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Summary  
Epithelial to mesenchymal transition (EMT) is a well-studied hallmark of epithelial-like cancers that 
is characterized by loss of epithelial markers and gain of mesenchymal markers. Interestingly, 
melanoma, which is derived from melanocytes of the skin, also undergo phenotypic plasticity 
toward mesenchymal-like phenotypes under the influence of various micro-environmental cues. 
Our study connects EMT to the phenomenon of de-differentiation (i.e., transition from proliferative 
to more invasive phenotypes) observed in melanoma cells during drug treatment. By analyzing 78 
publicly available transcriptomic melanoma datasets, we found that de-differentiation in melanoma 
is accompanied by upregulation of mesenchymal genes, but not necessarily a concomitant loss of 
an epithelial program, suggesting a more “one-dimensional” EMT that leads to a hybrid epithelial/ 
mesenchymal phenotype. Samples lying in the hybrid epithelial/mesenchymal phenotype also 
correspond to the intermediate phenotypes in melanoma along the proliferative-invasive axis - 
neural crest and transitory ones. Interestingly, as melanoma cells progress along the invasive axis, 
the mesenchymal signature does not increase monotonically. Instead, we observe a peak in 
mesenchymal scores followed by a decline, as cells further de-differentiate. This biphasic response 
recapitulates the dynamics of melanocyte development, suggesting close interactions among 
genes controlling differentiation and mesenchymal programs in melanocytes. Similar trends were 
noted for metabolic changes often associated with EMT in carcinomas in which progression along 
mesenchymal axis correlates with the downregulation of oxidative phosphorylation, while largely 
maintaining glycolytic capacity. Overall, these results provide an explanation for how EMT and de-
differentiation axes overlap with respect to their transcriptional and metabolic programs in 
melanoma. 
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Introduction 
 
Epithelial to mesenchymal transition (EMT) is a well-characterized phenomenon involved in 
multiple axes of cancer progression, such as metastasis and drug resistance. EMT is commonly 
associated with morphological changes, functional changes (increased migration, invasion, and 
immune invasion (Chakraborty et al., 2021; Hanahan & Weinberg, 2011; Sahoo et al., 2021) and 
molecular changes, including upregulation of EMT markers and transcription factors (TFs), such 
as VIM, ZEB1, SNAI1 and TWIST1. While the phenomenon of EMT has largely been characterized 
for epithelial cancers (such as breast cancer and lung adenocarcinoma), similar molecular, 
functional and morphological changes have also been observed in non-epithelial cancers, such as 
sarcomas (Somarelli, Shetler et al. 2016, Jolly, Ware et al. 2019), glioblastoma (Siebzehnrubl et 
al., 2013), myeloma (Roccaro et al., 2015), lymphoma (Lemma et al., 2013; Sánchez-Tilló et al., 
2013), leukemia (Stavropoulou et al., 2016; Wu et al., 2018) and melanoma (Kahlert et al., 2017) 
in preclinical and clinical settings.  

Standard-of-care chemotherapy for melanoma often includes targeted inhibition of BRAF or MEK 
signaling. While these targeted agents provide clinical benefit to melanoma patients, resistance to 
these therapies is common.  Therapy-resistant melanomas often undergo de-differentiation, which 
is characterized by loss of melanocytic markers such as MLANA, TRPM1 and TYR and gain of 
invasive molecular markers such as c-JUN, NGFR and ZEB1 (Denecker et al., 2014; Fallahi-
Sichani et al., 2017; Rambow et al., 2018; Ramsdale et al., 2015). The de-differentiation trajectory 
of melanoma cells is characterized by a transition along the proliferation-invasion axis, from a 
melanocytic phenotype to an undifferentiated phenotype while passing through the intermediate 
transitory and neural crest stem cell-like (NCSC) phenotypes (Fig. 1A). This trajectory is the 
reverse of the differentiation that occurs during melanocyte development, where undifferentiated 
tissue in the embryonic neural plate give rise to highly migratory and mesenchymal neural crest 
cells, some of which differentiate into melanocytes upon reaching the epidermis (Dupin & le 
Douarin, 2003). Therapy resistant melanoma is also commonly associated with a mesenchymal-
like phenotype with more invasive and aggressive features (Denecker et al., 2014; Ramsdale et 
al., 2015; Su et al., 2017; Vandamme et al., 2020; Wouters et al., 2020). These relationships 
between de-differentiation, invasion, and EMT pathways in response to therapy suggest EMT and 
de-differentiation programs in melanoma may be linked.  

The similarity between EMT and de-differentiation programs extends beyond cell-intrinsic 
alterations and impacts cell-extrinsic changes as well. EMT often leads to varied extracellular 
matrix (ECM) stiffness and density (Deng et al., 2021; Fattet et al., 2020; Kumar et al., 2014) and 
altered cell-matrix and cell-cell interactions (Bianchi et al., 2010; Kilinc et al., 2021). In melanoma, 
acquisition of de-differentiated and invasive phenotypes is often accompanied with changes in 
composition and physical properties of ECM, and modified cell-matrix interactions and cell 
morphology (Kaur et al., 2019; Long et al., 2019; Spoerri et al., 2021). Increased expression of 
matrix metalloproteases (MMPs), immune evasion (characterized by both signaling-mediated 
immune suppression (e.g. by TGF-ß release) and prevention of immune cell entry into tumors by 
dense collagen matrix/low α-SMA expression), increased inflammatory markers (such as TNF-α, 
NF-kB and AP-1) and cytoskeleton remodeling have been closely linked to the acquisition of an 
invasive phenotype and loss of melanocytic differentiation regulator MITF (Dilshat et al., 2021; 
Jensen et al., 2018; M. H. Kim et al., 2016; Lal et al., 2013; Miskolczi et al., 2018; Riesenberg et 
al., 2015). All of these changes are reported with EMT progression as well in multiple epithelial 
cancers (Radisky & Radisky, 2010; Suarez-Carmona et al., 2017; Tripathi et al., 2016). Such 
extensive similarity between EMT and de-differentiation programs in cancer-microenvironment 
cross-talk and niche construction underscore the potential of common regulatory pathways 
involved in both EMT and de-differentiation.  
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Another common feature that links EMT in epithelial cancers to de-differentiation in melanoma is 
the presence of intermediate or hybrid phenotypes. Hybrid epithelial/mesenchymal (E/M) cells 
express molecular and functional characteristics of both epithelial (high proliferation and cell-cell 
adhesion, low invasion) and mesenchymal (low proliferation and cell-cell adhesion, high invasion) 
cells (Jolly et al., 2022). On the other hand, melanoma intermediate phenotypes, which comprise 
transitory and neural crest-like stem cell-like (NCSC) phenotypes, exhibit combined features of 
proliferative and invasive phenotypes (Hoek et al., 2008; Tsoi et al., 2018) (Fig. 1A). Gene 
regulatory networks for EMT and melanoma provide a mechanistic basis for explaining the 
existence of these hybrid/intermediate states (Jolly et al., 2016; Pillai & Jolly, 2021). An overlap in 
key regulators and stabilizers for hybrid E/M phenotypes and melanoma phenotypes (such as 
ZEB1, NFATC2, CDH1, SNAI2, NRF2) suggest common regulatory links (Bocci et al., 2019; 
Caramel et al., 2013; Denecker et al., 2014; Gupta et al., 2005; Jessen et al., 2020; Perotti et al., 
2019; Subbalakshmi et al., 2020, 2022). For instance, SNAI2, a stabilizer of the hybrid E/M 
phenotype, is a key regulator of the NCSC phenotype and metastasis in melanoma, suggesting its 
involvement in regulating the intermediate phenotypes in melanoma as well (Gupta et al., 2005; 
Subbalakshmi et al., 2022). However, intriguingly, certain regulators show opposite trends in 
melanoma and EMT. For instance, ZEB2 is considered an inducer of EMT in epithelial cancers, 
but in the context of melanoma, it inhibits the mesenchymal phenotype (Vandamme et al., 2020; 
Vandewalle et al., 2005). Other molecules that show opposite effects include KLF4 (Subbalakshmi 
et al., 2021; Zhang et al., 2018) and TFAP2A (Campbell et al., 2021; Dimitrova et al., 2017). Thus, 
understanding the mechanistic underpinning of how the de-differentiation and EMT programs are 
linked can help decipher reasons for the similarities and differences between these pathways 
across cancers. 

In this study, we map the de-differentiation axis in melanoma (also called proliferative-invasive/        
P-I axis) to the EMT axis using previously defined scoring metrics (Byers et al., 2013; Sahoo et al., 
2021; Subramanian et al., 2005; Tan et al., 2014). We compare the extent to which a gain in a 
mesenchymal signature corresponds to a loss in the epithelial signature during de-differentiation 
of melanoma. By deciphering the interdependencies between de-differentiation and mesenchymal 
programs, the differences in molecular regulation between EMT and de-differentiation can be 
explained. We have identified that the mesenchymal program, but not the epithelial program, is 
closely linked to de-differentiation. Although the mesenchymal signature enrichment shows a 
strong negative correlation with a differentiated/melanocytic transcriptional program, it does not 
increase monotonically during de-differentiation. This non-monotonic trend is also captured by 
metabolic programs associated with EMT, such as glycolysis and HIF1α, but not with metabolic 
programs associated with differentiation/melanocytic genes, such as the MITF-regulated OXPHOS 
pathway. Our results indicate that phenotypic heterogeneity in melanoma occurs along a 
proliferative-invasive axis that correlates with a “one-dimensional EMT” in which cells transition 
along a mesenchymal axis without an alteration in epithelial phenotype. Moreover, our analyses 
support a conceptual model in which mesenchymal scores initially increase but then saturates/ 
decreases as melanoma cells undergo dedifferentiation, thus suggesting caution with respect to 
timescales considered in in vitro analysis of drug-induced dedifferentiation programs. Deciphering 
such inter-connections among multiple axes of plasticity in a cancer cell population may guide 
potent combinatorial therapeutic strategies aimed at controlling transitions to a more hybrid cell 
type with combined features of both proliferation and invasion.    
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Materials and Methods 

Software and Datasets 

Publicly available datasets from Gene Expression Omnibus (GEO), The Cancer Genome Atlas 
(TCGA) , Cancer Cell Line Encyclopedia (CCLE- Broad Institute) (Barretina et al., 2012), and 
National Cancer Institute-60 (NCI-60) databases were analyzed. Microarray data were 
downloaded from GEO using GEOquery Bioconductor R package. All analyses done on R version 
4.1.0. ggplot2, and ggpubr R packages were used to create and customize plots.  

Pre-processing of Datasets 

Microarray datasets, with un-mapped probe IDs, were pre-processed by mapping the probe IDs 
onto their gene symbols using the relevant platform annotation table. In the case of multiple probes 
mapping to the same gene, the mean expression of all the probes was considered for that gene. 
For non-normalized RNA-Seq datasets TPM normalization followed by log2 transformation with an 
offset value of 1 was used.  

ssGSEA 

Single-sample Gene Set Enrichment Analysis, an extension of Gene Set Enrichment Analysis 
(GSEA) (Barbie et al., 2009; Subramanian et al., 2005), calculates separate enrichment scores for 
each sample and a gene set. Each score represents the degree to which genes in a gene set are 
up or down-regulated in a sample. We calculated ssGSEA scores for the Verfaillie proliferative and 
Verfaillie invasive gene sets (Verfaillie et al., 2015), Hoek proliferative and Hoek invasive gene 
sets (Hoek et al., 2008), the epithelial (E) and mesenchymal (M) gene sets of the EM tumor gene 
signature genes and cell lines gene signatures in the KS scoring metric (Tan et al., 2014), and the 
Tsoi melanocytic, transitory, NCSC, and undifferentiated gene set (Tsoi et al., 2018). 

Calculation of EMT Scores 

We calculated EMT scores of datasets using four metrics- 76 Gene Signature (76GS), Kolmogorov 
-Smirnov test (KS), E score and M score. 76GS and KS were calculated as defined earlier (Byers 
et al., 2013; Chakraborty et al., 2020; Tan et al., 2014). 76GS score is a metric for how epithelial 
a sample is, i.e., higher scores reflect greater association with an epithelial phenotype. The KS 
score is a metric for how mesenchymal a sample is. The higher the KS score of a sample, the 
greater is its association with a mesenchymal phenotype. While 76GS scores do not have a pre-
defined range of scores, KS scores lie within a +1 to -1 range. The E and M scores are ssGSEA 
scores for epithelial and mesenchymal gene lists, respectively, for the KS scoring metric (Sahoo 
et al., 2021). For calculating KS, E and M scores, datasets were classified based on whether the 
samples were derived from cell-lines or tumors and the appropriate gene sets were used.  

Correlations 

All correlation values were calculated using Spearman’s correlation coefficient, unless mentioned 
otherwise. Spearman’s correlation coefficient method generates a coefficient ranging between –1 
to +1, where +1 indicates a strong positive correlation, and –1 indicates a strong negative 
correlation between two variables. It determines the correlation between any monotonically related 
variables- linear or non-linear. Correlations with R >0.36 and p<0.05 are considered significant.  

Moving Window Average 

A moving window average is used to quantify the gradient for a variable along a given axis. A 
window covering 60% of the entire range of the axis is created and the average value of the 
variable for all samples in the window is calculated. Then the window is then shifted by 1% and 
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the average is re-calculated. This is iteratively repeated to cover the entire range. The slope of the 
averages determines the magnitude and direction of the gradient. 

Conditional probabilities 

Once the cell lines were sorted into their respective phenotypes and the conditional probabilities 
were obtained, the statistical significance and p-values for the conditional probabilities were 
calculated using the one-proportion Z test. 

The z-score was calculated using the equation 

𝑧 =
�̂� − 𝑝!

&𝑝!(1 − 𝑝!)𝑛

 

where �̂� is the observed proportion, 𝑝! is the null probability, and 𝑛 is the sample size. The 
obtained value of z was then converted into the corresponding p-value using the standard normal 
distribution. If the obtained p-value < 0.05, it was considered significant.  

Assigning phenotypes to samples 

In order to identify samples belonging to the 4 phenotypes (melanocytic, transitory, NCSC and 
undifferentiated), we calculated ssGSEA scores based on gene sets for each of these phenotypes 
(Tsoi et al., 2018). Samples lying in the top 10% scores were assigned that particular phenotype.  

Metabolic scores 

The oxidative phosphorylation (OXPHOS) and glycolysis (Glyco) scores in our study were 
calculated using ssGSEA carried out with the corresponding hallmark gene sets for these 
pathways (obtained from Molecular Signature Database (MSigDB) (Liberzon et al., 2015)). 
The HIF-1 signature - which is a surrogate for glycolysis - was quantified based on a 
method previously reported (Yu et al., 2017). This method uses expression levels of their 
downstream target genes to capture the respective enzyme activities. A total of 84 downstream 
genes for AMPK and 59 downstream genes for HIF-1 were used and the scores were obtained 
using the Singscore method performed on these gene sets (Foroutan et al., 2018; Muralidharan et 
al., 2022). The fatty acid oxidation (FAO) scores were calculated based on the equation previously 
reported (Jia et al., 2020) which uses expression levels of 14 FAO enzyme genes. 
 

 

Results 

Enrichment of mesenchymal genes can capture the extent of de-differentiation in 
melanoma 

To test whether EMT and de-differentiation in melanoma programs are correlated with one another, 
we used previously-defined EMT scores – KS and 76GS (Byers et al., 2013; Tan et al., 2014) – 
and ssGSEA scores for Verfaillie proliferative and invasive (Verfaillie et al., 2015) and Hoek 
proliferative and invasive (Hoek et al., 2008) melanoma gene sets and investigated their correlation 
coefficients across 78 datasets. Also, to dissect the contributions of epithelial and mesenchymal 
gene set separately, we calculated the ssGSEA scores (Barbie et al., 2009; Subramanian et al., 
2005) for corresponding gene sets individually too (Tan et al. 2014), referred here as E and M 
scores respectively (Sahoo et al., 2021). A sample with a higher 76GS or E score is more epithelial 
while a higher KS or M score refers to more mesenchymal phenotype. Thus, given the overlap 
between mesenchymal and invasive programs, we expected invasive scores to correlate positively 
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with KS and M scores and negatively with 76GS and E scores. We also expected opposite trends 
for proliferation scores: negative correlations with KS and M scores and positive correlation with 
76GS and E scores. We visualized the relationships between these pathways as volcano plots in 
which each dot corresponds to a dataset analysed. For positively correlated metrics, we expect 
the majority of data sets to lie in the top right rectangle, while those displaying a significant negative 
correlation are expected to lie in the top left rectangle.  

34 out of 78 datasets (43.59%) showed a significant negative correlation (r < - 0.3, p < 0.05) 
between 76GS and one of the two Verfaillie (proliferative, invasive) scores. In 30 out of those 34 
datasets (88.23%), 76GS scores correlated negatively with invasive scores, while in remaining 4 
datasets (11.76%), 76GS scores correlated negatively with proliferative scores (Fig. 1B, left). 
Similarly, among 45 datasets that showed a positive correlation (r > 0.3, p < 0.05) between 76GS 
scores and one of Verfaillie scores, 38 (84.4%) cases had a positive correlation between 76GS 
and proliferative scores, and in the remaining seven datasets, 76GS scores correlated positively 
with invasive scores (Fig. 1B, right). Overall, both the scoring metrics (76GS and KS) displayed 
clear correlation with Verfaillie and Hoek proliferative and invasive scores across 78 datasets in 
the expected direction, with KS showing fewer false positive cases (cases where the correlation is 
significant but in a direction opposite to the expected one) as compared to 76GS (Fig. 1B-D, S1A-
C).  

Because gain of mesenchymal features is reported more commonly in melanoma as compared to 
loss of epithelial features, we decoupled the epithelial and mesenchymal components of the 
scoring metrics (E and M scores, respectively). The KS method provides information on genes that 
are associated with an epithelial phenotype and those with a mesenchymal state separately. Using 
the genes from the KS scoring method we segregated the genes and calculated individual ssGSEA 
scores for epithelial and mesenchymal gene lists and re-evaluated their correlation with 
proliferative and invasive scores in melanoma. While epithelial genes continued to show random 
distributions of samples throughout the plot, mesenchymal genes showed clear segregation of 
proliferative and invasive scores based on Spearman’s correlation coefficients, i.e., invasive scores 
were positively correlated with M score while proliferative scores were negatively correlated with 
the M scores (Fig. 1E-G, S1D-F). This observation suggests that mesenchymal genes, but not 
epithelial genes, can capture the phenotypic heterogeneity displayed by melanoma along the 
proliferative-invasive axis.  

For further analysis, we focused only the Verfaillie gene sets, because it has high levels of overlap 
with gene sets for the intermediate phenotypes that were previously identified (Tsoi et al., 2018) 
(Fig. S1G). Thus, a continuous scoring metric defined for the Verfaillie gene set is expected to be 
more sensitive for capturing intermediate phenotypes as compared to the Hoek gene set.  

Because correlation coefficients only provide an overall trend in data, we wished to determine how 
proliferative and invasive scores vary along the E and the M axis. For this purpose, we generated 
two dimensional EMT plots of the data sets in which E and M scores are represented along each 
of the two axes. These plots display how epithelial or mesenchymal a given sample is (Barbie et 
al., 2009; Sahoo et al., 2021; Subramanian et al., 2005). We then overlay information on the 
proliferative and invasive scores for each sample. As expected, across various datasets, 
proliferative and invasive scores for samples had a stronger visible gradient along the M axis as 
compared to the E axis (Fig. 2A-B). To quantify this gradient, we used a rolling window to estimate 
the increase of average proliferative and invasive scores across the E and M axis. For this, we 
start with a rolling window covering 60% of the entire range along a given axis and calculate the 
average proliferative (P) or invasive (I) score within that window. Then the window is shifted by 1% 
and the average is re-calculated. This process is repeated until the entire range is covered, and 
the change in averages is plotted. For an axis that strongly correlates with the change in scores, 
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we expect a steeper slope. The nature of a slope (positive or negative) is determined by the 
correlation between the axis and the score. Both axes trend in the expected direction, with a 
positive slope for invasive scores and negative slope for proliferative scores along the M axis and 
vice versa for the E axis (Fig. 2C). This analysis also reveals that the M axis has a steeper curve 
than the E axis for both P and I scores. These results suggest that proliferative-invasive 
heterogeneity in melanoma can be considered as a “one-dimensional form” of EMT where the 
mesenchymal program enrichment increases as cells become more invasive, but the epithelial 
program need not be suppressed concomitantly, as often tacitly assumed for the case of EMT. 
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Fig 1. Mapping phenotypic heterogeneity in melanoma onto the EMT axis. A. A schematic 
representation. Volcano plots depicting Spearman’s correlation coefficient and -log10(p-value) of 78 
datasets for Verfaillie proliferative and invasive gene set with B. 76GS EMT scoring metric, and with C. 
KS EMT scoring metric D. Boxplot depicting range of correlation coefficients for KS and 76GS with 
Verfaillie invasive and proliferative gene sets. Volcano plots depicting the Spearman’s correlation 
coefficient and -log10(p-value) of 78 datasets for Verfaillie proliferative and invasive gene set with E. 
Epithelial gene set (E scores) and F. Mesenchymal gene set (M scores). G. Boxplot depicting range of 
correlation coefficients for E and M scores with Verfaillie invasive and proliferative gene sets. Inset 
labelled “Significant” is calculated as the fraction of datasets (out of 78) which show a significant 
correlation trend (r < - 0.3 or r > 0.3, p < 0.05). Absolute number of such significant points (datasets) for 
the specified cut of is mentioned in brackets. “Proliferative” and “Invasive” labels represent the 
percentage of significant correlations that are between the EMT score and proliferative score or invasive 
score, respectively. 
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Fig 2. Scoring metrics based on mesenchymal genes capture de-differentiation better than 
metrics based on epithelial genes. Two dimensional EMT plots of different types of datasets- i. 
GSE7127 (63 melanoma cell lines - microarray), ii. CCLE (59 cell lines - microarray), iii.GSE4843 (45 
tumor samples - microarray), iv.GSE65904 (214 tumor samples - microarray ),v. GSE72056 (1257 
single-cell tumor samples), vi.GSE81383 (307 single-cell tumor sample) depicting the variation of A. 
Proliferative scores along the E and M score axes.  B. Invasive scores along the E and M score axes. 
C. Quantifying the proliferative and invasive score gradient along the E-M axes using a rolling window.   
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The mesenchymal axis follows a non-monotonic relationship with de-differentiation 

Because the M score axis was able to capture the phenomenon of de-differentiation quantified by 
continuous scoring metrics, such as the proliferative and invasive scores, we next tested if the 
discretized phenotypes also arrange themselves in order of appearance along the two dimensional 
EMT plane. The classification of samples into four categories  - melanocytic, transitory, neural 
crest-like and undifferentiated (in order of increasing de-differentiation) - for GSE80829, 
GSE10916, GSE4843, GSE7127 and GSE116237 was done as previously defined (Pillai & Jolly, 
2021; Rambow et al., 2018). Along the proliferative-invasive plane, samples displayed a strong 
negative relation between the two scores, i.e., proliferative scores of samples decreased as their 
invasive score increased. The four phenotypes also appeared in the expected order (Su et al., 
2017; Tsoi et al., 2018), with the melanocytic samples having the highest proliferative scores and 
lowest invasive scores, and the undifferentiated samples displaying the lowest invasive scores and 
highest proliferative scores (Fig. 3A). However, the two dimensional EMT plane failed to resolve 
the four phenotypes in terms of these four phenotypes showing non-overlapping scores. Since the 
E score axis performed poorly previously (Fig. 1E,G) in these metrics, we quantified the ability of 
M score axis alone to resolve the four phenotypes by quantifying the conditional probability of a 
sample to belong to the intermediate phenotypes (transitory and NCSC), given that they lie in an 
intermediate M score range. Interestingly, samples with intermediate M scores were significantly 
likely to belong to the transitory phenotype (Fig. 3B, S3A, Table 1). However, the probability of 
these samples to belong to the NCSC phenotype was negligible. In some datasets (GSE7127, 
GSE116237), the melanocytic phenotype was also significantly enriched in the intermediate M 
score populations. However, the melanocytic phenotype cells were enriched in the bottom M score 
population as well, and were not uniquely present in the intermediate score range like the transitory 
phenotype cells (Fig. S3B-D). 

To further dissect the relationship between the four phenotypes and the M score axis, we quantified 
the change in M score with respect to the invasive scores for the four phenotypes. To identify the 
four phenotypes, we used ssGSEA scores for gene sets defined for each of the four phenotypes 
(Tsoi et al., 2018). The top 10% of samples that had the highest scores for a particular gene set, 
were assigned the label of that particular phenotype. Interestingly, we observed that in these 
samples there was a non-monotonic increase in M scores as invasive score/de-differentiation 
increased. As samples progressed from NCSC to undifferentiated, M scores either decreased (Fig. 
4C-E) or remained the same (Fig. 4A-B, 4F). In the context of melanocyte development, neural 
crest cells are precursors for melanocytes with high migratory potential and high levels of EMT 
markers (Dupin & le Douarin, 2003; Tang et al., 2020; Wessely et al., 2021). Thus, the non-
monotonic increase in the mesenchymal program seen here is reminiscent of the differentiation of 
melanocytes. 
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Fig 3. Variation of the four molecular phenotype scores along the epithelial, mesenchymal, 
proliferative, and invasive axes. A. Plotting samples classified into four phenotypes onto the E-M, 
proliferative-invasive score axes. B. Venn diagram depicting the intersection of the four phenotype 
scores of samples and intermediate M scores. p represents p-value for the conditional probability that 
a sample belongs to the phenotype given that they lie in the intermediate M score range. 
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Fig 4. The mesenchymal axis follows a non-monotonic relationship with de-differentiation. 
Plotting M scores against invasive scores for different phenotypes along the P-I axis in many datasets:  
A. GSE7127 B. GSE158607 C. GSE80829 D. GSE101434 E. GSE65904 F. GSE19234 
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Metabolic reprogramming along the proliferative-invasive axis in melanoma 

The EMT status of epithelial cancer cells is often associated with distinct metabolic programs. 
Generally speaking, EMT is negatively correlated with the enrichment of oxidative phosphorylation 
(OXPHOS) and fatty acid oxidation (FAO), but positively correlated with glycolysis (Muralidharan 
et al., 2022). In melanoma, the proliferative state is associated with high levels of OXPHOS and 
the invasive phenotype is associated with high levels of glycolysis (Abildgaard & Guldberg, 2015; 
Bettum et al., 2015; Gelato et al., 2017; Laurenzana et al., 2017), reinforcing the commonalities 
between these two different instances of phenotypic plasticity. Computational analysis has 
suggested the existence of four metabolic sub-populations (Jia et al., 2020): 1) OXPHOS-high/ 
glycolysis-low, 2) OXPHOS-low/ glycolysis-high, 3) OXPHOS- low/glycolysis-low, and 4) OXPHOS 
high/glycolysis-high. 

To assess whether the OXPHOS-glycolysis metabolism axis can be mapped onto the proliferation-
invasion axis, we calculated Spearman’s correlation coefficients between the metabolic scores 
(OXPHOS and glycolysis) and the de-differentiation scores (proliferative and invasive scores) (Fig 
5A-C) across the 78 datasets. In 36 out of 78 datasets where the OXPHOS scores correlate 
significantly with proliferative scores, 32 datasets show a positive correlation. Similarly, among 43 
datasets showing a significant correlation of OXPHOS scores with invasive scores, all of them 
showed negative correlation. Thus, overall, OXHOS scores corelated positively with proliferative 
scores and negatively with invasive scores (Fig 5A). Glycolysis scores, on the other hand, did not 
show a clear relationship with EMT status, with a subset of datasets showing trends in both the 
directions (positive and negative correlation) both for proliferative and invasive scores (Fig 5B). 
This difference is reminiscent of prior observations for the association of EMT with OXPHOS and 
glycolysis in which glycolysis is only moderately correlated with EMT status, but OXPHOS is 
consistently negatively correlated with EMT (Muralidharan et al., 2022). This trend is substantiated 
by observations that in cases where OXPHOS is positively correlated with proliferative scores or 
negatively correlated with invasive scores, glycolysis scores do not show any particular direction 
of enrichment with either proliferative or invasive axes (Fig 5C). 

We next sought to dissect whether intermediate melanoma phenotypes might be enriched for a 
specific metabolic profile. To investigate this trend, we calculated the Spearman’s correlation 
coefficients for metabolic scores and ssGSEA scores for gene signatures corresponding to each 
of the four molecular phenotypes of melanoma (Fig 5D-F). OXPHOS showed a clear shift from 
datasets with a significant positive correlation with a melanocytic phenotype to a significant 
negative correlation for the undifferentiated phenotype (Fig 5D). On the contrary, glycolysis scores 
do not show a clear shift from negative to positive correlations with de-differentiation (Fig 5E). 
Similar to the non-monotonic trend observed for M-scores, the glycolysis scores show the 
strongest positive correlation trends for the NCSC phenotype. Undifferentiated phenotype scores 
have a mixture of positively correlated and negatively correlated datasets with respect to glycolysis 
scores. Put together, these observations suggest that the regulatory modules controlling the switch 
to glycolysis are likely linked to the mesenchymal program rather than the de-differentiation one. 
On the other hand, regulatory modules for OXPHOS are likely to be closely linked to the 
melanocytic differentiation program. This trend is in accordance with experimental evidence that 
suggests that OXPHOS in melanoma cells is regulated by PGC1α, a downstream target of MITF, 
a key regulator of melanocyte differentiation (Haq et al., 2013; Vazquez et al., 2013). Interestingly, 
fatty acid oxidation, which is also directly controlled by MITF via SCD (Vivas-García et al., 2020), 
also displays trends similar to OXPHOS (Fig. S4A) while a HIF1α signature, that is commonly 
associated with the invasive phenotype follows a non-linear trend similar to glycolysis (Fig. S4B), 
suggesting that it is linked to the mesenchymal program rather than the de-differentiation program.   
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Fig 5. Mapping metabolic programs associated with EMT onto the de-differentiation program 
axes. Volcano plots depicting Spearman’s correlation coefficient and -log10(p-value) of 78 datasets for 
A. Hallmark OXPHOS and Verfaillie gene set. B. Hallmark glycolysis and Verfaillie gene set. C. 
Spearman’s correlation coefficient between OXPHOS and Glycolysis and Verfaillie scores. D. Hallmark 
OXPHOS and Tsoi gene set. E. Hallmark glycolysis and Tsoi gene set. F. Spearman’s correlation 
coefficient between OXPHOS and Glycolysis and Tsoi scores. N represents number of samples present 
in a given quadrant 
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Discussion 
 
De-differentiation in melanoma occurs in response to targeted therapy. This process may be 
mediated by transitions across a spectrum of phenotypes in which melanocytic cells treated with 
BRAF/MEK inhibitors pass through a transitory phenotype, followed by the NCSC phenotype, 
before becoming completely un-differentiated (Rambow et al., 2018; Su et al., 2017; Tsoi et al., 
2018). This trajectory is accompanied by loss of a proliferative signature and gain of invasive 
characteristics. Here, we decipher the relationship between de-differentiation and EMT in 
melanoma. These processes are often considered to co-occur during drug treatment (Fallahi-
Sichani et al., 2017; Ramsdale et al., 2015; Riesenberg et al., 2015); however, comparison of EMT 
and de-differentiation scores reveal that the two processes may be more closely related to the 
mesenchymal program rather than the loss of an epithelial-like state or an EMT program per se. 
This observation is reminiscent of previous results in breast cancer and melanoma in which 
regulatory genes for the mesenchymal and de-differentiated phenotypes overlapped while those 
corresponding to epithelial and differentiated (melanocytic) phenotypes did not overlap and were 
tissue-specific (Klinke & Torang, 2020). Previous pan-cancer studies have also highlighted that 
downregulation of epithelial components and upregulation of mesenchymal features need not 
always be as strongly coupled as often assumed (Cook & Vanderhyden, 2020; Sahoo et al., 2022). 
Moreover, differences along these two axes need not be necessarily reflected at a transcriptional 
level (Norgard et al., 2021). Together, these observations highlight the need to analyze epithelial 
and mesenchymal axes independently, rather than as a conventional single metric for EMT. 

Short duration of drug treatment can induce a NCSC phenotype that is highly mesenchymal 
(Fallahi-Sichani et al., 2017; Ramsdale et al., 2015). Previous studies in preclinical models have 
established that while the NCSC phenotype is attained by cells within 1-3 weeks of drug treatment, 
further de-differentiation to the undifferentiated phenotype occurs only after 8-12 weeks of drug 
treatment. Our study highlights the absence of a positive correlation between the mesenchymal 
signature and de-differentiation beyond the NCSC phenotype, suggesting that prolonged treatment 
(beyond the 3-week mark for the NCSC phenotype) induces further de-differentiation but no 
concomitant increase in mesenchymal status. This observation of the NCSC phenotype being the 
most mesenchymal is in accordance with melanocyte development. Neural crest cells are 
progenitors of melanocytes that undergo EMT during development to delaminate and migrate from 
the neural tube to the epidermis, where they lose their EMT signature and differentiate into 
melanocytes (Dupin & le Douarin, 2003; Tang et al., 2020; Wessely et al., 2021). Thus, the non-
monotonic variation in EMT during development (the initial increase during migration followed by 
decrease during differentiation) is recapitulated during treatment-induced de-differentiation. 
Therefore, we propose that the often-presumed overlap between the mesenchymal and invasive 
axes may arise from the lack of information for longer time scales (since most in vitro drug 
treatment studies are performed in under three weeks), and our assumptions about linearly 
increasing trends. However, increasing evidence suggests that maximum stemness is associated 
with hybrid E/M phenotypes rather than ‘extreme’ mesenchymal or epithelial phenotypes, 
suggesting that many such associations among axes of plasticity can be non-monotonic in nature 
(Grosse-Wilde et al., 2015; Kröger et al., 2019; Pasani et al., 2021). 

Our results also indicate that metabolic programs can be linked either with the de-differentiation 
program or the mesenchymal program. OXPHOS and fatty acid oxidation are both indirectly 
regulated by MITF. In the case of OXPHOS, MITF regulates PGC-1α (Vazquez et al., 2013); in the 
fatty acid oxidation pathway, MITF regulates SCD (Vivas-García et al., 2020). MITF, which controls 
both metabolic pathways, decreases with increasing de-differentiation. This trend is explained by 
the decline in MITF associated with de-differentiation, in accordance with the MITF rheostat model 
(Rambow et al., 2019). On the other hand, glycolysis and HIF-1α signatures seem to be co-
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regulated with the mesenchymal program. Previous studies in epithelial cancers have shown how 
well-established EMT transcription factors (EMT-TFs) regulate the metabolic profile of a cell and 
cause a switch to glycolysis (also called Warburg effect) (Youssef & Nieto, 2020). Interestingly, 
neural crest cells also display decay of glycolytic capabilities during differentiation into melanocytes 
(Zheng et al., 2016). Our analysis suggests that the metabolic state of a cell is closely linked to the 
transcriptional program governing it at a given time point. Thus, de-differentiation captures the 
transcriptional and metabolic states observed during melanocyte development.  

Although our study focuses on melanoma, EMT-like phenotypic switching is also characteristic of 
other non-epithelial cancers and de-differentiation of melanocytes independent of malignant 
transformation. De-differentiation of melanocytes into pluripotent stem cells demonstrated a 
reduction in expression levels of E-Cadherin, an epithelial marker and similarities to mesenchymal 
stem cells (Vidács et al., 2022). Molecular subtypes of glioblastoma multiforme (GBM), a non-
epithelial cancer, include the pro-neural, classical, and mesenchymal phenotypes, which exist 
along a spectrum of worsening prognosis (Fedele et al., 2019). Single-cell analysis reveals that 
these molecular subtypes recapitulate neurodevelopmental trajectories, with proneural cells 
forming a major composition of proliferative glial progenitor-like cells (Couturier et al., 2020; Phillips 
et al., 2006). A proneural-to-mesenchymal transition (PMT) is characterized by an increase in 
mesenchymal markers, such as SNAI1 and ZEB1. Interestingly, glioma stem cells (GSCs) exist as 
proneural GSCs and mesenchymal GSCs, which can give rise to the complete spectrum of intra-
tumor heterogeneity, including the classical phenotype (Wang et al., 2019), reminiscent of 
epithelial and mesenchymal CSCs reported in breast cancer (Liu et al., 2013). Moreover, samples 
belonging to the classical subtype are depleted of pro-neural GSCs and enriched for mesenchymal 
GSCs, possibly suggesting that mesenchymal GSCs are more likely to give rise to the classical 
subtype. This trend strengthens the semi-independent nature of EMT and stemness as seen in 
epithelial cancers (Sahoo et al., 2022). Another study in GBM cell lines reports that loss of N-
cadherin (a well-established mesenchymal marker) increases invasiveness (Camand et al., 2012), 
reinforcing the trends that increased migration and invasion is not an inexorable consequence of 
carcinoma-associated EMT (Schaeffer et al., 2014). These scenarios of non-overlapping behaviors 
in terms of invasiveness, stemness and EMT, seen both for epithelial and non-epithelial cancers, 
advocate for improving existing therapeutic strategies by targeting multiple axes of cellular 
plasticity simultaneously rather than individually.  

Our study focuses on the overlap between the de-differentiation and the EMT axis during drug 
treatment in melanoma samples. However, de-differentiation is not the only trajectory taken up by 
cells during drug treatment. Cells can follow multiple paths to resistance, one of which is by 
attaining a hyper-pigmented phenotype (Goyal et al., 2021; Rambow et al., 2018; Su et al., 2020). 
The mapping of these trajectories and states to the E-M axis remains to be studied. In addition, 
another axis of cellular plasticity commonly associated with EMT is immune suppression and 
immune evasion. Previous studies have shown that the expression levels of programmed death-
ligand 1 transmembrane protein (PD-L1) – a driver of immune evasion - does not increase 
monotonically with EMT (Sahoo et al., 2021). Consistently, in melanoma, the expected trend of 
worse response to anti-PD-1 therapy with increasing de-differentiation is not observed; rather, 
results from the CheckMate 038 clinical trial indicate that the NCSC phenotype is associated with 
a better outcome to immune checkpoint blockade therapy as compared to the melanocytic 
phenotype (Y. J. Kim et al., 2021). The extent of overlap between the axes of EMT, immune 
evasion, and de-differentiation require further study to design temporally-sequenced effective 
combination therapies that can shift the differentiation and EMT status of melanoma toward a less 
invasive and more immune activated state. Recent in vitro investigations in melanoma have shown 
proof-of-principle evidence of phenotypic plasticity driven drug resensitization as a mechanism 
underlying the beneficial impact of intermittent therapy (Kavran et al., 2022). 
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Overall, our transcriptomic data-based analysis highlights the partially overlapping nature of EMT 
with molecular phenotypes of de-differentiation and metabolism during drug treatment in 
melanoma. Better insights into these observed trends can be gained by mechanistic models to 
interrogate the coupling of the underlying regulatory networks that govern these processes. A 
better understanding of these dynamics can help identify more effective therapeutic strategies by 
fine-tuning the interval, sequence, and dosage of treatment (Goldman et al., 2015) and by 
developing combination and/or sequential therapeutic strategies. Our study provides a framework 
for studying these different axes of plasticity and heterogeneity independently and identifying the 
degree to which these axes overlap. 
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Table 1. Conditional probabilities for a sample belonging to a particular phenotype 
given that it lies in the intermediate M score range 
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Supplementary Figures

 
Fig S1 Volcano plots depicting the Spearman’s correlation coefficient and -log10(p-value) for Hoek 
proliferative and invasive gene set and A. 76GS EMT scoring metric B. KS EMT scoring metric C. 
Boxplot depicting range of correlation coefficients for KS and GS D. Epithelial gene set E. Mesenchymal 
gene set. F. Boxplot depicting range of correlation coefficients for E and M scores Inset labelled 
“Significant” is calculated as 100* number of significant points under specified cut-off /78. Absolute 
number of significant points for the specified cut of is mentioned in brackets. “Proliferative” and 
“Invasive” labels represent the percentage of significant correlations that are between the EMT score 
and proliferative score or invasive score, respectively. G. Extent of overlap between Verfaillie, Hoek 
gene sets (Proliferative and invasive phenotype gene sets) and Tsoi gene sets (intermediate phenotype 
gene sets)  
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Fig S2 A. Two dimensional  EMT plots depicting the variation of epithelial score gradient along the 
proliferative-invasive score axes. B. Two dimensional EMT plots depicting the variation of 
mesenchymal score gradient along the proliferative-invasive score axes.   
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Fig S3 Venn diagram depicting A. The intersection of the four phenotype scores of samples and 
intermediate M scores in GSE116237. p represents p-value for the conditional probability that a sample 
belongs to the phenotype given that they lie in the intermediate M score range. The intersection of the 
four phenotype scores of samples and bottom M scores in B. GSE116237 C. GSE7127 D.GSE80829. 
p represents p-value for the conditional probability that a sample belongs to the phenotype given that 
they lie in the bottom M score range. 
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Fig S4 Volcano plots depicting the Spearman’s correlation coefficient and -log10(p-value) for A. HIF1 
signature and Tsoi gene set. B. Fatty acid oxidation (FAO) gene set and Tsoi gene set.     
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