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Abstract

A core challenge in neuroscience is to assess whether diverse systems represent
the world similarly. Representational Similarity Analysis (RSA) is an innovative
approach to address this problem and has become increasingly popular across disci-
plines from machine learning to computational neuroscience. Despite these successes,
RSA regularly uncovers difficult-to-reconcile and contradictory findings. Here we
demonstrate the pitfalls of using RSA to infer representational similarity and explain
how contradictory findings arise and support false inferences when left unchecked.
By comparing neural representations in primate, human and computational mod-
els, we reveal two problematic phenomena that are ubiquitous in current research:
a “mimic” effect, where confounds in stimuli can lead to high RSA scores between
provably dissimilar systems, and a “modulation effect”, where RSA-scores become
dependent on stimuli used for testing. Since our results bear on existing findings
and inferences, we provide recommendations to avoid these pitfalls and sketch a way

forward.
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Introduction .

How do other animals see the world? Do different species represent the world in a similar -
manner? How do the internal representations of Al systems compare with humans and s
animals? The traditional scientific method of probing internal representations of humans 4
and animals (popular in both psychology and neuroscience) relates them to properties s
of the external world. By moving a line across the visual field of a cat, [1| found out
that neurons in the visual cortex represent edges moving in specific directions. In another 7
Nobel-prize winning work, [2] discovered that neurons in the hippocampus represent the s
location of an animal in the external world. Despite these successes it has proved difficult o
to relate internal representations to more complex properties of the world. Moreover, 1o
relating representations across individuals and species is challenging due to the differences 1
in experience across individuals and differences of neural architectures across species. 12

These challenges have led to recent excitement around Representation Similarity Anal- 13
ysis (RSA) which appears to overcome many of these obstacles. RSA usually takes pat- 1
terns of activity from two systems and computes how the distances between activations in  1s
one system correlate with the distances between corresponding activations in the second 16
system (see Figure 1). Rather than compare each pattern of activation in the first system 17
directly to the corresponding pattern of activation in the second system, it computes a 18
second-order measure of similarity, comparing the systems based on their representational 1o
geometries. The advantage of looking at representational geometries is that one no longer 20
needs to match the architecture of two systems, or even the format of the initial activity =
patterns (see Supplementary Information, Section A for a brief history of RSA and its 2
philosophical origins). One could compare, for example, fMRI signals with single cell 23

recordings, EEG traces with behavioural data, or vectors in a computer algorithm with 2.


https://doi.org/10.1101/2022.04.05.487135
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.05.487135; this version posted April 7, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

A
- RDM 1
Representational :
System 1 geometries -
o+ %, -0
e e — o Amedrdigne ¥ RSA
ﬁ Dataset System 2 i score
A ~ \ ¢ . RDM 2
W A — ML 5
- sz . 4
by
L]
-
*

Amedr ey X

Figure 1: RSA calculation. A series of stimuli from a set of categories (or conditions)
are used as inputs to two different systems (for example, a human brain and a primate
brain). Activity from regions of interest is recorded for each stimulus. Pair-wise distances
in activity patterns are calculated to get the representational geometry of each system.
This representational geometry is expressed as a representational dissimilarity matrix
(RDM) for each system. Finally, an RSA score is determined by computing the correlation

between the two RDMs.

spiking activity of neurons [3]. RSA is now ubiquitous in computational psychology and 2s
neuroscience and has been applied to compare object representations in humans and pri- 26
mates [4], representations of visual scenes by different individuals [5,6], representations of 27
visual scenes in different parts of the brain [7], to study specific processes such as cognitive 2s
control [8] or the dynamics of object processing 9], and most recently, to relate neuronal 2
activations in human (and primate) visual cortex with activations of units in Deep Neural = s0
Networks [10-14]. 3

However, some recent research suggests that RSA may be an unreliable measure of how s
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similarly two systems represent the world. For example, many studies [15-19] have shown 33
that Convolutional Neural Networks (CNNs), trained on standard image datasets, such s
as ImageNet, classify input images based on shortcuts, such as their texture. Activations s
in these same networks also show a high RSA with activations in the human and primate 36
inferior temporal cortex [10, 11], even though it is well-known that humans primarily s
represent objects based on their global properties such as shape, rather than shortcuts, ss
such as texture [20-22]. Similarly, some studies using RSA have shown that the hierarchy s
of representations in the ventral visual stream in humans and primates correlates with o
the hierarchy of representations in the layers of a CNN — i.e., deeper layer in a CNN u
have a higher RSA with deeper layer in the visual ventral stream [10]. But [23] have
recently shown that this correspondence is dataset-dependent and does not replicate for s
some naturalistic and artificial stimuli. aa

How is it possible for two systems to have a high RSA score but represent different s
features of inputs? Through a series of simulations that capture increasingly plausible 46
training and testing scenarios, we demonstrate the properties of datasets and procedures s
that, in practice, lead to high RSA scores between mechanistically dissimilar systems. as
The experiments showcasing these pitfalls span the entire spectrum from artificial intel- 40
ligence to computational neuroscience, involving comparisons within and between sets of so
artificial and biological systems. In particular, we shed light on two problematic phe- =
nomena that bear on any efforts to compare systems based on RSA: 1) the presence of s
confounds in the training data which leads systems to mimic each other’s representational =3
geometry even in the absence of mechanistic similarity, 2) the artifactual modulation of sa
RSA scores due to the intrinsic structure of datasets rather than system alignment. Our s
demonstrations provide an explanation of how these phenomena, which arise ubiquitously, se

underlie contradictory and paradoxical findings in the literature. Since our results have sz
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considerable generality with respect to current practices across multiple fields, we discuss ss
the implications for published results and prevailing interpretations, and provide broadly so

applicable recommendations to move forward. 60

Results o

Simulation 1: RSA between systems with different transformations -

We will now show an example of how two systems can end up with very similar representa- o3
tional geometries even though they (i) select different features of inputs and (ii) transform s
their inputs through very different functions. Consider a set of stimuli, {xy,...,x,} from e
two classes that form two clusters in the input space as shown in Figure 2A. Let us as- 6
sume that each stimulus, a; contains multiple features that independently predict the 7
class of the stimulus. We will call each of these predictive features confounds. For ex- s
ample, shape and texture can be confounds when classifying an image as belonging to o
DOG or AEROPLANE classes if each feature can be independently used to predict whether an 7o
image belongs to the DOG or AEROPLANE class. Consider two recognition systems ®; and =
®, that map each input stimulus, «;, to an internal representation using their respective 72
transformation functions, ®;(x;) and ®9(x;). Furthermore, we will assume that ®; and 7
®, are qualitatively different functions and act on different features of the input. We 7
are interested in showing that such qualitatively different functions acting on different s
features can nevertheless end up with similar representational geometries. 76
The representational distance, d[z;, x|, between the projections of any pair of input

stimuli, ; and x;, is proportional to the inner product between their projection in the
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Figure 2: RSA between two systems with known transformations. In each panel
a set of 2D stimuli are transformed using two different functions (®; and ®,), which
project these stimuli into two different representational spaces. The distance between
these projections are given by the RBF and Cosine kernels, respectively (see main text).
The geometry of these projections can be visualised using the kernel matrices, which
show the pair-wise distances between all stimuli in the representational space. The bar
graph on the right-hand-side shows the RSA-score computed as a Pearson correlation (p),
Spearman’s rank correlation (rs) and Kendall’s rank correlation (7). We can see that
the input stimuli in Panel A leads to a high correlation in the representational geometry

of the two systems, while the input stimuli in Panel B leads to a low correlation, even

though the transformations remain the same.
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feature space:

dlzi, ;5] o D(z;) - D) (1)

Thus, we can obtain the representational geometry of the input stimuli, {1, ..., x,}, by
computing the pairwise distances, d[z;, ;| for all pairs of data points, (i,j). Here, we
assume that the projections ®; and ®, are such that these pairwise distances are given

by two positive semi-definite kernel functions k1 (x;, ;) and ro(x;, x;), respectively:
k1@, @) = Py (i) - () (2)
Fo (s, @) = Po(i) - Po(x;) (3)

2
llz;—a;l|

Now, let us consider two qualitatively different kernel functions: ky(x;, ;) =€ 202  isa

radial-basis kernel (where o2 is the bandwidth parameter of the kernel), while ko (x;, ;) = 7
T

ﬁ is a cosine kernel. Figure 2A shows a dataset of points in a 2D input space that 7o
i J

are projected by two different systems into a cosine and RBF kernel space. Since the o
cosine and RBF kernels are Mercer kernels [24,25], each kernel matrix in Figure 2A shows s
the pairwise distances (as measured by the inner product) between data points projected s
in the two feature spaces. We can determine how the geometry of these projections in s
the two systems relate to each other by computing the correlation between the kernel sa
matrices, shown on the right-hand-side of Figure 2A. We can see from these results that ss
the kernel matrices are highly correlated — i.e., the input stimuli are projected to very se
similar geometries in the two representational spaces. 87

If one did not know the input transformations and simply observed the correlation ss

between kernel matrices, it would be tempting to infer that the two systems ®; and ®5 &0
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transform an unknown input stimulus @ through a similar set of functions — for example oo
functions that belong to the same class or project inputs to similar representational spaces. o
However, this would be an error. The projections ®;(x) and ®5(x) are fundamentally o
different — @, (radial basis kernel) projects an input vector into an infinite dimensional o3
space, while @, (cosine kernel) projects it onto a unit sphere. The difference between these o
functions becomes apparent if one considers how this correlation changes if one considers os
a different set of input stimuli. For example, the set of data points shown at the left of o6
Figure 2B, are projected to very different geometries, leading to a low correlation between o
the two kernel matrices (right-hand side). %

In fact, the reason for highly correlated kernel matrices in Figure 2A is not a similarity oo
in the transformations ®; and ®, but the structure of the dataset. The representational 100
distance between any two points x; and x; in ®; is a function of their Euclidean distance 101
||z; — x;||, while in ®,, it is a function of their cosine distance, ] ;. These two features 10
— Euclidean distance and cosine distance — mimic each other for certain datasets. In the 103
dataset in Figure 2A, the stimuli is clustered such that the Euclidean distance between 10
any two stimuli is correlated with their cosine distance. However, for the dataset in 1os
Figure 2B, the Euclidean distance is no longer correlated with the angle and the confounds 106
lead to different representational geometries. Thus, this example illustrates how: (i) two 107
systems acting on very different features of inputs can nevertheless end up with similar 1os
representational geometries when these features are able to mimic each other, and (ii) 100
when the two systems are non-identical, the correlation in representational geometries 110
will be modulated by the structure of the data — two systems may show a high correlation 111

in their representational geometries on one set but a low correlation on another set. 112
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Simulation 2: RSA between systems with different feature encod-
ings 114

Simulation 1 made a number of simplifying assumptions — the dataset was two-dimensional, 115
clustered into two categories and we intentionally chose functions ®; and ®5 such that the 116
kernel matrices were correlated in one case and not correlated in the other. It could be 17
argued that, even though the above results hold in principle, they are unlikely in practice 11s
when the transformations and data structure are more complex. Indeed, it is possible 119
that a similarity in representational geometries becomes less likely as one increases the 120
number of categories (i.e., clusters or conditions) being considered. 121

To address this objection, we now consider a more complex setup, where the transfor- 12
mations ®; and @, are modelled as feedforward deep neural networks (DNNs), trained to 123
classify a high-dimensional dataset into multiple categories. Many studies that use RSA 124
compare systems using naturalistic images as visual inputs [4, 10]. While using naturalis- 125
tic images brings research closer to the real-world, it is also well-known that datasets of 126
naturalistic images frequently contain confounds — independent features that can predict 127
image categories [13]. We will now show how the simplest of such confounds, a single pixel, 12
can lead to a high RSA between two DNNs that encode qualitatively different features of 12
inputs. 130

Consider the same setup as above, where an input stimulus, @, is transformed to a 1n
representation space by two systems, ®; and ®,. Instead of a two-dimensional input space, 132
@ now exists in a high-dimensional image space and ®; and ®, are two versions of a DNN — 133
VGG-16 — trained to classify input images into different categories. We ensured that ®; and 13s
®, were qualitatively different transformations of input stimuli by making the networks 1ss

sensitive to different predictive features within the stimuli. The first network was trained 1se
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Figure 3: Training and testing DNNs with different feature encodings. Panel A
shows the training procedure for Simulations 2-4, where we created two versions of the
original dataset (gray), one containing a confound (blue) and the other left unperturbed
(yellow). These two datasets were used to train two networks (gray) on a categorisation
task, resulting in two networks that learn to categorise images either based on the confound
(projection ®5) or based on statistical properties of the unperturbed image (projection
®,). Panel B shows the testing procedure where each network was tested on stimuli from
each dataset — leading to a 2x2 design. Performance on these datasets was used to infer
the features that each network encoded and their internal response patterns were used to

calculate RSA-scores between the two networks.

on an unperturbed dataset, while the second network was trained on a modified version 137
of the dataset, where each image was modified to contain a confound — a single pixel in a 138
location that was diagnostic of the category (see Figure 3 for the general approach). 130

The locations of these diagnostic pixels were chosen such that they were correlated to 140
the corresponding representational distances between classes in ®;. Our hypothesis was 1a
that if the representational distances in ®, preserve the physical distances of diagnos- 1s

tic pixels in input space, then this confound will end up mimicking the representational 1as

10
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Figure 4: Simulation 2 confound placement. The representational geometry (Panel A
and B) from the network trained on the unperturbed CIFAR-10 images is used to determine
the location of the single pixel confound (shown as a red patch here) for each category. In
the ‘Positive’ condition (Panel C), we determined 10 locations in a 2D plane such that the
distances between these locations were positively correlated to the representational geom-
etry — illustrated here as the red patches in Panel C being in similar locations to category
locations in Panel B. These 10 locations were then used to insert a single diagnostic — i.e.,
category-dependent — pixel in each image (Insets in Panel C). A similar procedure was
also used to generate datasets where the confound was uncorrelated (Panel D) or nega-

tively correlated (not shown here) with the representational geometry of the network.

11
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geometry of @, even though the two systems use qualitatively different features for clas- 1
sification. Furthermore, we trained two more networks, ®3 and ®,, which were identical 14s
to ®,, except these networks were trained on datasets where the location of the confound 146
was uncorrelated (®3) or negatively correlated (®4) with the representational distances 1
in ®; (see Figure 4 and Methods for details). 148

Classification accuracy (Figure 5 (left)) revealed that the network &y, trained on the 1
unperturbed images, learned to classify these images and ignored the diagnostic pixel 1s0
— that is, it’s performance was identical for the unperturbed and modified images. In 1
contrast, networks @, (positive), 3 (uncorrelated) and ®4(negative) failed to classify the 1s2
unperturbed images (performance was statistically at chance) but learned to perfectly 1ss
classify the modified images, showing that these networks develop qualitatively different 1sa
representations compared to normally trained networks. 155

Next we computed pairwise RSA scores between the representations at the last con- 1se
volution layer of ®; and each of ®y, &3 and ¢, (Figure 5 (right)). When presented un- s
perturbed test images, the @5, ®3 and &4 networks all showed low RSA scores with the 1ss
normally trained ®; network. However, when networks were presented with test images 1so
that included the predictive pixels, RSA varied depending on the geometry of pixel loca- 160
tions in the input space. When the geometry of pixel locations was positively correlated 16
to the normally trained network, RSA scores approached ceiling (i.e., comparable to RSA 162
scores between two normally trained networks). Networks trained on uncorrelated and 163
negatively correlated pixel placements scored much lower. 164

These results mirror Simulation 1: we observed that it is possible for two networks 1es
(¢, and P,) to show highly correlated representational geometries even though these 166
networks learn to classify images based on very different features. One may argue that 1

this could be because the two networks could have learned similar representations at 1es

12
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Figure 5: Simulation 2 results. Left: Performance of normally trained networks did not
depend on whether classification was done on unperturbed CIFAR-10 images or images
with a single pixel confound (error bars represent 95% CI). All three networks trained on
datasets with confounds could perfectly categorise the test images when they contained
the confound (blue bars), but failed to achieve above-chance performance if the predictive
pixel was not present (yellow bars). Right: The RSA score between the network trained
on the unperturbed dataset and each of the networks trained on datasets with confounds.
The three networks showed similar scores when tested on images without confounds, but
vastly different RSA scores when tested on images with confounds. Networks in the
Positive condition showed near ceiling scores (the shaded area represents noise ceiling)

while networks in the Uncorrelated and Negative conditions showed much lower RSA.

13


https://doi.org/10.1101/2022.04.05.487135
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.05.487135; this version posted April 7, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

the final convolution layer of the DNN and it is the classifier that sits on top of this 169
representation that leads to the behavioural differences between these networks. But if 170
this was true, it would not explain why RSA scores diminish for the two other comparisons 171
(with ®3 and ®,). This modulation of RSA-scores for different datasets suggests that, iz
like in Simulation 1, the correlation in representational geometry is not because the two 173
systems encode similar features of inputs, but because different features mimic each other 17

in their representational geometries. 175

Simulation 3: RSA between systems with different architectures

So far we have only considered high-dimensional systems with the same architecture — 177
both ®; and ®, were DNNs that have the same set of units and learn through the same 17
learning algorithm. Even though we observed that two systems that learn very different 170
features can show a high correlation in their representational geometries, it could be 1s0
argued that this is only possible because of the shared architecture and learning algorithm 1s:
that underlies the two systems. On this veiw, a high RSA between systems that differ in 1s2
architecture — e.g. a human and a macaque, or a DNN and a human — is unlikely unless 1ss
both systems encode similar features of their inputs. 184

We address this argument in our next simulation, which compares representational 1ss
geometries between activations in a DNN and macaque visual cortex. The experimental 1se
setup was similar to Simulation 2. We used the same set of images that were shown 1
to macaques by [26] and modified this dataset to superimpose a small diagnostic patch 1ss
on each image. In the same manner as in Simulation 2 above, we constructed three 1so
different datasets, where the locations of these diagnostic patches were either positively 100
correlated, uncorrelated or negatively correlated with the RDM of macaque activations. 1o

We then trained four CNNs. The first CNN was pre-trained on ImageNet and then fine- 10

14
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Figure 6: Simulation 3 results. Left: Classification Performance of the network trained
on unperturbed images (Normal condition) did not depend on the presence or absence of
the confound, while performance of networks trained with the confound (Positive, Uncor-
related and Negative conditions) highly depended on whether the confound was present.
Right: RSA-scores with macaque I'T activations were low for all three conditions when
images did not contain a confound (yellow bars). When images contained a confound
(blue bars), the RSA-scores depended on the condition, matching the RSA-score of the
normally trained network (grey band) in the Positive condition, but decreasing signifi-
cantly in the Uncorrelated and Negative conditions. The grey band represents a 95% CI

for the RSA-score between normally trained networks and macaque IT activations.

tuned on the unmodified dataset of images shown to the macaques. Previous research 13
has shown that CNNs trained in this manner develop representations that mirror the 1
representational geometry of neurons in primate inferior temporal (IT) cortex [10]. The 10
other three networks were trained on the three modified datasets and learned to entirely 196
rely on the diagnostic patches (accuracy on images without the diagnostic patches was 107
around chance). 108

Figure 6 (right) shows the correlation in representational geometry between the macaque 100

15
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IT activations and activations at the final convolution layer for each of these networks. 200
The correlation with networks trained on the unmodified images is our baseline and shown 201
as the gray band in Figure 6. Our first observation was that a CNN trained to rely on 20
the diagnostic patch can indeed achieve a high RSA score with macaque IT activations. 203
In fact, the networks trained on patch locations that were positively correlated to the 20a
macaque RDM matched the RSA score of the CNNs trained on ImageNet and the unmod- 205
ified dataset. This shows how two systems having very different architectures, encoding 206
fundamentally different features of inputs (single patch vs naturalistic features) can show 207
a high correspondence in their representational geometries. We also observed that, like 208
in Simulations 2, the RSA score depended on the clustering of data in the input space 200
— when patches were placed in other locations (uncorrelated or negatively correlated to 210

macaque RDMs) the RSA score became significantly lower. 211

Simulation 4: RSA using structured datasets 212

All the simulations so far have used the same method to construct datasets with con- 213
founds — we established the representational geometry of one system (®;) and constructed 21
datasets where the clustering of features (pixels) mirrored this geometry. However, it could 215
be argued that confounds which cluster in this manner are unlikely in practice. For exam- 216
ple, even if texture and shape exist as confounds in a dataset, the inter-category distances 217
between textures are not necessarily similar to the inter-category distances between shape. 218

However, categories in real-world datasets are usually hierarchically clustered into 210
higher-level and lower-level categories. For example, in the CIFAR-10 dataset, the Dogs 220
and Cats (lower-level categories) are both animate (members of a common higher-level 22
category) and Airplanes and Ships (lower-level categories) are both inanimate (members 22

of a higher-level category). Due to this hierarchical structure, Dog and Cat images are 223
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Figure 7: Exploiting intrinsic dataset hierarchy in order to place confounds.
The top panel shows the hierarchical structure of categories in the dataset, which was
used to place the single pixel confounds. The example at the bottom (middle) shows one
such hierarchical placement scheme where the pixels for Inanimate images were closer
to the top of the canvas while Animate images were closer to the bottom. Within the
Animate images, the pixels for Humans and Animals were placed at the left and right,

respectively, and the pixels for bodies (B) and faces (F) were clustered as shown.

likely to be closer to each other not only in their shape, but also their colour and texture 224
(amongst other features) than they are to Airplane and Ship images. In our next simula- 2
tion, we explore whether this hierarchical structure of categories can lead to a correlation 226
in representational geometries between two systems that learn different feature encodings. 227

For this simulation, we selected a popular dataset used for comparing representational 228

geometries in humans, macaques and deep learning models [11,27]. This dataset consists 22
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of six categories which can be organised into a hierarchical structure shown in Figure 7. [4] 230
showed a striking match in RDMs for response patterns elicited by these stimuli in human 23
and macaque IT. For both humans and macaques, distances in response patterns were 23:
larger between the higher-level categories (animate and inanimate) than between the 233
lower-level categories (e.g., between human bodies and human faces). 234

We used a similar experimental paradigm to the above simulations, where we trained 235
networks to classify stimuli which included a single predictive pixel. But instead of using 236
an RDM to compute the location of a diagnostic pixel, we used the hierarchical categorical 237
structure. In the first modified version of the dataset, the location of the pixel was based 238
on the hierarchical structure of categories in Figure 7 — predictive pixels for animate 230
kinds were closer to each other than to inanimate kinds, and pixels for faces were closer 240
to each other than to bodies, etc. One such configuration can be seen in Figure 7. In the 2a
second version, the predictive pixel was placed at a random location for each category 2a2
(but, of course, at the same location for all images within each category). We call these 23
conditions ‘Hierarchical’ and ‘Random’. [11| showed that the RDM of average response 2
patterns elicited in the human IT cortex (®;) correlated with the RDM of a DNN trained 2
on naturalistic images (®2). We explored how this compared to the correlation with the 26
RDM of a network trained on the Hierarchical pixel placement (®3) and Random pixel 2
placement (®y). 248

Results for this simulation are shown in Figure 8. We observed that representational 240
geometry of a network trained on Hierarchically placed pixels (®3) was just as correlated aso
to the representational geometry of human IT responses (®;) as a network trained on nat- 2s
uralistic images (®,). However, when the pixel locations for each category were randomly 252
chosen, this correlation decreased significantly. These results suggest that any confound in 2s3

the dataset (including texture, colour or low-level visual information) that has distances 2s
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Figure 8: Simulation 4 results. Left: Performance of normally trained networks did
not depend on whether the confound was present. Networks trained with the confound
failed to classify stimuli without the confound (yellow bars) while achieving near perfect
classification of stimuli with the confound present (blue bars). Right: RSA with human
IT activations reveals that, when the confound was present, the RSA-score for networks
in the Hierarchical condition matched the RSA-score of normally trained network (gray
band), while the RSA-score of the network in the Random condition was significantly
lower. The grey band represents 95% CI for the RSA score between normally trained

networks and human IT.

governed by the hierarchical clustering structure of the data could underlie the observed 2ss
similarity in representational geometries between CNNs and human IT. More generally, 256
these results show how it is plausible that many confounds present in popular datasets 2s7
may underlie the observed similarity in representational geometries between two systems. 2ss
The error of inferring a similarity in mechanism based on a high RSA score is not just 2se

possible but also probable. 260
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Discussion 261

In four simulations, we have illustrated a number of conditions under which it can be 26
problematic to infer a similarity of representations between two systems based on a corre- 263
lation in their representational geometries. We showed that two systems may transform 2ea
their inputs through very different functions and encode very different features of inputs 265
and yet have highly correlated representational geometries. In fact, we showed that this 266
correlation can be a product of the structure of the dataset itself. A consequence of this 267
result is that the RSA-score between two systems becomes dataset dependent. For exam- 26s
ple, one may observe a high RSA-score between a brain region of a primate and human 260
for one dataset (e.g., [4]), but this score may become much lower for another dataset. 270
Thus the observation of a similarity in representational geometry between systems must 2n
be interpreted with caution. 272

The significance of these results depends on whether you take an externalist or holistic 273
view on mental representations. According to the first view, the content of representations 27
is determined by their relationship to entities in the external world. This perspective is 275
implicitly taken by most neuroscientists and psychologists, who are interested in compar- 276
ing mechanisms underlying cognitive processes — that is, they are interested in the set 27
of nested functions and algorithms responsible for transforming sensory input into a set 2
of activations in the brain. From this perspective, our finding that high RSAs can be 27
obtained between systems that work in qualitatively different ways poses a challenge to 2s0
researchers using RSAs to compare systems. 281

Of course, a researcher with an externalist perspective may acknowledge that a second- 282
order isomorphism of activity patterns does not strictly imply that two systems are similar 2s3

mechanistically but still assume that it is highly likely to be the case. That is, as a practi- 2sa
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cal matter, a researcher may assume that RSAs are a reliable method to compare systems. 2ss
However, our findings challenge this assumption. We show how a high RSA between dif- 2ss
ferent systems can not only occur in principle, but also in practice, in high-dimensional 28
systems operating on high-dimensional data. Indeed, we show that the hierarchical struc- 2ss
ture of datasets frequently used to test similarity of representations lends itself to a high 280
RSA arising because of confounds present in the dataset. Such confounds are commonly 200
found in high-dimensional stimuli such as naturalistic images that are frequently used to 20
measure RSA [10,27]. Indeed, presence of such confounds may explain why researchers 2o
have observed high RSAs between DNNs that classify objects based on texture [15, 16] 203
and the human visual system that classifies by shape [21,28]. 204

Alternatively, a researcher may reject an externalist view and adopt the perspective 205
that representations obtain their meaning based on how they are related to each other 206
within each system, rather than based on their relationship to entities in the external 207
world. That is, “representation is the representation of similarities” [29]. From this per- 20
spective, as long as the two systems share the same relational distances between internal 200
activations, one can validly infer that the two systems have similar representations. That 300
is, a second-order isomorphism implies a similarity of representations, by definition. This 3o
view has been called holism in the philosophy of mind [30,31] and is related to a similar 3o
idea of meaning holism in language, which is the idea that the meaning of a linguistic szo3
expression is determined by its relation to other expressions within a language [32,33]. 30
For example, Firth [34] (p. 11) writes: “you shall know a word by the company it keeps”. s0s
More recently, Griffiths and Steyvers [35], and Griffiths, Steyvers, and Tenenbaum [36] 306
have adopted meaning holism accounts of semantic representations in neural networks. sor
Our results are not problematic for a researcher adopting this holistic perspective. How- 308

ever, our results show that adopting this view misses the information about differences 300
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in mechanistic processes that a psychologist or neuroscientist is frequently interested in, 3o
for instance, whether the visual system processes shape or texture (or the location of su
diagnostic pixels) in order to identify objects. Fodor and Lepore long ago criticized this s
philosophical stance [31,37], and interestingly, this philosophical debate played an im- s
portant part in the development of RSA (see Supplementary Information, Section A). s
Unfortunately, this debate has largely been ignored by researchers who use RSA as a s
method to compare similarity of systems. 316

We would also like to make it clear that the results here are not a blanket criticism of a7
the RSA approach as currently practiced. A representational dissimilarity matrix (RDM) sis
contains important information about the similarity structures of representations. Any s
mechanistically correct model of an individual or a species must capture this similarity s
structure. As such, RSA provides a benchmark for rejecting possible models. However, s
the above simulations show that RSA may be a misleading benchmark for selecting models 322
— two systems may show similar representational geometries and yet work on very different 323
transformations and features of input stimuli (for an in depth discussion about inferring 3»a
similarity of causal mechanisms from similar outcomes see [38]). 325

A related point has been made by Kriegeskorte and Diedrichson [39] and Kriegesko- 326
rte and Wei [40], who point out that two systems may have the same representational s
geometry, even if they have a different activity profile over neurons. In this sense, the ge- 328
ometry loses the information about how information was distributed over a set of neurons. 32
Kriegeskorte and Diedrichson [39] equate this loss in information to “peeling a layer of an 330
onion” — downstream decoders that are sensitive to the representational geometry rather ss:
than activity profiles over neuron populations can focus on difference in information as 33
reflected by a change in geometry and be agnostic to how this information is distributed sss

over a set of neurons. We agree that this invariance over activity profiles is indeed a 3sa
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useful property of representational geometries for downstream decoders. However, we are s3s
not aware of any studies that highlight how representational geometries also abstract over sse
behaviourally relevant stimulus properties (e.g. shape vs texture). While abstracting over s
activity profiles may be useful, abstracting over stimulus properties loses an important sss
piece of information when comparing representations across brain regions, individuals, 330
species and between brains and computational models. Our simulations show how two sa
systems may appear similar based on their representational geometries in one circum- sza
stance (e.g. Figure 2A) but drastically different in another circumstance (Figure 2B). 342

The key implication of our findings is that researchers should assess RSAs on a wider sa3
variety of datasets when comparing systems. Two systems that have the similar represen- zaa
tations should show a high RSA irrespective of the stimuli on which they are tested, and sas
testing systems on multiple datasets will reduce the likelihood that confounds or other s
factors are driving the effects. In practice, observing high RSAs after testing very differ- s
ent datasets, and datasets manipulated to avoid possible confounds, should be required s
before drawing strong conclusions regarding the similarity of two systems. In this regard, zao
the “controversial stimuli” — images on which different computational models produce dis- 350
tinct responses — developed by [41] is a step in the right direction. By testing on stimuli ss
that produce distinct responses in different models, one can adjudicate between models 352
by comparing their representational geometries to the representational geometry of a tar- sss
get system. Combining RSA results with a range of methods, including experimental ssa
studies that stringently test hypotheses about how different systems work, seems the best 3ss

approach going forward. 356
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Methods 357

Dataset generation and training 358

All DNN simulations (Simulations 2-4) were carried out using the Pytorch framework [42]. s
The model implementations were downloaded from the torchvision library. Networks seo
trained on unperturbed datasets in all simulations were pre-trained on ImageNet as were se
networks trained on modified datasets in Simulation 2. Networks trained on modified ss2
datasets in Simulations 3 and 4 were randomly initialised. For the pre-trained models, 363

their pre-trained weights were downloaded from torchvision.models subpackage. 364

Simulation 1 Each dataset in Simulation 1 consists of 100 samples (50 in each cluster) ses
drawn from two multivariate Gaussians, N (z|u, X), where p is a 2-dimensional vector and s
3 is a 2x2 covariance matrix. In Figure 2A, the two Gaussians have means piq = (1,8) and 67
pz2 = (8,1) and a covariance matrices ¥, = g = %I, while in Figure 2B the Gaussians sss
have means 1 = (1,1) and ps = (8,8) and a covariance matrices 37 = I, ¥y = 8. 360
All kernel matrices were computed using the sklearn.metrics.pairwise module of the 30

scikit-learn Python package. 371

Simulation 2 First, a VGG-16 deep convolutional neural network [43|, pre-trained on 7
the ImageNet dataset of naturalistic images, was trained to classify stimuli from the 373
CIFAR-10 dataset [44]. The CIFAR-10 dataset includes 10 categories with 5000 training, s7a
and 1000 test images per category. The network was fine-tuned on CIFAR-10 by replacing s7s
the classifier so that the final fully-connected layer reflected the correct number of target sz
classes in CIFAR-10 (10 for CIFAR-10 as opposed to 1000 for ImageNet). Images were s
rescaled to a size of 224 x 224px and then the model learnt to minimise the cross-entropy s

error using the RMSprop optimizer with a mini-batch size of 64, learning rate of 107>, 37
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and momentum of 0.9. All models were trained for 10 epochs, which were sufficient for sso
convergence across all datasets. 381

Second, 100 random images from the test set for each category were sampled as in- s
put for the network and activations at the final convolutional layer extracted using the ss3
THINGSVision Python toolkit [45]. The same toolkit was used to generate a representa- ss
tional dissimilarity matrix (RDM) from the pattern of activations using 1-Pearson’s r ss
as the distance metric. The RDM was then averaged by calculating the median distance sse
between each instance of one category with each instance of the others (e.g., the median ss7
distance between Airplane and Ship was the median of all pair-wise distances between sss
activity patterns for airplane and ship stimuli). This resulted in a 10 x 10, category-level, 3s0
RDM which reflected average between-category distances. 390

Third, three modified versions of the CIFAR-10 datasets were created for the ‘Positive’, 30
‘Uncorrelated’ and ‘Negative’ conditions, respectively. In each dataset, we added one 3o
diagnostic pixel to each image, where the location of the pixel depended on the category zos
(See Figure 4). The locations of these pixels were determined using the averaged RDM 304
from the previous step. We call this the target RDM. In the ‘Positive’ condition, we 305
wanted the distances between pixel placements to be positively correlated to the distances o6
between categories in the target RDM. We achieved this by using an iterative algorithm so
that sampled pixel placements at random, calculated an RDM based on distances between 308
the pixel placements and computed an RSA-score (Spearman correlation) with the target 3o
RDM. Placements with a score above 0.70 were retained and further optimized (using a0
small perturbations) to achieve an RSA-score over 0.90. The same procedure was also o
used to determine placements in the Uncorrelated (optimizing for a score close to 0) and o2
Negatively correlated (optimizing for a negative score) conditions. 403

Finally, datasets were created using 10 different placements in each of the three condi- 404
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tions. Networks were trained for classification on these modified CIFAR-10 datasets in the 4os
same manner as the VGG-16 network trained on the unperturbed version of the dataset a6

(See Figure 3). a07

Simulation 3 The procedure mirrored Simulation 2 with the main difference being aos
that the target system was the macaque inferior temporal cortex. Neural data from two a0
macaques, as well as the dataset were obtained from the Brain Score repository [46]. w0
This dataset consists of 3200 images from 8 categories (animals, boats, cars, chairs, faces, au
fruits, planes, and tables), we computed an 8 x 8 averaged RDM based on macaque IT 4
response patterns for stimuli in each category. a13

This averaged RDM was then used as the target RDM in the optimization procedure ais
to determine locations of the confound (here, a white predictive patch of size 5 x 5 pixels) s
for each category. Using a patch instead of a single pixel was required in this dataset s
because of the structure and smaller size of the dataset (3200 images, rather than 50,000 a7
images for CIFAR-10). In this smaller dataset, the networks struggle to learn based on a s
single pixel. However, increasing the size of the patch makes these patches more predictive a0
and the networks are able to again learn entirely based on this confound (see results in 420
Figure 5). In a manner similar to Simulation 2, this optimisation procedure was used a1
to construct three datasets, where the confound’s placement was positively correlated, a2
uncorrelated or negatively correlated with the category distances in the target RDM. 423

Finally, each dataset was split into 75% training (2432 images) and 25% test sets (768 a2
images) before VGG-16 networks were trained on the unperturbed and modified datasets a2s
in the same manner as in Simulation 2. One difference between Simulations 2 and 3 a2
was that here the networks in the Positive, Uncorrelated and Negative conditions were 427

trained from scratch, i.e., not pre-trained on ImageNet. This was done because we wanted s2s
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to make sure that the network in the Normal condition (trained on ImageNet) and the a2
networks in the Positive, Uncorrelated and Negative conditions encoded fundamentally 430
different features of their inputs —i.e., there were no ImageNet-related features encoded by 41
representations ®,, @3 and &, that were responsible for the similarity in representational a3

geometries between these representations and the representations in macaque I'T cortex. a3

Simulation 4 The target system in this simulation was human IT cortex. The human a3
RDM and dataset were obtained from [4]. Rather than calculating pixel placements based 435
on the human RDM, the hierarchical structure of the dataset was used to place the pixels 136
manually. The dataset consists of 910 images from 6 categories: human bodies, human 437
faces, animal bodies, animal faces, artificial inanimate objects and natural inanimate ass
objects. These low-level categories can be organised into the hierarchical structure shown aso
in Figure 7. Predictive pixels were manually placed so that the distance between pixels 40
for Animate kinds were closer together than they were to Inanimate kinds and that faces aa
were closer together than bodies. This can be done in many different ways, so we created a2
five different datasets, with five possible arrangements of predictive pixels. Results in a3
the Hieararchical condition (Figure 8) are averaged over these five datasets. Placements s
for the Random condition were done similarly, except that the locations were selected ass
randomly. 246

Networks were then trained on a 6-way classification task (818 training images and s
92 test images) in a similar manner to the previous simulations. As in Simulation 3, aas
networks trained on the modified datasets (both Hierarchical and Random conditions) as

were not pre-trained on ImageNet. 450
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RDM and RSA computation 451

For Simulations 2-4 all image-level RDMs were calculated using 1 — r as the distance as2
measure. RSA scores were computed as the Spearman rank correlation between RDMs. 453

In Simulation 2, a curated set of test images was selected due to the extreme hetero- asa
geneity of the CIFAR-10 dataset (low activation pattern similarity between instances of sss
the same category). This was done by selecting 5 images per category which maximally ass
correlated with the averaged activation pattern for the category. Since CIFAR-10 con- sz
sists of 10 categories, the RSA-scores in Simulation 2 were computed using RDMs of size sss
50 x 50. 450

In Simulation 3, the dataset consisted of 3200 images belonging to 8 categories. We 160
first calculated a full 3200 x 3200 RDM using the entire set of stimuli. An averaged, ae:
category-level, 8 x 8 RDM was then calculated using median distances between categories ez
(in a manner similar to that described for Simulation 2 in the Section ‘Dataset generation aes
and training’). This 8 x 8 RDM was used to determine the RSA-scores. We also obtained s
qualitatively similar results using the full 3200 x 3200 RDMs. These results can be found ses
in the Supplementary Information, Section B. 466

In Simulation 4, the dataset consisted of 818 training images and 92 test images. 467
Kriegeskorte et al. [4] used these images to obtain a 92 x 92 RDM to compare representa- 4ss
tions between human and macaque IT cortex. Here we computed a similar 92 x 92 RDM 460
for networks trained in the Normal, Hierarchical and Random training conditions, which 470
were then compared with the 92 x 92 RDM from human IT cortex to obtain RSA-scores an:

for each condition. 472
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Testing 473

In Simulation 2, we used a 4 x 2 design to measure classification performance for networks s7a
in all four conditions (Normal, Postive, Uncorrelated and Negative) on both unperturbed a5
images and modified images. We computed six RSA-scores: three pairs of networks — 476
Normal-Positive, Normal-Uncorrelated and Normal-Negative — and two types of inputs — a7
unperturbed and modified test images. The noise ceiling (grey band in Figure 5) was de- s
termined in the standard way as described in [47] and represents the expected range of the a7
highest possible RSA score with the target system (network trained on the unperturbed sso
dataset). 481

In Simulation 3, performance was estimated in the same manner as in Simulation 2 as
(using a 4 x 2 design), but RSA-scores were computed between RDMs from macaque IT a3
activations and the four types of networks —i.e. for the pairs Macaque-Normal, Macaque- 4sa
Positive, Macaque-Uncorrelated and Macaque-Negative. And like in Simulation 2, we ass
determined each of these RSA-scores for both unperturbed and modified test images as sss
inputs to the networks. 487

In Simulation 4, performance and RSA were computed in the same manner as in ass
Simulation 3, except that the target RDM for RSA computation came from activations aso
in human IT cortex and the networks were trained in one of three conditions: Normal, e

Hierarchical and Random. 491

Data analysis 492

Performance and RSA scores were compared by running analyses of variance and Tukey 403
HSD post-hoc tests. In Simulations 2 and 3, performance differences were tested by 4

running a 4 (type of training) by 2 (type of dataset) mixed ANOVAs. In, Simulation 4, s
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the differences were tested by running a 3x2 mixed ANOVA. 496

RSA scores with the target system between networks in various conditions were com- o7
pared by running 3x2 ANOVAs in Simulations 2 and 3, and a 2x2 ANOVA in Simulation aos
4. We observed that RSA-scores were highly dependent on both the way the networks ss
were trained and also the test images used to elicit response activations. 500
For a detailed overview of the statistical analyses and results, see Supplemental Informa- so1

tion Section C. 502

Data Availability 503

Confound placement coordinates (all simulations), unperturbed datasets (Simulations 3 sos
and 4), macaque activation patterns and RDMs (Simulation 3) and human RDM (Simu- sos

lation 4) are available at OSE. 506
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