
The pitfalls of measuring representational similarity

using representational similarity analysis

Marin Dujmović1*, Jeffrey S Bowers1, Federico Adolfi1,2, and Gaurav

Malhotra1

1School of Psychological Science, University of Bristol, Bristol, UK

2Ernst-Strüngmann Institute for Neuroscience in Cooperation with Max-Planck Society,

Frankfurt, Germany

*marin.dujmovic@bristol.ac.uk

April 1, 2022

Abstract

A core challenge in neuroscience is to assess whether diverse systems represent

the world similarly. Representational Similarity Analysis (RSA) is an innovative

approach to address this problem and has become increasingly popular across disci-

plines from machine learning to computational neuroscience. Despite these successes,

RSA regularly uncovers difficult-to-reconcile and contradictory findings. Here we

demonstrate the pitfalls of using RSA to infer representational similarity and explain

how contradictory findings arise and support false inferences when left unchecked.

By comparing neural representations in primate, human and computational mod-

els, we reveal two problematic phenomena that are ubiquitous in current research:

a “mimic” effect, where confounds in stimuli can lead to high RSA scores between

provably dissimilar systems, and a “modulation effect”, where RSA-scores become

dependent on stimuli used for testing. Since our results bear on existing findings

and inferences, we provide recommendations to avoid these pitfalls and sketch a way

forward.
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Introduction 1

How do other animals see the world? Do different species represent the world in a similar 2

manner? How do the internal representations of AI systems compare with humans and 3

animals? The traditional scientific method of probing internal representations of humans 4

and animals (popular in both psychology and neuroscience) relates them to properties 5

of the external world. By moving a line across the visual field of a cat, [1] found out 6

that neurons in the visual cortex represent edges moving in specific directions. In another 7

Nobel-prize winning work, [2] discovered that neurons in the hippocampus represent the 8

location of an animal in the external world. Despite these successes it has proved difficult 9

to relate internal representations to more complex properties of the world. Moreover, 10

relating representations across individuals and species is challenging due to the differences 11

in experience across individuals and differences of neural architectures across species. 12

These challenges have led to recent excitement around Representation Similarity Anal- 13

ysis (RSA) which appears to overcome many of these obstacles. RSA usually takes pat- 14

terns of activity from two systems and computes how the distances between activations in 15

one system correlate with the distances between corresponding activations in the second 16

system (see Figure 1). Rather than compare each pattern of activation in the first system 17

directly to the corresponding pattern of activation in the second system, it computes a 18

second-order measure of similarity, comparing the systems based on their representational 19

geometries. The advantage of looking at representational geometries is that one no longer 20

needs to match the architecture of two systems, or even the format of the initial activity 21

patterns (see Supplementary Information, Section A for a brief history of RSA and its 22

philosophical origins). One could compare, for example, fMRI signals with single cell 23

recordings, EEG traces with behavioural data, or vectors in a computer algorithm with 24
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Figure 1: RSA calculation. A series of stimuli from a set of categories (or conditions)

are used as inputs to two different systems (for example, a human brain and a primate

brain). Activity from regions of interest is recorded for each stimulus. Pair-wise distances

in activity patterns are calculated to get the representational geometry of each system.

This representational geometry is expressed as a representational dissimilarity matrix

(RDM) for each system. Finally, an RSA score is determined by computing the correlation

between the two RDMs.

spiking activity of neurons [3]. RSA is now ubiquitous in computational psychology and 25

neuroscience and has been applied to compare object representations in humans and pri- 26

mates [4], representations of visual scenes by different individuals [5,6], representations of 27

visual scenes in different parts of the brain [7], to study specific processes such as cognitive 28

control [8] or the dynamics of object processing [9], and most recently, to relate neuronal 29

activations in human (and primate) visual cortex with activations of units in Deep Neural 30

Networks [10–14]. 31

However, some recent research suggests that RSA may be an unreliable measure of how 32
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similarly two systems represent the world. For example, many studies [15–19] have shown 33

that Convolutional Neural Networks (CNNs), trained on standard image datasets, such 34

as ImageNet, classify input images based on shortcuts, such as their texture. Activations 35

in these same networks also show a high RSA with activations in the human and primate 36

inferior temporal cortex [10, 11], even though it is well-known that humans primarily 37

represent objects based on their global properties such as shape, rather than shortcuts, 38

such as texture [20–22]. Similarly, some studies using RSA have shown that the hierarchy 39

of representations in the ventral visual stream in humans and primates correlates with 40

the hierarchy of representations in the layers of a CNN – i.e., deeper layer in a CNN 41

have a higher RSA with deeper layer in the visual ventral stream [10]. But [23] have 42

recently shown that this correspondence is dataset-dependent and does not replicate for 43

some naturalistic and artificial stimuli. 44

How is it possible for two systems to have a high RSA score but represent different 45

features of inputs? Through a series of simulations that capture increasingly plausible 46

training and testing scenarios, we demonstrate the properties of datasets and procedures 47

that, in practice, lead to high RSA scores between mechanistically dissimilar systems. 48

The experiments showcasing these pitfalls span the entire spectrum from artificial intel- 49

ligence to computational neuroscience, involving comparisons within and between sets of 50

artificial and biological systems. In particular, we shed light on two problematic phe- 51

nomena that bear on any efforts to compare systems based on RSA: 1) the presence of 52

confounds in the training data which leads systems to mimic each other’s representational 53

geometry even in the absence of mechanistic similarity, 2) the artifactual modulation of 54

RSA scores due to the intrinsic structure of datasets rather than system alignment. Our 55

demonstrations provide an explanation of how these phenomena, which arise ubiquitously, 56

underlie contradictory and paradoxical findings in the literature. Since our results have 57
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considerable generality with respect to current practices across multiple fields, we discuss 58

the implications for published results and prevailing interpretations, and provide broadly 59

applicable recommendations to move forward. 60

Results 61

Simulation 1: RSA between systems with different transformations 62

We will now show an example of how two systems can end up with very similar representa- 63

tional geometries even though they (i) select different features of inputs and (ii) transform 64

their inputs through very different functions. Consider a set of stimuli, {x1, . . . ,xn} from 65

two classes that form two clusters in the input space as shown in Figure 2A. Let us as- 66

sume that each stimulus, xi contains multiple features that independently predict the 67

class of the stimulus. We will call each of these predictive features confounds. For ex- 68

ample, shape and texture can be confounds when classifying an image as belonging to 69

DOG or AEROPLANE classes if each feature can be independently used to predict whether an 70

image belongs to the DOG or AEROPLANE class. Consider two recognition systems Φ1 and 71

Φ2 that map each input stimulus, xi, to an internal representation using their respective 72

transformation functions, Φ1(xi) and Φ2(xi). Furthermore, we will assume that Φ1 and 73

Φ2 are qualitatively different functions and act on different features of the input. We 74

are interested in showing that such qualitatively different functions acting on different 75

features can nevertheless end up with similar representational geometries. 76

The representational distance, d[xi, xj ], between the projections of any pair of input

stimuli, xi and xj , is proportional to the inner product between their projection in the
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Figure 2: RSA between two systems with known transformations. In each panel

a set of 2D stimuli are transformed using two different functions (Φ1 and Φ2), which

project these stimuli into two different representational spaces. The distance between

these projections are given by the RBF and Cosine kernels, respectively (see main text).

The geometry of these projections can be visualised using the kernel matrices, which

show the pair-wise distances between all stimuli in the representational space. The bar

graph on the right-hand-side shows the RSA-score computed as a Pearson correlation (ρ),

Spearman’s rank correlation (rs) and Kendall’s rank correlation (τ). We can see that

the input stimuli in Panel A leads to a high correlation in the representational geometry

of the two systems, while the input stimuli in Panel B leads to a low correlation, even

though the transformations remain the same.
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feature space:

d[xi, xj ] ∝ Φ(xi) · Φ(xj) (1)

Thus, we can obtain the representational geometry of the input stimuli, {x1, . . . ,xn}, by

computing the pairwise distances, d[xi, xj ] for all pairs of data points, (i, j). Here, we

assume that the projections Φ1 and Φ2 are such that these pairwise distances are given

by two positive semi-definite kernel functions κ1(xi, xj) and κ2(xi, xj), respectively:

κ1(xi, xj) = Φ1(xi) · Φ1(xj) (2)

κ2(xi, xj) = Φ2(xi) · Φ2(xj) (3)

Now, let us consider two qualitatively different kernel functions: κ1(xi, xj) = e
||xi−xj ||

2

2σ2 is a 77

radial-basis kernel (where σ2 is the bandwidth parameter of the kernel), while κ2(xi, xj) = 78

xT
i xj

||xi||||xj ||
is a cosine kernel. Figure 2A shows a dataset of points in a 2D input space that 79

are projected by two different systems into a cosine and RBF kernel space. Since the 80

cosine and RBF kernels are Mercer kernels [24,25], each kernel matrix in Figure 2A shows 81

the pairwise distances (as measured by the inner product) between data points projected 82

in the two feature spaces. We can determine how the geometry of these projections in 83

the two systems relate to each other by computing the correlation between the kernel 84

matrices, shown on the right-hand-side of Figure 2A. We can see from these results that 85

the kernel matrices are highly correlated – i.e., the input stimuli are projected to very 86

similar geometries in the two representational spaces. 87

If one did not know the input transformations and simply observed the correlation 88

between kernel matrices, it would be tempting to infer that the two systems Φ1 and Φ2 89
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transform an unknown input stimulus x through a similar set of functions – for example 90

functions that belong to the same class or project inputs to similar representational spaces. 91

However, this would be an error. The projections Φ1(x) and Φ2(x) are fundamentally 92

different – Φ1 (radial basis kernel) projects an input vector into an infinite dimensional 93

space, while Φ2 (cosine kernel) projects it onto a unit sphere. The difference between these 94

functions becomes apparent if one considers how this correlation changes if one considers 95

a different set of input stimuli. For example, the set of data points shown at the left of 96

Figure 2B, are projected to very different geometries, leading to a low correlation between 97

the two kernel matrices (right-hand side). 98

In fact, the reason for highly correlated kernel matrices in Figure 2A is not a similarity 99

in the transformations Φ1 and Φ2 but the structure of the dataset. The representational 100

distance between any two points xi and xj in Φ1 is a function of their Euclidean distance 101

||xi−xj||, while in Φ2, it is a function of their cosine distance, xT
i xj . These two features 102

– Euclidean distance and cosine distance – mimic each other for certain datasets. In the 103

dataset in Figure 2A, the stimuli is clustered such that the Euclidean distance between 104

any two stimuli is correlated with their cosine distance. However, for the dataset in 105

Figure 2B, the Euclidean distance is no longer correlated with the angle and the confounds 106

lead to different representational geometries. Thus, this example illustrates how: (i) two 107

systems acting on very different features of inputs can nevertheless end up with similar 108

representational geometries when these features are able to mimic each other, and (ii) 109

when the two systems are non-identical, the correlation in representational geometries 110

will be modulated by the structure of the data – two systems may show a high correlation 111

in their representational geometries on one set but a low correlation on another set. 112
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Simulation 2: RSA between systems with different feature encod- 113

ings 114

Simulation 1 made a number of simplifying assumptions – the dataset was two-dimensional, 115

clustered into two categories and we intentionally chose functions Φ1 and Φ2 such that the 116

kernel matrices were correlated in one case and not correlated in the other. It could be 117

argued that, even though the above results hold in principle, they are unlikely in practice 118

when the transformations and data structure are more complex. Indeed, it is possible 119

that a similarity in representational geometries becomes less likely as one increases the 120

number of categories (i.e., clusters or conditions) being considered. 121

To address this objection, we now consider a more complex setup, where the transfor- 122

mations Φ1 and Φ2 are modelled as feedforward deep neural networks (DNNs), trained to 123

classify a high-dimensional dataset into multiple categories. Many studies that use RSA 124

compare systems using naturalistic images as visual inputs [4,10]. While using naturalis- 125

tic images brings research closer to the real-world, it is also well-known that datasets of 126

naturalistic images frequently contain confounds – independent features that can predict 127

image categories [13]. We will now show how the simplest of such confounds, a single pixel, 128

can lead to a high RSA between two DNNs that encode qualitatively different features of 129

inputs. 130

Consider the same setup as above, where an input stimulus, x, is transformed to a 131

representation space by two systems, Φ1 and Φ2. Instead of a two-dimensional input space, 132

x now exists in a high-dimensional image space and Φ1 and Φ2 are two versions of a DNN – 133

VGG-16 – trained to classify input images into different categories. We ensured that Φ1 and 134

Φ2 were qualitatively different transformations of input stimuli by making the networks 135

sensitive to different predictive features within the stimuli. The first network was trained 136
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Figure 3: Training and testing DNNs with different feature encodings. Panel A

shows the training procedure for Simulations 2–4, where we created two versions of the

original dataset (gray), one containing a confound (blue) and the other left unperturbed

(yellow). These two datasets were used to train two networks (gray) on a categorisation

task, resulting in two networks that learn to categorise images either based on the confound

(projection Φ2) or based on statistical properties of the unperturbed image (projection

Φ1). Panel B shows the testing procedure where each network was tested on stimuli from

each dataset – leading to a 2x2 design. Performance on these datasets was used to infer

the features that each network encoded and their internal response patterns were used to

calculate RSA-scores between the two networks.

on an unperturbed dataset, while the second network was trained on a modified version 137

of the dataset, where each image was modified to contain a confound – a single pixel in a 138

location that was diagnostic of the category (see Figure 3 for the general approach). 139

The locations of these diagnostic pixels were chosen such that they were correlated to 140

the corresponding representational distances between classes in Φ1. Our hypothesis was 141

that if the representational distances in Φ2 preserve the physical distances of diagnos- 142

tic pixels in input space, then this confound will end up mimicking the representational 143
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Figure 4: Simulation 2 confound placement. The representational geometry (Panel A

and B) from the network trained on the unperturbed CIFAR-10 images is used to determine

the location of the single pixel confound (shown as a red patch here) for each category. In

the ‘Positive’ condition (Panel C), we determined 10 locations in a 2D plane such that the

distances between these locations were positively correlated to the representational geom-

etry – illustrated here as the red patches in Panel C being in similar locations to category

locations in Panel B. These 10 locations were then used to insert a single diagnostic – i.e.,

category-dependent – pixel in each image (Insets in Panel C). A similar procedure was

also used to generate datasets where the confound was uncorrelated (Panel D) or nega-

tively correlated (not shown here) with the representational geometry of the network.
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geometry of Φ1, even though the two systems use qualitatively different features for clas- 144

sification. Furthermore, we trained two more networks, Φ3 and Φ4, which were identical 145

to Φ2, except these networks were trained on datasets where the location of the confound 146

was uncorrelated (Φ3) or negatively correlated (Φ4) with the representational distances 147

in Φ1 (see Figure 4 and Methods for details). 148

Classification accuracy (Figure 5 (left)) revealed that the network Φ1, trained on the 149

unperturbed images, learned to classify these images and ignored the diagnostic pixel 150

– that is, it’s performance was identical for the unperturbed and modified images. In 151

contrast, networks Φ2 (positive), Φ3 (uncorrelated) and Φ4(negative) failed to classify the 152

unperturbed images (performance was statistically at chance) but learned to perfectly 153

classify the modified images, showing that these networks develop qualitatively different 154

representations compared to normally trained networks. 155

Next we computed pairwise RSA scores between the representations at the last con- 156

volution layer of Φ1 and each of Φ2,Φ3 and Φ4 (Figure 5 (right)). When presented un- 157

perturbed test images, the Φ2,Φ3 and Φ4 networks all showed low RSA scores with the 158

normally trained Φ1 network. However, when networks were presented with test images 159

that included the predictive pixels, RSA varied depending on the geometry of pixel loca- 160

tions in the input space. When the geometry of pixel locations was positively correlated 161

to the normally trained network, RSA scores approached ceiling (i.e., comparable to RSA 162

scores between two normally trained networks). Networks trained on uncorrelated and 163

negatively correlated pixel placements scored much lower. 164

These results mirror Simulation 1: we observed that it is possible for two networks 165

(Φ1 and Φ2) to show highly correlated representational geometries even though these 166

networks learn to classify images based on very different features. One may argue that 167

this could be because the two networks could have learned similar representations at 168
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Figure 5: Simulation 2 results. Left: Performance of normally trained networks did not

depend on whether classification was done on unperturbed CIFAR-10 images or images

with a single pixel confound (error bars represent 95% CI). All three networks trained on

datasets with confounds could perfectly categorise the test images when they contained

the confound (blue bars), but failed to achieve above-chance performance if the predictive

pixel was not present (yellow bars). Right: The RSA score between the network trained

on the unperturbed dataset and each of the networks trained on datasets with confounds.

The three networks showed similar scores when tested on images without confounds, but

vastly different RSA scores when tested on images with confounds. Networks in the

Positive condition showed near ceiling scores (the shaded area represents noise ceiling)

while networks in the Uncorrelated and Negative conditions showed much lower RSA.

13

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2022. ; https://doi.org/10.1101/2022.04.05.487135doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.05.487135
http://creativecommons.org/licenses/by-nc/4.0/


the final convolution layer of the DNN and it is the classifier that sits on top of this 169

representation that leads to the behavioural differences between these networks. But if 170

this was true, it would not explain why RSA scores diminish for the two other comparisons 171

(with Φ3 and Φ4). This modulation of RSA-scores for different datasets suggests that, 172

like in Simulation 1, the correlation in representational geometry is not because the two 173

systems encode similar features of inputs, but because different features mimic each other 174

in their representational geometries. 175

Simulation 3: RSA between systems with different architectures 176

So far we have only considered high-dimensional systems with the same architecture – 177

both Φ1 and Φ2 were DNNs that have the same set of units and learn through the same 178

learning algorithm. Even though we observed that two systems that learn very different 179

features can show a high correlation in their representational geometries, it could be 180

argued that this is only possible because of the shared architecture and learning algorithm 181

that underlies the two systems. On this veiw, a high RSA between systems that differ in 182

architecture – e.g. a human and a macaque, or a DNN and a human – is unlikely unless 183

both systems encode similar features of their inputs. 184

We address this argument in our next simulation, which compares representational 185

geometries between activations in a DNN and macaque visual cortex. The experimental 186

setup was similar to Simulation 2. We used the same set of images that were shown 187

to macaques by [26] and modified this dataset to superimpose a small diagnostic patch 188

on each image. In the same manner as in Simulation 2 above, we constructed three 189

different datasets, where the locations of these diagnostic patches were either positively 190

correlated, uncorrelated or negatively correlated with the RDM of macaque activations. 191

We then trained four CNNs. The first CNN was pre-trained on ImageNet and then fine- 192
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Figure 6: Simulation 3 results. Left: Classification Performance of the network trained

on unperturbed images (Normal condition) did not depend on the presence or absence of

the confound, while performance of networks trained with the confound (Positive, Uncor-

related and Negative conditions) highly depended on whether the confound was present.

Right: RSA-scores with macaque IT activations were low for all three conditions when

images did not contain a confound (yellow bars). When images contained a confound

(blue bars), the RSA-scores depended on the condition, matching the RSA-score of the

normally trained network (grey band) in the Positive condition, but decreasing signifi-

cantly in the Uncorrelated and Negative conditions. The grey band represents a 95% CI

for the RSA-score between normally trained networks and macaque IT activations.

tuned on the unmodified dataset of images shown to the macaques. Previous research 193

has shown that CNNs trained in this manner develop representations that mirror the 194

representational geometry of neurons in primate inferior temporal (IT) cortex [10]. The 195

other three networks were trained on the three modified datasets and learned to entirely 196

rely on the diagnostic patches (accuracy on images without the diagnostic patches was 197

around chance). 198

Figure 6 (right) shows the correlation in representational geometry between the macaque 199
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IT activations and activations at the final convolution layer for each of these networks. 200

The correlation with networks trained on the unmodified images is our baseline and shown 201

as the gray band in Figure 6. Our first observation was that a CNN trained to rely on 202

the diagnostic patch can indeed achieve a high RSA score with macaque IT activations. 203

In fact, the networks trained on patch locations that were positively correlated to the 204

macaque RDM matched the RSA score of the CNNs trained on ImageNet and the unmod- 205

ified dataset. This shows how two systems having very different architectures, encoding 206

fundamentally different features of inputs (single patch vs naturalistic features) can show 207

a high correspondence in their representational geometries. We also observed that, like 208

in Simulations 2, the RSA score depended on the clustering of data in the input space 209

– when patches were placed in other locations (uncorrelated or negatively correlated to 210

macaque RDMs) the RSA score became significantly lower. 211

Simulation 4: RSA using structured datasets 212

All the simulations so far have used the same method to construct datasets with con- 213

founds – we established the representational geometry of one system (Φ1) and constructed 214

datasets where the clustering of features (pixels) mirrored this geometry. However, it could 215

be argued that confounds which cluster in this manner are unlikely in practice. For exam- 216

ple, even if texture and shape exist as confounds in a dataset, the inter-category distances 217

between textures are not necessarily similar to the inter-category distances between shape. 218

However, categories in real-world datasets are usually hierarchically clustered into 219

higher-level and lower-level categories. For example, in the CIFAR-10 dataset, the Dogs 220

and Cats (lower-level categories) are both animate (members of a common higher-level 221

category) and Airplanes and Ships (lower-level categories) are both inanimate (members 222

of a higher-level category). Due to this hierarchical structure, Dog and Cat images are 223
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Figure 7: Exploiting intrinsic dataset hierarchy in order to place confounds.

The top panel shows the hierarchical structure of categories in the dataset, which was

used to place the single pixel confounds. The example at the bottom (middle) shows one

such hierarchical placement scheme where the pixels for Inanimate images were closer

to the top of the canvas while Animate images were closer to the bottom. Within the

Animate images, the pixels for Humans and Animals were placed at the left and right,

respectively, and the pixels for bodies (B) and faces (F) were clustered as shown.

likely to be closer to each other not only in their shape, but also their colour and texture 224

(amongst other features) than they are to Airplane and Ship images. In our next simula- 225

tion, we explore whether this hierarchical structure of categories can lead to a correlation 226

in representational geometries between two systems that learn different feature encodings. 227

For this simulation, we selected a popular dataset used for comparing representational 228

geometries in humans, macaques and deep learning models [11,27]. This dataset consists 229
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of six categories which can be organised into a hierarchical structure shown in Figure 7. [4] 230

showed a striking match in RDMs for response patterns elicited by these stimuli in human 231

and macaque IT. For both humans and macaques, distances in response patterns were 232

larger between the higher-level categories (animate and inanimate) than between the 233

lower-level categories (e.g., between human bodies and human faces). 234

We used a similar experimental paradigm to the above simulations, where we trained 235

networks to classify stimuli which included a single predictive pixel. But instead of using 236

an RDM to compute the location of a diagnostic pixel, we used the hierarchical categorical 237

structure. In the first modified version of the dataset, the location of the pixel was based 238

on the hierarchical structure of categories in Figure 7 – predictive pixels for animate 239

kinds were closer to each other than to inanimate kinds, and pixels for faces were closer 240

to each other than to bodies, etc. One such configuration can be seen in Figure 7. In the 241

second version, the predictive pixel was placed at a random location for each category 242

(but, of course, at the same location for all images within each category). We call these 243

conditions ‘Hierarchical’ and ‘Random’. [11] showed that the RDM of average response 244

patterns elicited in the human IT cortex (Φ1) correlated with the RDM of a DNN trained 245

on naturalistic images (Φ2). We explored how this compared to the correlation with the 246

RDM of a network trained on the Hierarchical pixel placement (Φ3) and Random pixel 247

placement (Φ4). 248

Results for this simulation are shown in Figure 8. We observed that representational 249

geometry of a network trained on Hierarchically placed pixels (Φ3) was just as correlated 250

to the representational geometry of human IT responses (Φ1) as a network trained on nat- 251

uralistic images (Φ2). However, when the pixel locations for each category were randomly 252

chosen, this correlation decreased significantly. These results suggest that any confound in 253

the dataset (including texture, colour or low-level visual information) that has distances 254
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Figure 8: Simulation 4 results. Left: Performance of normally trained networks did

not depend on whether the confound was present. Networks trained with the confound

failed to classify stimuli without the confound (yellow bars) while achieving near perfect

classification of stimuli with the confound present (blue bars). Right: RSA with human

IT activations reveals that, when the confound was present, the RSA-score for networks

in the Hierarchical condition matched the RSA-score of normally trained network (gray

band), while the RSA-score of the network in the Random condition was significantly

lower. The grey band represents 95% CI for the RSA score between normally trained

networks and human IT.

governed by the hierarchical clustering structure of the data could underlie the observed 255

similarity in representational geometries between CNNs and human IT. More generally, 256

these results show how it is plausible that many confounds present in popular datasets 257

may underlie the observed similarity in representational geometries between two systems. 258

The error of inferring a similarity in mechanism based on a high RSA score is not just 259

possible but also probable. 260
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Discussion 261

In four simulations, we have illustrated a number of conditions under which it can be 262

problematic to infer a similarity of representations between two systems based on a corre- 263

lation in their representational geometries. We showed that two systems may transform 264

their inputs through very different functions and encode very different features of inputs 265

and yet have highly correlated representational geometries. In fact, we showed that this 266

correlation can be a product of the structure of the dataset itself. A consequence of this 267

result is that the RSA-score between two systems becomes dataset dependent. For exam- 268

ple, one may observe a high RSA-score between a brain region of a primate and human 269

for one dataset (e.g., [4]), but this score may become much lower for another dataset. 270

Thus the observation of a similarity in representational geometry between systems must 271

be interpreted with caution. 272

The significance of these results depends on whether you take an externalist or holistic 273

view on mental representations. According to the first view, the content of representations 274

is determined by their relationship to entities in the external world. This perspective is 275

implicitly taken by most neuroscientists and psychologists, who are interested in compar- 276

ing mechanisms underlying cognitive processes – that is, they are interested in the set 277

of nested functions and algorithms responsible for transforming sensory input into a set 278

of activations in the brain. From this perspective, our finding that high RSAs can be 279

obtained between systems that work in qualitatively different ways poses a challenge to 280

researchers using RSAs to compare systems. 281

Of course, a researcher with an externalist perspective may acknowledge that a second- 282

order isomorphism of activity patterns does not strictly imply that two systems are similar 283

mechanistically but still assume that it is highly likely to be the case. That is, as a practi- 284
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cal matter, a researcher may assume that RSAs are a reliable method to compare systems. 285

However, our findings challenge this assumption. We show how a high RSA between dif- 286

ferent systems can not only occur in principle, but also in practice, in high-dimensional 287

systems operating on high-dimensional data. Indeed, we show that the hierarchical struc- 288

ture of datasets frequently used to test similarity of representations lends itself to a high 289

RSA arising because of confounds present in the dataset. Such confounds are commonly 290

found in high-dimensional stimuli such as naturalistic images that are frequently used to 291

measure RSA [10, 27]. Indeed, presence of such confounds may explain why researchers 292

have observed high RSAs between DNNs that classify objects based on texture [15, 16] 293

and the human visual system that classifies by shape [21, 28]. 294

Alternatively, a researcher may reject an externalist view and adopt the perspective 295

that representations obtain their meaning based on how they are related to each other 296

within each system, rather than based on their relationship to entities in the external 297

world. That is, “representation is the representation of similarities” [29]. From this per- 298

spective, as long as the two systems share the same relational distances between internal 299

activations, one can validly infer that the two systems have similar representations. That 300

is, a second-order isomorphism implies a similarity of representations, by definition. This 301

view has been called holism in the philosophy of mind [30, 31] and is related to a similar 302

idea of meaning holism in language, which is the idea that the meaning of a linguistic 303

expression is determined by its relation to other expressions within a language [32, 33]. 304

For example, Firth [34] (p. 11) writes: “you shall know a word by the company it keeps”. 305

More recently, Griffiths and Steyvers [35], and Griffiths, Steyvers, and Tenenbaum [36] 306

have adopted meaning holism accounts of semantic representations in neural networks. 307

Our results are not problematic for a researcher adopting this holistic perspective. How- 308

ever, our results show that adopting this view misses the information about differences 309
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in mechanistic processes that a psychologist or neuroscientist is frequently interested in, 310

for instance, whether the visual system processes shape or texture (or the location of 311

diagnostic pixels) in order to identify objects. Fodor and Lepore long ago criticized this 312

philosophical stance [31, 37], and interestingly, this philosophical debate played an im- 313

portant part in the development of RSA (see Supplementary Information, Section A). 314

Unfortunately, this debate has largely been ignored by researchers who use RSA as a 315

method to compare similarity of systems. 316

We would also like to make it clear that the results here are not a blanket criticism of 317

the RSA approach as currently practiced. A representational dissimilarity matrix (RDM) 318

contains important information about the similarity structures of representations. Any 319

mechanistically correct model of an individual or a species must capture this similarity 320

structure. As such, RSA provides a benchmark for rejecting possible models. However, 321

the above simulations show that RSA may be a misleading benchmark for selecting models 322

– two systems may show similar representational geometries and yet work on very different 323

transformations and features of input stimuli (for an in depth discussion about inferring 324

similarity of causal mechanisms from similar outcomes see [38]). 325

A related point has been made by Kriegeskorte and Diedrichson [39] and Kriegesko- 326

rte and Wei [40], who point out that two systems may have the same representational 327

geometry, even if they have a different activity profile over neurons. In this sense, the ge- 328

ometry loses the information about how information was distributed over a set of neurons. 329

Kriegeskorte and Diedrichson [39] equate this loss in information to “peeling a layer of an 330

onion” – downstream decoders that are sensitive to the representational geometry rather 331

than activity profiles over neuron populations can focus on difference in information as 332

reflected by a change in geometry and be agnostic to how this information is distributed 333

over a set of neurons. We agree that this invariance over activity profiles is indeed a 334
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useful property of representational geometries for downstream decoders. However, we are 335

not aware of any studies that highlight how representational geometries also abstract over 336

behaviourally relevant stimulus properties (e.g. shape vs texture). While abstracting over 337

activity profiles may be useful, abstracting over stimulus properties loses an important 338

piece of information when comparing representations across brain regions, individuals, 339

species and between brains and computational models. Our simulations show how two 340

systems may appear similar based on their representational geometries in one circum- 341

stance (e.g. Figure 2A) but drastically different in another circumstance (Figure 2B). 342

The key implication of our findings is that researchers should assess RSAs on a wider 343

variety of datasets when comparing systems. Two systems that have the similar represen- 344

tations should show a high RSA irrespective of the stimuli on which they are tested, and 345

testing systems on multiple datasets will reduce the likelihood that confounds or other 346

factors are driving the effects. In practice, observing high RSAs after testing very differ- 347

ent datasets, and datasets manipulated to avoid possible confounds, should be required 348

before drawing strong conclusions regarding the similarity of two systems. In this regard, 349

the “controversial stimuli” – images on which different computational models produce dis- 350

tinct responses – developed by [41] is a step in the right direction. By testing on stimuli 351

that produce distinct responses in different models, one can adjudicate between models 352

by comparing their representational geometries to the representational geometry of a tar- 353

get system. Combining RSA results with a range of methods, including experimental 354

studies that stringently test hypotheses about how different systems work, seems the best 355

approach going forward. 356
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Methods 357

Dataset generation and training 358

All DNN simulations (Simulations 2–4) were carried out using the Pytorch framework [42]. 359

The model implementations were downloaded from the torchvision library. Networks 360

trained on unperturbed datasets in all simulations were pre-trained on ImageNet as were 361

networks trained on modified datasets in Simulation 2. Networks trained on modified 362

datasets in Simulations 3 and 4 were randomly initialised. For the pre-trained models, 363

their pre-trained weights were downloaded from torchvision.models subpackage. 364

Simulation 1 Each dataset in Simulation 1 consists of 100 samples (50 in each cluster) 365

drawn from two multivariate Gaussians, N (x|µ,Σ), where µ is a 2-dimensional vector and 366

Σ is a 2×2 covariance matrix. In Figure 2A, the two Gaussians have means µ1 = (1, 8) and 367

µ2 = (8, 1) and a covariance matrices Σ1 = Σ2 = 1
2
I, while in Figure 2B the Gaussians 368

have means µ1 = (1, 1) and µ2 = (8, 8) and a covariance matrices Σ1 = I, Σ2 = 8I. 369

All kernel matrices were computed using the sklearn.metrics.pairwise module of the 370

scikit-learn Python package. 371

Simulation 2 First, a VGG-16 deep convolutional neural network [43], pre-trained on 372

the ImageNet dataset of naturalistic images, was trained to classify stimuli from the 373

CIFAR-10 dataset [44]. The CIFAR-10 dataset includes 10 categories with 5000 training, 374

and 1000 test images per category. The network was fine-tuned on CIFAR-10 by replacing 375

the classifier so that the final fully-connected layer reflected the correct number of target 376

classes in CIFAR-10 (10 for CIFAR-10 as opposed to 1000 for ImageNet). Images were 377

rescaled to a size of 224× 224px and then the model learnt to minimise the cross-entropy 378

error using the RMSprop optimizer with a mini-batch size of 64, learning rate of 10−5, 379
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and momentum of 0.9. All models were trained for 10 epochs, which were sufficient for 380

convergence across all datasets. 381

Second, 100 random images from the test set for each category were sampled as in- 382

put for the network and activations at the final convolutional layer extracted using the 383

THINGSVision Python toolkit [45]. The same toolkit was used to generate a representa- 384

tional dissimilarity matrix (RDM) from the pattern of activations using 1-Pearson’s r 385

as the distance metric. The RDM was then averaged by calculating the median distance 386

between each instance of one category with each instance of the others (e.g., the median 387

distance between Airplane and Ship was the median of all pair-wise distances between 388

activity patterns for airplane and ship stimuli). This resulted in a 10× 10, category-level, 389

RDM which reflected average between-category distances. 390

Third, three modified versions of the CIFAR-10 datasets were created for the ‘Positive’, 391

‘Uncorrelated’ and ‘Negative’ conditions, respectively. In each dataset, we added one 392

diagnostic pixel to each image, where the location of the pixel depended on the category 393

(See Figure 4). The locations of these pixels were determined using the averaged RDM 394

from the previous step. We call this the target RDM. In the ‘Positive’ condition, we 395

wanted the distances between pixel placements to be positively correlated to the distances 396

between categories in the target RDM. We achieved this by using an iterative algorithm 397

that sampled pixel placements at random, calculated an RDM based on distances between 398

the pixel placements and computed an RSA-score (Spearman correlation) with the target 399

RDM. Placements with a score above 0.70 were retained and further optimized (using 400

small perturbations) to achieve an RSA-score over 0.90. The same procedure was also 401

used to determine placements in the Uncorrelated (optimizing for a score close to 0) and 402

Negatively correlated (optimizing for a negative score) conditions. 403

Finally, datasets were created using 10 different placements in each of the three condi- 404
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tions. Networks were trained for classification on these modified CIFAR-10 datasets in the 405

same manner as the VGG-16 network trained on the unperturbed version of the dataset 406

(See Figure 3). 407

Simulation 3 The procedure mirrored Simulation 2 with the main difference being 408

that the target system was the macaque inferior temporal cortex. Neural data from two 409

macaques, as well as the dataset were obtained from the Brain Score repository [46]. 410

This dataset consists of 3200 images from 8 categories (animals, boats, cars, chairs, faces, 411

fruits, planes, and tables), we computed an 8 × 8 averaged RDM based on macaque IT 412

response patterns for stimuli in each category. 413

This averaged RDM was then used as the target RDM in the optimization procedure 414

to determine locations of the confound (here, a white predictive patch of size 5×5 pixels) 415

for each category. Using a patch instead of a single pixel was required in this dataset 416

because of the structure and smaller size of the dataset (3200 images, rather than 50,000 417

images for CIFAR-10). In this smaller dataset, the networks struggle to learn based on a 418

single pixel. However, increasing the size of the patch makes these patches more predictive 419

and the networks are able to again learn entirely based on this confound (see results in 420

Figure 5). In a manner similar to Simulation 2, this optimisation procedure was used 421

to construct three datasets, where the confound’s placement was positively correlated, 422

uncorrelated or negatively correlated with the category distances in the target RDM. 423

Finally, each dataset was split into 75% training (2432 images) and 25% test sets (768 424

images) before VGG-16 networks were trained on the unperturbed and modified datasets 425

in the same manner as in Simulation 2. One difference between Simulations 2 and 3 426

was that here the networks in the Positive, Uncorrelated and Negative conditions were 427

trained from scratch, i.e., not pre-trained on ImageNet. This was done because we wanted 428
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to make sure that the network in the Normal condition (trained on ImageNet) and the 429

networks in the Positive, Uncorrelated and Negative conditions encoded fundamentally 430

different features of their inputs – i.e., there were no ImageNet-related features encoded by 431

representations Φ2,Φ3 and Φ4 that were responsible for the similarity in representational 432

geometries between these representations and the representations in macaque IT cortex. 433

Simulation 4 The target system in this simulation was human IT cortex. The human 434

RDM and dataset were obtained from [4]. Rather than calculating pixel placements based 435

on the human RDM, the hierarchical structure of the dataset was used to place the pixels 436

manually. The dataset consists of 910 images from 6 categories: human bodies, human 437

faces, animal bodies, animal faces, artificial inanimate objects and natural inanimate 438

objects. These low-level categories can be organised into the hierarchical structure shown 439

in Figure 7. Predictive pixels were manually placed so that the distance between pixels 440

for Animate kinds were closer together than they were to Inanimate kinds and that faces 441

were closer together than bodies. This can be done in many different ways, so we created 442

five different datasets, with five possible arrangements of predictive pixels. Results in 443

the Hieararchical condition (Figure 8) are averaged over these five datasets. Placements 444

for the Random condition were done similarly, except that the locations were selected 445

randomly. 446

Networks were then trained on a 6-way classification task (818 training images and 447

92 test images) in a similar manner to the previous simulations. As in Simulation 3, 448

networks trained on the modified datasets (both Hierarchical and Random conditions) 449

were not pre-trained on ImageNet. 450
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RDM and RSA computation 451

For Simulations 2-4 all image-level RDMs were calculated using 1 − r as the distance 452

measure. RSA scores were computed as the Spearman rank correlation between RDMs. 453

In Simulation 2, a curated set of test images was selected due to the extreme hetero- 454

geneity of the CIFAR-10 dataset (low activation pattern similarity between instances of 455

the same category). This was done by selecting 5 images per category which maximally 456

correlated with the averaged activation pattern for the category. Since CIFAR-10 con- 457

sists of 10 categories, the RSA-scores in Simulation 2 were computed using RDMs of size 458

50× 50. 459

In Simulation 3, the dataset consisted of 3200 images belonging to 8 categories. We 460

first calculated a full 3200 × 3200 RDM using the entire set of stimuli. An averaged, 461

category-level, 8×8 RDM was then calculated using median distances between categories 462

(in a manner similar to that described for Simulation 2 in the Section ‘Dataset generation 463

and training’). This 8×8 RDM was used to determine the RSA-scores. We also obtained 464

qualitatively similar results using the full 3200× 3200 RDMs. These results can be found 465

in the Supplementary Information, Section B. 466

In Simulation 4, the dataset consisted of 818 training images and 92 test images. 467

Kriegeskorte et al. [4] used these images to obtain a 92× 92 RDM to compare representa- 468

tions between human and macaque IT cortex. Here we computed a similar 92× 92 RDM 469

for networks trained in the Normal, Hierarchical and Random training conditions, which 470

were then compared with the 92× 92 RDM from human IT cortex to obtain RSA-scores 471

for each condition. 472
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Testing 473

In Simulation 2, we used a 4×2 design to measure classification performance for networks 474

in all four conditions (Normal, Postive, Uncorrelated and Negative) on both unperturbed 475

images and modified images. We computed six RSA-scores: three pairs of networks – 476

Normal-Positive, Normal-Uncorrelated and Normal-Negative – and two types of inputs – 477

unperturbed and modified test images. The noise ceiling (grey band in Figure 5) was de- 478

termined in the standard way as described in [47] and represents the expected range of the 479

highest possible RSA score with the target system (network trained on the unperturbed 480

dataset). 481

In Simulation 3, performance was estimated in the same manner as in Simulation 2 482

(using a 4× 2 design), but RSA-scores were computed between RDMs from macaque IT 483

activations and the four types of networks – i.e. for the pairs Macaque-Normal, Macaque- 484

Positive, Macaque-Uncorrelated and Macaque-Negative. And like in Simulation 2, we 485

determined each of these RSA-scores for both unperturbed and modified test images as 486

inputs to the networks. 487

In Simulation 4, performance and RSA were computed in the same manner as in 488

Simulation 3, except that the target RDM for RSA computation came from activations 489

in human IT cortex and the networks were trained in one of three conditions: Normal, 490

Hierarchical and Random. 491

Data analysis 492

Performance and RSA scores were compared by running analyses of variance and Tukey 493

HSD post-hoc tests. In Simulations 2 and 3, performance differences were tested by 494

running a 4 (type of training) by 2 (type of dataset) mixed ANOVAs. In, Simulation 4, 495
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the differences were tested by running a 3x2 mixed ANOVA. 496

RSA scores with the target system between networks in various conditions were com- 497

pared by running 3x2 ANOVAs in Simulations 2 and 3, and a 2x2 ANOVA in Simulation 498

4. We observed that RSA-scores were highly dependent on both the way the networks 499

were trained and also the test images used to elicit response activations. 500

For a detailed overview of the statistical analyses and results, see Supplemental Informa- 501

tion Section C. 502
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Confound placement coordinates (all simulations), unperturbed datasets (Simulations 3 504

and 4), macaque activation patterns and RDMs (Simulation 3) and human RDM (Simu- 505

lation 4) are available at OSF. 506
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