variable modifications; carbamidomethylation as a fixed modification; tryptic digestion; minimum peptide length 7).

Two-round MS search

In the two-round MS search, we used two rounds of analysis per data subset to improve total sensitivity while maintaining an acceptable false discovery rate (Figure 1A). In the first “discovery” round, we set the peptide and protein group FDRs in MaxQuant to 0.2, with the protein search sequences set to be the annotated D. melanogaster proteome (FlyBase, r6.15), supplemented with the comprehensive potential ORF database. We then identified candidate ORFs from any of the four data subsets (Supplemental Data File 6) to develop a filtered subset of potential ORFs with possible mass spectrometry evidence. These relaxed parameters allow us to identify many more potential ORFs, but with a corresponding increase in false positive identifications. In the second “verification” round, we set the peptide and protein group FDRs to 0.01, with the protein search sequences set to be the annotated D. melanogaster proteome (FlyBase, r6.15), supplemented with only that filtered subset of potential ORFs identified in the first round (around 1000-fold fewer). We subsequently performed additional manual curation of the identified hits to arrive at our final set of utORFs; in brief, we dropped utORFs that were shorter than 14 residues,
that had detectable sequence homology to annotated proteins via BLASTP, and the shorter of multiple possible utORFs that were identified from the same protein group by MaxQuant.

Evaluation of peptide and protein polymorphisms

Evaluating whether a given peptide could have arisen from a polymorphism is equivalent to calculating the number of substitutions from said peptide to the nearest peptide expected from the annotated proteome. Variations of this problem are well-studied in computer science, and trie data structures are commonly used to solve them efficiently. We used a Python implementation of tries (https://github.com/jfijlaros/dict-trie) to build a trie of all tryptic peptides that would be expected from the annotated *D. melanogaster* proteome. For each peptide uniquely identified from a utORF, we calculated Hamming (the number of substitutions without the possibility of indels) and Levenshtein (the combined number of substitutions and indels) distances.

Genomic analysis of utORFs

To map utORF sequences back to their genomic locations, we used BLAT version 36 (Hinrichs et al. 2006) to identify the locations of utORF sequences that were supported in the discovery round. We reformatted the output to a GTF and made certain manual corrections; this file, containing the final locations, is appended as Supplemental Data File 3. We excluded those loci whose genomic location could not be determined from genomic analyses. For those loci where multiple genomic locations were possible, we used the first location identified by BLAT.

We subsequently classified the genomic locations of these utORF sequences using custom scripts relying on the Bioconductor libraries in R (Huber et al. 2015). Specifically, we classified a location as sense or antisense if any part of the location overlapped with an annotated gene in the appropriate direction. We used the FlyBase r6.15 annotations. We classified a location as intergenic if and only if it was neither sense nor antisense as defined above.

We computed conservation scores by using the 27-way phastCons and phyloP bigWig tracks provided by the UCSC Genome Browser (Hinrichs et al. 2006). For a given genomic location, we calculated the conservation score by averaging the score through the relevant interval.

Published sequencing data

We used a number of published sequencing datasets to characterize utORFs. To evaluate developmental stage- and tissue-specific transcription levels, we used modENCODE (modENCODE Consortium et al. 2010) and FlyAtlas2 (Leader et al. 2018) data.
Genes age inference

Multiple sequence alignment and genomic similarity scoring

We used BioPython v. 1.69 (Cock et al. 2009) to subset the UCSC 27-way insect multiple-sequence alignment (MSA) to a smaller MSA that corresponded to the location in the *D. melanogaster* genome of each unannotated translated ORF plus the flanking 9bp on each side. In a pairwise fashion for each species against *D. melanogaster*, we extracted genomic sequences from the MSA, dropped gaps in the sequences, and calculated identity scores. To score nucleotide identity scores, we used the BioPython implementation of the Smith-Waterman algorithm (*pairwise2*) with a match score of 1, with gap and extension penalties set to 0, and we normalized by the total length of the genomic sequence.

Modified Smith-Waterman protein similarity scoring

We calculated protein similarity scores using the Smith-Waterman algorithm with the BLOSUM62 matrix (Henikoff and Henikoff 1992), no gap or extension penalties, and we normalized by the length of the ORF in *D. melanogaster*. To ensure score stability with respect to minor indels, we calculated protein similarity scores in all three reading frames, keeping only the frame that scored best.

Phylostratigraphy

Using the reference phylogeny corresponding to the UCSC 27-way insect MSA, we inferred approximate gene emergence dates from the pattern of modified Smith-Waterman protein similarity scores. We defined significance as a score greater than 2.5 points. In turn, we estimated the inferred age of a given ORF as the age of the last common ancestor between *D. melanogaster* and the most distant insect species for which a significant modified Smith-Waterman protein similarity score was calculated.

Latent Class Analysis

We performed latent class analysis (Collins and Lanza 2009) using the *poLCA* R package (Linzer and Lewis 2011). Specifically, we used 100 iterations of a latent class model with no covariates and with factors as follows: inferred gene age; monophyly; genomic location (classified as solely intergenic, antisense, sense, or any combination); phastCons score (binned as [0, 0.2), [0.2, 0.8), and [0.8, 1.0]); length (binned as [0, 20), [20, 50), and [50, infinity]); transcription (binned as TPM > 0.1 or ≤ 0.1 from maximum per-sample TPM) tissue specificity (binned as tau > 0.8 or ≤ 0.8 from FlyAtlas tissues) developmental specificity (binned as tau > 0.8 or ≤ 0.8 from modENCODE developmental stages). We excluded loci with missing values from latent class analysis. We chose the number of classes (five) based on a combination of minimizing the BIC and AIC (Supplemental Table 3) as well as model interpretation, similar to recommended procedures (Collins and Lanza 2009). Models with 6 classes did
not converge on a single maximum-likelihood solution, suggesting potential underidentification, and were thus not considered.

We subsequently used the resulting five-class latent class model to predict the posterior class membership probabilities for each classified candidate locus. We used the modal probability to assign class membership.

Validation of utORFs

Retention time validation

We used AutoRT (Wen et al. 2020) to predict retention times of identified peptides from both annotated FlyBase proteins and utORFs. To train the model, we conducted transfer learning per each source run using the published AutoRT model (originally trained on PXD006109) with 40 epochs on either an NVIDIA K80 GPU or an NVIDIA V100 GPU; the training set consisted of only those annotated FlyBase peptides with posterior error probabilities of 0.01 or smaller as estimated by MaxQuant. We then used the per-run trained models with default parameters to predict the retention times of the peptides resulting from either the annotated FlyBase proteins or utORFs.

Empirical validation

We collected protein samples from *D. melanogaster* 0–24-hour embryos (RAL517 strain) for validation of utORFs via mass spectrometry. In brief, we homogenized dechorionated embryos with a mortar and pestle in ice-cold lysis buffer (50mM Tris HCl, pH7.5; 137 mM NaCl; 0.25% NP-40; Roche cOmplete protease inhibitors) before centrifugation at 18,000 rpm at 4°C and filtration through a 0.45 micron PVDF membrane.

Purified protein was acetone-precipitated, reduced, and alkylated before digestion with LysC and trypsin, acidified, and solid-phase extraction. The resulting peptides were analyzed by LC-MS/MS (120min gradient, 25cm EasySprayer column in high res./high mass accuracy mode) on a ThermoFisher Lumos instrument. In addition, the embryo sample was analyzed on the same instrument by PRM-MS, targeting a set of 16 tryptic peptides. We manually chose these targeted peptides based on suitability of the peptide for targeting (i.e., few/no missed cleavages or modifications), expression of the utORF in embryos, and the strength of the prior detection from the Casas-Vila datasets.

We analyzed the shotgun data using ProteomeDiscoverer 1.4 and searched via Mascot against the Uniprot *D. melanogaster* database concatenated with common contaminants and our set of utORFs with a 1% peptide FDR. We analyzed the targeted data using SkylineMS (v. 21.2.0.369 (2efacf038)). We deposited the raw data in PRIDE under accession PXD032197.
We additionally reanalyzed published ribosome profiling data downloaded from the NCBI Sequence Read Archive (SRA) project PRJNA306373 (Zhang et al. 2018) and project SRP254283 (Patraquim et al. 2020). For the Zhang dataset, we downloaded raw reads from the above SRA accessions, aligned them to the genome using hisat2 v.2.2.1 (Kim et al. 2019), and calculated TPM using stringtie v.1.3.4d (Pertea et al. 2016). We handled the Patraquim dataset similarly, except that we additionally trimmed the raw reads using trimmomatic 0.38 (Bolger, Lohse, and Usadel 2014) and filtered out reads aligning to annotated RNAs using bowtie2 v. 2.3.5 (Langmead and Salzberg 2012) before alignment. For each utORF, we calculated the maximum TPM observed across either dataset and called the utORF as supported if the TPM was greater than 0.2.

Data Availability

Raw MS data are deposited in PRIDE under accession number PXD032197. Relevant scripts and intermediate files can be found in our Github repository https://github.com/LiZhaoLab/utORF_mass_spec.

Acknowledgements

We thank members of the Zhao laboratory for helpful discussions during the work. We thank Henrik Molina and the Proteomics Resource Center at the Rockefeller University for the help with mass spectrometry data.

Funding

This work was supported by National Institutes of Health (NIH) MIRA R35GM133780, the Robertson Foundation, a Rita Allen Foundation Scholar Program, and a Vallee Scholar Program (VS-2020-35), a Monique Weill-Caulier Career Scientist Award, and an Alfred P. Sloan Research Fellowship (FG-2018-10627) to L.Z. E.B.Z. was supported by a Medical Scientist Training Program grant from the National Institute of General Medical Sciences of the National Institutes of Health under award number T32GM007739 to the Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program. The content of this study is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Competing interest statement

The authors declare no competing interests.
Figures and Legends

Figure 1

A. We detected utORFs by searching via a two-round approach through a comprehensive database of potential ORFs that was generated from a six-frame translation of the transcriptome and genome (see Methods). B: an example utORF. The full sequence of utORF 633.1 is shown. The peptide supporting the inference of this utORF is bolded and colored red. C: distribution of lengths of utORFs. D: distribution of amino acids in utORFs (blue) and in the reference D. melanogaster proteome (orange). Standard single-letter abbreviations for amino acids are used. E: genomic locations of utORFs. Since a utORF can overlap multiple items, e.g., an ORF that overlaps with an annotated intron, exon, and another gene antisense to the first, categories are not exclusive. F: left: secondary structure composition of utORFs. Approximately
half of utORFs have a coiled-coil secondary structure, with the remainder a mixture of beta sheets and alpha helices. right: predicted structural disorder of utORFs. G: Percent GC content of utORFs and GC content of the X and autosomes of the *D. melanogaster* genome (red line).
Figure 2. Synteny-based orthology detection and protein sequence similarity quantification. A: When performing a simple homology search for a locus of interest (red arrow) across a given genome (blue line), the search space is orders of magnitude larger, requiring heuristic shortcuts to reduce the computational complexity. B: Using a multiple sequence alignment, we can simply find the block that contains the locus of interest and use that to evaluate potential orthologs in other genomes. The search space is approximately a similar size as that of the original locus, so an optimal search is computationally feasible. Syntenic information (i.e., flanking genes, gray arrows) is encoded within the multiple sequence alignment. C: We calculated the pairwise protein similarity score (see Methods) across 10000 pairs of randomly-generated sequences of lengths 20-150 with amino acid frequencies matching that of the annotated D. melanogaster proteome. The mean score (blue line) and 2 standard deviations (shading) are shown. Our significance threshold of 2.5 lies beyond 2 standard deviations from expectation.
Table 1: Latent class analysis of unannotated translated ORFs

<table>
<thead>
<tr>
<th>Class</th>
<th>Interpretation</th>
<th>Estimated Percent</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>putatively nonfunctional loci</td>
<td>4.35%</td>
<td>41</td>
</tr>
<tr>
<td>2</td>
<td>melanogaster-specific ORFs</td>
<td>5.71%</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>fast-evolving ORFs</td>
<td>12.03%</td>
<td>96</td>
</tr>
<tr>
<td>4</td>
<td>unannotated ORFs</td>
<td>57.61%</td>
<td>591</td>
</tr>
<tr>
<td>5</td>
<td>alternative frame ORFs</td>
<td>20.30%</td>
<td>161</td>
</tr>
</tbody>
</table>
Figure 4. Latent class analysis of the utORFs reveals differences between classes.
A: Class 1 is notably distinct for strong bias towards intergenic and antisense locations at the expense of sense locations. Class 2 is notable for being relatively unbiased, and for being the only class with appreciable members in a combination of locations. Class 5 is strongly skewed towards antisense and sense locations.

B: Class 1 is almost exclusively of intermediate length. Class 4 has the greatest length bias, followed by class 2. tiny: fewer than 20 residues; medium: from 20 to 49 residues; long: 50 or more residues.

C: Class 1 is notably distinct from the others for minimal transcription. Low tissue and developmental specificity may be an effect of minimal transcription. Class 2 is remarkable for being entirely monophyletic. Class 5 has slightly lower tissue and developmental specificities than classes 2-4. sigTPM: maximum per-sample TPM 0.1; tau: tissue specificity 0.8; dev_tau: developmental specificity 0.8.

D: Class 2 is by far the youngest. Class 3 tends to be of an intermediate age, with inferred emergence at around the LCA of the *melanogaster* subgroup (droRho). In contrast, class 4 emergence is distributed throughout the LCA of the *melanogaster* subgroup and the *Drosophila* genus.

E: Class 2 is notable for overall low conservation. Class 3 is remarkably even less conserved. Class 4 and 5 are distinguished through differences in intermediate vs. significant conservation. unconserved: phastCons score < 0.2; amb: phastCons score ≥ 0.2 and < 0.8; significant: phastCons score ≥ 0.8.
Figure 5. Differences between inferred classes recapitulate expected trends in age and conservation and reveal surprising trends in lengths and expression.

A: As expected, phastCons conservation scores vary by class. Scores near 0 indicate low conservation while scores near 1 indicate high conservation. Note that fast-evolving and mel-specific loci have dramatically lower conservation whereas alt-frame loci are very well conserved.

B: Despite not being included as a variable in LCA, phyloP conservation scores also vary by class. Scores below 0 indicate potential fast evolution (acceleration) while scores above 0 indicate conservation. Note
that the lowest scores predominantly occur in fast-evolving and mel-specific loci, and that alt-frame loci remain the best-conserved.

C: Distribution of phylostratigraphically-inferred gene ages by inferred latent class.

D: Class variations in length are generally minimal, with the exception of utORFs being slightly longer than average, and fast-evolving and nonfunctional loci being shorter than average.

E: Maximum observed transcription across all FlyAtlas2 and modENCODE samples varies by class.

F: Tissue specificity (tau) calculated from FlyAtlas2 data shows that nonfunctional and fast-evolving loci are the most specific, with alternate frame loci the least.

G: Developmental specificity (tau) calculated from modENCODE data similarly shows that nonfunctional and fast-evolving loci are the most specific, with alternate frame loci the least.
Figure 6. Many utORFs have evidence consistent with a de novo origin. A: Proportion of utORFs by inferred class with genomic conservation consistent with de novo origin. Box widths correlate with size of class (Table 1). B: Number of supporting outgroups by inferred class for loci with potential de novo origin.
Figure 7

Figure 7. Independent validation of utORF identification. **A:** Cumulative distribution of differences between observed and predicted retention times for peptide-spectrum matches of peptides supporting annotated FlyBase proteins (orange) and peptide-spectrum matches of peptides supporting utORFs that are no worse than the 95th percentile of annotated FlyBase PSMs (blue). **B:** Transitions detected via PRM of the peptide GPGAAISQR from protein extracts of *D. melanogaster* embryos.
References

from Previously Non-Coding Sequences.” *PLoS Genetics* 9 (10).
https://doi.org/10.1371/journal.pgen.1003860.

https://doi.org/10.7554/eLife.27860.

https://doi.org/10.1038/nprot.2016.136.

