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Abstract. 10 

Efficient tools allowing the extraction of 2D surfaces from 3D-microscopy data are essential for studies 11 

aiming to decipher the complex cellular choreography through which epithelium morphogenesis takes 12 

place during development. Most existing methods allow for the extraction of a single and smooth manifold 13 

of sufficiently high signal intensity and contrast, and usually fail when the surface of interest has a rough 14 

topography or when its localization is hampered by other surrounding structures of higher contrast. 15 

Multiple surface segmentation entails laborious manual annotations of the various surfaces separately. As 16 

automating this task is critical in studies involving tissue-tissue or tissue-matrix interaction, we developed 17 

the Zellige software, which allows the extraction of a non-prescribed number of surfaces of varying 18 

inclination, contrast, and texture from a 3D image. The tool requires the adjustment of a small set of control 19 

parameters, for which we provide an intuitive interface implemented as a Fiji plugin. As a proof of principle 20 

of the versatility of Zellige, we demonstrate its performance and robustness on synthetic images and on 21 

four different types of biological samples, covering a wide range of biological contexts. 22 

  23 
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Introduction. 24 

The interplay between gene regulatory networks and physical forces in driving collective cell behaviors is 25 

key to tissue morphogenesis during development and to tissue homeostasis throughout life. Recent 26 

quantitative studies of epithelial morphogenesis have begun to unravel the basic cellular and physical 27 

principles of tissue development, by providing the tools to integrate multiple scales of tissue dynamics [1–28 

4]. These tools are instrumental to quantify how cell shape changes, cell divisions, cell rearrangements and 29 

cell extrusions contribute to tissue remodeling, and to establish data-driven computational models of tissue 30 

morphogenesis. 31 

Quantitative analysis of an epithelium starts with the extraction of its apical surface from 3D-32 

microscopy images (z-stacks of xy-optical sections) encompassing the volume immediately surrounding the 33 

epithelium. However, this is a difficult task because this surface is usually not flat (it is best modelled as a 34 

curved surface, or 2D submanifold embedded in 3D space), and is often surrounded by other biological 35 

structures such as cell layers, acellular membranes, extracellular matrix, and vesicles that hamper its 36 

visualization and reconstruction. To make the surface extraction tractable, these studies rely on specific 37 

preparations of the specimen, allowing to expose the entire epithelial surface labeled with junctional 38 

fluorescent markers to reveal the network formed by epithelial cell-cell contacts. Once the epithelial surface 39 

has been extracted, automated cell segmentation and cell contour tracking tools can be used to follow the 40 

dynamics of every cell within the epithelium. 41 

Another challenging experimental limitation of these studies is that some of the structures 42 

surrounding the epithelium exert external physical constraints that are known to critically affect epithelial 43 

morphogenesis by directing cellular dynamics and signaling pathways [1, 5–7]. To understand the physical 44 

forces controlling tissue morphogenesis, it is thus essential to also characterize how the dynamics of these 45 

extra-epithelial surfaces relate to that of the epithelium (see [8] for review). This calls for the development 46 

of dedicated tools allowing the automated extraction of information from several surfaces of interest in a 47 

given sample, since the sheer volume of the data precludes any attempt at a manual analysis. 48 

Several surface extraction tools have been developed, some of which are available as open access 49 

software, such as PreMosa [9], FastSME [10], and LocalZProjector [11]. These tools focus on the extraction 50 

of a single, near-horizontal epithelial layer, which is assumed to (i) be sufficiently smooth, (ii) show enough 51 

contrast against surrounding background signals, and (iii) cover the entire image field-of-view. Specifically, 52 

it is assumed that the fluorescent marker used to label the epithelial cell network should provide the highest 53 

contrast in the image and allow to select it out from autofluorescent extracellular structures such as the 54 

cuticle in flies, or other acellular membranes in mammalian epithelia. The surface is then localized using 55 

heuristic algorithms based on the detection of the pixels of maximum contrast and/or brightness. However, 56 

applying these tools on more complex biological images with several epithelia of weaker contrast often 57 

leads to incorrect localization of the surface of interest, and its blending with the nearby unwanted 58 

biological structures.  59 

MinCostZ on the other hand, is the only available open-source tool that allows the extraction of up 60 

to two surfaces from a 3D stack, and imposes explicit continuity constraints on the reconstructed surfaces. 61 

MinCostZ surface extraction relies on a previously developed formulation of the problem as a graph-cut 62 

optimization [12]. It is implemented as an ImageJ plugin [13], taking as control parameters, the number of 63 

surfaces to extract, the maximum slope and the range of distances allowed between the surfaces, as well 64 

as some user-defined cost function that should reflect the characteristics of the surfaces in term of signal 65 

intensity, contrast and texture. Despite its interest, this approach remains computationally costly and 66 

difficult to apply in practice due to the non-trivial choice of the cost function and the need to know 67 

beforehand the relative positions of the surfaces to be extracted. 68 
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Alternatively, one can segment the surfaces of interest by using supervised machine learning tools 69 

such as the software solutions Weka [14] or Ilastik [15], as proposed in the ImSAnE surface reconstruction 70 

framework [16]. A deep learning approach, using a network of the U-net type to segment the pixels 71 

belonging to a single surface of interest, has also recently been reported [17]. While promising as they can 72 

provide state of the art segmentations of epithelial surfaces in difficult imaging conditions, machine learning 73 

approaches require the prior manual annotation of a sufficiently large set of surfaces to generate suitable 74 

training sets. This process can be very time consuming, often necessitating several rounds of trials and 75 

errors to obtain satisfactory results, without guarantees to be generic, i.e., to generalize to a wide range of 76 

datasets. So far, no solution to the multiple surface extraction problem has been proposed, which is 77 

satisfactory both in terms of genericity and ease of use. 78 

However, such a tool is highly desirable for modern biology studies. Indeed, tissue organization in 79 

the context of developmental biology emerges from the interaction of several neighboring structures [8] 80 

through the interplay of molecular signals [18, 19], as well as electrical [20, 21], hydraulic [22, 23] and 81 

mechanical contact interactions [24, 25]. The importance of such interaction is exemplified in embryonic 82 

explanted tissue cultures that develop abnormally when separated from their neighboring structures [26]. 83 

Similarly, in the context of tissue engineering, stem-cell derived aggregates harbor various types of tissues 84 

surrounding the genuine organoid, and these tissues presumably influence organoid shape, fate and 85 

differentiation (see [27] for review). The ability to simultaneously study the dynamics of neighboring 86 

structures together with the structure of interest is therefore essential for an integrated understanding of 87 

tissue development, and for any attempt to harness tissue self-organization in vitro. 88 

Here, we introduce Zellige, a tool based on a novel constructive approach that allows the automatic 89 

extraction of a non-prescribed number of surfaces from a 3D image. To do this, the user is only required to 90 

adjust a small set of intuitive control parameters, a task largely facilitated by a user-friendly interface 91 

implemented as a plugin for the open-source Fiji platform [28]. We tested the performance and robustness 92 

of Zellige for multiple surface extraction by applying it to synthetic images and 3D microscopy images from 93 

four different types of biological samples, containing multiple surfaces of interest of widely varying texture 94 

and contrast. These experiments demonstrate the ability of the approach to extract several (up to 4) 95 

surfaces of potentially very low contrast, selectively from other highly contrasted and complex structures, 96 

with a single set of reconstruction parameters. A sensitivity analysis also reveals a high robustness of Zellige 97 

against small variations of these parameters. This will make it a tool of choice in terms of versatility and 98 

ease of use for the investigation of biological surfaces.  99 
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Results & discussion. 100 

Proof of concept of multiple surface extraction on a synthetic image. 101 

The implementation of Zellige is summarized in Figure 1 and in the Methods section (Figure S1).  Figure 2 102 

shows the results produced by Zellige on a phantom 3D image [29] containing three distinct synthetic 103 

surfaces generated as described in Supplementary note 2. The three surfaces are extracted with little errors. 104 

We assessed the quality of the reconstruction by comparing each of the height-maps produced by Zellige 105 

to the corresponding ground truth (GT) height-map, which is exactly known in this case (Figure 2A-C, and 106 

Supplemental note 3). For the three surfaces, the reconstruction has subpixel accuracy over >99% of the 107 

GT pixels (Figure 2D-E), with a root mean square error (RMSE) of ≤ 0.6 in pixel units, showing that the 108 

surface localization is highly accurate. In addition, the coverage, which measures the proportion of the 109 

reconstructed surface relative to the GT, is near 100% for the three surfaces. To achieve these results, the 110 

control parameters of the two steps of the surface extraction were adjusted manually to some adequate 111 

reference values (see Supplementary Table S1) using the Zellige Fiji interface. Only the parameters 112 

controlling the pixel classification step (amplitude and Otsu threshold parameters TA and Totsu, minimal 113 

island size Smin, and smoothing parameters σxy and σz) did actually require a modest adjustment. The 114 

parameters of the surface assembly step (parameters TOSE1, R1, C1 and TOSE2, R2, C2 of the 1st and 2nd 115 

construction rounds, respectively) were set to their default reference values (see Figure S2 and 116 

Supplemental note 4) and did not need to be adjusted. 117 

Thus, using a single set of control parameters, Zellige can extract multiple surfaces of various 118 

shapes and textures with virtually no error, without requiring the user to provide information about their 119 

number or relative position, nor about their shape or texture characteristics. 120 

Performance of Zellige on biological samples. 121 

Example 1: Extracting multiples surfaces from an image of a pupal fly specimen. 122 

Over the past few decades, the Drosophila model has been invaluable to decipher the molecular and cellular 123 

mechanisms underlying organ embryogenesis [30, 31]. Epithelium morphogenesis studies not only revealed 124 

the importance of mechanical stresses (including stress boundary conditions) and planar polarity signaling 125 

on cell dynamics to generate tissues of reproducible sizes and shapes, it also highlighted the importance of 126 

extracellular matrix attachments in constraining the tissue stresses that guide patterning [1, 32]. At the 127 

pupal stage, the fly undergoes dramatic remodeling of its larval organs into adult organs. Large scale tissue 128 

flows initiate at a timing that coincides with molting, when the epithelium contracts away from the 129 

overlaying cuticular sac, a protective acellular membrane that imposes mechanical boundary conditions to 130 

the tissue. 131 

Figure 3 shows the results of applying Zellige on a 3D image of a Drosophila pupa acquired with a 132 

spinning disk confocal microscope [33]. The sample expresses Ecadherin-GFP, a fluorescent marker of cell-133 

cell junctions, and encompasses a portion of the pupa’s abdomen and a small portion of its wing. Four 134 

surfaces of interest can be identified, with varying signal intensities, noise levels and features (Figures 3A-135 

B). The abdomen is formed of an epithelium (surface S2) overlaid by a cuticle (surface S1). Lying just beneath 136 

these two surfaces, one can observe globular structures showing in some places a higher intensity than the 137 

signal coming from the surfaces. The wing also consists of an epithelium of low intensity signal (surface S4), 138 

and an overlying cuticle (surface S3). These two surfaces are relatively flat, except for surface S3 which is 139 

very steep near one of its edges.  140 
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 Figure 3C shows a 3D graphical representation of the height-maps reconstructed by Zellige (green) 141 

and those reconstructed by an expert biologist (blue), taken as ground truth (GT). While these height-maps 142 

clearly show greater roughness than those of the synthetic surfaces presented earlier, they could again be 143 

obtained with a single set of control parameters that were adjusted manually with the Zellige interface (see 144 

Supplementary Table S1). We observe an excellent match between the four reconstructed and 145 

corresponding GT height-maps, despite the rather complex topography of surfaces S1 and S2 (with slopes 146 

reaching up to 45°), and the near-vertical inclination of surface S3 at its boundary. Yet, small deviations may 147 

be seen in the regions of highest slope of the surfaces. Some of these deviations are likely attributable to 148 

uncertainties in the definition of the GT height-maps, whose accuracy depends on the expert.  149 

Figure 3D shows the differences between the reconstructed and GT height-maps, plotted as color-150 

coded error maps. These differences are <2 (in pixel units) for most pixels, while some regions of higher 151 

error values can be seen locally in surfaces S1 and S2, and at the boundary of surface S3. Note that for 152 

surfaces S2 and S4, which contain junctional epithelial meshes composed of larger and smaller cells, 153 

respectively, the GT height-map encompass not only the mesh but also the interior of the cells, where no 154 

junctional signal is detected. The distance calculated inside the cells is thus more subjected to intensity 155 

fluctuations, especially for surface S2. Nonetheless, the RMSEs of surfaces S1, S2 and S4 are less than 1, 156 

showing that on average the reconstructed height-maps match the corresponding ground truth with 157 

subpixel accuracy. The higher RMSE (1.25) of surface S3 is largely due to the region of steep region at the 158 

edge of this surface (yellow region on the error map for this surface, Figure 3D). The coverage of the 159 

reconstructed height-maps is excellent (≥ 96%) for surfaces S1 and S2, and slightly lower, but still very good 160 

(≥ 93%) for the smaller surfaces S3 and S4. Figure 3E shows the 2D projections of the 3D image obtained 161 

for each of the reconstructed surfaces and for the corresponding ground-truths. The inaccuracies visible on 162 

the error maps (see Figure 3D) do not significantly impact these projections, which appear very similar to 163 

the projections obtained with the corresponding ground-truths. Thus, while the biological sample contains 164 

significant noise and shows a much more variable contrast (especially with the presence of high intensity 165 

globular structures near surfaces S1 and S2), Zellige makes it possible to segment these surfaces selectively, 166 

with a quality of segmentation comparable to that obtained by manual expert segmentation. 167 

This possibility brings several perspectives that are not offered by single surface extraction 168 

algorithms. First it opens the possibility to systematically study the tissue axial movements (along z) relative 169 

to the cuticle during molting, allowing for example to gain insights into the early tissue contraction of the 170 

wing hinge that acts as a mechanical inducer over the wing blade [8]. Second, Zellige makes it possible to 171 

automatically extract structures such as the abdomen epithelium, which is usually segmented manually 172 

[34], due to the difficulty to separate the large larval cells from the cuticle mesh and from other globular 173 

structures (such as fat bodies or macrophages) present underneath the epithelium. All these structures 174 

become intertwined when using other extracting tools. In this context, Zellige opens new opportunities to 175 

study collective cell behavior during epithelial morphogenesis in vivo, and to integrate in the analysis the 176 

surrounding surface-like structures involved in the mechanics of the system.   177 

Example 2: Extracting a thin cochlear epithelium surface from a multilayer dataset. 178 

As the first model in which planar cell polarity signalling was shown to be conserved in vertebrates [35], the 179 

mammalian auditory organ, the cochlea, is arguably our most valuable model to study epithelial patterning 180 

and morphogenesis beyond the fly and zebrafish [36, 37]. Cochlear morphogenesis involves complex and 181 

tightly controlled patterning processes during which the cochlear sensory epithelium extends and develops 182 

its characteristic coiled snail shape, while adopting a striking cellular mosaic organization, with graded 183 

changes of morphogenetic parameters along the cochlea [38, 39]. These morphogenetic processes are well 184 

recapitulated in organotypic cultures, on the condition that the mesenchyme that underlies the epithelium 185 
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be preserved. The cultures are then amenable to live imaging [37, 40], pharmacological [41] and genetic 186 

manipulations. 187 

Figure 4A shows a confocal swept field microscope acquisition of an embryonic mouse cochlea 188 

[42]. The sample contains only one surface of interest, the cochlear epithelium, but this surface lays on top 189 

of a thick tangled mesh of non-epithelial cells originating from the mesenchyme. The whole biological tissue 190 

is stained for filamentous actin (F-actin) using phalloidin. The epithelium surface presents a non-uniform 191 

signal included in a small z-range (6 ≤ z ≤ 10), and a mesh of very heterogeneous size. Between sections 192 

z = 10 and z = 14 one can observe the basolateral region of the epithelial cells, also stained for F-actin. he 193 

particularity of this sample is that the mesenchyme presents an intense and contrasted signal over a wide 194 

range of z-values (14 ≤ z ≤ 43). This makes it challenging to extract the surface of the epithelium, which is 195 

characterized by low intensity and low contrast. 196 

Figure 4B shows a 3D representation of the height-map reconstructed by Zellige and the 197 

corresponding GT height-map (again reconstructed manually by an expert). On the corresponding error 198 

map (Figure 4C), most (~83%) pixels of the reconstructed height-map show subpixel accuracy (with 199 

distances < 1 to the corresponding pixels of the GT height-map). The errors are greater in regions where 200 

the cell size is larger, as well as in the area where the signal intensity is very low. However, they remain 201 

smaller than 2 for > 95% of the pixels. This result is consistent with the low value of the RMSE (1.1). The 202 

surface is also reconstructed with an excellent coverage (> 99%, Supplementary Table S1). 203 

As the sample contains a single epithelial surface of interest, we compared the performance of 204 

Zellige with three other software that can extract only a single surface (Figure 4D). The projections of 205 

PreMosa, FastSME and LocalZProjector completely miss the epithelium. Only regions of high contrast 206 

corresponding to the mesenchyme are projected. In contrast, Zellige generates a projection very close to 207 

the ground truth. This demonstrates the efficiency of Zellige to selectively extract a low contrast surface, 208 

despite the presence of several structures of higher contrast. Indeed, Zellige detects every structure as a 209 

possible surface seed without any assumption on its contrast, and only extends this seed into a surface if 210 

enough spatial continuity is found in the surrounding signal. This feature allows to separate individual 211 

surfaces from other structures spatially, which should greatly facilitate the analysis of live imaging 212 

experiments.  213 

Example 3: Extracting a single bronchial epithelial surface rendered abnormally rough by SARS-CoV-2. 214 

Recently, we used Zellige to extract the surface of a primary culture of bronchial epithelial cells following 215 

infection by the SARS-CoV-2 virus [43]. The infection causes the surface of the epithelium to become 216 

abnormally rough due to cell damages as seen from discontinuities within the cell layer. The sample we 217 

chose from this study is a 3D confocal image of the epithelium responding to SARS-CoV-2 infection [44] 218 

(Figure 5A). The surface of interest in this image corresponds to the layer of epithelial cells stained for the 219 

tight junction protein Zona Occludens-1 (ZO-1). The surface roughness causes the network of junctions to 220 

extend over the height of the z-stack, with a signal of varying intensity (Figure 5A). In addition, the junctional 221 

network remains non-planar even at the level of a single cell, hence violating the smoothness condition 222 

commonly assumed to hold in the context of epithelial surface extraction. We also observe the presence of 223 

nearby punctiform structures of high contrast that are mainly located outside of the epithelium surface. 224 

This sample therefore provides an example of a surface with a complex landscape, interspersed with a 225 

constellation of signals which may interfere with the surface segmentation. 226 

The 3D representation of the reconstructed and corresponding GT height-maps (Figure 5B) makes 227 

it possible to appreciate the roughness of the surface of interest. The two height-maps overlap quite 228 

satisfactorily. As shown on the error map (Figure 5C), a large majority (71.1%) of pixels of the reconstructed 229 
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height-map show errors smaller than 1 pixel (~ 96% of them showing errors smaller than 2 pixels). The error 230 

is however larger in regions where the cell size is larger, as well as in areas where the ZO-1 signal intensity 231 

is very low, preventing a complete reconstruction of the junctions. Nevertheless, the overall RMSE remains 232 

small, with a value of 0.81 (Figure 5). The coverage of the reconstructed surface is also excellent (98% of 233 

the GT height-map), despite the above-mentioned discontinuities. Figure 5D shows the comparison of the 234 

projection generated by Zellige to those produced by PreMosa, FastSME, and LocalZProjector. The 235 

projection generated by PreMosa misses many junctions of the epithelial network, but it removes quite 236 

well the punctiform signal originating from other optical sections. FastSME performs better than PreMosa 237 

in reconstructing the junctions, but they produce a projection where the punctiform signal remains strong. 238 

In contrast, Zellige and LocalZProjector manage to both reconstruct the surface well and to filter out the 239 

punctiform signal quite effectively. This result demonstrates the efficiency of Zellige to extract a surface 240 

with complex topography by excluding intense and contrasted spurious signals away from the epithelium 241 

surface. 242 

Example 4: Extracting the apical and basal layers of a dome-shaped epithelium (developing inner ear 243 

organoid). 244 

Organoids are stem cell-derived and self-organizing 3D tissue structures that can mimic certain organ 245 

structures. They have emerged as promising in vitro models for developmental biology research, as well as 246 

biomedical translational research applications. Here we take the example of mouse stem cell derived inner 247 

ear organoids that form vesicular structures composed of an epithelium harboring sensory cells. These 248 

organoids are part of a cellular aggregate that also contains other tissues such as the mesenchyme [45] 249 

adjacent to the organoids. The epithelial cells of the forming inner ear organoids acquire a basal-apical 250 

polarity, with their apical side facing the lumen of the organoid, and their basal side facing outwards. The 251 

apical junctional network of the epithelium is difficult to visualize in microscopy images as it is seen from 252 

below, through the basal layer. Another difficulty is the spherical geometry of the vesicle system, which 253 

makes the epithelial surface of interest difficult to extract in regions of high inclination relative to the focal 254 

plane. 255 

Figure 6 shows the result of applying Zellige on a 3D confocal microscopy image of half of a 256 

developing inner ear organoid at 14 days of culture, a stage at which markers characteristic of the mouse 257 

otic vesicle can be detected [46]. The sample was fixed and stained for F-actin to visualize all cellular 258 

structures including the epithelium. Two surfaces of interest can be identified, namely the basal side of the 259 

epithelium and the apical junctional network (Figure 6A-B). Both surfaces are mesh-like structures of high 260 

inclination, high signal intensity and high contrast. The vesicle lumen also contains cell debris of high 261 

intensity and contrast that are not part of any surface of interest.  262 

Figure 6C shows a 3D graphical representation of the height-maps reconstructed by Zellige and 263 

those reconstructed by an expert biologist, taken as ground truth (GT). Due to their dome-shaped 264 

topography, the manual segmentation of these surfaces was rather laborious, and is more likely prone to 265 

errors in the regions of high inclination. Despite this, we observe an excellent match between the two 266 

reconstructed and corresponding GT height-maps (Figure 6D). The distance between the two height maps 267 

is <2 for the large majority (> 92%) of pixels, while larger error values occur locally in regions of near-vertical 268 

inclination of the surfaces. The RMSEs of both apical and basal surfaces are close to 1, showing that on 269 

average the reconstructed height-maps match the corresponding GT with about pixel accuracy. The 270 

coverage of the reconstructed height-map is nearly 100% for the basal surface, and ~88% for the apical 271 

surface. Figure 6E shows the 2D projections of the 3D image obtained for each of the reconstructed 272 

surfaces, as compared to the projected GT height maps. Thus, for the extraction for these highly inclined 273 
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surfaces, Zellige produces height maps of a quality comparable to those obtained from manual expert 274 

segmentation. 275 

In this example, Zellige could be combined with a 2D cell tracking framework such as TissueMiner 276 

[3] to perform cell dynamics analysis. Note that geometric distortions introduced in the projected surfaces 277 

by the epithelium inclination could be corrected for, using complementary tools such as DProj [11]. This 278 

approach could provide a means to quantitatively address how an inner ear organoid epithelium patterns 279 

at the cellular and organoid scales, while quantifying the epithelial thickness changes due to cellular 280 

intercalation or cell shape changes in the depth of the epithelium. This would also permit to better 281 

characterize the variability of inner ear organoids within in a given aggregate, and it could allow one to 282 

explore how the organoid interacts with surrounding tissues and how these interactions influence the 283 

differentiation of their constituent sensory cells. 284 

A sensitivity analysis reveals the robustness of Zellige in extracting surfaces from 285 

biological images. 286 

To evaluate further the quality and robustness of the segmentation obtained by Zellige, we carried out a 287 

sensitivity analysis of the reconstruction on each of the samples tested. This analysis consisted in varying 288 

one control parameter at a time (Figures S2-S6, Figure 7, Supplemental note 4), while keeping the other 289 

parameters fixed at a nominal value (Supplementary Table S1). The RMSE and coverage of each of the 290 

reconstructed surfaces were evaluated and plotted as a function of the value of the parameter that was 291 

varied.  292 

Figure S3 shows the results of the sensitivity analysis carried out on the image of Figure 3 293 

(Example 1, pupal fly specimen), when varying the parameters controlling step 1, i.e. the selection of 294 

putative surface pixels (parameters TA, Totsu, Smin, σxy and σz). As can be seen, the variations of the two 295 

classification threshold parameters TA, Totsu and of the minimum island size Smin in their respective intervals 296 

does not substantially modify the RMSE and the coverage of the reconstructed surfaces, whose values 297 

remain roughly constant for TA ≤ 8, Totsu ≤ 12 and over the entire Smin interval (Figure S3A). Within these 298 

intervals, the RMSEs of all the reconstructed surfaces remain ≤1.5, while the coverage values are > 95% for 299 

surfaces S1 and S2, and > 85% for surfaces S3 and S4. The surfaces S1 and S3 show lower signal intensity 300 

and lower contrast than surfaces S2 and S3, making them more difficult to extract. Surface S4 has the lowest 301 

contrast, and fails to be reconstructed if the classification threshold values are too stringent (namely for 302 

Totsu > 12, or TA > 8). Nevertheless, the intervals of stability of TA and Totsu (that is, the intervals of values 303 

over which a high-quality extraction of all surfaces is obtained) remain relatively wide (cf. Figure 7). The 304 

smoothing parameters σxy and σz also have some effect on the reconstruction of the surfaces. When σxy is 305 

less than 3, the RMSE is higher for the mesh-like epithelial surfaces S2 and S4 (formed by the junctional 306 

network of the epithelium). A minimal smoothing along the axial direction is also important to ensure that 307 

the reconstructed surfaces are not too fragmented, preventing their complete reconstruction. Yet, σz 308 

should not be chosen too large either, to avoid merging nearby surfaces along the z axis. In this case, the 309 

closely positioned surfaces S1 and S2 are well-separated if setting σz close to 1, but they become merged 310 

when σz > 2. In general, the surface construction parameters have little effect on RMSE and coverage 311 

(Figure S3B). The sensitivity analysis on this challenging specimen shows a good robustness of Zellige to 312 

extract the four surfaces with a single set of parameters, each of which can be chosen in a reasonably wide 313 

interval considering the other fixed. 314 

 The results of the sensitivity analyses performed with the other biological image stacks 315 

(examples 2, 3 and 4 described above) are shown in Figures S4, S5 and S6 (Supplemental note 4). These 316 

results are summarized in Figure 7, which show the stability intervals over which the extracted height-maps 317 
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satisfy the criteria RMSE ≤ 1.5 and coverage ≥ 85%, for which the reconstruction can be considered of high 318 

quality. Overall, the stability intervals for the two classification threshold parameters (TA and Totsu) are 319 

narrower for specimens containing a surface of low signal intensity and low contrast, while still covering 320 

about 1/4 of their respective width. The graphical user interface of Zellige allows the user to adjust TA and 321 

Totsu interactively, making it intuitive to search for reasonable values. We found that 2 ≤ σxy  ≤ 3 and σz = 1 322 

generally give high quality results for all tested specimens (Figure 7A). We therefore expect only little 323 

adjustment to be required by the user on the smoothing parameters from their default permissive values 324 

(set to σxy = 1 and σz = 1). Values of σz that are too large may lead to the merging of a surfaces with a nearby 325 

structure of high contrast (surface or else), as it happens for the epithelium surface in the cochlea specimen, 326 

which merges with the underlying mesenchyme signal when σz is greater than 2 (Figure 4 and Figure S4). 327 

The effect is even more pronounced for surfaces of high inclination (Figures 2, 6 and Figures S2, S6), or 328 

presenting a particularly rough texture (Figures 5 and Figures S5). 329 

 Regarding the control parameters of step 2 (the assembly step), for the four examples presented 330 

except for example 1, the quality of the reconstructed surfaces is stable and high over the main part of their 331 

respective intervals of variation, deteriorating occasionally only when extreme values (≃ 1) are used for 332 

these parameters (see Figures S2-S6, Figure 7B and Supplemental note 4). Example 1 poses particularly 333 

stringent constraints on the control parameters of the reconstruction due to the requirement of 334 

reconstructing the 4 surfaces of different contrast and texture present in this sample using the same set of 335 

parameters. 336 

 Finally, the computation times for running Zellige on a given dataset ranged between a few seconds 337 

and a minute on a standard PC computer (see Figure S7 and Supplementary note 5), except in a few 338 

exceptional cases corresponding to extreme values of the control parameters. As a safeguard, a stopping 339 

criterion could be implemented so as to exit the run (declaring the current parameter values invalid) if the 340 

surface assembly computation exceeds a user-prescribed duration.  341 

Overall, the sensitivity analysis indicates that the surface extraction performed by Zellige is robust 342 

to variations of the control parameters of step 1 (surface pixel selection step). In general, the reconstruction 343 

is more sensitive to the amplitude threshold parameter (TA), and the Otsu threshold parameter (Totsu) 344 

should be kept sufficiently low for samples containing surfaces of intensity close to the background. 345 

However, in some cases such as in our example 3, the opposite is true. Thus, the two threshold parameters 346 

play somewhat complementary roles, and the possibility to adjust them independently is useful in practice 347 

to be able to cover as many cases as possible. A smoothing along xy appears necessary to correctly 348 

reconstruct the surfaces supported by a junctional mesh. Not surprisingly, best results are obtained when 349 

the radius of the gaussian filter used for this (parameter σxy) is adapted to the mesh (or cell) size. Likewise, 350 

a smoothing along z is beneficial, but the extent of this smoothing (parameter σz) should not be too large 351 

to avoid causing the fusion of nearby surfaces. With a few exceptions, the values of the RMSE and coverage 352 

show little sensitivity to the values of the parameters controlling step 2 (surface assembly step), at least 353 

once putative surface pixels have been properly selected. In the presence of several surfaces of potentially 354 

very different sizes, the parameter controlling the fraction of OSE sizes allowed for OSE seeds (parameter 355 

TOSE1) should be relatively large (≥ 0.5 or greater, i.e. allowing more than 50% of the largest OSE sizes for 356 

seeds) to allow the extraction of a surface of small size (for example, to extract the surface n° 4 of 357 

example 1, which covers less than 20% of the xy-field of view, TOSE1 must be larger than 0.6). Extreme values 358 

(close to 1) for the connectivity rates (C1 and C2) are too stringent and lead to a drop in the coverage of the 359 

reconstructed surfaces. To sum up, we see that the most critical parameters for a satisfactory extraction of 360 

the different surfaces are those controlling step 1. In most cases the parameters controlling step 2 do not 361 

need to be adjusted and can be fixed to their default reference values. 362 

  363 
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Conclusion. 364 

We have developed Zellige, a new tool to extract multiple surfaces from 3D fluorescence microscopy 365 

images. Zellige automatically finds surfaces by first identifying putative pixels that are likely to belong to a 366 

biological surface, and second by assembling a surface through connection of adjacent pixels satisfying 367 

natural proximity constraints. By using Zellige on synthetic epithelium images we have shown that it 368 

accurately reconstructs a surface with excellent performances in terms of both the distance to the ground-369 

truth height-map and the surface coverage (Figure 2). Zellige can deal with complex images containing 370 

multiple surfaces, with computation times not exceeding a few tens of seconds on a standard computer. 371 

Importantly, the user is not required to specify the number of surfaces to be extracted. In the Drosophila 372 

specimen (Figure 3), the software readily extracts the 4 surfaces of interest that could be identified. Since 373 

Zellige detects putative surface pixels in the first step by combining local and global thresholds, it can deal 374 

with images where the multiple surfaces display different features, such as in the mouse cochlear embryo 375 

(Figure 3). With this difficult dataset, we could also confirm Zellige's robustness against very low signal-to-376 

noise levels. The constructive approach of surface region growing used by Zellige in its second step enables 377 

it to circumvent the surface smoothness requirement, that is classically assumed by other surface extraction 378 

tools. For instance, it could reconstruct the highly irregular surface of a bronchial tissue infected by SARS-379 

CoV-2 (Figure 5).  380 

The robustness and flexibility of Zellige come at a price, namely, the requirement to specify 12 381 

parameters when running the surface extraction. However, the sensitivity analysis we performed shows 382 

that adjusting only 4 of these parameters is enough in practice to handle a wide range of image types. These 383 

parameters correspond to intuitive notions (e.g., thresholding and smoothing), which makes Zellige 384 

particularly easy to use. The Fiji interface that we implemented to perform this adjustment should make 385 

Zellige even more user-friendly and effective for biological applications. 386 

To our knowledge, Zellige is the only open-source tool that can extract an unspecified number of 387 

epithelial surfaces from a 3D volume, possibly larger than two. This unique feature is especially useful in 388 

complex images that could be processed only by specialized tools before. For instance, Zellige can extract 389 

surfaces with projections on the xy plane that completely overlap, such as the basal and apical epithelia in 390 

the organoid image of Figure 6. Previously, such an image could be processed only by tools that relied on 391 

segmenting a mesh around the object surface, such as MorphoGraphX or ImSAnE [16, 47]. 392 

The flexibility and robustness of Zellige should allow to considerably relax the constraints that were 393 

previously imposed on the sample preparation and the image acquisition steps by the subsequent analysis. 394 

Indeed, Zellige can accommodate any number of surfaces in the acquired volume, overlapping or not, and 395 

of different contrast features. Zellige also showed excellent robustness against image noise. This should 396 

make it particularly useful in imaging contexts that are not easily amenable to automated analysis, such as 397 

intravital imaging. Finally, it is worth noting that Zellige is a generalist and modular method. With some 398 

adaptation of the surface pixel selection step, it could be used with imaging modalities beyond the scope 399 

of this article, for instance, in extracting the irregular and noisy surfaces of biological objects imaged with 400 

3D electron microscopy images. 401 

 402 

  403 
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Methods. 404 

Implementation. 405 

Zellige was devised with the goal of achieving accurate segmentation of multiple biological surfaces from 406 

3D confocal images. Unlike other existing surface extraction tools, it makes no assumption on the number 407 

of surfaces to be extracted and does not require the surfaces of interest to be the structures of highest 408 

contrast in the image. Zellige is written in Java, relying on the ImgLib2 library [48] and is distributed as a Fiji 409 

plugin, with a graphical user interface (GUI) designed to allow users to quickly find a good set of extraction 410 

parameters for a given image. 411 

 Zellige extracts each surface present in the image in the form of a height-map (or z-map), that is, a 412 

mapping 413 

z: (x,y) → z(x,y), 414 

which associates to each point (x,y) over which the surface projects, the z-coordinate of the unique pixel 415 

(x,y,z) belonging to the surface. Each extracted height-map is then used to produce a 2D projection of the 416 

3D stack restricted to a small sub-volume (of user-selected width) centered around the corresponding 417 

surface. To achieve a robust extraction, Zellige proceeds in two algorithmic steps, which are only outlined 418 

below (see Supplementary note 1 for implementation details).  419 

 In the first step, or surface pixel selection step, a segmentation is applied to the 3D image to select 420 

pixels that likely belong to a surface of interest (Figure 1 and Figure S1A). These putative surface pixels are 421 

detected as local maxima of image intensity along the z-axis, after using two independent binary classifiers, 422 

one based on pixel contrast and the other one on pixel intensity. Five adjustable parameters control the 423 

selection step: two threshold parameters (TA and Totsu) control the strength of the binary classifiers applied 424 

on contrast and intensity, respectively, and three parameters (Smin, σxy and σz) control clean-up operations 425 

applied at the end of the classification (removal of small isolated spots, and local averaging along the xy 426 

plane and the z axis, respectively).  427 

 In the second step, or surface assembly step, an iterative algorithm is used to extract the height-428 

maps of each of the surfaces present in the image (Figure 1 and Figure S1A). The assembly starts by 429 

grouping neighboring putative surface pixels together within each orthogonal (xz or yz) section of the 3D 430 

image, in order to form a set of building blocks referred to as orthogonal surface elements (OSEs). These 431 

building blocks are then used to assemble the surfaces, in a process analogous to jigsaw puzzles, where 432 

OSEs adjacent to the surface boundary are added if they match this boundary, and rejected otherwise, until 433 

no matching OSE can be found (Figure S1). In order to increase the robustness of the assembly step, Zellige 434 

applies it in two rounds, proceeding along different axes during the first and second rounds. Each round is 435 

controlled by 3 adjustable parameters: a threshold parameter (0 ≤ TOSE ≤1) sets a minimum size for the 436 

building blocks that can be used as seeds to initiate the assembly of a surface; and two other parameters 437 

(0 ≤ R ≤ 50 and 0 ≤ C ≤ 1) set the matching constraints used to accept or reject the addition of OSEs to a 438 

surface. The assembly step is thus controlled overall by 6 parameters, i.e. two groups of 3 parameters (TOSE1, 439 

R1, C1) and (TOSE2, R2, C2) controlling the first and second assembly rounds, respectively. 440 

 Finally, the height-maps of each of the reconstructed surfaces are used to obtain a corresponding 441 

2D projection (Figure 1). In practice a maximum projection restricted to a subvolume of width δz (δz being 442 

a user-defined parameter) centered around the surface of interest is performed.  443 
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Availability of data and code. 444 

The project homepage below contains the source code, installation instructions, and documentations. 445 

Zellige 446 

• Project name: Zellige.  447 

• Project homepage: https://gitlab.pasteur.fr/ida-public/zellige-core 448 

• URL for the Fiji plugin (Update > Manage update sites): https://sites.imagej.net/Zellige/  449 

• Gitlab Branch: master 450 

• Operating systems: Platform independent. 451 

• Programming language: Java.  452 

• Compiled in Java8 453 

• Other requirements : Runs from Fiji [28].  454 

• License: BSD 2  455 

• Any restrictions to use by non-academics: None.  456 

Scripts to create Phantoms 457 

• Project name: Phantoms.  458 

• Project homepage: https://doi.org/10.5281/zenodo.6414596  459 

• Operating systems: Platform independent.  460 

• Programming language: MATLAB.  461 

• License: BSD 2  462 

• Any restrictions to use by non-academics: None. 463 

Data sets. 464 

Image 3D stacks, ground-truth height map and height maps produced by Zellige are available on Zenodo 465 

under the CC-BY license: https://zenodo.org/communities/zellige/ [29, 33, 42, 44, 46].  466 

Human bronchial epithelium imaging. 467 

The data used in Figure 5 were taken from the recent study [43] to which we refer for the preparation and 468 

imaging of human bronchial epithelium cultures. In brief, MucilAirTM were purchased from Epithelix (Saint-469 

Julien-en-Genevois, France) and cultured for at least 4 weeks to reconstruct a differentiated human 470 

bronchial epithelium in vitro and stained as previously described. Images of the cultures were acquired 471 

using an inverted Zeiss LSM 710 confocal microscope controlled by the ZEN pro 2.3 software. Z-stack images 472 

of whole-mount samples were acquired with a Zeiss Plan Apochromat 63x oil immersion lens (NA=1.4). The 473 

image used here was published in Robinot et al. [43] under the CC-BY-4 license. 474 

Drosophila imaging. 475 

Flies were raised at 25°C under standard conditions. Pupae were collected for imaging as described 476 

previously [49]. Ecad::GFP flies [50] were used for live imaging as previously described [1]. In brief, images 477 

were acquired with a spinning disk microscope from Gataca Systems driven by the MetaMorph software. 478 

The system is equipped with an inverted Nikon TI2E stand, a motorized XYZ stage, and a Nikon Plan Apo 60x 479 

oil immersion (NA=1.4) lens and with a Prime95B camera.  480 
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Cochlea imaging. 481 

The inner ears from wild-type (C57BL/6) mice were rapidly dissected from temporal bones at embryonic 482 

stages E14.5 in HEPES-buffered (10 mM, pH 7.4) Hanks’ balanced salts solution and fixed in 4% 483 

paraformaldehyde, 1 hour at room temperature. Specimen were permeabilized and stained for phalloidin-484 

Atto 565 (Sigma) as previously described [39]. Fluorescence images were obtained with a swept-field 485 

confocal microscope (Opterra II) from Brucker. This system is equipped with a Nikon Plan Fluor 60x oil 486 

immersion lens (NA=1.4). 487 

Biologists in this study hold a designer certificate of animal experimentation (level 1), allowing them 488 

to perform experimental work on animals in strict accordance with the European directive 2010/60/EU, and 489 

French regulations. The Ethics Committee of the Institut Pasteur (Comité d’Ethique en Experimentation 490 

Animale - CETEA) has approved this study with the project identifier dha170006. This approval is based on 491 

careful compliance to the 3Rs principle in the care and use of animals (Annex IV - 2010/60/EU). 492 

Inner ear organoid imaging. 493 

ESCs derived from blastocyst-stage embryos of R1 mice (mESCs) (ATCC, SCRC-1036) were maintained in 494 

feeder-free culture on 0.1% w/v gelatin (Sigma) coated substrates using LIF-2i medium as established 495 

previously [51]. The organoids were generated following the previously published protocol [45, 51]. 496 

Aggregates were harvested at day 14 and fixed in 4% v/v PFA (Electron Microscopy Sciences) overnight at 497 

4°C. After blocking (PBS; 10% v/v normal goat serum; 0.1% v/v Triton X-100), the aggregates were stained 498 

for phalloidin Atto 565 (1:1000) (Sigma) overnight at RT on a shaker, and washed three times with PBS 499 

containing 0.1% v/v Triton X-100 for 1 h each at RT. Prior to imaging, the aggregates were incubated in a 500 

modified version of ScaleS solution containing 4 M Urea (Sigma), 40% w/v D-Sorbitol (Sigma), and 0.1% v/v 501 

Triton X-100, for 3-5 days to clarify the tissue. Finally, the aggregates were whole-mounted using the ScaleS 502 

solution and imaged using a confocal laser scanning microscope (A1R HD25, Nikon) equipped with a Nikon 503 

25x silicon oil immersion lens (NA=1.05). 504 
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Figure 1. Flowchart of Zellige’s algorithmic steps. Surface pixel selection (step 1), surface 

assembly in the form of a height map (step 2), and subsequent projection localized to the height map, 

are schematically depicted in the case of a 3D image containing 4 surfaces of interest.
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Figure 2. Multiple surface extraction on a synthetic 3D image. (A-B) The image contains 3 phantom 
surfaces (S1, S2, S3) of different shapes (sinusoidal, flat, and paraboloidal, respectively), and different 
textures (surface S1 has constant intensity, while surfaces S2 and S3 are supported by Voronoi meshes of 
different cell-sizes). (C) 3D representations of the height maps extracted by Zellige (in green) and of the 
ground truth (GT, in blue) height maps of surfaces S1, S2, and S3. (D) Error maps displaying the distance 
along the z-axis between the reconstructed and GT height maps for surfaces S1, S2, and S3. (E) Projections 
of the 3D image localized to the different surfaces S1-S3 (maximum intensity projections over a subvolume 
of a width δz=1 pixel above or below the corresponding height-maps). Upper and lower panels show the 
projections based on the GT and the reconstructed height-maps, respectively.

A B

C

D

E

X

Y

YZ
 se

c�
on

  

XY sec�on 

XZ sec�on   

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 22, 2022. ; https://doi.org/10.1101/2022.04.05.485876doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.05.485876
http://creativecommons.org/licenses/by/4.0/


YZ
 se

c�
on

 

XY sec�on 

XZ sec�on 

Distance (pixel)
0 >= 431 2

S1

S2

S3

S4

S3

S4

S2
S1

Figure 3. Fly specimen. (A,B) Volume rendering (A) and orthogonal sections (B) of a 3D image of fly embryo 
taken around 24h after puparium formation, covering a portion of the abdomen (showing histoblast cells and 
larval cells), and a portion of the developing wing. Scale bar 50 µm. Four surfaces of interest may be identified 
in the dataset (of dimensions 1200 × 1200 × 51 pixels): surfaces S1 and S2 are relatively close to one another 
and located within overlapping z-ranges (8 ≤ z ≤ 50 and 20 ≤ z ≤ 50, respectively). Surfaces S3 and S4 
(located in the z-ranges 42 ≤ z ≤ 50 and 9 ≤ z ≤ 50, respectively) are relatively far from each other and can 
nearly be separated by a plane. (C) 3D representations of the height maps extracted by Zellige (in green) and 
of the ground truth height maps (GT, in blue) of surfaces S1-S4. The reconstructed height-maps of all surfaces 
S1-S4 cover >93% of the area of the corresponding GT (cf. Figure S2 and Table S1). To reduce the staircase 
artifacts (more or less visible depending on the surface) due to the digitization of the GT and reconstructed 
height-maps, all height-maps were smoothed with a 2D gaussian filter with a standard radius of 5 pixels (cf. 
Supplemental note 1). (D) Error maps (color-coded distance along the z-axis between the reconstructed and 
the GT height-maps) plotted for each of the reconstructed surfaces. The large majority of pixels on the 
reconstructed height-maps (98%, 96%, 91%, and 99% for surfaces S1 to S4, respectively) display errors of <2 
pixels. The height-maps of surfaces S1, S2, S4 show subpixel accuracy on average (RMSE < 1), while that of 
surface S3 is slightly less accurate (RMSE = 1.25). (E) Projections of the 3D image localized to the different 
surfaces S1-S4 (in this and all subsequent figures, these are maximum intensity projections over a subvolume 
of width δz=±1 pixel above or below the corresponding height-maps). Upper and lower panels show the 
projections based on the GT and the reconstructed height-maps, respectively. Scale bar 50 µm.
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Figure 4. Cochlea specimen. (A) Volume rendering of a 3D confocal swept-field image of the mouse 
cochlear embryo on embryonic day E14.5. The dataset (of dimensions 1024 × 1024 × 45 pixels) shows a 
portion of the sensory epithelium (at the topmost sections of the stack) and the underlying non-cellular layer 
of mesenchyme on which the organ develops. Both structures are stained with phalloidin to reveal F-actin. 
Scale bar 40 µm. The surface of interest is the epithelium surface, harboring the sensory and supporting cells 
under differentiation. The mesenchyme layer is not (strictly speaking) assimilable to a surface, but it produces 
a strong background signal nearby the surface of interest, hampering its extraction. (B) 3D representations of 
the height map extracted by Zellige (in green) and the GT height map (in blue), of the epithelium surface. (C) 
Color-coded error map of the reconstructed height-map, which shows subpixel accuracy (errors <1) over a 
large majority (83%) of pixels, as well as on average (RMSE ~ 1.1). (D) Projections localized to the GT height-
map of the epithelium surface (left most panel), and to the height-maps extracted with the four different 
algorithms: FastSME, LocalZProjector, PreMosa, and Zellige. Only Zellige correctly extracts the surface of the 
epithelium in this example. Scale bar 40 µm.
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Figure 5. Human bronchial epithelial cells infected by SARS-CoV-2. (A) Volume rendering and 
individual sections of a confocal 3D image of a primary culture of bronchial epithelial cells 4 days after it was 
infected by the SARS-CoV-2 virus. The dataset (of dimensions 1024 × 1024 × 15 pixels) covers a portion of 
the epithelium immunostained for the tight junction protein ZO-1. Notice the roughness of the epithelium 
surface and the presence of anomalous bulges (arrows) resulting from the SARS-CoV-2 infection. Scale bar 
10 µm. (B) 3D representations of the height map extracted by Zellige (in green) and the GT height map (in 
blue), of the epithelium surface. (C) Color-coded error map of the reconstructed height-map. Despite its 
roughness, the surface of interest is reconstructed with subpixel accuracy over the majority (71%) of pixels, 
as well as on average (RMSE ~ 0.8). (D) Projections localized to the GT height-map of the epithelium surface 
(leftmost panel), and the height-maps extracted with the four different algorithms: FastSME, LocalZProjector, 
PreMosa, and Zellige. Scale bar 30 µm.
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Figure 6. Organoid specimen. (A-B) Volume rendering (A) and orthogonal sections (B) of a confocal 3D 
image of a (half of) inner ear organoid, which has been fixed and stained with phalloidin to reveal F-actin. 
The dataset (of dimensions 520 × 465 × 35 pixels) includes two dome-shaped epithelial surfaces of 
interest, forming the apical (inward) and basal (outward) sides of the organoid. (C) 3D representations of 
the height map extracted by Zellige (in green) and the GT height map (in blue), of the epithelium surface. 
(D) Color-coded error maps of the reconstructed height-maps for the apical (left) and basal (right) epithelial 
surfaces of the organoid. The surfaces of interest are reconstructed with an error of < 2 pixels over a large 
majority (96% and 93% for the apical and basal surfaces, respectively) of pixels, as well as on average 
(RMSE ~ 0.8 and 1.1 for the apical and the basal surfaces, respectively). (E) Projections localized to the GT 
height-maps of the epithelium surface (panels on the left), and the height-maps extracted by Zellige 
(panels on the right). Scale bar 100 µm
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Figure 7. Summary of the sensitivity analysis. The intervals indicated in grey for each parameter and 
each of the images tested correspond to the parameter values for which the reconstruction satisfies high 
quality criteria defined by RMSE ≤ 1.5 and coverage ≥ 85%. Black marks indicate the reference value 
obtained by manual adjustment for each image (cf. Supplemental note 2). (A) Parameters of the surface 
selection step. (B) Parameters of the surface assembly step. 
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FIGURE 1 
Flowchart of Zellige’s algorithmic steps. Surface pixel selection (step 1), surface assembly in 
the form of a height map (step 2), and subsequent projection localized to the height map, are 
schematically depicted in the case of a 3D image containing 4 surfaces of interest. 
 
FIGURE 2 
Multiple surface extraction on a synthetic 3D image. (A) The image contains 3 phantom 
surfaces (S1, S2, S3) of different shapes (sinusoidal, flat, and paraboloidal, respectively), and 
different textures (surface S1 has constant intensity, while surfaces S2 and S3 are supported 
by Voronoi meshes of different cell-sizes). (B) 3D representations of the height maps extracted 
by Zellige (in green) and of the ground truth (GT, in blue) height maps of surfaces S1, S2, and 
S3. (C) Error maps displaying the distance along the z-axis between the reconstructed and GT 
height maps for surfaces S1, S2, and S3. (E) Projections of the 3D image localized to the 
different surfaces S1-S3 (maximum intensity projections over a subvolume of a width �z=1 
pixel above or below the corresponding height-maps). Upper and lower panels show the 
projections based on the GT and the reconstructed height-maps, respectively. 
 
FIGURE 3 
(A,B) Volume rendering (A) and orthogonal sections (B) of a 3D image of fly embryo taken 
around 24h after puparium formation, covering a portion of the abdomen (showing histoblast 
cells and larval cells), and a portion of the developing wing. Scale bar 50 µm. Four surfaces of 
interest may be identified in the dataset (of dimensions 1200 × 1200 × 51 pixels): surfaces S1 
and S2 are relatively close to one another and located within overlapping z-ranges (8 ≤ z ≤ 50 
and 20 ≤ z ≤ 50, respectively). Surfaces S3 and S4 (located in the z-ranges 42 ≤ z ≤ 50 and 
9 ≤ z ≤ 50, respectively) are relatively far from each other and can nearly be separated by a 
plane. 
(C) 3D representations of the height maps extracted by Zellige (in green) and of the ground 
truth height maps (GT, in blue) of surfaces S1-S4. The reconstructed height-maps of all 
surfaces S1-S4 cover >93% of the area of the corresponding GT (cf. Figure S2 and Table S1). To 
reduce the staircase artifacts (more or less visible depending on the surface) due to the 
digitization of the GT and reconstructed height-maps, all height-maps were smoothed with a 
2D gaussian filter with a standard radius of 5 pixels (cf. Supplemental note 1). 
(D) Error maps (color-coded distance along the z-axis between the reconstructed and the GT 
height-maps) plotted for each of the reconstructed surfaces. The large majority of pixels on 
the reconstructed height-maps (98%, 96%, 91%, and 99% for surfaces S1 to S4, respectively) 
display errors of <2 pixels. The height-maps of surfaces S1, S2, S4 show subpixel accuracy on 
average (RMSE < 1), while that of surface S3 is slightly less accurate (RMSE = 1.25). 
(E) Projections of the 3D image localized to the different surfaces S1-S4 (in this and all 
subsequent figures, these are maximum intensity projections over a subvolume of width �z=
�1 pixel above or below the corresponding height-maps). Upper and lower panels show the 
projections based on the GT and the reconstructed height-maps, respectively. 
 
 
 
FIGURE 4 
(A) Volume rendering of a 3D confocal swept-field image of the mouse cochlear embryo on 
embryonic day E14.5. The dataset (of dimensions 1024 × 1024 × 45 pixels) shows a portion of 
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the sensory epithelium (at the topmost sections of the stack) and the underlying non-cellular 
layer of mesenchyme on which the organ develops. Both structures are stained with phalloidin 
to reveal F-actin. Scale bar 40 µm. The surface of interest is the epithelium surface, harboring 
the sensory and supporting cells under differentiation. The mesenchyme layer is not (strictly 
speaking) assimilable to a surface, but it produces a strong background signal nearby the 
surface of interest, hampering its extraction. 
(B) 3D representations of the height map extracted by Zellige (in green) and the GT height map 
(in blue), of the epithelium surface. 
(C) Color-coded error map of the reconstructed height-map, which shows subpixel accuracy 
(errors <1) over a large majority (83%) of pixels, as well as on average (RMSE ~ 1.1). 
(D) Projections localized to the GT height-map of the epithelium surface (left most panel), and 
to the height-maps extracted with the four different algorithms: FastSME, LocalZProjector, 
PreMosa, and Zellige. Only Zellige correctly extracts the surface of the epithelium in this 
example. 
 
 
 
FIGURE 5 
(A) Volume rendering and individual sections of a confocal 3D image of a primary culture of 
bronchial epithelial cells 4 days after it was infected by the SARS-CoV-2 virus. The dataset (of 
dimensions 1024 × 1024 × 15 pixels) covers a portion of the epithelium immunostained for 
the tight junction protein ZO-1. Notice the roughness of the epithelium surface and the 
presence of anomalous bulges (arrows) resulting from the SARS-CoV-2 infection. Scale bar 
10 µm. 
(B) 3D representations of the height map extracted by Zellige (in green) and the GT height map 
(in blue), of the epithelium surface. 
(C) Color-coded error map of the reconstructed height-map. Despite its roughness, the surface 
of interest is reconstructed with subpixel accuracy over the majority (71%) of pixels, as well as 
on average (RMSE ~ 0.81). 
(D) Projections localized to the GT height-map of the epithelium surface (leftmost panel), and 
the height-maps extracted with the four different algorithms: FastSME, LocalZProjector, 
PreMosa, and Zellige. Scale bar 30 µm 
 
 
FIGURE 6 
(A-B) Volume rendering (A) and orthogonal sections (B) of a confocal 3D image of a (half of) 
inner ear organoid, which has been fixed and stained with phalloidin to reveal F-actin. The 
dataset (of dimensions 520 × 465 × 35 pixels) includes two dome-shaped epithelial surfaces of 
interest, forming the apical (inward) and basal (outward) sides of the organoid.  
(C) 3D representations of the height map extracted by Zellige (in green) and the GT height map 
(in blue), of the epithelium surface. 
(D) Color-coded error maps of the reconstructed height-maps for the apical (left) and basal 
(right) epithelial surfaces of the organoid. The surfaces of interest are reconstructed with an 
error of < 2 pixels over a large majority (96% and 93% for the apical and basal surfaces, 
respectively) of pixels, as well as on average (RMSE ~ 0.8 and 1.1 for the apical and the basal 
surfaces, respectively). 
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(E) Projections localized to the GT height-maps of the epithelium surface (panels on the left), 
and the height-maps extracted by Zellige (panels on the right). Scale bar 100 µm. 
 
 
FIGURE 7 
Summary of the sensitivity analysis. The intervals indicated in grey for each parameter and 
each of the images tested correspond to the parameter values for which the reconstruction 
satisfies high quality criteria defined by RMSE ≤ 1.5 and coverage ≥ 85%. Black marks indicate 
the reference value obtained by manual adjustment for each image (cf. Supplemental note 2). 
(A) Parameters of the surface selection step. (B) Parameters of the surface assembly step.  
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