Nathaniel Heiden Phytopathology

1 2	Comparative genomics of Minnesotan barley-infecting <i>Xanthomonas translucens</i> shows overall genomic similarity but virulence factor diversity
3 4 5 6	Nathaniel Heiden ^{1,2} , Verónica Roman-Reyna ^{1,2} , Rebecca Curland ³ , Ruth Dill-Macky ³ , Jonathan M. Jacobs ^{1,2} *.
7 8 9 10 11	¹ Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A. ² Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, U.S.A. ³ Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, U.S.A. *Corresponding author: Jonathan M. Jacobs; Email: jacobs.1080@osu.edu
12 13 14	Keywords: <i>Xanthomonas translucens,</i> average nucleotide identity, life identification numbers, barley, pathogen distribution, phylogeny, virulence factors
15	
16	
17 18 19 20 21	Funding: USDA National Institute of Food and Agriculture Award Number: 2018-67013-28490 through the NSF/NIFA Plant Biotic Interactions Program; The Ohio Department of Agriculture Specialty Crops Block Grant Number AGR-SCG-19-03; The Malting Barley Association to JMJ; and an Environmental Fellowship from The Ohio State University College of Food, Agriculture and Environmental Science to NH.
22	
23	
24	
25	
26	
27	
28	
29	
30	

Nathaniel Heiden Phytopathology Page 2 of 21

31	Abstract: Xanthomonas translucens pv. translucens (Xtt) is a global barley pathogen and a
32	concern for resistance breeding and regulation. Long-read whole genome sequences allow in-
33	depth understanding of pathogen diversity. We have completed long-read PacBio sequencing
34	of two Minnesotan Xtt strains and an in-depth analysis of available Xtt genomes. We found that
35	average nucleotide identity(ANI)-based approaches organize Xtt strains differently than the
36	previously standard MLSA approach. According to ANI, Xtt forms a separate clade from
37	Xanthomonas translucens pv. undulosa and consists of three main groups which are
38	represented on multiple continents. The global distribution of Xtt groups suggests that
39	regulation of seed is not important for prevention of Xtt spread. Some virulence factors, such as
40	17 Type III-secreted effectors, are highly conserved and offer potential targets for the elicitation
41	of broad resistance. However, there is a high degree of variation in virulence factors meaning
42	that germplasm should be screened for resistance with a diverse panel of Xtt.
42 43	that germplasm should be screened for resistance with a diverse panel of Xtt.
	that germplasm should be screened for resistance with a diverse panel of Xtt. <i>Xanthomonas translucens</i> pathovar (pv.) translucens (Xtt) causes bacterial leaf streak,
43	
43 44	Xanthomonas translucens pathovar (pv.) translucens (Xtt) causes bacterial leaf streak,
43 44 45	<i>Xanthomonas translucens</i> pathovar (pv.) translucens (Xtt) causes bacterial leaf streak, blight and black chaff of barley (Jones et al. 1917; Bragard et al. 1997; Sapkota et al. 2020). Xtt
43 44 45 46	<i>Xanthomonas translucens</i> pathovar (pv.) translucens (Xtt) causes bacterial leaf streak, blight and black chaff of barley (Jones et al. 1917; Bragard et al. 1997; Sapkota et al. 2020). Xtt foliar infections of barley cause translucent streaks that develop into necrotic lesions. Xtt
43 44 45 46 47	<i>Xanthomonas translucens</i> pathovar (pv.) translucens (Xtt) causes bacterial leaf streak, blight and black chaff of barley (Jones et al. 1917; Bragard et al. 1997; Sapkota et al. 2020). Xtt foliar infections of barley cause translucent streaks that develop into necrotic lesions. Xtt exudes out of watersoaked lesions providing an opportunity for short distance dispersal. Foliar
43 44 45 46 47 48	<i>Xanthomonas translucens</i> pathovar (pv.) translucens (Xtt) causes bacterial leaf streak, blight and black chaff of barley (Jones et al. 1917; Bragard et al. 1997; Sapkota et al. 2020). Xtt foliar infections of barley cause translucent streaks that develop into necrotic lesions. Xtt exudes out of watersoaked lesions providing an opportunity for short distance dispersal. Foliar infections are called bacterial leaf streak due to their symptomology and in severe cases are
43 44 45 46 47 48 49	<i>Xanthomonas translucens</i> pathovar (pv.) translucens (Xtt) causes bacterial leaf streak, blight and black chaff of barley (Jones et al. 1917; Bragard et al. 1997; Sapkota et al. 2020). Xtt foliar infections of barley cause translucent streaks that develop into necrotic lesions. Xtt exudes out of watersoaked lesions providing an opportunity for short distance dispersal. Foliar infections are called bacterial leaf streak due to their symptomology and in severe cases are referred to as bacterial blight. Black chaff is a disease of the grain heads characterized by

Nathaniel Heiden Phytopathology Page 3 of 21

53	widespread reports in the northern United States (Curland et al. 2020), Iran (Habibian et al.
54	2021) and Canada (Tambong et al. 2021). Though losses in barley due specifically to Xtt have
55	not been quantified, wheat farmers can experience yield reduction as high as 40% due to
56	infection with the closely related pathogen X. translucens pv. undulosa (Xtu) (Forster and
57	Schaad 1988). There is no available single gene resistance to Xtt in barley breeding programs or
58	for commercial growers.
59	Xtt is classified in the genomic subgroup Xt-I (Sapkota et al. 2020; Goettelmann et al.
60	2022), which also includes wheat and barley-infecting Xtu. Xtt was historically divided into three
61	groups (A, B and C) according to multilocus sequencing analysis (MLSA) of four housekeeping
62	genes (Curland et al. 2018). Strains from these three groups are present globally (Curland et al.
63	2018; Roman-Reyna et al. 2020; Shah et al. 2021). It is unknown if average nucleotide identity
64	(ANI) based on whole genome analyses would confirm the phylogenetic groups proposed by
65	MLSA. Recent research has also provided insights into virulence factor diversity through draft
66	and whole genome analysis of some Xtt isolates (Peng et al. 2016; Langlois et al. 2017; Roman-
67	Reyna et al. 2020; Shah et al. 2021; Jaenicke et al. 2016). These analyses have enabled the
68	development of diagnostic primers for general X. translucens identification (Langlois et al. 2017)
69	and also strengthened our understanding of virulence factor repertoires from Asian Xtt
70	(Roman-Reyna et al. 2020; Shah et al. 2021).
71	The only strain from the Western Hemisphere with a publicly available long-read
72	genome was isolated in 1933 (Jaenicke et al. 2016). The lack of genome resources is a roadblock
73	for defining North American Xtt virulence factors or immune elicitors for barley resistance
74	screening. A better definition of North American Xtt genomic composition and virulence factor

Nathaniel Heiden Phytopathology Page 4 of 21

75	prevalence will directly inform breeders on the most desirable host factors for conferring
76	durable resistance to Xtt. This is also important background information for identification
77	efforts to understand pathogen dispersal and survival and may have implications for regulations
78	that have been based on isolates from outside of North America.
79	In this study we generated and analyzed high quality, complete genomes of two Xtt
80	strains: CIX43 and CIX95. We previously characterized both strains as pathogenic on barley and
81	non-pathogenic on wheat (Curland et al. 2018). CIX43 and CIX95 were isolated from barley in
82	Minnesota in 2009 and 2011 and are representative of Xtt MLSA groups A and C, respectively.
83	These strains were previously included in diversity analyses and serve as a reference for strains
84	currently used in resistance screening programs. Therefore, we characterized these genomes to
85	enhance diversity analysis and to help define how virulence factors relate to the broad Xtt
86	population diversity.
86 87	population diversity. DNA was extracted with the Genomic DNA Buffer Set and Genomic-tip 100/G (QIAGEN®)
87	DNA was extracted with the Genomic DNA Buffer Set and Genomic-tip 100/G (QIAGEN®)
87 88	DNA was extracted with the Genomic DNA Buffer Set and Genomic-tip 100/G (QIAGEN®) and sequenced, in 2019, with PacBio RSII (P6-C4) and 20kb SMRT bell library (Psomagen,
87 88 89	DNA was extracted with the Genomic DNA Buffer Set and Genomic-tip 100/G (QIAGEN®) and sequenced, in 2019, with PacBio RSII (P6-C4) and 20kb SMRT bell library (Psomagen, Rockville, MD). Reads were assembled with Flye version 2.4 (Kolmogorov et al. 2019) and
87 88 89 90	DNA was extracted with the Genomic DNA Buffer Set and Genomic-tip 100/G (QIAGEN®) and sequenced, in 2019, with PacBio RSII (P6-C4) and 20kb SMRT bell library (Psomagen, Rockville, MD). Reads were assembled with Flye version 2.4 (Kolmogorov et al. 2019) and genome assemblies were annotated with the National Center for Biotechnology Information
87 88 89 90 91	DNA was extracted with the Genomic DNA Buffer Set and Genomic-tip 100/G (QIAGEN®) and sequenced, in 2019, with PacBio RSII (P6-C4) and 20kb SMRT bell library (Psomagen, Rockville, MD). Reads were assembled with Flye version 2.4 (Kolmogorov et al. 2019) and genome assemblies were annotated with the National Center for Biotechnology Information (NCBI) Prokaryotic Genome Annotation Pipeline (Tatusova et al. 2016) and are publicly available
87 88 89 90 91 92	DNA was extracted with the Genomic DNA Buffer Set and Genomic-tip 100/G (QIAGEN®) and sequenced, in 2019, with PacBio RSII (P6-C4) and 20kb SMRT bell library (Psomagen, Rockville, MD). Reads were assembled with Flye version 2.4 (Kolmogorov et al. 2019) and genome assemblies were annotated with the National Center for Biotechnology Information (NCBI) Prokaryotic Genome Annotation Pipeline (Tatusova et al. 2016) and are publicly available (Table 1). GC content was calculated using the Rapid Annotation of microbial genomes using
87 88 89 90 91 92 93	DNA was extracted with the Genomic DNA Buffer Set and Genomic-tip 100/G (QIAGEN®) and sequenced, in 2019, with PacBio RSII (P6-C4) and 20kb SMRT bell library (Psomagen, Rockville, MD). Reads were assembled with Flye version 2.4 (Kolmogorov et al. 2019) and genome assemblies were annotated with the National Center for Biotechnology Information (NCBI) Prokaryotic Genome Annotation Pipeline (Tatusova et al. 2016) and are publicly available (Table 1). GC content was calculated using the Rapid Annotation of microbial genomes using Subsystems Technology (Overbeek et al. 2014).

Nathaniel Heiden *Phytopathology* Page **5** of **21**

97	contig is a plasmid based on the results from Blastn search against the NCBI nucleotide
98	collection database (Zhang et al. 2000). The results indicate the plasmid has 81% coverage and
99	85.92% identity to a X. campestris pv. campestris plasmid. No significant homology to X.
100	translucens genomes were found in the same search. The CIX95 genome has 4,647,206 base
101	pairs in a single contig with a mean coverage of 173X and 3,926 total CDS, for an N_{50} of
102	4,647,206 and L_{50} of 1. Both strains have a GC content of 67.8% and their average nucleotide
103	identity (ANI) is 99.24% (Table S1).
104	The geographic distribution of Xtt populations remains unclear. Xtt has been isolated
105	from all continents except Antarctica (Sapkota et al. 2020), but it remains uncertain if this
106	distribution is from seed or an unknown environmental source. Phylogenomics provides a
107	method to capture Xtt genetic diversity and characterize Xtt subgroups to begin to infer
108	inoculum sources. To define the genomic relationships among CIX43, CIX95 and 11 additional

109 Xtt genomes (Table 1), ANI and life identification numbers (LINs) were calculated with the

webtools Enveomics and LINbase, respectively (Rodriguez-R and Konstantinidis 2016; Tian et al.
2020). Xtu LW16 and *X. translucens* pv. cerealis (Xtc) CFBP 2541 were used as outgroups (Pesce

112 et al. 2015).

113 The Enveomics ANI and LINbase LIN analyses demonstrate that there are three major 114 Xtt groups, which are internationally dispersed and distinct from Xtu and Xtc (Fig. 1). CIX43 and 115 CIX95 are in the same phylogenetic cluster and LINgroup. Xtt strains have a high degree of 116 homology as they share at minimum 98.88% ANI (Table S1). Analyzed Xtt strains have between 117 97.56% and 97.79% ANI to Xtu LW16 and between 94.89% and 95.07% ANI to Xtc strain CFBP 118 2541 (Table S1). We further validated this approach by providing LINs for each of the analyzed

Nathaniel Heiden Phytopathology Page 6 of 21

119	strains. According to their LINs, Xtt strains form a separate LINgroup
120	$(15_A, 1_B, 1_C, 0_D, 0_E, 0_F, 1_G, 0_H, 0_I, 0_J)$ from Xtu and Xtc are best divided into three LIN subgroups with a
121	minimum of 99% ANI within each: $1(Xtt:1_K)$, $2(Xtt:0_K)$, $3(Xtt:2_K)$ (Fig. 1). Strains from different
122	years and locations intermixed, which argues against seed dissemination by these pathogens.
123	Traditional diversity analysis for <i>Xanthomonas</i> pathogens like Xtt was MLSA (Young et al.
124	2008; Curland et al. 2018). Our ANI analyses, however, are not in agreement with the previous
125	MLSA groupings (Fig. S1). Briefly, for MLSA, the sequences of four housekeeping genes rpoD,
126	dnaK, fyuA and gyrB were concatenated according to Curland et al. (2018). The webtool
127	NGPhylogeny was used to align the concatenated sequences with MAFFT, curate them with
128	Gblocks and infer a tree with MrBayes (Lemoine et al. 2019). A tree with the studied Xtt strains
129	and those from Curland et al. (2018) was created (Fig. S1) along with a tree only including
130	studied strains for comparison to ANI-based analyses (Fig. S2). In agreement with previous
131	work, the MLSA trees divided Xtt into 3 groups, one of which also contained the Xtu strain
132	LW16 (Fig. S1, S2). Previous genomic studies had shown that Xtu was phylogenetically distinct
133	based on whole genome analysis (Peng et al. 2016) or MLSA with 12 housekeeping genes
134	(Langlois et al. 2017), suggesting that MLSA did not appropriately capture genetic diversity.
135	Overall, our whole genome sequencing approach agrees with this finding because we find a
136	phylogenetic separation between Xtt and Xtu and phylogenetic relationships between Xtt
137	strains that do not match MLSA analysis. Therefore, four gene MLSA is not an appropriate
138	method to define genetic classifications for Xtt.
139	Xanthomonas phytopathogens deploy a wide range of virulence factors, including

secreted effectors, during pathogenesis (Timilsina et al. 2020). These effectors support

Nathaniel Heiden Phytopathology Page 7 of 21

141	pathogen nutrient acquisition and evasion of host defenses, but their recognition by a host
142	plant can also trigger resistance to xanthomonads (Schornack et al. 2006; Lolle et al. 2020;
143	Thomas et al. 2020).Carbohydrate active enzymes (CAZymes) are vital for plant-associated
144	microbes to gain energy from the plant environment in which carbohydrate photosynthetic
145	products are the main carbon source (Zhang et al. 2018). Some of these CAZymes are secreted
146	and their identification can provide information about how a bacterium behaves and gains
147	energy from its host. For example, one Type II secreted CAZyme, CbsA, functions as a key
148	genetic determinant for tissue-specific adaptation between Xtt and Xtu (Gluck-Thaler et al.
149	2020). Because of the link between the presence of this gene and a pathovar-specific
150	phenotype, we are now developing a subgroup-specific diagnostic.
151	Type III-secreted effectors (T3SEs) are directly injected into and manipulate host cells,
152	often contributing to virulence (Rossier et al. 1999). One type of T3SE are transcription activator
153	like effectors (TALEs). TALEs directly interact with specific host DNA sequences, with repetitive
154	amino acid sequences that differ only in pairs of amino acids called repeat variable diresidues
155	(RVDs) and promote transcription of downstream genes (Boch and Bonas 2010). This host
156	manipulation frequently makes them major virulence factors in Xanthomonas pathogenesis
157	(Perez-Quintero and Szurek 2019). For example, Xtu TALEs have a significant role in virulence on
158	wheat. Little is known about the function of Xtt TALEs, although Xtt strains have approximately
159	5-8 TALEs according to southern blotting analysis of Iranian X. translucens (Khojasteh et al.
160	2020) and published genome sequences (Roman-Reyna et al. 2020; Shah et al. 2021). Our
161	understanding of TALEs and their composition is limited despite increasing availability of

Nathaniel Heiden Phytopathology Page 8 of 21

162	Xanthomonas genomes, because long read sequencing is necessary to correctly describe and
163	map highly repetitive TALEs in Xanthomonas genomes (Peng et al. 2016).
164	We predicted secreted proteins with SignalP 5.0 (Almagro Armenteros et al. 2019).
165	Putative CAZymes were identified with dbCAN2 using the HMMER, DIAMOND and Hotpep
166	algorithms (Zhang et al. 2018). T3SEs were identified using the BLAST 2.8.1+ blastx algorithm
167	(Zhang et al. 2000) with studied genomes as queries and a database of known Xanthomonas
168	T3SEs (xanthomonas.org), excluding TALEs which were analyzed separately (below). The BLAST
169	results were filtered to include only hits with a coverage of over 200 amino acids and a percent
170	amino acid identity of 60% or greater. TALEs in the eight studied genomes were identified and
171	classified with AnnoTALE version 1.5 (Grau et al. 2016). FuncTAL version 1.1 in the QueTAL suite
172	(Pérez-Quintero et al. 2015) was used to analyze the differences in TALE RVD patterns.
173	Though Xtt strains show a high degree of homology at the whole genome level, we
173 174	Though Xtt strains show a high degree of homology at the whole genome level, we hypothesized that their virulence factor complements would be variable in response to varying
174	hypothesized that their virulence factor complements would be variable in response to varying
174 175	hypothesized that their virulence factor complements would be variable in response to varying evolutionary pressures. To test this hypothesis, we identified and compared virulence factors in
174 175 176	hypothesized that their virulence factor complements would be variable in response to varying evolutionary pressures. To test this hypothesis, we identified and compared virulence factors in long-read genomes. All eight genomes each encoded more than 700 proteins with a predicted
174 175 176 177	hypothesized that their virulence factor complements would be variable in response to varying evolutionary pressures. To test this hypothesis, we identified and compared virulence factors in long-read genomes. All eight genomes each encoded more than 700 proteins with a predicted signal peptide (Table 1). Putative CAZymes were numerous and diverse, ranging in number from
174 175 176 177 178	hypothesized that their virulence factor complements would be variable in response to varying evolutionary pressures. To test this hypothesis, we identified and compared virulence factors in long-read genomes. All eight genomes each encoded more than 700 proteins with a predicted signal peptide (Table 1). Putative CAZymes were numerous and diverse, ranging in number from 112-117 per strain and representing a mix of glucoside hydrolases, glycosyltransferases,
174 175 176 177 178 179	hypothesized that their virulence factor complements would be variable in response to varying evolutionary pressures. To test this hypothesis, we identified and compared virulence factors in long-read genomes. All eight genomes each encoded more than 700 proteins with a predicted signal peptide (Table 1). Putative CAZymes were numerous and diverse, ranging in number from 112-117 per strain and representing a mix of glucoside hydrolases, glycosyltransferases, polysaccharide lyases and carbohydrate esterases (Table S2). This diversity likely underpins the
174 175 176 177 178 179 180	hypothesized that their virulence factor complements would be variable in response to varying evolutionary pressures. To test this hypothesis, we identified and compared virulence factors in long-read genomes. All eight genomes each encoded more than 700 proteins with a predicted signal peptide (Table 1). Putative CAZymes were numerous and diverse, ranging in number from 112-117 per strain and representing a mix of glucoside hydrolases, glycosyltransferases, polysaccharide lyases and carbohydrate esterases (Table S2). This diversity likely underpins the ability of Xtt strains to exploit the complex carbohydrate environment of a host barley plant.

Nathaniel Heiden Phytopathology Page 9 of 21

184	T3SEs in Xtt. Several TALEs are highly conserved according to their RVD patterns. For example,
185	every tested strain possesses a TalCT and TalCV effector with identical RVD patterns (Fig. 3;
186	Table S4). Eight TALEs were present in at least one Iranian and U.S. strain (Fig. 2). Despite the
187	geographic separation and use of different barley varieties (Izadi et al. 2014; Mortazavian et al.
188	2014; Zhou et al. 2020), the identical RVD patterns in some TALEs suggests conserved roles in
189	host manipulation (Fig. 3). Such conserved effectors, if they are critical for pathogenesis, are
190	ideal elicitors to discover for broad-spectrum resistance in barley.
191	In contrast, there is large variability in the repertoire of TALEs that a particular strain
192	possesses. According to their RVD patterns, 10 TALE classes identified in our analysis are
193	present in multiple strains while six are unique to a single strain (Fig. 2; Fig. 3). These included
194	two distinct TALEs in CIX95 in the classes TalJQ and TalJR. DSM 18974, XtKm7 and XtKm8 also
195	include at least one TALE that does not match any others in the tested strains. The high
196	diversity of TALE repertoires presents a challenge for breeders who attempt to characterize
197	barley resistance against a limited panel of Xtt strains that may not represent the virulence
198	capabilities of a field population.
199	In conclusion, we determined that globally, X. translucens pv. translucens strains,
200	including CIX43 and CIX95, are highly genetically similar with three groups present in both Asia
201	and North America. The X. translucens pv. translucens strains CIX43 and CIX95 are within the
202	same subgroup and therefore more closely related than was previously suggested by MLSA.
203	There are virulence factors that are highly conserved at the local and global levels, such as the
204	TalCT and TalCV TALEs and 15 other T3SEs. Although their importance in virulence remains to
205	be investigated, these effectors are potential targets for durable and broad resistance. On the

Nathaniel Heiden Phytopathology Page 10 of 21

206	other hand, there are diverse virulence factors at the population level, especially TALEs, such
207	that resistance to one strain of <i>X. translucens</i> pv. translucens likely does not guarantee
208	resistance to others. Based on the distinct virulence factor profiles observed in our small panel,
209	multiple distinct strains should be included when completing host resistance phenotyping to
210	increase the chances that discoveries are relevant to the field population.
211	Genetic resistance to bacterial leaf streak is lacking in elite malting barley varieties and
212	has not been characterized for reaction to <i>X. translucens</i> . To develop representative
213	phenotyping tests to screen germplasm, it is important to understand the diversity of the causal
214	agent. The genomes of <i>X. translucens</i> pv. translucens strains CIX43 and CIX95 advance our
215	knowledge about the <i>X. translucens</i> pv. translucens population in the Americas and are a
216	resource relevant to control measures and barley breeding for cultivation. Representatives
217	from all the Xtt LINgroups are already globally dispersed. Therefore, international regulation of
218	seed is unlikely crucial for the control of pathogen spread.
219	Acknowledgements
220	We are thankful to Drs. Adam Bogdanove, Stephen P. Cohen, and Ralf Koebnik for critical
221	reading of earlier versions of this manuscript. We thank Drs. Jan Grau and Alvaro Pérez-
222	Quintero for assistance in classifying TALEs and their RVD patterns. The authors acknowledge
223	support from USDA National Institute of Food and Agriculture Award Number: 2018-67013-
224	28490 through the NSF/NIFA Plant Biotic Interactions Program; the Ohio Department of
225	Agriculture Specialty Crops Block Grant Number AGR-SCG-19-03; The American Malting Barley
226	Association to JMJ; and an Environmental Fellowship from The Ohio State University College of
227	Food, Agriculture and Environmental Science to NH.

Nathaniel Heiden Phytopathology Page 11 of 21

228	
229	
230	
231	
232	
233	Table Legend
234	Table 1. Xanthomonas translucens genomes analyzed in this study.
235	
236	
237	
238	
239	
240	
241	
242	
243	
244	
245	
246	Figure Legends
247	Figure 1. Xtt strains are separate from Xtu and form three distinct phylogenetic groups
248	according to ANI. Whole genome ANI was calculated for all publicly available <i>X. translucens</i> pv.
249	Translucens strains and the outgroup strains LW16 and CFBP 2541. A tree was generated with

Nathaniel Heiden *Phytopathology* Page **12** of **21**

250	the webtool Enveomics using the UPGMA clustering method (Rodriguez-R and Konstantinidis
251	2016). Life identification numbers were calculated with LINbase (Tian et al. 2020). Boxes outline
252	the LIN values which separate the subgroups.
253	
254	Figure 2. Xtt TALEs are diverse but other T3Ses are conserved. Putative T3Ses for eight long-
255	read X. translucens pv. Translucens genome assemblies were identified with a local Blastx
256	against a database of known Xanthomonas effectors. Blue colored boxes represent the
257	presence of a putative effector with shading representing the number of copies present. TALEs
258	were identified and classified according to AnnoTALE (Grau et al. 2016) and their names begin
259	with "Tal". Whole genome ANI was calculated displayed strains and a tree was generated with
260	the webtool Enveomics using the UPGMA clustering method (Rodriguez-R and Konstantinidis
261	2016).
262	

Figure 3. CIX95 has multiple unique TALEs. The colored names represent TALEs from the strains CIX43 (blue) and CIX95 (gold), sequenced in this study. The output was created with FuncTAL

from the QueTAL suite of tools (Pérez-Quintero et al. 2015), using RVDs determined by

266 AnnoTALE (Grau et al. 2016).

Nathaniel Heiden *Phytopathology* Page **13** of **21**

267 References

- Almagro Armenteros, J. J., Tsirigos, K. D., Sønderby, C. K., Petersen, T. N., Winther, O., Brunak, S., et al.
- 269 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol.
- 270 37:420-423.
- 271 Boch, J., and Bonas, U. 2010. *Xanthomonas* AvrBs3 family-type III effectors: Discovery and function.
- 272 Annu. Rev. Phytopathol. 48:419–436.
- 273 Bragard, C., Singer, E., Alizadeh, A., Vauterin, L., Maraite, H., and Swings, J. 1997. Xanthomonas
- 274 translucens from small grains: Diversity and phytopathological relevance. Phytopathology. 87:1111–
- 275 1117.
- 276 Curland, R. D., Gao, L., Bull, C. T., Vinatzer, B. A., Dill-Macky, R., Van Eck, L., et al. 2018. Genetic diversity
- and virulence of wheat and barley strains of *Xanthomonas translucens* from the upper midwestern
- 278 United States. Phytopathology. 108:443–453.
- 279 Curland, R. D., Gao, L., Hirsch, C. D., and Ishimaru, C. A. 2020. Localized Genetic and Phenotypic Diversity
- of *Xanthomonas translucens* Associated With Bacterial Leaf Streak on Wheat and Barley in Minnesota.
- 281 Phytopathology. 110:257–266.
- 282 Forster, R. L., and Schaad, N. W. 1988. Control of Black Chaff of Wheat with Seed Treatment and a
- 283 Foundation Seed Health Program. Plant Dis. 72:935–938.
- 284 Gluck-Thaler, E., Cerutti, A., Perez-Quintero, A. L., Butchacas, J., Roman-Reyna, V., Madhavan, V. N., et
- al. 2020. Repeated gain and loss of a single gene modulates the evolution of vascular plant pathogen
- 286 lifestyles. Sci. Adv. 6:4516–4529.
- 287 Goettelmann, F., Roman-Reyna, V., Cunnac, S., Jacobs, J. M., Bragard, C., Studer, B., et al. 2022.
- 288 Complete genome assemblies of all *Xanthomonas translucens* pathotype strains reveal three genetically
- 289 distinct clades. Front. Microbiol. 12:4386.
- 290 Grau, J., Reschke, M., Erkes, A., Streubel, J., Morgan, R. D., Wilson, G. G., et al. 2016. AnnoTALE:

Nathaniel Heiden *Phytopathology* Page **14** of **21**

- 291 bioinformatics tools for identification, annotation and nomenclature of TALEs from Xanthomonas
- 292 genomic sequences. Sci. Rep. 6:21077.
- Habibian, M., Alizadeh Aliabadi, A., Hayati, J., and Rahimian, H. 2021. Investigation of the phenotypic
- and genetic diversity of Xanthomonas translucens pathovars, the causal agents of bacterial leaf streak of
- wheat and barley in parts of Iran. Plant Prot. (Scientific J. Agric.) 44:33–50.
- 296 Izadi, M. H., Rabbani, J., Emam, Y., Pessarakli, M., and Tahmasebi, A. 2014. Effects of salinity stress on
- physiological performance of various wheat and barley cultivars. J. Plant Nutr. 37:520–531.
- Jaenicke, S., Bunk, B., Wibberg, D., Spröer, C., Hersemann, L., Blom, J., et al. 2016. Complete genome
- sequence of the barley pathogen *Xanthomonas translucens* pv. translucens DSM 18974T (ATCC 19319T).
- 300 Genome Announc. 4:e01334-16.
- Jones, L. R., Johnson, A. G., and Reddy, C. S. 1917. Bacterial-blight of barley. J. Agric. Res. 11:625–643.
- 302 Khojasteh, M., Shah, S. M. A., Haq, F., Xu, X., Taghavi, S. M., Osdaghi, E., et al. 2020. Transcription
- 303 Activator-Like Effectors Diversity in Iranian Strains of *Xanthomonas translucens*. Phytopathology.
- 304 110:758–767.
- 305 Kolmogorov, M., Yuan, J., Lin, Y., and Pevzner, P. A. 2019. Assembly of long, error-prone reads using
- 306 repeat graphs. Nat. Biotechnol. 37:540–546.
- Langlois, P. A., Snelling, J., Hamilton, J. P., Bragard, C., Koebnik, R., Verdier, V., et al. 2017.
- 308 Characterization of the Xanthomonas translucens Complex Using Draft Genomes, Comparative
- 309 Genomics, Phylogenetic Analysis, and Diagnostic LAMP Assays. Phytopathology. 107:519–527.
- Lemoine, F., Correia, D., Lefort, V., Doppelt-Azeroual, O., Mareuil, F., Cohen-Boulakia, S., et al. 2019.
- NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res. 47:W260–
 W265.
- Lolle, S., Stevens, D., and Coaker, G. 2020. Plant NLR-triggered immunity: from receptor activation to
- downstream signaling. Curr. Opin. Immunol. 62:99–105.

Nathaniel Heiden *Phytopathology* Page **15** of **21**

- 315 Mortazavian, S. M. M., Nikkhah, H. R., Hassani, F. A., Sharif-Al-Hosseini, M., Taheri, M., and Mahlooji, M.
- 316 2014. GGE Biplot and AMMI Analysis of Yield Performance of Barley Genotypes across Different
- Environments in Iran. J. Agric. Sci. Technol. 16:609–622.
- 318 Overbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J. J., Disz, T., et al. 2014. The SEED and the Rapid
- 319 Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 42:D206-
- 320 D214.
- 321 Peng, Z., Hu, Y., Xie, J., Potnis, N., Akhunova, A., Jones, J., et al. 2016. Long read and single molecule DNA
- 322 sequencing simplifies genome assembly and TAL effector gene analysis of *Xanthomonas translucens*.
- 323 BMC Genomics. 17:21.
- Pérez-Quintero, A. L., Lamy, L., Gordon, J. L., Escalon, A., Cunnac, S., Szurek, B., et al. 2015. QueTAL: a
- suite of tools to classify and compare TAL effectors functionally and phylogenetically. Front. Plant Sci.
- 326 6:545.
- 327 Perez-Quintero, A. L., and Szurek, B. 2019. A Decade Decoded: Spies and Hackers in the History of TAL
- 328 Effectors Research. Annu. Rev. Phytopathol. 57:459–481.
- Pesce, C., Bolot, S., Cunnac, S., Portier, P., Saux, M. F. Le, Jacques, M. A., et al. 2015. High-quality draft
- 330 genome sequence of the *Xanthomonas translucens* pv. *cerealis* pathotype strain CFBP 2541. Genome
- 331 Announc. 3:e01574-14.
- 332 Rodriguez-R, L. M., and Konstantinidis, K. T. 2016. The enveomics collection: a toolbox for specialized
- analyses of microbial genomes and metagenomes. PeerJ Prepr. 4:e1900v1.
- Roman-Reyna, V., Luna, E. K., Pesce, C., Vancheva, T., Chang, C., Ziegle, J., et al. 2020. Genome resource
- of barley bacterial blight and leaf streak pathogen *Xanthomonas translucens* pv. translucens strain
- 336 UPB886. Plant Dis. 104:13–15.
- 337 Rossier, O., Wengelnik, K., Hahn, K., and Bonas, U. 1999. The Xanthomonas Hrp type III system secretes
- proteins from plant and mammalian bacterial pathogens. Proc. Natl. Acad. Sci. U. S. A. 96:9368–9373.

Nathaniel Heiden *Phytopathology* Page **16** of **21**

339	Sapkota, S	., Mergo	oum, M.,	and Liu,	Z. 2020.	The translucens	group	of Xa	nthomonas	translucens:

- 340 Complicated and important pathogens causing bacterial leaf streak on cereals. Mol. Plant Pathol.
- 341 21:291-302.
- 342 Schornack, S., Meyer, A., Römer, P., Jordan, T., and Lahaye, T. 2006. Gene-for-gene-mediated
- recognition of nuclear-targeted AvrBs3-like bacterial effector proteins. J. Plant Physiol. 163:256–272.
- 344 Shah, S. M. A., Khojasteh, M., Wang, Q., Taghavi, S. M., Xu, Z., Khodaygan, P., et al. 2021. Genomics-
- 345 Enabled Novel Insight Into the Pathovar-Specific Population Structure of the Bacterial Leaf Streak
- 346 Pathogen Xanthomonas translucens in Small Grain Cereals. Front. Microbiol. 12:1265.
- Tambong, J. T., Xu, R., Gerdis, S., Daniels, G. C., Chabot, D., Hubbard, K., et al. 2021. Molecular Analysis
- of Bacterial Isolates From Necrotic Wheat Leaf Lesions Caused by Xanthomonas translucens, and
- 349 Description of Three Putative Novel Species, Sphingomonas albertensis sp. nov., Pseudomonas
- triticumensis sp. nov. and *Pseudomonas foliumensis* sp. nov. Front. Microbiol. 12.
- Tatusova, T., Dicuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E. P., Zaslavsky, L., et al. 2016. NCBI
- prokaryotic genome annotation pipeline. Nucleic Acids Res. 44:6614–6624.
- Thomas, N. C., Hendrich, C. G., Gill, U. S., Allen, C., Hutton, S. F., and Schultink, A. 2020. The Immune
- 354 Receptor Roq1 Confers Resistance to the Bacterial Pathogens Xanthomonas, Pseudomonas syringae, and
- 355 *Ralstonia* in Tomato. Front. Plant Sci. 11:463.
- Tian, L., Huang, C., Mazloom, R., Heath, L. S., and Vinatzer, B. A. 2020. LINbase: a web server for
- 357 genome-based identification of prokaryotes as members of crowdsourced taxa. Nucleic Acids Res.
- 358 48:W529–W537.
- Timilsina, S., Potnis, N., Newberry, E. A., Liyanapathiranage, P., Iruegas-Bocardo, F., White, F. F., et al.
- 2020. *Xanthomonas* diversity, virulence and plant–pathogen interactions. Nat. Rev. Microbiol. 18:415–
 427.
- 362 Young, J. M., Park, D.-C., Shearman, H. M., and Fargier, E. 2008. A multilocus sequence analysis of the

Nathaniel Heiden *Phytopathology* Page **17** of **21**

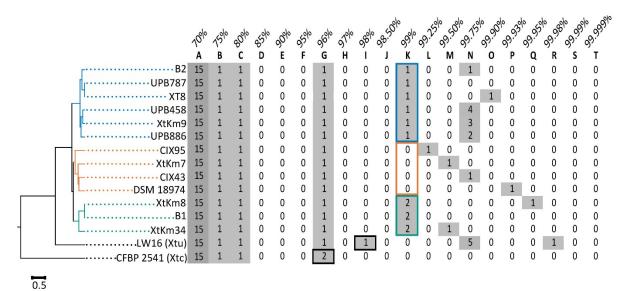
- 363 genus *Xanthomonas* . Syst. Appl. Microbiol. 31:366–377.
- Zhang, H., Yohe, T., Huang, L., Entwistle, S., Wu, P., Yang, Z., et al. 2018. dbCAN2: A meta server for
- automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46:W95–W101.
- 366 Zhang, Z., Schwartz, S., Wagner, L., and Miller, W. 2000. A Greedy Algorithm for Aligning DNA
- 367 Sequences. J. Comput. Biol. 7:203–214.
- 368 Zhou, B., Jin, Z., Schwarz, P., and Li, Y. 2020. Impact of Genotype, Environment, and Malting Conditions
- 369 on the Antioxidant Activity and Phenolic Content in US Malting Barley. Fermentation. 6:48.
- 370
- 371

Nathaniel Heiden *Phytopathology* Page **18** of **21**

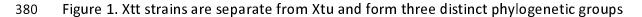
Strain – Accession	Publication	Year Isolated	Country	Genome size	Contigs	ANI	Secreted Proteins
CIX43 – CP072988;CP072989	This study	2009	USA	4.70	2	99.55	752
CIX95 – CP072990	This study	2011	USA	4.65	1	99.26	731
UPB886 - GCA_009600865.1	Roman-Reyna et al. 2020	1990	Iran	4.67	2	98.94	702
DSM 18974 - LT604072	Jaenicke et al. 2016	1933	USA	4.72	1	100.00	761
XtKm7 - CP064005	Shah et al. 2021	2014	Iran	4.58	1	99.52	710
XtKm8 - CP064004	Shah et al. 2021	2014	Iran	4.79	1	99.10	751
XtKm9 - CP064003	Shah et al. 2021	2015	Iran	4.69	1	98.92	709
XtKm34 - CP064001	Shah et al. 2021	2015	Iran	4.68	1	99.11	731
B2-GCA_001542205.1	Peng et al. 2016	2013	USA	4.54	517	99.00	
UPB787 - GCA_001469515.1	Bragard et al. 1997	1990	Paraguay	4.54	763	98.97	
XT8 - GCA_001462125.1	Peng et al. 2016	1942	Canada	5.71	156	98.98	
UPB458 - GCA_001659915.1	Bragard et al. 1997	1970	India	4.52	1,156	99.00	
B1 - LNTA00000000.1	Peng et al. 2016	2013	USA	4.80	523	99.09	
LW16-GCA_001462075.1	Peng et al. 2016	2009	USA	4.69	475	97.61	
CFBP 2541 - CP074364	Pesce et al. 2015	1941	USA	4.50	1	94.94	

Table 1. *Xanthomonas translucens* genomes* analyzed in this study.

373 *Genome summary and predicted secreted proteins of *X. translucens* pathovar translucens.


374 Genome size and CDS data were determined with PGAP analysis (Tatusova et al. 2016) for

375 strains CIX43 and CIX95 and publicly available information from NCBI was used for other strains.


ANI is relative to type X. translucens pv. translucens strain DSM 18974, determined by

377 Enveomics (Rodriguez-R and Konstantinidis 2016).

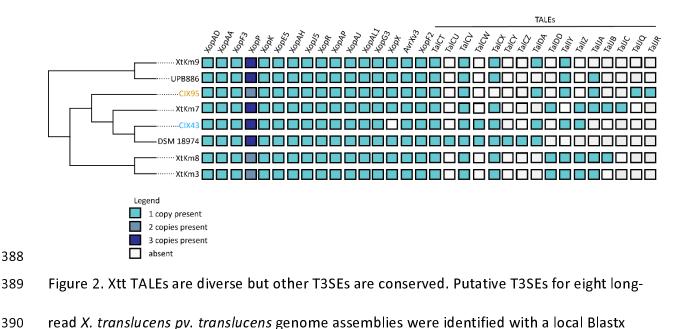
Nathaniel Heiden *Phytopathology* Page **19** of **21**

- 378
- 379

according to ANI. Whole genome ANI was calculated for all publicly available *X. translucens* pv.

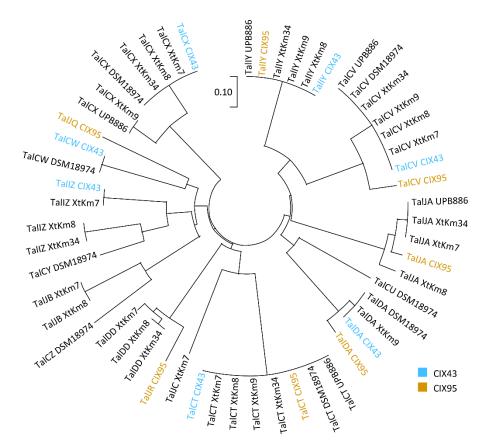
translucens strains and the outgroup strains LW16 and CFBP 2541. A tree was generated with

383 the webtool Enveomics using the UPGMA clustering method (Rodriguez-R and Konstantinidis


2016). Life identification numbers were calculated with LINbase (Tian et al. 2020). Boxes outline

the LIN values which separate the subgroups.

386

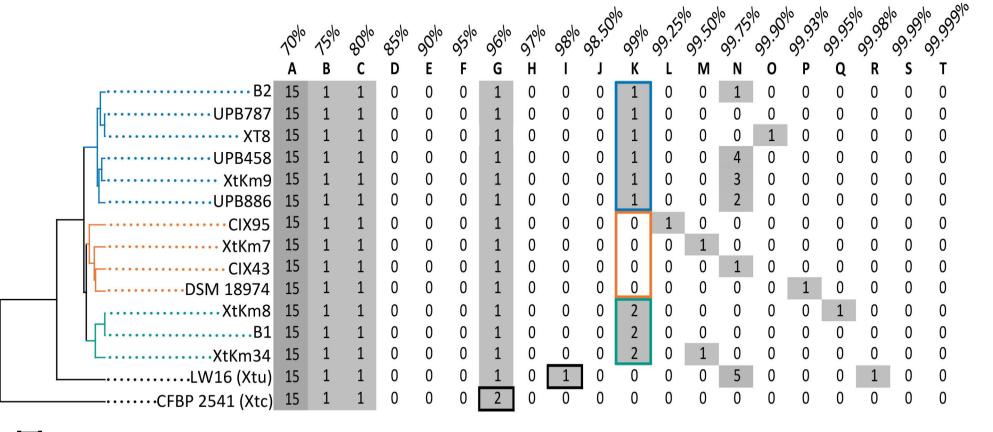

387

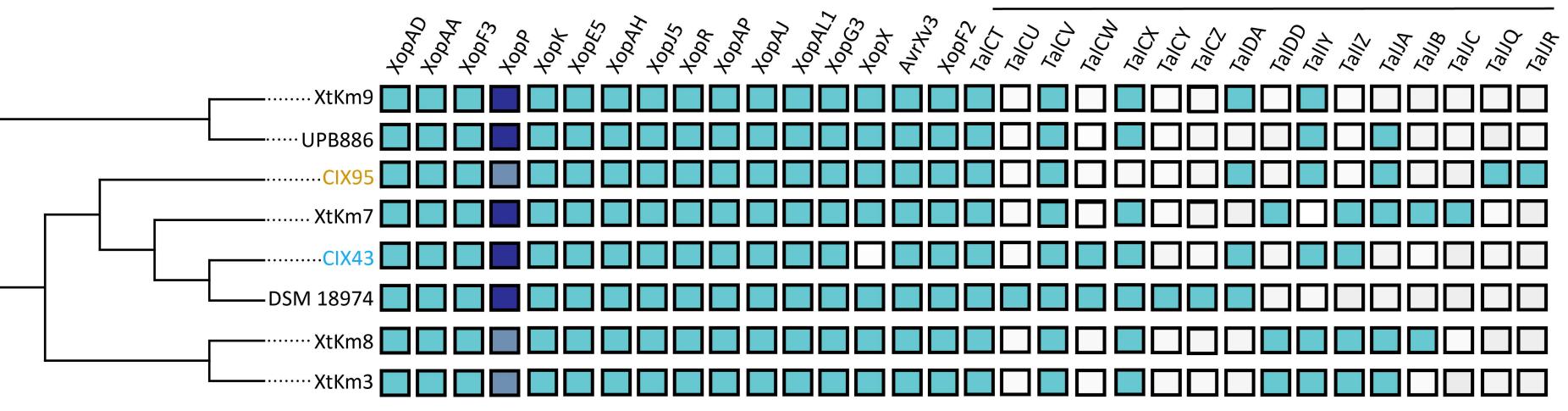
Nathaniel Heiden *Phytopathology* Page **20** of **21**

- 391 against a database of known *Xanthomonas* effectors. Blue colored boxes represent the
- 392 presence of a putative effector with shading representing the number of copies present. TALEs
- were identified and classified according to AnnoTALE (Grau et al. 2016) and their names begin
- with "Tal". Whole genome ANI was calculated displayed strains and a tree was generated with
- the webtool Enveomics using the UPGMA clustering method (Rodriguez-R and Konstantinidis
- 396 2016).
- 397
- 398
- 399
- 400
- 401

Nathaniel Heiden *Phytopathology* Page **21** of **21**

402


403 Figure 3. CIX95 has multiple unique TALEs. The colored names represent TALEs from the strains


404 CIX43 (blue) and CIX95 (gold), sequenced in this study. The output was created with FuncTAL

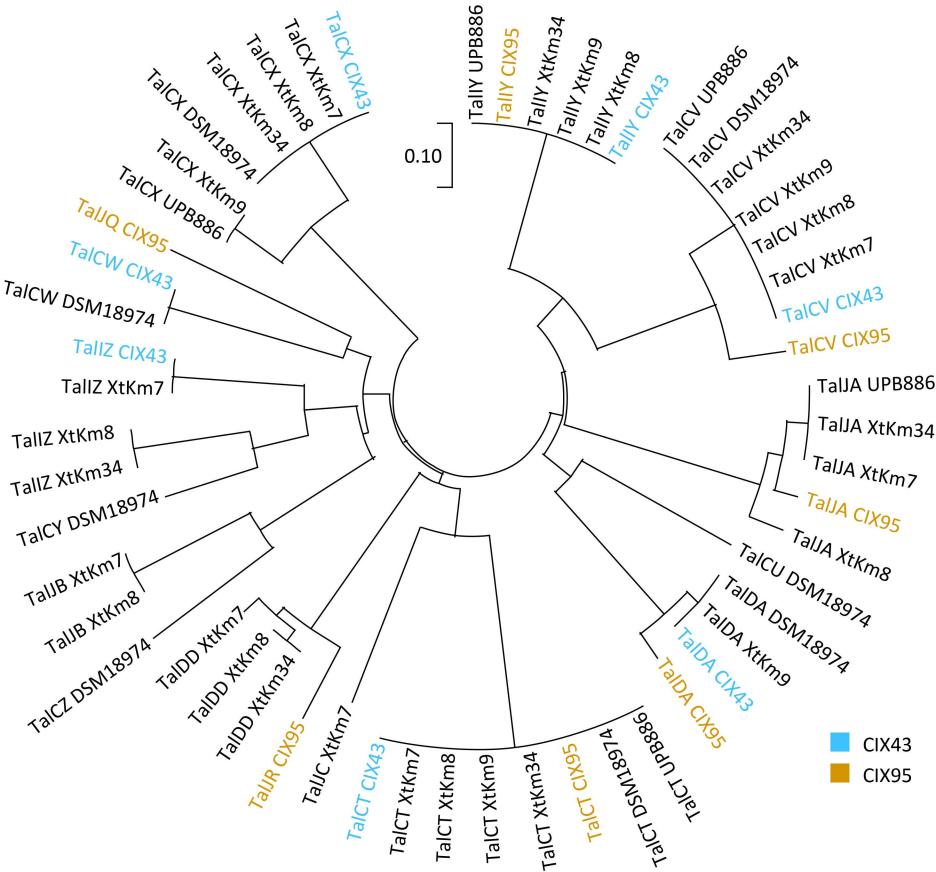
405 from the QueTAL suite of tools (Pérez-Quintero et al. 2015), using RVDs determined by

406 AnnoTALE (Grau et al. 2016).

407

Legend

1 copy present



2 copies present

3 copies present

absent

TALEs

