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Abstract: Xanthomonas translucens pv. translucens (Xtt) is a global barley pathogen and a 31 

concern for resistance breeding and regulation. Long-read whole genome sequences allow in-32 

depth understanding of pathogen diversity. We have completed long-read PacBio sequencing 33 

of two Minnesotan Xtt strains and an in-depth analysis of available Xtt genomes. We found that 34 

average nucleotide identity(ANI)-based approaches organize Xtt strains differently than the 35 

previously standard MLSA approach. According to ANI, Xtt forms a separate clade from 36 

Xanthomonas translucens pv. undulosa and consists of three main groups which are 37 

represented on multiple continents. The global distribution of Xtt groups suggests that 38 

regulation of seed is not important for prevention of Xtt spread. Some virulence factors, such as 39 

17 Type III-secreted effectors, are highly conserved and offer potential targets for the elicitation 40 

of broad resistance. However, there is a high degree of variation in virulence factors meaning 41 

that germplasm should be screened for resistance with a diverse panel of Xtt.  42 

 43 

 Xanthomonas translucens pathovar (pv.) translucens (Xtt) causes bacterial leaf streak, 44 

blight and black chaff of barley (Jones et al. 1917; Bragard et al. 1997; Sapkota et al. 2020). Xtt 45 

foliar infections of barley cause translucent streaks that develop into necrotic lesions. Xtt 46 

exudes out of watersoaked lesions providing an opportunity for short distance dispersal. Foliar 47 

infections are called bacterial leaf streak due to their symptomology and in severe cases are 48 

referred to as bacterial blight. Black chaff is a disease of the grain heads characterized by 49 

darkening of the glumes that is associated with seed transmission of Xtt. Little is known about 50 

the seed infection process, how black chaff develops or if seed infection is the main mechanism 51 

of Xtt dispersal. Xtt is increasingly impactful to cereal growers worldwide with recent 52 
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widespread reports in the northern United States (Curland et al. 2020), Iran (Habibian et al. 53 

2021) and Canada (Tambong et al. 2021). Though losses in barley due specifically to Xtt have 54 

not been quantified, wheat farmers can experience yield reduction as high as 40% due to 55 

infection with the closely related pathogen X. translucens pv. undulosa (Xtu) (Forster and 56 

Schaad 1988). There is no available single gene resistance to Xtt in barley breeding programs or 57 

for commercial growers.  58 

 Xtt is classified in the genomic subgroup Xt-I (Sapkota et al. 2020; Goettelmann et al. 59 

2022), which also includes wheat and barley-infecting Xtu. Xtt was historically divided into three 60 

groups (A, B and C) according to multilocus sequencing analysis (MLSA) of four housekeeping 61 

genes (Curland et al. 2018). Strains from these three groups are present globally (Curland et al. 62 

2018; Roman-Reyna et al. 2020; Shah et al. 2021). It is unknown if average nucleotide identity 63 

(ANI) based on whole genome analyses would confirm the phylogenetic groups proposed by 64 

MLSA. Recent research has also provided insights into virulence factor diversity through draft 65 

and whole genome analysis of some Xtt isolates (Peng et al. 2016; Langlois et al. 2017; Roman-66 

Reyna et al. 2020; Shah et al. 2021; Jaenicke et al. 2016). These analyses have enabled the 67 

development of diagnostic primers for general X. translucens identification (Langlois et al. 2017) 68 

and also strengthened our understanding of virulence factor repertoires from Asian Xtt 69 

(Roman-Reyna et al. 2020; Shah et al. 2021).   70 

 The only strain from the Western Hemisphere with a publicly available long-read 71 

genome was isolated in 1933 (Jaenicke et al. 2016). The lack of genome resources is a roadblock 72 

for defining North American Xtt virulence factors or immune elicitors for barley resistance 73 

screening. A better definition of North American Xtt genomic composition and virulence factor 74 
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prevalence will directly inform breeders on the most desirable host factors for conferring 75 

durable resistance to Xtt. This is also important background information for identification 76 

efforts to understand pathogen dispersal and survival and may have implications for regulations 77 

that have been based on isolates from outside of North America.  78 

 In this study we generated and analyzed high quality, complete genomes of two Xtt 79 

strains: CIX43 and CIX95. We previously characterized both strains as pathogenic on barley and 80 

non-pathogenic on wheat (Curland et al. 2018). CIX43 and CIX95 were isolated from barley in 81 

Minnesota in 2009 and 2011 and are representative of Xtt MLSA groups A and C, respectively. 82 

These strains were previously included in diversity analyses and serve as a reference for strains 83 

currently used in resistance screening programs. Therefore, we characterized these genomes to 84 

enhance diversity analysis and to help define how virulence factors relate to the broad Xtt 85 

population diversity.  86 

DNA was extracted with the Genomic DNA Buffer Set and Genomic-tip 100/G (QIAGEN®) 87 

and sequenced, in 2019, with PacBio RSII (P6-C4) and 20kb SMRT bell library (Psomagen, 88 

Rockville, MD). Reads were assembled with Flye version 2.4 (Kolmogorov et al. 2019) and 89 

genome assemblies were annotated with the National Center for Biotechnology Information 90 

(NCBI) Prokaryotic Genome Annotation Pipeline (Tatusova et al. 2016) and are publicly available 91 

(Table 1). GC content was calculated using the Rapid Annotation of microbial genomes using 92 

Subsystems Technology (Overbeek et al. 2014).  93 

   The CIX43 genome is 4,700,914 base pairs and has a total of 3,990 coding sequences 94 

(CDS). It contains two circular contigs of 4,664,501 bp and 36,413 bp with mean coverages of 95 

141X and 53X, respectively. This translates to an N50 of 4,664,501 and L50 of 1. The second 96 
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contig is a plasmid based on the results from Blastn search against the NCBI nucleotide 97 

collection database (Zhang et al. 2000). The results indicate the plasmid has 81% coverage and 98 

85.92% identity to a X. campestris pv. campestris plasmid. No significant homology to X. 99 

translucens genomes were found in the same search. The CIX95 genome has 4,647,206 base 100 

pairs in a single contig with a mean coverage of 173X and 3,926 total CDS, for an N50 of 101 

4,647,206 and L50 of 1. Both strains have a GC content of 67.8% and their average nucleotide 102 

identity (ANI) is 99.24% (Table S1). 103 

 The geographic distribution of Xtt populations remains unclear. Xtt has been isolated 104 

from all continents except Antarctica (Sapkota et al. 2020), but it remains uncertain if this 105 

distribution is from seed or an unknown environmental source. Phylogenomics provides a 106 

method to capture Xtt genetic diversity and characterize Xtt subgroups to begin to infer 107 

inoculum sources. To define the genomic relationships among CIX43, CIX95 and 11 additional 108 

Xtt genomes (Table 1), ANI and life identification numbers (LINs) were calculated with the 109 

webtools Enveomics and LINbase, respectively (Rodriguez-R and Konstantinidis 2016; Tian et al. 110 

2020). Xtu LW16 and X. translucens pv. cerealis (Xtc) CFBP 2541 were used as outgroups (Pesce 111 

et al. 2015).  112 

The Enveomics ANI and LINbase LIN analyses demonstrate that there are three major 113 

Xtt groups, which are internationally dispersed and distinct from Xtu and Xtc (Fig. 1). CIX43 and 114 

CIX95 are in the same phylogenetic cluster and LINgroup. Xtt strains have a high degree of 115 

homology as they share at minimum 98.88% ANI (Table S1). Analyzed Xtt strains have between 116 

97.56% and 97.79% ANI to Xtu LW16 and between 94.89% and 95.07% ANI to Xtc strain CFBP 117 

2541 (Table S1). We further validated this approach by providing LINs for each of the analyzed 118 
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strains. According to their LINs, Xtt strains form a separate LINgroup 119 

(15A,1B,1C,0D,0E,0F,1G,0H,0I,0J) from Xtu and Xtc are best divided into three LIN subgroups with a 120 

minimum of 99% ANI within each: 1(Xtt:1K), 2(Xtt:0K), 3(Xtt:2K) (Fig. 1). Strains from different 121 

years and locations intermixed, which argues against seed dissemination by these pathogens.  122 

 Traditional diversity analysis for Xanthomonas pathogens like Xtt was MLSA (Young et al. 123 

2008; Curland et al. 2018). Our ANI analyses, however, are not in agreement with the previous 124 

MLSA groupings (Fig. S1). Briefly, for MLSA, the sequences of four housekeeping genes rpoD, 125 

dnaK, fyuA and gyrB were concatenated according to Curland et al. (2018). The webtool 126 

NGPhylogeny was used to align the concatenated sequences with MAFFT, curate them with 127 

Gblocks and infer a tree with MrBayes (Lemoine et al. 2019). A tree with the studied Xtt strains 128 

and those from Curland et al. (2018) was created (Fig. S1) along with a tree only including 129 

studied strains for comparison to ANI-based analyses (Fig. S2). In agreement with previous 130 

work, the MLSA trees divided Xtt into 3 groups, one of which also contained the Xtu strain 131 

LW16 (Fig. S1, S2). Previous genomic studies had shown that Xtu was phylogenetically distinct 132 

based on whole genome analysis (Peng et al. 2016) or MLSA with 12 housekeeping genes 133 

(Langlois et al. 2017), suggesting that MLSA did not appropriately capture genetic diversity. 134 

Overall, our whole genome sequencing approach agrees with this finding because we find a 135 

phylogenetic separation between Xtt and Xtu and phylogenetic relationships between Xtt 136 

strains that do not match MLSA analysis. Therefore, four gene MLSA is not an appropriate 137 

method to define genetic classifications for Xtt.  138 

 Xanthomonas phytopathogens deploy a wide range of virulence factors, including 139 

secreted effectors, during pathogenesis (Timilsina et al. 2020). These effectors support 140 
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pathogen nutrient acquisition and evasion of host defenses, but their recognition by a host 141 

plant can also trigger resistance to xanthomonads (Schornack et al. 2006; Lolle et al. 2020; 142 

Thomas et al. 2020).Carbohydrate active enzymes (CAZymes) are vital for plant-associated 143 

microbes to gain energy from the plant environment in which carbohydrate photosynthetic 144 

products are the main carbon source (Zhang et al. 2018). Some of these CAZymes are secreted 145 

and their identification can provide information about how a bacterium behaves and gains 146 

energy from its host. For example, one Type II secreted CAZyme, CbsA, functions as a key 147 

genetic determinant for tissue-specific adaptation between Xtt and Xtu (Gluck-Thaler et al. 148 

2020). Because of the link between the presence of this gene and a pathovar-specific 149 

phenotype, we are now developing a subgroup-specific diagnostic.  150 

Type III-secreted effectors (T3SEs) are directly injected into and manipulate host cells, 151 

often contributing to virulence (Rossier et al. 1999). One type of T3SE are transcription activator 152 

like effectors (TALEs). TALEs directly interact with specific host DNA sequences, with repetitive 153 

amino acid sequences that differ only in pairs of amino acids called repeat variable diresidues 154 

(RVDs) and promote transcription of downstream genes (Boch and Bonas 2010). This host 155 

manipulation frequently makes them major virulence factors in Xanthomonas pathogenesis 156 

(Perez-Quintero and Szurek 2019). For example, Xtu TALEs have a significant role in virulence on 157 

wheat. Little is known about the function of Xtt TALEs, although Xtt strains have approximately 158 

5-8 TALEs according to southern blotting analysis of Iranian X. translucens (Khojasteh et al. 159 

2020) and published genome sequences (Roman-Reyna et al. 2020; Shah et al. 2021). Our 160 

understanding of TALEs and their composition is limited despite increasing availability of 161 
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Xanthomonas genomes, because long read sequencing is necessary to correctly describe and 162 

map highly repetitive TALEs in Xanthomonas genomes (Peng et al. 2016).  163 

We predicted secreted proteins with SignalP 5.0 (Almagro Armenteros et al. 2019). 164 

Putative CAZymes were identified with dbCAN2 using the HMMER, DIAMOND and Hotpep 165 

algorithms (Zhang et al. 2018).  T3SEs were identified using the BLAST 2.8.1+ blastx algorithm 166 

(Zhang et al. 2000) with studied genomes as queries and a database of known Xanthomonas 167 

T3SEs (xanthomonas.org), excluding TALEs which were analyzed separately (below). The BLAST 168 

results were filtered to include only hits with a coverage of over 200 amino acids and a percent 169 

amino acid identity of 60% or greater. TALEs in the eight studied genomes were identified and 170 

classified with AnnoTALE version 1.5 (Grau et al. 2016). FuncTAL version 1.1 in the QueTAL suite 171 

(Pérez-Quintero et al. 2015) was used to analyze the differences in TALE RVD patterns. 172 

Though Xtt strains show a high degree of homology at the whole genome level, we 173 

hypothesized that their virulence factor complements would be variable in response to varying 174 

evolutionary pressures. To test this hypothesis, we identified and compared virulence factors in 175 

long-read genomes. All eight genomes each encoded more than 700 proteins with a predicted 176 

signal peptide (Table 1). Putative CAZymes were numerous and diverse, ranging in number from 177 

112-117 per strain and representing a mix of glucoside hydrolases, glycosyltransferases, 178 

polysaccharide lyases and carbohydrate esterases (Table S2). This diversity likely underpins the 179 

ability of Xtt strains to exploit the complex carbohydrate environment of a host barley plant.  180 

There are examples of highly conserved T3SEs. All studied strains possess copies of 15 181 

putative T3SEs, suggesting that these proteins have conserved roles in Xtt pathogenesis (Fig. 2; 182 

Table S3). TALE distribution is more complex in comparison to the high conservation of other 183 
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T3SEs in Xtt. Several TALEs are highly conserved according to their RVD patterns. For example, 184 

every tested strain possesses a TalCT and TalCV effector with identical RVD patterns (Fig. 3; 185 

Table S4). Eight TALEs were present in at least one Iranian and U.S. strain (Fig. 2). Despite the 186 

geographic separation and use of different barley varieties (Izadi et al. 2014; Mortazavian et al. 187 

2014; Zhou et al. 2020), the identical RVD patterns in some TALEs suggests conserved roles in 188 

host manipulation (Fig. 3). Such conserved effectors, if they are critical for pathogenesis, are 189 

ideal elicitors to discover for broad-spectrum resistance in barley.  190 

In contrast, there is large variability in the repertoire of TALEs that a particular strain 191 

possesses. According to their RVD patterns, 10 TALE classes identified in our analysis are 192 

present in multiple strains while six are unique to a single strain (Fig. 2; Fig. 3). These included 193 

two distinct TALEs in CIX95 in the classes TalJQ and TalJR. DSM 18974, XtKm7 and XtKm8 also 194 

include at least one TALE that does not match any others in the tested strains. The high 195 

diversity of TALE repertoires presents a challenge for breeders who attempt to characterize 196 

barley resistance against a limited panel of Xtt strains that may not represent the virulence 197 

capabilities of a field population.  198 

In conclusion, we determined that globally, X. translucens pv. translucens strains, 199 

including CIX43 and CIX95, are highly genetically similar with three groups present in both Asia 200 

and North America. The X. translucens pv. translucens strains CIX43 and CIX95 are within the 201 

same subgroup and therefore more closely related than was previously suggested by MLSA. 202 

There are virulence factors that are highly conserved at the local and global levels, such as the 203 

TalCT and TalCV TALEs and 15 other T3SEs. Although their importance in virulence remains to 204 

be investigated, these effectors are potential targets for durable and broad resistance. On the 205 
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other hand, there are diverse virulence factors at the population level, especially TALEs, such 206 

that resistance to one strain of X. translucens pv. translucens likely does not guarantee 207 

resistance to others. Based on the distinct virulence factor profiles observed in our small panel, 208 

multiple distinct strains should be included when completing host resistance phenotyping to 209 

increase the chances that discoveries are relevant to the field population.  210 

Genetic resistance to bacterial leaf streak is lacking in elite malting barley varieties and 211 

has not been characterized for reaction to X. translucens. To develop representative 212 

phenotyping tests to screen germplasm, it is important to understand the diversity of the causal 213 

agent. The genomes of X. translucens pv. translucens strains CIX43 and CIX95 advance our 214 

knowledge about the X. translucens pv. translucens population in the Americas and are a 215 

resource relevant to control measures and barley breeding for cultivation. Representatives 216 

from all the Xtt LINgroups are already globally dispersed. Therefore, international regulation of 217 

seed is unlikely crucial for the control of pathogen spread.  218 
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Table Legend 233 

Table 1. Xanthomonas translucens genomes analyzed in this study.  234 

 235 
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 245 

Figure Legends 246 

Figure 1. Xtt strains are separate from Xtu and form three distinct phylogenetic groups 247 

according to ANI. Whole genome ANI was calculated for all publicly available X. translucens pv. 248 

Translucens strains and the outgroup strains LW16 and CFBP 2541. A tree was generated with 249 
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the webtool Enveomics using the UPGMA clustering method (Rodriguez-R and Konstantinidis 250 

2016). Life identification numbers were calculated with LINbase (Tian et al. 2020). Boxes outline 251 

the LIN values which separate the subgroups. 252 

 253 

Figure 2. Xtt TALEs are diverse but other T3Ses are conserved. Putative T3Ses for eight long-254 

read X. translucens pv. Translucens genome assemblies were identified with a local Blastx 255 

against a database of known Xanthomonas effectors. Blue colored boxes represent the 256 

presence of a putative effector with shading representing the number of copies present. TALEs 257 

were identified and classified according to AnnoTALE (Grau et al. 2016) and their names begin 258 

with “Tal”. Whole genome ANI was calculated displayed strains and a tree was generated with 259 

the webtool Enveomics using the UPGMA clustering method (Rodriguez-R and Konstantinidis 260 

2016). 261 

 262 

Figure 3. CIX95 has multiple unique TALEs. The colored names represent TALEs from the strains 263 

CIX43 (blue) and CIX95 (gold), sequenced in this study. The output was created with FuncTAL 264 

from the QueTAL suite of tools (Pérez-Quintero et al. 2015), using RVDs determined by 265 

AnnoTALE (Grau et al. 2016).  266 
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Table 1. Xanthomonas translucens genomes* analyzed in this study. 372 

Strain – Accession Publication 

Year 

Isolated Country Genome size Contigs ANI 

Secreted 

Proteins 

CIX43 – CP072988;CP072989 This study 2009 USA 4.70 2 99.55 752 

CIX95 – CP072990 This study 2011 USA 4.65 1 99.26 731 

UPB886 – GCA_009600865.1 Roman-Reyna et al. 2020 1990 Iran 4.67 2 98.94 702 

DSM 18974 - LT604072 Jaenicke et al. 2016 1933 USA 4.72 1 100.00 761 

XtKm7 - CP064005 Shah et al. 2021 2014 Iran 4.58 1 99.52 710 

XtKm8 - CP064004 Shah et al. 2021 2014 Iran 4.79 1 99.10 751 

XtKm9 - CP064003 Shah et al. 2021 2015 Iran 4.69 1 98.92 709 

XtKm34 - CP064001 Shah et al. 2021 2015 Iran 4.68 1 99.11 731 

B2 - GCA_001542205.1 Peng et al. 2016 2013 USA 4.54 517 99.00  

UPB787 - GCA_001469515.1 Bragard et al. 1997 1990 Paraguay 4.54 763 98.97  

XT8 - GCA_001462125.1  Peng et al. 2016 1942 Canada 5.71 156 98.98  

UPB458 - GCA_001659915.1 Bragard et al. 1997 1970 India 4.52 1,156 99.00  

B1 - LNTA00000000.1 Peng et al. 2016 2013 USA 4.80 523 99.09  

LW16 - GCA_001462075.1 Peng et al. 2016 2009 USA 4.69 475 97.61  

CFBP 2541 - CP074364 Pesce et al. 2015 1941 USA 4.50 1 94.94  

 

        

*Genome summary and predicted secreted proteins of X. translucens pathovar translucens. 373 

Genome size and CDS data were determined with PGAP analysis (Tatusova et al. 2016) for 374 

strains CIX43 and CIX95 and publicly available information from NCBI was used for other strains. 375 

ANI is relative to type X. translucens pv. translucens strain DSM 18974, determined by 376 

Enveomics (Rodriguez-R and Konstantinidis 2016).   377 
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 378 

 379 

Figure 1. Xtt strains are separate from Xtu and form three distinct phylogenetic groups 380 

according to ANI. Whole genome ANI was calculated for all publicly available X. translucens pv. 381 

translucens strains and the outgroup strains LW16 and CFBP 2541. A tree was generated with 382 

the webtool Enveomics using the UPGMA clustering method (Rodriguez-R and Konstantinidis 383 

2016). Life identification numbers were calculated with LINbase (Tian et al. 2020). Boxes outline 384 

the LIN values which separate the subgroups. 385 

 386 

  387 
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 388 

Figure 2. Xtt TALEs are diverse but other T3SEs are conserved. Putative T3SEs for eight long-389 

read X. translucens pv. translucens genome assemblies were identified with a local Blastx 390 

against a database of known Xanthomonas effectors. Blue colored boxes represent the 391 

presence of a putative effector with shading representing the number of copies present. TALEs 392 

were identified and classified according to AnnoTALE (Grau et al. 2016) and their names begin 393 

with “Tal”. Whole genome ANI was calculated displayed strains and a tree was generated with 394 

the webtool Enveomics using the UPGMA clustering method (Rodriguez-R and Konstantinidis 395 

2016). 396 

 397 

 398 

 399 

 400 

 401 
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 402 

Figure 3. CIX95 has multiple unique TALEs. The colored names represent TALEs from the strains 403 

CIX43 (blue) and CIX95 (gold), sequenced in this study. The output was created with FuncTAL 404 

from the QueTAL suite of tools (Pérez-Quintero et al. 2015), using RVDs determined by 405 

AnnoTALE (Grau et al. 2016). 406 

 407 
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