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Abstract

Motivation: Genome-wide Association Studies (GWAS) are an integral tool for studying the architec-
ture of complex genotype and phenotype relationships. Linear Mixed Models (LMMs) are commonly
used to detect associations between genetic markers and the trait of interest, while at the same time
allowing to account for population structure and cryptic relatedness. Assumptions of LMMs include
a normal distribution of the residuals and that the genetic markers are independent and identically
distributed - both assumptions are often violated in real data. Permutation-based methods can help
to overcome some of these limitations and provide more realistic thresholds for the discovery of true
associations. Still, in practice they are rarely implemented due to its high computational complexity.
Results: We propose permGWAS, an efficient linear mixed model reformulation based on 4D-tensors
that can provide permutation-based significance thresholds. We show that our method outperforms
current state-of-the-art LMMs with respect to runtime and that a permutation-based threshold has a
lower false discovery rate for skewed phenotypes compared to the commonly used Bonferroni threshold.
Furthermore, using permGWAS we re-analysed more than 500 Arabidopsis thaliana phenotypes with 100
permutations each in less than eight days on a single GPU. Our re-analyses suggest that applying a
permutation-based threshold can improve and refine the interpretation of GWAS results.
Availability: permGWAS is open-source and publicly available on GitHub for download:
https://github.com/grimmlab/permGWAS.
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1 Introduction

Genome-wide Association Studies (GWAS) are an integral tool to detect associations
between genetic markers within a population of individuals and a complex trait or dis-
ease that is measured in the same population (Atwell et al., 2010; The 1001 Genomes
Consortium, 2016; Todesco et al., 2020). State-of-the-art methods can easily analyze
millions of markers in populations of thousands of individuals (Kang et al., 2008, 2010;
Lippert et al., 2011; Korte et al., 2012; Loh et al., 2015). Here, the critical step is to
define a threshold to distinguish true and spurious associations. Classically, one con-
trols the family-wise error rate (FWER), that is the probability of making at least one
type-1 error (or false positive), using the commonly used Bonferroni correction (Bon-
ferroni, 1936). However, due to the large number of tests the Bonferroni correction
is in practice often too conservative (Westfall and Young, 1993; Llinares-Lépez et al.,
2015; Gumpinger et al., 2021), as it assumes that all tested markers are independent,
which is clearly not the case for high-density genomic data that are nowadays routinely
generated. Here, many markers are correlated with each other and the actual number
of independent tests performed is lower than the number of markers analyzed. There-
fore, many studies propose a significance threshold that is based on the false-discovery
rate (FDR) (Storey and Tibshirani, 2003). On the other hand, naive thresholds, such
as Bonferroni or FDR, cannot account for model miss-specifications that easily arise in
biological data, which are often non-normally distributed. Variance-stabilizing transfor-
mations have been proposed to account for phenotypic variability (Sun et al., 2013), but
are not non-controversial (Shen and Ronnegard, 2013) and might complicate compara-
bility across different phenotypes.

Permutation-based thresholds could provide an alternative approach to overcome some
of these limitations (Che et al., 2014). Here, the main limitations are the computational
burden to run permutations routinely, as current implementations are still too slow and
inefficient (such as our deprecated method GWAS-Flow (Freudenthal et al., 2019)), or
focus only on linear regression without the possibility to correct for confounding factors
on specialised FPGA (Field Programmable Gate Arrays) hardware (Swiel et al., 2022).
We propose permGWAS, an efficient permutation-based linear mixed model to compute
adjusted significance thresholds that are able to account for correlated markers and
skewed phenotypic distributions without the need to arbitrarily transform phenotypes.
To account for multiple hypothesis, correlated markers and skewed phenotypes, we com-
pute permutation-based significance thresholds based on the maxT methods proposed
by Westfall & Young (Westfall and Young, 1993). To enable efficient computation of
different permutation-based tests, we provide a scale-able batch-wise reformulation of
a permutation-based linear mixed model using 4 dimensional tensors. We propose to
implement permutation-based thresholds as the default choice for GWAS and provide
both simulations and re-analysis of more than 500 Arabidopsis thaliana phenotypes to
underpin its benefits.
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2 Methods

We will first provide the necessary background of linear mixed models for genome-wide
association studies, the multiple hypothesis testing problem and how to empirically esti-
mate the family-wise error rate using the Westfall-Young permutation testing procedure
(Westfall and Young, 1993). Finally, we will present our approach on how to efficiently
compute associations with linear mixed models (LMMs) using a permutation-based sig-
nificance threshold. An overview of all mathematical symbols and notations can be
found in Suppl. Tab. 1.

2.1 Linear Mixed Model

Let n be the number of samples and m the number of genetic markers. Then for each
genetic marker we consider a LMM of the form

y=XB+u+te (1)

where y € R" is a vector of observed phenotypic values and X € R"*¢ is a matrix of
fixed effects containing columns for the mean, covariates and the genetic marker. Fixed
effects are denoted by 3 € R¢ and random effects u € R™ follow a Gaussian distribution
with zero mean and a (genetic) variance of agK , where K € R™"™ denotes the kinship
matrix and € € R” is a vector of residual effects with € ~ N(0,02I). As described in

(Kang et al., 2008, 2010; Lippert et al., 2011), we estimate the variance components 03
and o2 by maximizing the following likelihood function
L (,8,03,02) :N(y ] Xﬁ;USK-i- UgI) (2)

for both, the null model which includes no genetic markers and afterwards the alternative
model which includes the marker of interest. Finally, a F-test is used to test the null
hypothesis that the marker has no effect against the alternative hypothesis that it has
an effect on the phenotypic value. We can reject the null hypothesis and call a statistical
test significant, if the p-value of the F-test is below a predefined significance threshold
a (e.g. 5%).

2.2 Multiple Hypothesis Testing

Since we have to test thousands to millions of markers simultaneously, we have to take
these multiple tests into account, otherwise we would obtain thousands of false positive
associations deemed to be significant.

2.2.1 Family-Wise Error Rate

The family-wise error rate (FWER) is the probability of making at least one type-1 error
(or false positive). One has to find an appropriate corrected significance threshold § for
each hypothesis, such that the FWER(J) < a. To determine the optimal threshold §*
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one has to solve the following optimization problem:
0" = max {0|[FWER(J) < a} (3)

Evaluating this optimization problem in closed form is not possible in general. For this
purpose, the widely used Bonferroni approximation (Bonferroni, 1936) can be used to
control the FWER. To estimate the adjusted significance threshold d; after Bonferroni,
one simply divides the number of simultaneous tests by the target significance level a,
i.e. 0; = a/m. However, due to the large number of tests the Bonferroni correction is
in practice often too conservative, i.e. FWER(J;) < 6%, as shown in (Llinares-Lépez
et al., 2015; Gumpinger et al., 2021). In addition, when performing GWAS one typically
makes the assumption that the residuals are normally distributed and that the genetic
markers are independent and identically distributed. However, these assumptions are
often violated in practice, which leads to the fact that the Bonferroni threshold is either
overly conservative for normally distributed phenotypes (leading to many false negatives)
or not stringent enough for phenotypes with skewed distributions (leading to many false
positives).

2.2.2 Westfall-Young Permutations

Permutation-based methods can help to overcome some of these problems, by empirically
estimating the FWER(J). One could either approximate the null distribution by using
permutations to then compute adjusted p-values or to use the unadjusted p-values and
provide a permutation-based significance threshold based on the mazT permutation-
method proposed by Westfall and Young (Westfall and Young, 1993). With this adjusted
threshold we can account for non Gaussian distributed phenotypes, correlated markers
due to linkage disequilibrium (LD) and the large number of tests. In the following we will
describe how to compute both, adjusted p-values and adjusted significance thresholds.
To compute adjusted p-values, we first permute the phenotype ¢ times and calculate
the test statistics (k)tj for the k' permutation, with & € {1,...,¢} and ;™ marker,
with j € {1,...,m}. After randomizing, any correlation left between the genotypic and
phenotypic values will be of non-genetic origin, but the distribution of the phenotypic
values stays the same. To compute the permutation-based p-values, let T denote the
random variable corresponding to the observed test statistic of the 5™ marker. We test
the hypothesis Hy that T; follows the permutation distribution empirically given by (k)tj
for all £ and all j. Then we compute the adjusted permutation-based p-value as:

> Y L(Wt > t)

qam

pj = P(Tj =t; | Ho) = (4)
Where 1 takes the value 1 if the argument is true and 0 otherwise. The FWER can
be controlled in this multiple hypothesis testing setting using Bonferroni (Bonferroni,
1936).

For the adjusted significance threshold we follow a permutation testing procedure pro-
posed by Westfall and Young (Westfall and Young, 1993). For each permutation we take
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the maximal test statistic over all markers, ®)¢,,,, = mMaX;e (1, . m} (k)tj and compute
the corresponding minimal p-value &) pomin.  Let again T denote the random variable
corresponding to the observed test statistic of the j® marker. We now test the hypoth-
esis Hy that Tj follows the permutation distribution empirically given by (k)tmax for all
k. Then the adjusted p-value is given by p; = P (T; =t; | Hy) and

’ 1 (k)tmax >t
]Ajj — ZkZI ( q — ]) ga (5)

is equivalent to t; being larger than the 100(1 — a)™ percentile of the ()t 1mae. Hence,
the o™ percentile of the minimal p-values )p,,i,, leaves us with an adjusted threshold
that controls the FWER.

2.3 permGWAS Architecture

These permutation-based strategies are computationally highly demanding, which makes
them often inapplicable in practise. Further, current state-of-the-art GWAS imple-
mentations sequentially compute univariate test-statistics for one marker and a given
phenotype (Kang et al., 2008, 2010; Lippert et al., 2011; Grimm et al., 2017). We pro-
pose permGWAS, which is able to simultaneously compute univariate test statistics of
several SNPs batch-wise on modern multi-CPU and GPU environments, while at the
same time controlling the FWER using Westfall-Young permutation testing. First, we
will introduce the mathematical framework for batch-wise linear mixed models without
permutations, followed by an efficient formulation for permutation-based linear mixed
models.

2.3.1 Batch-Wise Linear Mixed Models

Denote by n the number of samples, ¢ the number of fixed effects (i.e. the SNP of interest
and all covariates) and b the batch size. Let X; € R"*¢ denote the matrix of fixed effects,
including a column of ones for the intercept, the covariates and the j™ SNP z; € R"
(Fig. 1A). Let X]b € R¥mx¢ be the 3D tensor containing the matrices X; to Xjip-1
and let Y € RP*™<1 denote the 3D tensor containing b copies of the phenotype vector
y € R (Fig. 1B). Further, let V = 02K + 02l € R™*" denote the variance-covariance
matrix. For computational efficiency, instead of using generalized least squares, we first
compute the Cholesky decomposition V' = CCT and linearly transform ij and Y?,
before computing the coefficients using ordinary least squares. Let C?® € RP*™*" denote
the 3D tensor containing b copies of C. Then the linearly transformed data is given by

N -1
%= (0) X (e R ®

Yy — <Cb)_1 Y= (Cly,...,C'y) (7)
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Figure 1: Schematic illustration of matrices and tensors of the permGWAS architecture. (A)
Commonly used matrix representation when computing sequential univariate tests, where y € R™
is the phenotypic vector for n samples and X; € R"*¢ denotes the matrix of fixed effects,
including a column of ones for the intercept, the covariates and the j*" SNP z; € R". (B)
3D-tensor representation of a LMM to compute univariate tests batch-wise. The phenotype
is represented as a 3D tensor containing b copies of the phenotype vector y € R™ and X ]l»’ €
RbX"x¢ j5 a 3D tensor containing the matrices X; to X, 4p—1. (C) 4D-tensor representation of
a permutation-based batch-wise LMM. The phenotype is represented as a 4D tensor containing
for each permutation *)gy the 3D tensor By for all ¢ permutations and qX? € Raxbxnxe ig g

4D tensor containing g copies of X le
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Now we can compute the coeflicients ﬁ? € RP*¢ and the residual sums of squares RS Sé? €
R? for those b SNPs starting at the j* SNP as follows:

o NT —\ "t \T ~
8l = <<X§?) X§?> (Xj?) Yy (8)
~ — T /- —
RSS! = (Y'-X)8") (V'-X!8") (9)
Where <§Z§’>T = ((C*IX]-)T R (CilXjer,l)T) € Rb*¢X_ Finally, we can compute
the test statistics t? € R® for all b-SNPs:

RSS} — RSS!

b _ _
t:=(n—c) RSS’;’

(10)

where RS 5'8 contains b copies of the residual sum of squares of the null model. Once we
have computed the test statistics for all SNPs we can sequentially calculate all p-values.

2.3.2 Efficient Permutation-Based Linear Mixed Models

When performing GWAS with permutations let additionally ¢ denote the number of
permutations. Then for each permutation ¥y of y with k € {1,...,q} we get a new 3D
tensor Byt e Rbxnx1 et 9yt € R7X0XnX1 he the 4D tensor containing ®Y? for all k

and let ng’- € R7xbxnxe he the 4D tensor containing ¢ copies of X]I? (Fig. 1C). Now for
each permutation *)y of y we estimate associated variance components (k)ag and (¥) o?

and obtain a new variance-covariance matrix *)V € R"*". We compute the Cholesky
decomposition ¥V = K C®KCT for each k and again linearly transform the data. Let
1CP ¢ R1X0*nx1 denote the 4D tensor containing the 3D tensors F)C? € RV*7*" for all
k. Then we can transform the data via

X = (qcb)_1 xh = (((ch)_l Xy (e B X}’) (11)

Iy _ (qcb>_1 Ty — <<(1)Cb) - Wy?b <(q)Cb)_1 (Q)Yb> (12)

Now similar to above we compute the coefficients q,@? € R7*b%¢ the residual sums of
squares qRSS? € R7%% and the test statistics qt? € R2*? for all ¢ permutations and b
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SNPs at once:
= (%)% (%)Y 13)
"RSS} = ("Y' - "X} qa?)T ("vt-"x}g0) (14)

“RSS} — “RSS"
“RSS"

(%)= (((0e) =) o ((0e) =) 5)

is a 4D tensor in RI*0*X" and 1RSSY € RI*® contains b copies of the RSS of the null
model for each permutation.

qt? =(n—c)

Where

2.4 Implementation

The permGWAS framework is implemented in Python3 using commonly used libraries for
scientific computing, such as numpy (Harris et al., 2020), scipy (Virtanen et al., 2020),
pandas (McKinney et al., 2011) and PyTorch (Paszke et al., 2019) to support efficient
tensor arithmetic as well as multi-core and GPU support. In addition, specialized pack-
ages for estimating the variance components (1imix (Lippert et al., 2014)) and file IO
(h5py, pandas-plink) are used. permGWAS can be used as a standalone command line
tool or directly within Python. To ensure a smooth experience on different environments
and machines we provide a standardized Docker environment. Our Framework supports
several common genotype and phenotype file formats, including HDF5, CSV and PLINK
(Purcell et al., 2007). Further, permGWAS supports to filter for minor allele frequency
(MAF) and also to include one or more covariates to account for certain fixed effects. By
default permGWAS computes as a kinship matrix the realized relationship kernel (Hayes
et al., 2009), however it is also possible to provide any other type of genetic similarity
matrix. In order to run the tool on different machines, the batch size for the simultaneous
computation of univariate tests as well as the batch size for permutation-based tests can
be adjusted. To reduce the memory footprint, it is also possible to load genotypic data
continuously in chunks from a HDF?5 file, in case a pre-computed kinship matrix is pro-
vided. All code is open-source and publicly available on GitHub, including more details
and information on how to run the tool: https://github.com/grimmlab/permGWAS.

2.5 Data & Simulations

We evaluate the performance and runtime of permGWAS on simulated data as well as
on publicly available genotype and phenotype data from the model plant Arabidopsis
thaliana.

2 METHODS 8
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2.5.1 Arabidopsis thaliana Data

As genotypic data a fully imputed SNP-Matrix of 2029 accessions and approximately
3M segregating markers is used (Arouisse et al., 2020). Phenotypic data for 516 different
traits were downloaded from the central and manually curated AraPheno database (Seren
et al., 2016; Togninalli et al., 2020).

2.5.2 Simulations

Artificial phenotypes were simulated for 200 random Arabidopsis thaliana accessions us-
ing the fully imputed SNP matrix from above. For each synthetic phenotype 1001 SNPs
with a minor allele frequency of 5% or higher were randomly sampled, where 1 SNP was
considered causative and the other 1 000 were used to simulate the polygenic background.
Here, each background SNP contributed a small random amount, drawn from a normal
distribution with g = 0 and ¢ = 0.1 to the phenotypic value. Random noise drawn from
a gamma or normal distribution was added, such that the noise accounts for 70% of the
total phenotypic variance. Finally, a fixed effect for the causative SNP was added to
explain roughly 20% of the total genetic variance. In this manner, six different sets con-
taining 50 phenotypes each, were simulated. The sets differed by the distribution of the
noise, where one set had normally distributed noise and the other five sets used gamma
distributed noise with shape parameters of 0.1, 1, 2, 3 and 4. For evaluation, permGWAS
was applied with 100 permutations on each of the 300 simulated phenotypes. Each phe-
notype was classified as true positive (TP) if any SNP in a 50kbp window around the
causative marker was significant. Additionally, each phenotype was classified as false
positive (FP) if any SNP outside the 50kbp window around the causative marker was
significant. This way a phenotype can be true positive and false positive at the same
time. We define the phenotype-wise false discovery rate (FDR) as FDR = %.
These values were calculated separately for the p-value thresholds based on both, the
Bonferroni and permutations-based thresholds.

3 Results & Discussion

In the following we evaluate permGWAS with respect to runtime and statistical power
using simulated data, as well as on more than 500 public available phenotypes from the
model species Arabidopsis thaliana.

3.1 Results on Synthetic Data
3.1.1 Runtime Comparisons

We analyzed the runtime of permGWAS with respect to (1) the number of markers, (2)
the number of samples and (3) the number of permutations. For all runtime experi-
ments we used data from a flowering time related phenotype in Arabidopsis thaliana,
FT10 (flowering time at 10 degrees; DOI:10.21958 /phenotype:261) (The 1001 Genomes
Consortium, 2016), and down- and up-sampled the phenotype and corresponding SNP

3 RESULTS & DISCUSSION 9
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Figure 2: Runtime comparison of permGWAS vs. EMMAX and FaST-LMM. Note all axes are
log-scaled. (A) Computational time as function of number of SNPs with fixed number of 1000
samples. (B) Computational time as function of number of samples with 10° marker each. (C)
Computational time as function of number of permutations with 1000 samples and 106 marker
each. Dashed lines for EMMAX and FaST-LMM are estimated based on the computational time for

1000 samples and 106 markers times the number of permutations.

matrix to generate synthetic data with varying number of samples. We compared the
runtime of permGWAS with two state-of-the-art and commonly used LMMs, EMMAX (Kang
et al., 2010) and FaST-LMM (Lippert et al., 2011). For both, we used the binary C/C++
implementations. All runtime experiments were conducted on the same machine running
Ubuntu 20.04.3 LTS with a total of 52 CPUs, 756 GB of memory and 4 NVIDIA GeForce
RTX 3090 GPUs, each with 24GB of memory. For our experiments we restricted the
number of CPUs to 1 and 8 cores and a single GPU using dedicated Docker containers.
We took the mean of the runtime over three runs for each experiment.

First, we compared the runtime on environments with a single CPU and GPU. For this
purpose, we fixed the number of samples to 1000 and varied the markers between 10%
and 5-10° to evaluate the effect of an increasing number of SNPs. As summarized in Fig.
2A all models show a linear dependency with respect to the number of SNPs. permGWAS
(the GPU and CPU version) outperform both, the binary implementation of EMMAX and
FaST-LMM. Our dockerized Python implementation of permGWAS is almost one order of
magnitude faster than the C/C++ implementation of FaST-LMM (for 1000 samples and
5 - 10 markers 0.33h and 2.8h, respectively). This can be mainly explained due to the
batch-wise computation of several univariate statistical simultaneously.

Next, to estimate the effect of the number of samples on the runtime we fixed the num-
ber of SNPs to 10° and varied the number of samples between 100 and 10%. In Fig. 2B
we can observe that EMMAX outperforms all other comparison partner for sample sizes
smaller than 500. However, the runtime increases quickly for larger samples sizes. Again
permGWAS outperforms both comparisons partners by at least one order of magnitude.
Here the runtime of the GPU version of permGWAS for 10% samples and 10 markers
was approximately 1.7h, while for FaST-LMM and EMMAX the runtime was more than 7h
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and 19h, respectively. Finally, to compare the runtime of the permutation-based ap-
proach, we fixed the number of samples to 1000 and the number of SNPs to 10 and
conducted between 10 and 500 permutations with permGWAS using a single GPU archi-
tecture vs. a single CPU. Since EMMAX and FaST-LMM only perform one univariate test at
a time and are not designed for permutation-based tests, we took the runtime for 1000
samples and 10 markers from the previous experiment and estimated the runtime for
permutations by multiplying with the number of permutations. This is just an estimate
of the minimal runtime, since no data pre-processing and post-processing steps are in-
cluded (e.g. preparing permuted phenotypes, merging result files to estimate adjusted
p-values/thresholds). The advantage of the GPU architecture becomes most obvious
when using permutations, as illustrated in Fig. 2C. The GPU version of permGWAS is
at least an order of magnitude faster than the CPU version of permGWAS. More impor-
tantly, permGWAS (GPU) is more than one order of magnitude faster than EMMAX and
more than two orders of magnitude faster than FaST-LMM. Even for 1000 samples, 10°
SNPs and 500 permutations permGWAS (GPU) takes less than 1.8 h. In contrast, EMMAX
would require at least more than 2.7 days, while FaST-LMM might take more than 11
days for 500 permutations. Results for environments with 8 cores are summarized in the
Suppl. Fig. 1 and show similar results. Additionally, we over 500 Arabidopsis thaliana
phenotypes with 100 permutations each on a single GPU (Nvidia RTX A5000 with 24GB
RAM) in less than 8 days. The respective runtimes are shown in Supplementary Fig.
2. Notable, for phenotypes with a sample size above 800 individuals, the 24GB RAM
weren’t sufficient and the analyses has been performed on an HPC environment allowing
for additional RAM.

In summary, permGWAS is more efficient than the commonly used state-of-the-art LMMs,
such as EMMAX and FaST-LMM, due to its tensor-based and batch-wise reformulation.
Especially when performing GWAS with more than a few hundred of samples and per-
mutations, EMMAX and FaST-LMM take several days to weeks to compute the results,
while our implementation only needs a few hours. Although the GPU implementation
of permGWAS is faster than the corresponding CPU implementation still outperforms
existing methods.

3.1.2 False Discovery Rate for Skewed Phenotypes

Our simulations show that the phenotype-wise FDR increases, if the respective pheno-
types become more skewed. Using a static Bonferroni threshold, the phenotype-wise
FDR increases from 30% for slightly skewed phenotypes to 50% in the most extreme
case (Fig. 3D). The latter means that in nearly all of the simulated phenotypes, not
only true, but also false associations have been found (Suppl. Tab. 2).

Noticeably, the permutation-based threshold becomes more and more stringent, if the
phenotypic distribution becomes more skewed (Fig. 3C), thereby controlling the phenotype-
based FDR more reliable (Fig. 3D and Suppl. Tab. 2). Skewed phenotypic distributions
will violate model assumptions, and associations with low p-values can arise randomly.
This will get controlled by permutations that can account for model violations, as un-
derlying assumptions are also violated in a model without genetic signal. Hence, per-
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illustrates the fixed Bonferroni significance threshold. (D) Phenotype-wise false discovery rate
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mutation can control for false associations that arise through non-normal phenotypic
distributions.

On the other hand, for normally distributed phenotypes, the permutation-based thresh-
old is less stringent compared to the Bonferroni threshold (Suppl. Fig. 3C) and increases
the power to recover true associations (Suppl. Fig. 3D). However, also slightly more false
positives are detected. To summarize, simulations suggested that a permutation-based
threshold is more flexible, compared to a static Bonferroni threshold and will provide a
higher power to detect true associations for normally distributed phenotypes, as well as
control FDR for skewed phenotypes.

3.2 Permutation-based GWAS in Arabidopsis thaliana

After we highlighted the advantages of a permutation-based threshold with simulated
data, we re-analyzed 516 real phenotypes that we have downloaded from the phenotypic
data repository AraPheno (Seren et al., 2016; Togninalli et al., 2020). As expected for
real data, many of these are non-normally distributed. Using the Shapiro-Wilk test on
the phenotypic data, only 90 phenotypes had a p-value > 0.05, indicating a normal
distribution (Suppl. File 1). As expected, by our simulations, we observed a correlation
between the phenotypic distribution and the calculated permutation-based threshold
(Suppl. Fig. 4). All, but two phenotypes that are normally distributed (Shapiro-Wilk
test > 0.05), show a less stringent permuation-based threshold compared to the Bon-
ferroni threshold (Suppl. Fig. 4 inset). In summary, for the 516 analyzed phenotypes,
the permutation-based thresholds are 293 times more stringent and 223 less stringent
compared to the Bonferroni threshold. Although, we don’t know the ground truth of
true and false associations for this data, permutation-based thresholds markedly reduce
the overall number of association, especially for skewed phenotypes. Comparing the
100 most skewed phenotypes (p-value from the Shapiro-Wilk test < 10'?), nearly all
(96) show a significant association using the Bonferroni threshold, while only six of the
most normal distributed phenotypes (p-value from the Shapiro-Wilk test > 0.02) have
a significant association. Using the permutation-based threshold these numbers change
to 53 and 15, respectively (summary results of all analyses can be found in Suppl. File
1). A priori, there is no reason, why skewed phenotypes should more often show true
association, therefore the number of reported associations with the permutation-based
threshold seem more realistic. In general, we can observe different scenarios: (1) For
some cases, a less stringent permutation-based threshold will identify a significant signal
that would not have been significant using the Bonferroni threshold (Fig. 4A). This
scenario is true for 22 different phenotypes, especially if their phenotypic distribution
is normal (Suppl. Fig. 5A); (2) We observed 123 cases, where the Bonferroni thresh-
old would indicate significant associations, but the permutation-based threshold would
rather assume that these are false positives (Fig. 4B) and (3) for another 111 cases, even
after using a permutation-based threshold, skewed phenotypes show still significant asso-
ciations (Fig. 4C). Most phenotypes that belong to scenario (2) or (3) are non-normally
distributed (Suppl. Fig. 5B and C).

Although, follow-up experiments would be needed to confirm that association deemed
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Figure 4: GWAS of three different Arabidopsis thalaiana phenotypes. Man-
hattan plots display the associations of all markers for the three phenotypes (A)
#744 ((https://arapheno.1001genomes.org/phenotype/744/), which is nearly normal dis-
tributed, (B) #118 ((https://arapheno.1001genomes.org/phenotype/118/) and (C) #325
((https://arapheno.1001genomes.org/phenotype/325/). Where the two latter phenotypes are
non-normally distributed. The Bonferroni threshold is denoted by a red horizontal dashed line

and the respective permutation-based threshold by a horizontal blue line.
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positive in the scenarios (1) and (3) are true positives, anecdotally many of this candi-
dates seem plausible.

3.2.1 Number of permutations and minor allele frequencies

In the previous paragraph we emphasized the benefit of using a permutation-based
threshold, instead of a Bonferroni threshold. We performed 100 permutations for each
phenotype, but more permutation could give a more accurate estimate of the thresh-
old. To investigate the effect of the number of permutations on the permutation-based
threshold, we performed additional permutations for two different Arabidopsis thaliana
phenotypes. One phenotype is nearly normally distributed, while the other is markedly
skewed (Suppl. Fig. 6A and C). We performed 100, 200, 300, 400, 500 and 1000 per-
mutations. Here the used 5% threshold is nearly identical and stable across the different
number of permutations performed for both phenotypes (Suppl. Fig. 6B and D). Thus,
our empirical results suggest that 100 will give rise to a reliable estimate of the threshold
and enable a fast analysis of many phenotypes and or huge data.

Next, we analyzed if minor allele frequency has an effect on false positives and the respec-
tive calculated permutation-based thresholds. It has been suggested that rare variants
can easily associate with phenotypic extremes and thus that false positive associations
of rare alleles are more prone in non-normally distributed phenotypes (Peloso et al.,
2016). If this is true, a permutation-based threshold should be able to account for ex-
cessive false associations of rare alleles. Using permGWAS with increasing minor allele
filters and thereby excluding rare alleles from the analysis, the Bonferroni threshold is
just reflecting the lower amount of markers tested, while the permutation-based thresh-
old has a non-linear dependency. For normally distributed phenotypes, the change in
the permutation-based threshold is similar to Bonferroni (Suppl. Fig. 7A), while for
a skewed phenotype a clear effect of excluding rare alleles is observed. As an exam-
ple, in the analysis of phenotype #372 (DOI:10.21958 /phenotype:372) from Arabidopsis
thaliana, the calculated permutation-based threshold increases from 10716 if all markers
are analysed to 107!° if only alleles with a minor allele count of at least 10 are con-
sidered (Suppl. Fig. 7B). For skewed phenotypes, the permutation-based threshold is
clearly dependent on the allele frequency. permGWAS can compute and provide a distinct
threshold for different allele frequencies that is - unlike Bonferroni - dependent on the
phenotpic distribution and not the amount of markers tested.

4 Conclusions

We introduced permGWAS, an efficient linear mixed model for genome-wide association
studies with population structure correction and permutation-based significance thresh-
olds that can reliable control false positives for phenotypes with skewed distributions.
Our method uses a 4D tensor reformulation of a linear mixed model using a permutation
strategy proposed by Westfall-Young (Westfall and Young, 1993) to compute univariate
association tests batch-wise, on both modern multi-core and GPU environments. We
compared permGWAS in terms of runtime with EMMAX (Kang et al., 2010) and FaST-LMM
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(Lippert et al., 2011), two state-of-the-art linear mixed models. We could show that
permGWAS outperformed both models in terms of computational and statistical perfor-
mance. Especially, permGWAS is highly efficient in a permutation-based setting, due to
the 4D tensor reformulation and the available GPU support (2h for permGWAS (GPU)
vs. several days for EMMAX and FaST-LMM for 1000 samples, 10® markers and 500 per-
mutations). These reformulations enable to perform permutation-based thresholds in
practice.

We demonstrated through simulations and the re-analyses of public available data from
the model plant species Arabidopsis thaliana that the use of a permutation-based thresh-
old has many advantages compared to the classically used Bonferroni threshold. Bonfer-
roni correction is thought as a very conservative way to control false positives in GWAS,
and indeed for normal distributed phenotypes, we could show that the permutation-
based threshold is less stringent and can identify more true positive associations. On
the other hand, for non-normally distributed phenotypes, as often observed in biological
data, the permutation-based threshold is quite often even more stringent. Here, our
data suggest that we could reliably control false positives under those scenarios. To
summarise, we highlight that the use of a permutation-based threshold should be con-
sidered the default choice in any GWAS and provide with permGWAS the tool to enable
this.
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Supplementary Table 1: Mathematical Symbols and Notations

number of samples

number of markers

number of fixed effects

number of batches

number of permutations

extend of the genetic variance

extend of the residual variance

significance threshold

corrected significance threshold for Family-wise error rate
optimal significance threshold for FWER,

Bonferroni adjusted significance threshold

random variable for observed test statistic of the j'* marker
permutation test statistic of j*® marker and k" permutation
permutation based p-value of the 5" marker

indicator function, taking the value 1 if the argument is true and 0 otherwise
maximal test statistic of &*" permutation

adjusted p-value for Westfall-Young permutation testing

minimal p-value of k' permutation

residual sum of squares of the null model

vector of observed phenotypic values

vector of random effects

vector containing the j™ SNP

vector of residual effects

vector of fixed effects coefficients

matrix of fixed effects

genetic relationship matrix (kinship)

identity matrix of dimension n

variance-covariance matrix o, K + oo 1

lower triangle matrix with CCT = V'

matrix of fixed effects, containing a column of ones, the covariates and the j** SNP
3D tensor containing X,..., X 11

3D tensor containing b copies of y

3D tensor containing b copies of C

3D tensor containing the transformed data (Cb)71 X]b

3D tensor containing the transformed data (Cb)71 Y?

3D tensor containing the transposed matrices (C_IXJ-)T et (C_lXHb,l)T
coefficients of fixed effects for SNPs j,...,j+b—1

residual sums of squares for SNPs j,...,7+b—1

vector containing b copies of the residual sums of squares of the null model
test statistics of SNPs j,...,j+b—1

genetic variance component of Eth permutation
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residual variance component of k™" permutation

k" permutation of phenotype vector y

variance-covariance matrix (k)agK + ® g2 of k™ permutation
lower triangle matrix with ®C ® T = Wy
3D tensor containing b copies of the permutation ¥y

3D tensor containing b copies of *)C

4D tensor containing q copies of X]l?

4D tensor containing Wyt . (@y?
4D tensor containing (1)C’b, el (ol
4D tensor containing the transformed data (qu)_l qXIJ’-

Iyt g Raxbxnxl 3D tensor containing the transformed data (qu)_l ay?®

(‘IX?)T € Raxbxexn 4D tensor containing the transposed 3D tensors (XJI-’)T et (le-’+b_1)T

q,@? € RIxbxe coefficients of fixed effects for SNPs j,...,7 + b — 1 and ¢ permutations

qRSS’;- € R?x? residual sums of squares for SNPs j,...,j 4+ b — 1 and ¢ permutations

1RSS) € RI*? matrix containing b copies of the residual sums of squares of the null model for each
permutation

qt? € R7x? test statistics of SNPs j,...,7 + b — 1 for ¢ permutations

Supplementary Table 2: Count of true positive (TP) and false positive(FP) phe-
notypes out of 50 simulated phenotypes, and phenotype-wise false discovery rate
(FDR) per effect strength.

threshold effect measure normal 4 3 2 1 0.1
bonf 1.0 TP 4 7 6 4 8 10
bonf 1.0 FP 3 7 13 19 22 49
bonf 1.0 FDR 0.43 0.50 0.68 0.83 0.73 0.83
bonf 1.5 TP 40 39 42 40 42 39
bonf 1.5 FP 7 14 19 25 23 49
bonf 1.5 FDR 0.15 0.26 0.31 0.39 0.35 0.56
bonf 2.0 TP 50 49 48 50 50 48
bonf 2.0 FP 17 23 25 32 25 49
bonf 2.0 FDR 0.25 0.32 0.34 0.39 0.33 0.51
perm 1.0 TP ) 10 7 3 2 1
perm 1.0 FP 7 5 5 5 3 13
perm 1.0 FDR 0.58 0.33 0.42 0.62 0.60 0.93
perm 1.5 TP 46 39 39 31 30 4
perm 1.5 FP 15 15 11 13 6 14
perm 1.5 FDR 0.25 0.28 0.22 0.29 0.17 0.78
perm 2.0 TP 50 49 48 50 48 26
perm 2.0 FP 20 16 17 19 12 18
perm 2.0 FDR 0.29 0.25 0.26 0.28 0.20 0.41
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Supplementary Figure 1: Runtime comparison of permGWAS vs. EMMAX and FaST-LMM
using 8 cores. Note all axes are log-scaled. (A) Computational time as function of number
of SNPs with fixed number of 1000 samples. (B) Computational time as function of number of
samples with 106 marker each. (C) Computational time as function of number of permutations
with 1000 samples and 10® marker each. Dashed lines for EMMAX and FaST-LMM are estimated
based on the computational time for 1000 samples and 106 markers times the number of permu-
tations.
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Supplementary Figure 2: Runtime comparison of 516 phenotypes from Arabidopsis
thaliana using 100 permutations each. Blue dots represent runtime of GWAS on a desktop
machine with one Intel Xeon 8 core CPU with 3.5GHZ, 128GB of memory and a single NVIDIA
RTX A5000 GPU with 24GB memory. Orange dots are runtime measurements of GWAS on a
High Performance Cluster (HPC) including a NVIDIA A100 GPU.
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Supplementary Figure 3: Simulated phenotypes with normally distributed noise and
different effect strengths. In simulation the effect strength of the causative SNP was chosen
to explain about 10% of total variance. The calculated phenotypic value was than multiplied
by a factor (1.0, 1.5, or 2.0) to get different effect strengths. (A) Shape of the noise (normal).
(B) Exemplary phenotypic value distribution for each shape parameter. (C) Permutation-based
thresholds over 50 simulated phenotypes as box plots for each effect strength. Red dashed
line illustrates the fixed Bonferroni significance threshold. (D) Number of true positive (TP)
phenotypes (out of 50) for both the fixed Bonferroni significance threshold and the permutation-

based significance threshold.
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Supplementary Figure 4: Correlation between permutation-based thresholds and the
p-value from a Shapiro-Wilk test on the phenotypic distribution of 516 Arabidopsis
thaliana phenotypes. The static Bonferroni threshold for 2.8 M markers is shown by a red
vertical dashed line. Note that the shown threshold is calculated for 2.8 M markers and might
differ slightly for phenotypes with small samples sizes. Each dot represents one phenotype and
the false colors denote the amount of phenotypes at the same coordinates. The inset enlarges

the region for normal and nearly normal distributed phenotypes.
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Supplementary Figure 5: Histogram of the phenotypic distribution of
three different Arabidopsis thaliana phenotypes. (A) Phenotype 744
(https://arapheno.1001genomes.org/phenotype/744/), which is nearly normal distributed
(p=0.04). ,(B) Phenotype 118 (https://arapheno.1001genomes.org/phenotype/118/),
which is skewed and non-normally distributed (p<le-17). (C) Phenotype 325

(https://arapheno.1001genomes.org/phenotype/325/), which is zero inflated and also non-
normally distributed (p<le-12).
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Supplementary Figure 6: Permutation-based thresholds with different
amounts of permutations. Two different Arabidopsis thaliana phenotypes
have been analyzed with varying amounts of permutations. Phenotype 1271
((https://arapheno.1001genomes.org/phenotype/1271/) is nearly normal distributed and shown
in (A) and (B) , while phenotype 372 ((https://arapheno.1001genomes.org/phenotype/372/)
is non-normally distributed ((C) and (D)). The Bonferroni threshold is denoted by a red
horizontal dashed line and the respective permutation-based thresholds for different numbers
of permutations is shown by blue dots. Note that the latter is stable between 100 and 1000

permutations both for the normally and non-normally distributed phenotype.
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Supplementary Figure 7: The effect of minor allele filters on Bonferroni and
permutation-based thresholds. The respective thresholds are shown as a function of in-
creasing minor allele filters, where rare alleles have been removed prior to the analysis. (A)
shows a nearly normally distributed phenotype (1271) and (B) a non-normally distributed phe-
notype (372). The Bonferroni threshold (red) becomes slightly higher with an increasing minor
allele filter, as fewer markers are tested. This increase is more pronounced for the permutation-
based threshold, especially for the non-normally distributed phenotype. Here the increase in the

threshold is non linear, but specific for the phenotypic distribution.

Supplementary Files

Supplementary File 1: File includes permutation based thresholds and number of
hits for all 516 AraPheno phenotypes. Supplementary files can be found at:
https://github.com/grimmlab/permGWAS/tree/main/suppl_data.
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