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Abstract 27 

Neuron-specific morphology and function are fundamentally tied to differences in 28 

gene expression across the nervous system. We previously generated a single 29 

cell RNA-seq dataset for every anatomical neuron class in the C. elegans 30 

hermaphrodite. Here we present a complementary set of bulk RNA-seq samples 31 

for 41 of the 118 neuron classes in C. elegans. We show that the bulk dataset 32 

captures both lowly expressed and noncoding RNAs that are missed in the single 33 

cell dataset, but also includes false positives due to contamination by other cell 34 

types. We present an integrated analytical strategy that effectively resolves both 35 

the low sensitivity of single cell RNA-seq data and the reduced specificity of bulk 36 

RNA-Seq. We show that this integrated dataset enhances the sensitivity and 37 

accuracy of transcript detection and quantification of differentially expressed 38 

genes. We propose that our approach provides a new tool for interrogating gene 39 

expression, by bridging the gap between old (bulk) and new (single cell) 40 

methodologies for transcriptomic studies. We suggest that these datasets will 41 

advance the goal of delineating the mechanisms that define neuronal 42 

morphology and connectivity in C. elegans.   43 
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Introduction 44 

 Neurons exhibit an extraordinary range of morphological forms and 45 

physiological functions. Because this diversity is largely driven by underlying 46 

differences in gene expression, a key goal of neuroscience is to identify the 47 

transcripts expressed in each neuron type.  48 

To date, C. elegans is the only organism for which goal has been achieved; 49 

a gene expression map of the entire nervous system at the resolution of single 50 

neuron types. The adult C. elegans hermaphrodite contains 302 neurons divided 51 

into 118 anatomically distinct neuron types. The structure, connectivity, and 52 

lineage are known for each of these neurons (Brittin et al., 2021; Cook et al., 53 

2019; Moyle et al., 2021; Sulston and Horvitz, 1977; Sulston et al., 1983; White 54 

et al., 1986). Recently, the C. elegans Neuronal Gene Expression Map & 55 

Network project (CeNGEN) (Hammarlund et al., 2018) used single cell RNA 56 

sequencing (scRNA-seq) technology to generate a gene expression atlas that 57 

matches the single neuron resolution of the structural map of the mature C. 58 

elegans nervous system (Taylor et al., 2021). 59 

The CeNGEN scRNA-seq dataset was acquired with 10x Genomics 60 

technology and is largely comprised of reads from poly-adenylated transcripts. 61 

Thus, major classes of non-poly-adenylated transcripts, noncoding RNAs in 62 

particular, are poorly represented in the CeNGEN scRNA-seq data. In addition, 63 

low abundance transcripts may be under-represented in scRNA-seq data, 64 

particularly in clusters with relatively few cells (Taylor et al., 2021). Both 65 

noncoding RNAs and low abundance transcripts are potentially important 66 

mediators of neuronal fate. A description of their expression is therefore needed 67 

to complement the CeNGEN scRNA-seq map of neuronal poly-adenylated 68 

transcripts. 69 

Here, we use FACS to isolate single neuron types for bulk RNA 70 

sequencing with the goal of describing neuronal gene expression with high 71 

sensitivity and specificity. We generated profiles for 41 individual neuron types 72 

from the mature C. elegans hermaphrodite nervous system. This data set 73 

samples a wide range of neuron types including motor neurons, interneurons, 74 
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and sensory neurons. We built sequencing libraries with random primers for 75 

robust detection of both poly-adenylated and non-coding RNAs (Barrett et al., 76 

2021). Importantly, we developed a novel computational approach to integrate 77 

the bulk dataset with the existing CeNGEN scRNA-seq dataset. Our new 78 

analytical strategy enhanced the accuracy and sensitivity of both data sets for 79 

profiles of each neuron type. The resultant integrated data set refines quantitative 80 

measures of gene expression and improves accuracy of differential expression 81 

calling between neuron types. These data provide a unique opportunity for future 82 

studies that link gene expression to neuron function, structure, and connectivity.  83 
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Methods  84 

 85 

Strains  86 

Strains used for FACS isolation of individual neuron classes are listed in 87 

Supplementary Table S1. 88 

 89 

FACS isolation for RNA-seq  90 

Labeled neuron types were isolated for RNA-seq as previously described 91 

(Spencer et al., 2014; Taylor et al., 2021). Briefly, synchronized populations of L4 92 

stage larvae were dissociated and labeled neuron types isolated by 93 

Fluorescence Activated Cell Sorting (FACS) on a BD FACSAria III equipped with 94 

a 70-micron diameter nozzle. DAPI was added to the sample (final concentration 95 

of 1 mg/mL) to label dead and dying cells. For bulk RNA-sequencing of individual 96 

cell types, sorted cells were collected directly into TRIzol LS. At ~15-minute 97 

intervals during the sort, the sort was paused, and the collection tube with TRIzol 98 

was inverted 3-4 times to ensure mixing. Cells in TRIzol LS were stored at -80C 99 

for RNA extractions (see below).  100 

 101 

RNA extraction  102 

RNA extractions were performed as previously described (Taylor et al., 103 

2021). Briefly, cell suspensions in TRIzol LS (stored at -80°C) were thawed at 104 

room temperature. Chloroform extraction was performed using Phase Lock Gel-105 

Heavy tubes (Quantabio) according to the manufacturer’s protocol. The aqueous 106 

layer from the chloroform extraction was combined with an equal volume of 107 

100% ethanol and transferred to a Zymo-Spin IC column (Zymo Research). 108 

Columns were centrifuged for 30 s at 16,000 RCF, washed with 400 mL of Zymo 109 

RNA Prep Buffer, and centrifuged for 16,000 RCF for 30 s. Columns were 110 

washed twice with Zymo RNA Wash Buffer (700 mL, centrifuged for 30 s, 111 

followed by 400 mL, centrifuged for 2 minutes). RNA was eluted by adding 15 mL 112 

of DNase/RNase-Free water to the column filter and centrifuging for 30 s. A 2 μL 113 
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aliquot was submitted for analysis using the Agilent 2100 Bioanalyzer Picochip to 114 

estimate yield and RNA integrity, and the remainder was stored at -80°C.  115 

 116 

Bulk sequencing and mapping  117 

Each bulk RNA sample was processed for sequencing using the SoLo 118 

Ovation Ultra-Low Input RNaseq kit from Tecan Genomics according to 119 

manufacturer instruction, modified to optimize rRNA depletion for C. elegans 120 

(Barrett et al., 2021). Libraries were sequenced on the Illumina Hiseq 2500 with 121 

150 bp paired end reads. Reads were mapped to the C. elegans reference 122 

genome from WormBase (version WS281) using STAR (version 2.7.0) with the 123 

option --outFilterMatchNminOverLread 0.3. Duplicate reads were removed using 124 

NuDup (Tecan Genomics, version 2.3.3), and a counts matrix was generated 125 

using the featureCounts tool of SubRead (version 1.6.4). FASTQC was used for 126 

quality control before alignment, and four samples were removed for failing QC 127 

or for a low number of reads. 128 

 129 

Pseudobulk aggregation of single-cell data 130 

We downloaded CeNGEN scRNA-seq dataset as a Seurat object from the 131 

CeNGEN website (www.cengen.org). Cells from the same cell type and 132 

biological replicate (e.g. AFD cluster, replicate eat_4) were aggregated together 133 

by summation into a single pseudobulk sample if there were more than 10 cells 134 

in the single cell-type-replicate. For this work, single cell clusters of neuron 135 

subtypes were collapsed to the resolution of the bulk replicates (ex: VB and VB1 136 

clusters in the single cell data were treated as one VB cluster). 137 

 138 

Sample Normalization 139 

Intra-sample normalization (gene length normalization for bulk samples) 140 

was performed before integration. Inter-sample normalization (library size 141 

normalization) was performed after integration. Library size normalizations were 142 

performed using a TMM (trimmed mean of M-values) correction in edgeR 143 

(version 3.36.0). TMM Normalizations were performed separately for each 144 
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integrated matrix. For differential expression (Figure 3), bulk counts were used as 145 

input for integration, as edgeR uses unnormalized counts values as the input. For 146 

gene detection (Figure 1), bulk sample counts were normalized to gene length 147 

prior to integration, as this intra sample normalization shows improved accuracy 148 

for calling gene expression (Supplementary Figure 1C). 149 

 150 

Integrating bulk and pseudobulk samples 151 

 We integrated bulk and single cell profiles by randomly pairing bulk 152 

samples and pseudobulk replicates for the same cell type, and then taking the 153 

geometric mean. A value of 0.1 was added to all pseudobulk data sets to obviate 154 

zero values (Equation 1). Our analysis was limited to cell types with at least 2 155 

bulk samples and 2 pseudobulk replicates (supplementary table S3).  156 

 157 

Equation 1: I 
log�Bulk � 0.1� � log�Pseudobulk � 0.1�

2
  

 158 

 The random pairing and integration step was performed 50 times. As an 159 

example: for AFD, we began with 5 bulk samples, and 3 pseudobulk replicates. 160 

For each integration, we randomly selected 3 bulk samples, and paired them with 161 

3 pseudobulk replicates. Each pseudobulk replicate was then scaled to match 162 

the total counts in the corresponding bulk sample. Each AFD bulk-pseudobulk 163 

pairing was integrated by taking the geometric mean (with an added pseudo-164 

count of 0.1), producing 3 integrated samples. This process was repeated 50 165 

times, across all cell types, producing 50 separate integrated matrices (genes x 166 

integrated-replicates), sampling from all possible bulk-pseudobulk pairings 167 

across all cell types. 168 

 169 

Ground-truth genes 170 

As an independent measure of gene expression, we used a “ground truth” 171 

dataset of 160 genes for which expression in individual neuron types is known 172 

with high precision across the entire nervous system. These studies used high 173 
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confidence fosmid fluorescent reporters, CRISPR strains or other methods 174 

(Bhattacharya et al., 2019; Harris et al., 2019; Reilly et al., 2020; Stefanakis et 175 

al., 2015; Taylor et al., 2021; Yemini et al., 2021).  176 

We also curated a list of 445 genes that are exclusively expressed outside 177 

the nervous system to assess potential non-neuronal contamination in each 178 

sample. This list was curated from published datasets of fluorescent reporters, 179 

tissue specific RT-PCR, and transcriptomic studies available on WormBase 180 

(Harris et al., 2019). Genes were included if two forms of evidence both 181 

suggested expression in the same non-neuronal tissue (non-overlap was allowed 182 

so long as at least one tissue was consistent), and there was no evidence 183 

available suggesting neuronal expression. 184 

Ground truth gene expression is available in supplementary tables S5 & 185 

S6. 186 

 187 

Comparing datasets to ground-truth 188 

 When comparing bulk, single cell, and integrated data to “ground truth” 189 

gene expression, a static threshold was applied to the average normalized cell 190 

profile (arithmetic mean across all cells, or samples). Single cells were 191 

normalized to library size prior to averaging to calculate TPM counts (Packer et 192 

al., 2019). Bulk samples were normalized using the GeTMM method (Smid et al., 193 

2018), first normalizing to gene length, then to library size using a TMM 194 

correction in edgeR (version 3.36.0). Each of the 50 integrated matrices were 195 

separately normalized to library size, the average cell profile for each integrant 196 

was calculated, then the 50 resultant genes x cell-types matrices were averaged. 197 

The area under the curve (AUC) for the Receiver-Operator Characteristic (ROC) 198 

and the Precision-Recall (PR) curves were calculated using the auc function with 199 

the trapezoid option from the bayestestR package (version 0.11.5). 200 

 201 

Thresholding lowly expressed genes and noncoding genes 202 

For lowly expressed protein coding genes, and noncoding RNAs, genes 203 

were called expressed in a cell type if more than 65% of replicates detect the 204 
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gene at or above the threshold. For lowly expressed genes, the threshold (73 205 

normalized counts) was set to match the FDR (14%) for the published single cell 206 

analysis (Taylor et al., 2021). For noncoding RNAs, the threshold was set at 5 207 

normalized counts. 208 

 209 

Proportion estimates 210 

Contamination estimates were performed for each bulk sample by using 211 

non-negative least squares (NNLS) modeling on down-sampled and square root 212 

transformed counts, averaging across 100 estimates per sample. Down-sampling 213 

was performed to reduce bias against neuron types with small cluster sizes. For 214 

each sample (ex: AFD replicate 1), proportions were estimated using only 215 

neuronal cells for the corresponding single cell cluster (ex: AFD), and identified 216 

non-neuronal clusters (Glia, Excretory, Hypodermis, Intestine, Muscle-217 

mesoderm, Pharynx, and Reproductive) For each iteration, all 8 single cell 218 

clusters were down sampled to 30 cells each, and average TPM counts were 219 

calculated using the arithmetic mean for each gene in the 30 cells. Gene level 220 

variance was calculated using the averaged TPM values, and low variance 221 

genes were removed. Bulk sample counts and single cell TPMs were square root 222 

transformed before the NNLS calculation. NNLS estimates across all 100 223 

iterations were averaged for the final estimate. NNLS calculations were 224 

performed using the nnls package in R (version 1.4). 225 

 226 

Correlating gene expression to non-neuronal contaminants 227 

 Each gene was correlated to non-neuronal contamination across all 228 

samples using Spearman’s correlation test. High correlation to any contaminant 229 

was used to indicate that the gene is likely detected because of contamination, 230 

not expression in the target neuron. For genes passing an expression threshold > 231 

2 normalized counts in at least 2 sample, their highest correlation value to any 232 

contaminant tissue was collected, and cutoffs were determined by fitting a 233 

gaussian mixture model using the normalmixEM2comp function in mixtools 234 

(version 1.2.0), fitting 2 gaussian distributions to the distribution of highest 235 
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contaminant correlations. Cutoffs were selected to exclude 98% of the predicted 236 

contaminant distribution. 237 

 238 

Differential expression and harmonic mean p combination 239 

 Differential expression was performed using the quasi-likelihood F-test 240 

approach in edgeR (glmQLFit and glmQLFTest functions). Each integrant 241 

dataset was fit and tested separately. P-values across integrated tests were 242 

treated as dependent, and were combined using the harmonic mean p approach, 243 

using the harmonicmeanp package in R (version 3.0) (Wilson, 2019). LogFC 244 

values were combined by taking the arithmetic mean across integrated tests. 245 

Consensus values were obtained by counting the number of iterations where a 246 

gene was called differentially expressed (P-value < 0.05). In the bulk dataset, 247 

genes were called differentially expressed if they had a P-value less than 0.05, 248 

and an absolute logFC greater than 2. In the integrated dataset, genes were 249 

called differentially expressed if they had a consensus value of at least 40 (P-250 

value < 0.05 in 40 out of 50 separate tests), and an absolute average logFC 251 

greater than 2. 252 

We used edgeR to perform pairwise differential expression analysis on 253 

each of the 50 integrated datasets separately, resulting in 50 edgeR comparisons 254 

per neuron pair. As these comparisons are not fully independent, we combined 255 

p-values across all 50 tests using the harmonic mean p procedure (Wilson, 256 

2019). We also generated a consensus value based on how often a gene was 257 

called differentially expressed in the individual integrated comparisons (p < 0.05). 258 

 259 

Ground-truth for differential expression 260 

 We adapted the binary ground-truth expression matrix to provide a ground 261 

truth for continuous differential expression analysis. For all neuron-neuron pairs, 262 

we subset the ground-truth genes to genes that are expressed in one of the two 263 

cells, and genes expressed in neither cell. We reasoned that genes called 264 

expressed in one cell but not the other in the ground truth data should predict 265 

differential expression when comparing continuous data from the two neurons. 266 
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We also reasoned that genes called unexpressed in both cells in the ground truth 267 

data should not be called differentially expressed when comparing continuous 268 

data. However, genes called expressed in both cell types in the binary ground-269 

truth data are likely to be a mix of genes that are truly differentially expressed (eg 270 

low expression vs high expression), and genes that are not differentially 271 

expressed. Therefore, genes expressed in both cell types in the binary ground-272 

truth data were excluded from this analysis. These ground-truth sets for 273 

differential expression were designed in a directional manner. For example, when 274 

comparing OLQ and PVD, we generated two sets of ground truth genes, and a 275 

separate TPR, FPR, and FDR are calculated for OLQ and PVD. For OLQ, the 276 

true genes are the genes called expressed in OLQ but not PVD in the ground-277 

truth matrix. The false genes are the genes called unexpressed in both neurons 278 

and the genes called expressed in PVD alone (we expect those genes to be 279 

enriched in PVD, and thus if they are called enriched in OLQ they would be 280 

labeled false positives). Thus, we first calculate the genes enriched in OLQ, and 281 

compare them to what we expect to see enriched in OLQ, and we separately 282 

compare genes enriched in PVD to the genes that we expect to see in PVD. 283 

 Accuracy scores were calculated by adding up all true positive (TP) 284 

events, and all true negative (TN) events, and dividing by the total number of 285 

ground truth genes used (Equation 2). 286 

 287 

Equation 2: Accuracy = 
�� � ��

�� � �� � �� � ��
 288 

 289 

 Matthew’s Correlation Coefficient (MCC) is a metric for evaluating binary 290 

true/false classifications that is robust to imbalanced datasets (Chicco and 291 

Jurman, 2020; Jurman et al., 2012; Matthews, 1975) (Equation 3). This is useful 292 

for evaluating differential expression performance as the ground truth dataset is 293 

heavily biased towards actual false values. 294 

 295 

Equation 3: MCC = 
��� � ��	 
 ��� � ��	

���� � ��	 � ��� � ��	 � ��� � ��	 � ��� � ��	
 296 
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Results 297 

 298 

Bulk sequencing of individual neuron types 299 

The model organism C. elegans is uniquely suitable for the task of defining 300 

gene expression in the nervous system at high resolution and genome scale 301 

(Fig. 1). C. elegans is the first metazoan with a completely sequenced genome 302 

(Consortium, 1998) and the only animal for which we know every cell division 303 

that gives rise to the adult body plan (i.e., “cell lineage”) (Sulston and Horvitz, 304 

1977; Sulston et al., 1983), as well as the anatomy of each neuron and all of its 305 

connections with other cells (Brittin et al., 2021; Cook et al., 2019; Moyle et al., 306 

2021; Varshney et al., 2011; White et al., 1986). The entire C. elegans 307 

hermaphrodite nervous system contains 302 neurons with 118 anatomically-308 

defined neuron classes, each comprised of relatively few cells, ranging from 1 to 309 

13 neurons (White et al., 1986). Most of these neuron classes are either a 310 

bilateral pair of anatomically similar cells (70 classes) or single neurons (26 311 

classes) with unique morphological and functional characteristics. The rich array 312 

of distinct neuron classes in C. elegans, combined with the fact that these types 313 

are invariant among individuals, means that each neuron class can be analyzed 314 

in depth to reveal the genetic programs that define neuronal diversity. 315 

 We previously generated a gene expression atlas for the entire C. 316 

elegans nervous system at the resolution of single neuron types. We completed 317 

this atlas with single-cell techniques by adopting the strategy of using FACS to 318 

enrich for specific groups of neurons for a series of scRNA-seq experiments. 319 

However, the description of gene expression in this atlas is incomplete (Taylor et 320 

al., 2021); (1) Lowly-expressed genes, particularly in clusters with few cells, may 321 

not be detected; and (2) Non-poly adenylated transcripts are excluded (Taylor et 322 

al., 2021).  323 

 To address these limitations and to provide a broader description of gene 324 

expression across the nervous system, we used a bulk RNA sequencing strategy 325 

to profile different neuron types. We used a series of C. elegans strains, each of 326 

which uses one or more fluorescent markers to label an individual neuron type 327 
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for isolation by FACS. 21 individual neurons could be uniquely marked with a 328 

single neuron-specific promoter. For an additional 19 neuron types, we used an 329 

intersectional strategy involving different colored fluorophores to label each target 330 

neuron, and for 1 neuron we collected some samples with one fluorophore, and 331 

other samples with the intersection of two fluorescent markers (Table S1). For 332 

example, we used flp-22::GFP and unc-47::mCherry to mark the single neuron 333 

AVL (Figure 1A).  334 

For each strain, we used FACS to isolate neurons from synchronized 335 

populations of hermaphrodites at the L4 stage, by which time all neurons have 336 

been born and are terminally differentiated (Sulston and Horvitz, 1977). Labeled 337 

cells were collected in TRIzol LS for RNA extraction (Figure 1B). We isolated a 338 

wide range of cells (~700 – 90,000) in each sample across neuron types. Multiple 339 

biological replicates (e.g., separately grown cultures) were generated for each 340 

neuron class. In total, we sequenced 160 samples across 41 neuron types 341 

(Figure 1A; Table S2). The 41 neurons that we profiled sample a wide range of 342 

anatomical locations (head ganglia, ventral cord, mid-body and tail neurons, 343 

pharyngeal neurons) functional modalities (sensory, inter- and motor neurons), 344 

neurotransmitter usage (glutamatergic, GABAergic, cholinergic, aminergic) and 345 

lineage history (Figure S1A). (A few of these bulk neuron profiles have been 346 

previously described, Taylor et al., 2021.) 347 

We used a ribodepletion strategy combined with random priming for cDNA 348 

synthesis. This approach optimized whole transcript coverage for each gene and 349 

also captured non-polyadenylated RNAs (see Methods) (Barrett et al., 2021). 350 

The resultant datasets comprise a high-resolution view of RNA expression 351 

across the C. elegans nervous system. A distribution of neuron-specific data sets 352 

for the first two principal components shows separation between sensory 353 

neurons (especially ciliated sensory neurons) vs motor/interneurons, a result 354 

consistent with patterns observed for scRNA-seq data on the same neuron 355 

classes (Figure 1B) (Taylor et al., 2021). 356 

 357 
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A strategy for integrating bulk and single-cell data to improve gene 358 

detection accuracy 359 

Bulk RNA-seq and scRNA-seq datasets have complementary strengths 360 

and weaknesses. Bulk RNA-seq can enhance sequencing depth and gene 361 

detection, capture non-polyadenylated transcripts, and result in uniform coverage 362 

of the transcript body (Barrett et al., 2021). Bulk RNA-seq data are typically 363 

contaminated, however, with transcripts from non-target cell types which can limit 364 

specificity for some genes. By contrast, scRNA-seq datasets allows for high 365 

specificity in gene detection, as contaminating cells can be identified post-hoc, 366 

but can show reduced transcript sensitivity, especially for low abundance cell 367 

types (Taylor et al., 2021). 368 

Recent studies have exploited the strengths of these complementary 369 

approaches, i.e., the depth of bulk RNA sequencing and the specificity afforded 370 

by scRNA-seq, for downstream analysis. These approaches primarily focused on 371 

the problem of deconvolution, seeking to infer cell-type expression profiles from 372 

tissue level bulk samples, using scRNA-seq references as a guide (Newman et 373 

al., 2019; Wang et al., 2021a; Wang et al., 2021b; Zhu et al., 2018). By contrast, 374 

our dataset contains bulk RNA-seq reads for individual cell types isolated by 375 

FACS, exactly matching cell types identified as scRNA-seq clusters. Thus, our 376 

data present an opportunity to directly integrate bulk and scRNA-seq profiles for 377 

individual cell types, with the goal of combining both datasets to increase depth 378 

and accuracy. 379 

We constructed pseudobulk samples from the scRNA-seq data for the 380 

subset of overall neuron types represented in our bulk RNA-seq data set. Each 381 

pseudobulk sample was generated by aggregating scRNA-seq data from 382 

individual biological replicates for each annotated cell type. For example, for the 383 

AFD cluster, we generated 3 pseudobulk samples, each containing cells from a 384 

different single cell experiment, with cell numbers ranging from 27 to 141, and 385 

total read counts across all genes ranging from 28,781 to 126,778 (Table S3). 386 

We adopted the approach of generating separate pseudobulk data sets for 387 

scRNA-seq data from independent single cell experiments because biological 388 
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replicates have been shown to improve the accuracy of differential expression 389 

analysis of scRNA-seq datasets (Crowell et al., 2020; Squair et al., 2021; 390 

Thurman et al., 2021). 391 

For integrating bulk and scRNA-seq data sets, we adopted the 392 

straightforward approach of calculating the geometric mean for each transcript of 393 

randomly paired bulk and pseudobulk replicates. This pairing was performed 394 

across 50 iterations to sample all possible bulk-pseudobulk arrangements and 395 

averaged for comparison to the ground truth genes (see Methods for details, 396 

Figure 2A).  397 

 398 

Integrating bulk and single-cell data improves gene detection 399 

accuracy. 400 

Accurately detecting gene expression (distinguishing between true signal 401 

vs noise) is a central goal for RNA-seq experiments. We first set out to assess 402 

our bulk datasets by comparison to ground truth genes (see Methods, 403 

Supplementary Table S5) (Taylor et al., 2021). We also used published 404 

expression data to curate a list of 445 ground truth genes in non-neuronal cells 405 

that are likely not expressed in neurons (Supplementary Table S6). 406 

For the bulk, scRNA-seq, and integrated datasets, expression calling was 407 

performed by setting a single threshold at the average normalized counts values 408 

for each cell type. Thus, all genes in all cell types that meet or exceed the 409 

threshold are called “expressed”, and all genes in all cells that fall below the 410 

threshold are called “unexpressed”. These binary expression values were then 411 

compared to the ground-truth datasets for neuronal and non-neuronal cells. This 412 

treatment determined that the bulk samples show a high (FPR) (False Positive 413 

Rate) versus combined ground truth genes for neuron and non-neuronal cells 414 

across all thresholds (Figure 2B-D). These results suggest that bulk data set 415 

contains non-neuronal transcripts from a low level of contaminating cells in the 416 

FACS preparation. By contrast, the clustering algorithms used to generate the 417 

scRNA-seq data (before pseudobulk aggregation) effectively exclude unwanted 418 

cell types and thus result in fewer false positives in the scRNA-seq data. 419 
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Interestingly, at relatively low precision (or high FPR), the bulk data 420 

approached a TPR (True Positive Rate) of 100% (Figure 2B-D). By contrast, the 421 

scRNA-seq pseudobulk data peak at a 91.9% TPR, suggesting that the single 422 

cell dataset fails to detect some genes. Together, this analysis indicates that bulk 423 

and single-cell approaches both afford robust approximations of gene 424 

expression, but that they have different disadvantages: the bulk approach is 425 

prone to contaminating data from other cell types, whereas the single-cell 426 

approach is limited in detection.    427 

Measured against the neuronal ground truth genes, the integrated dataset 428 

shows a similar sensitivity to the bulk data at low thresholds, while matching the 429 

scRNA-seq ratio of specificity and sensitivity across most thresholds and 430 

improving on the scRNA-seq performance for some thresholds (Figure 2B-C). 431 

The scRNA-seq data still outperforms the integrated dataset for non-neuronal 432 

ground truth genes, but the integrated dataset performs nearly as well at 433 

thresholds above 10 normalized counts (Figure 2D). Together these results show 434 

that geometric mean integration of bulk RNA-seq and scRNA-seq datasets 435 

combines the strengths of both approaches, providing high sensitivity and high 436 

specificity across a wide range of thresholds. 437 

 438 

Integration of bulk and single-cell data enhances the accuracy of 439 

differential expression analysis. 440 

 To determine the effect of integration on the accuracy of differential 441 

expression analysis, we compared differential expression (DE) analysis of our 442 

bulk vs integrated data sets. For both cases, we performed DE analysis for all 443 

possible pairwise combinations of different neuron types (595 in total). Genes 444 

were called differentially expressed in bulk data for p-values < 0.05 and an 445 

absolute value log2 fold-change (logFC) > 2, (i.e. 4-fold enrichment) in either cell 446 

type. Genes were scored as differentially expressed in the integrated data if they 447 

were called significant in at least 40/50 iterations (consensus >= 40) and had an 448 

average absolute value logFC > 2 (see Methods). 449 
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We scored the accuracy of differential expression of bulk and integrated 450 

data by comparison to neuronal ground truth data. For each pair of neuron types 451 

A and B, the ground truth data give rise to one of four possible outcomes for 452 

each gene: (1) expressed in both neurons A and B; (2) not expressed in either 453 

neuron; (3) expressed in A only; (4) expressed in B only. We assessed accuracy 454 

in a directional fashion, such that we examined separately genes called 455 

expressed only in A and genes called expressed only in B. For example, for 456 

genes called expressed only in A, true positives are ground truth genes with 457 

expression only in A, whereas false positives include ground truth genes with 458 

expression only in B, as well as ground truth genes that are not expressed in 459 

either cell. (Ground truth genes expressed in both neurons A and B were 460 

excluded as they could correspond to genes that are not truly differentially 461 

expressed between the two cell types). Non-neuronal ground truth genes were 462 

used to calculate a separate FPR. 463 

We calculated TPR, FPR, and FDR (False Discovery Rate) values for 464 

every pair of neurons in both the bulk and integrated datasets. In addition, we 465 

calculated Accuracy scores (total true calls / all possible calls, see Methods), and 466 

the Matthew’s Correlation Coefficient (MCC) (the Pearson product-moment 467 

correlation coefficient of the observed and expected results, see Methods) 468 

(Chicco and Jurman, 2020) (Figure S3C-F). These results indicate that the 469 

integrated dataset is more accurate overall than the bulk dataset (Figure 3A). In 470 

addition, on for each neuron-neuron pair, integration results in more improvement 471 

than degradation in differential expression accuracy (mean = 0.026, 95.conf.int ± 472 

0.003) (Figure 3B). A similar relationship was observed for MCC scores. 473 

Specifically, the number of comparisons with MCC scores near 0 was lower in 474 

the integrated data set (figure 3C), which represents the expected performance 475 

of a coin toss (Chicco and Jurman, 2020). The difference in MCC scores for each 476 

neuron-neuron pair also showed higher scores in the Integrated dataset (mean = 477 

0.089, 95.conf.int ± 0.010). Together, these analyses indicate that integration 478 

improves the accuracy of differential gene expression. 479 
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 Next, we examined whether integration could improve differential 480 

expression analysis even when scRNA-seq data are limited. The lowest 481 

abundance single cell clusters show reduced gene detection (Taylor et al., 2021), 482 

suggesting that they might not perform as well for integration. Of the 41 neuron 483 

types for which we performed bulk sequencing, PVD and OLQ were the neuron 484 

types with the fewest cells per cluster in the single cell dataset (62 cells and 85 485 

cells, respectively). In the bulk data, a majority of the genes expected to be 486 

enriched in PVD from the neuronal ground truth dataset are correctly called, but 487 

none of the expected OLQ genes are called enriched. For example, the gene 488 

gar-1 is expected to be enriched in OLQ but is instead enriched in PVD in the 489 

bulk RNA-seq data. After integration, gar-2 is called enriched in OLQ, and all but 490 

one gene that was enriched in PVD or showed mild enrichment in PVD now 491 

show mild enrichment towards OLQ, though only gar-2 passes both the logFC 492 

and significance cutoffs (Figure 3F). Considering all true positive genes for both 493 

PVD and OLQ, we see a modest increase in the TPR for this comparison (Figure 494 

3G), along with a sharp drop in the FPR for neuronal ground-truth genes (Figure 495 

3H), and non-neuronal ground-truth genes (Figure 3I). Similar results were 496 

observed for other comparisons (Figure S3H-K, although there are also rare 497 

instances in which integration decreased the TPR (Figure S3J). Thus, integration 498 

with scRNA-seq data improves the accuracy of differential gene expression in 499 

bulk RNA samples, even when scRNA-seq data are limited. 500 

Non-neuronal contamination in FACS-isolated neuronal Bulk RNA-seq 501 

samples varies between samples, and between cell types (Figure S4A-B). This 502 

variance could lead to non-neuronal genes being erroneously called significantly 503 

enriched in some neuron-neuron comparisons. Most neuron-neuron comparisons 504 

in both the bulk and integrated datasets show low but detectable false positive 505 

rates for non-neuronal ground truth genes (Figure S3Gi-ii). In addition, some 506 

neuron-neuron comparisons in the bulk dataset show low specificity scores for 507 

non-neuronal ground truth genes, suggesting that differences in non-neuronal 508 

contamination are influencing differential expression calling (Figure S3Giii). The 509 

integrated dataset shows much higher specificity scores for the same neuron-510 
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neuron pairs, and modest specificity improvements overall (Figure S3Giv). When 511 

comparing I5 and BAG neurons in the bulk analysis, 26.3% of non-neuronal 512 

ground truth genes are called enriched in either I5 or BAG. In the integrated 513 

analysis, only 4.5% of non-neuronal genes are called enriched in either cell type. 514 

We conclude that our analysis of the systematic pairwise differential expression 515 

among all cell types shows that integration improves differential expression by 516 

reducing false positives, both for genes expressed in the nervous system and 517 

non-neuronal genes, while maintaining the overall true positive rate. 518 

 519 

 520 

Bulk sequencing powers detection of low-abundance transcripts 521 

 scRNA-seq analysis of the C. elegans neuronal transcriptome generated a 522 

map of protein coding gene expression for a total of 128 transcriptionally distinct 523 

neuron types. However, this map contains some false negatives—ground truth 524 

genes that are known to be expressed in the neuron type but are not detected in 525 

the scRNA-seq data. Two factors that contribute to these dropouts are low gene 526 

expression and small cluster size (clusters with few neurons tend to detect fewer 527 

genes) (Mereu et al., 2020; Taylor et al., 2021).  528 

We tested whether bulk RNA-seq data might provide this missing 529 

information. We collected a minimum of 701 cells per bulk sample (Table S1), 530 

and sequenced each sample to high depth, suggesting that even low-expressed 531 

genes might be represented in bulk data. A comparison of protein coding genes 532 

between bulk and single-cell data showed a mean Spearman coefficient of 0.612 533 

(95.conf.int ± 0.027), with a sharp drop off in the Spearman coefficient for the 534 

smallest single cell clusters (Figure 4A). (This analysis used all protein-coding 535 

genes detected in a minimum of 3 cells in the single cell dataset.) This result 536 

matches previous analysis of the scRNA-seq data, which showed that gene 537 

detection is reduced for clusters with < 500 cells (Taylor et al., 2021). Together 538 

these results indicate that bulk data contain gene expression information that is 539 

missing from scRNA-seq clusters that contain few cells. 540 
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 Although bulk sequencing typically includes lowly-expressed genes, at 541 

least some of them may represent false positives derived from non-neuronal 542 

tissue contamination. Since these genes are typically not included in the scRNA-543 

seq data, the integration strategy described above does not ameliorate this 544 

problem. Previous studies have shown that correlations between gene 545 

expression and tissue level proportion estimates can be used to deconvolve the 546 

profiles of multiple tissues from one mixed bulk profile (Wang et al., 2021a). We 547 

utilized a similar approach to enrich for genes that are truly expressed in our cell 548 

types of interest. First, we estimated contamination in each bulk sample using a 549 

non-negative least squares regression (NNLS). We used 100 bootstraps to 550 

reduce bias against lowly abundant single cell clusters (see Methods, 551 

Supplementary Figure S4A-B). We then calculated per-gene Spearman 552 

correlations to each contaminant type (e.g., the correlation of pgl-1 to 553 

reproductive cell contamination across all samples). We validate this approach 554 

by observing that contaminant correlations for non-neuronal ground-truth genes 555 

are higher than the contaminant correlations for all other protein coding genes 556 

(Figure S4C). Using the highest correlation per gene, we modeled this data as a 557 

mixture of two Gaussian distributions, one distribution of low contamination 558 

correlation scores representing truly expressed neuronal genes, and a second 559 

distribution of higher contamination correlation scores representing genes likely 560 

present due to contamination from non-neuronal tissues. (Figure S4D). Setting a 561 

threshold which removes all genes with a contaminant correlation higher than 0.3 562 

excludes 98% of the predicted contaminant distribution profile.  563 

Using this decontaminated data, we tested our detection of poorly 564 

represented genes. We first interrogated the expression of all genes that are 565 

detectable in scRNA-seq experiments, by virtue of being called expressed in at 566 

least one cell type (by thresholding on the proportion of cells detecting the gene, 567 

see Methods). We tested whether our decontaminated bulk data might provide 568 

evidence for expression in additional neuron types. Using a minimum normalized 569 

count threshold in the bulk data to match the FDR of “threshold 2” from the 570 

published single cell analysis (Taylor et al., 2021), we detected 5 to 169 genes 571 
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per cell type that were missed in that single cell cluster (mean = 36.9, 95.conf.int 572 

± 9.4) (Figure 4B). Plotting the number of newly detected genes against the 573 

single cell cluster size reveals that bulk sequencing detects more protein coding 574 

genes for cell types with low coverage in the single cell dataset vs cell types with 575 

larger numbers of cells in each cluster (Figure 4C). We used GO term 576 

enrichment to evaluate genes called expressed in bulk that were missing in the 577 

scRNA-seq data. Most cell types show enrichment for neuron-associated terms, 578 

chiefly neuropeptide signaling (Figure 4D, S3). Several cell types also show 579 

enrichment for synaptic signaling, dendritic morphology, and receptor regulator 580 

activity. Thus, we detect genes in the bulk dataset that are missing from some 581 

single cell clusters with the greatest improvement biased towards clusters with 582 

low coverage in the scRNA-seq dataset. 583 

Next, we tested whether decontaminated bulk data might yield expression 584 

information about genes that were undetected in the scRNA-seq dataset. 585 

Thresholding the scRNA-seq data results in 3,567 protein coding genes that are 586 

identified as not expressed in all cell types, including non-neuronal tissues (see 587 

Methods). Additionally, 873 protein coding genes were excluded from analysis in 588 

the scRNA-seq dataset because they were detected in fewer than 3 of the 589 

100,955 cells sequenced. We combined these gene sets to generate a list of 590 

4,440 ‘unexpressed’ genes that were not detected in the single cell analysis 591 

(Supplementary table S7).  592 

To examine expression of these unexpressed genes in the bulk data, we 593 

first ‘decontaminated’ the data by removing genes with strong correlations to any 594 

contaminants as described above. We used the non-neuronal ground-truth genes 595 

to set a minimum normalized counts threshold for calling expression, which was 596 

set to a non-neuronal FPR of 0%. Using this threshold on the remaining 597 

decontaminated unexpressed genes, we detected between 9 and 150 protein 598 

coding genes per cell type (mean = 25.9, 95.conf.int = ± 7.8) (Figure 4E). Using 599 

ADL as an example, we performed Tissue Enrichment Analysis on the 150 new 600 

genes (Angeles-Albores et al., 2016). The most enriched term is “ADL genes”, as 601 

expected, followed by the “amphid sensillum” and “lateral ganglion”, structures 602 
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that include the ADL neuron (Figure 4F) (Inglis et al., 2007). Thus, these results 603 

suggest that our analysis of bulk data reveals truly expressed genes that were 604 

not detected by scRNA-seq. 605 

  606 

Bulk RNA-seq reveals both broadly expressed and neuron-specific 607 

noncoding RNAs 608 

A significant benefit of our bulk RNA-seq approach is its sensitivity to non-609 

poly-adenylated transcripts, which include many species of non-coding RNA 610 

(Barrett et al., 2021). However, we do not have a ground-truth data set of non-611 

coding genes to evaluate accuracy. In addition, most non-coding RNAs are 612 

expressed at lower levels than protein coding genes, making it unreasonable to 613 

apply a static threshold using the protein coding FDR (Figure S5A). Thus, we 614 

opted to apply a uniform threshold for “expressed” genes and selected the 615 

criteria of > 5 normalized counts in at least 65% of samples within a cell type. We 616 

again used gene level correlation to contamination estimates as a procedure to 617 

eliminate genes that were likely detected due to contamination from other tissues 618 

in the bulk samples. First, we estimated contamination for each sample using a 619 

bootstrapped NNLS regression (see Methods, Supplementary figure S4A-B), and 620 

then calculated per-gene Spearman correlations to each contaminant type. We 621 

applied a threshold on the gene level correlation to contamination estimates for 622 

each sample by fitting a Gaussian mixture model to the maximum correlation 623 

score for each gene. We selected a cutoff of 0.23, which excludes 98% of the 624 

estimated contamination distribution (Figure 5A). With these thresholds, an 625 

average of 603 noncoding RNAs were identified as “expressed” per cell type (95 626 

CI ± 54.5). By RNA type, we detected 23.0 ± 1.7 lincRNAs, 55.6 ± 7.1 627 

pseudogenes, 62.6 ± 12.5 tRNAs, 49.3 ± 2.1 snRNAs, 148.9 ± 2.4 snoRNAs, and 628 

266.6 ± 39.1 uncategorized ncRNAs per cell type (Figure 5B).  629 

Next, we sought to identify noncoding RNAs with broad expression across 630 

multiple neuron types. This approach detected 266 non-coding genes that are 631 

called expressed in > 90% of neuron classes defined by bulk RNA-seq (Figure 632 

5C, D). These broadly expressed noncoding RNAs, include 128 (48%) snoRNAs 633 
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and 37 (13.9%) snRNAs, both tenfold greater than the expected proportion 634 

assuming a random distribution (Fisher’s exact test, P-value < 0.01) (Figure 635 

S5B). In contrast, pseudogenes and otherwise uncategorized ncRNAs were 636 

significantly depleted (P-value < 0.001). These results indicate that snoRNAs and 637 

snRNAs are widely expressed, which matches studies showing broad expression 638 

of many snoRNAs and snRNAs in other systems (Fafard-Couture et al., 2021; 639 

Isakova et al., 2020), and is consistent with their key roles in rRNA processing 640 

and splicing (Bratkovič et al., 2019; Valadkhan, 2013; Wassarman and Steitz, 641 

1992). 642 

We also sought to identify cell-type-specific noncoding RNAs. We 643 

calculated tissue specificity scores for each noncoding RNA called expressed in 644 

at least one cell type using the Preferential Expression Measure (PEM) score 645 

(Huminiecki et al., 2003; Kryuchkova-Mostacci and Robinson-Rechavi, 2016). 646 

We called these genes cell-type specific according to three criteria: (1) Called 647 

expressed in > one cell type (see above); (2) PEM score > 0.65; (3) > 2 648 

normalized counts in a maximum of 10/41 cell types. Using these thresholds, we 649 

identified 561 cell-type-specific noncoding RNAs (Figure 5E). By RNA type, 347 650 

(61.8%) of cell type-specific noncoding RNA genes are uncategorized ncRNAs, 651 

186 (33.2%) are pseudogenes, 15 (2.6%) are tRNAs, 8 (1.4%) are lincRNAs, 3 652 

(0.5%) are snoRNAs, and 2 (0.3%) are snRNAs (Figure S5C). We observed 653 

significant enrichment of pseudogenes, and a subtle but significant depletion of 654 

ncRNAs, snoRNAs, and tRNAs (P-value < 0.01). Clustering by genes and cell 655 

type modalities revealed clear enrichment for noncoding RNAs in individual 656 

neuron types (Figure 5F). The number of specific noncoding RNAs per cell type 657 

ranged from 0 (PVC) to 120 (ADL), with a mean of 14 (± 8.5) (Supplementary 658 

Table S8). These data reveal a wide diversity of noncoding RNA expression 659 

across the nervous system and open the door to in depth studies of noncoding 660 

RNA contributions to individual neuron function. 661 

  662 
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Discussion 663 

In this work, we present bulk RNA-seq data for 41 neuron classes or about 664 

1/3 of all known neuron types in the C. elegans nervous system (Figure 1A-B). 665 

We describe a new method of integrating these bulk RNA-seq data with 666 

previously obtained single-cell RNA-seq data (Taylor et al., 2021) that improves 667 

gene detection accuracy for both data sets (Figure 1D-F). Integrated data sets 668 

also outperform the original bulk samples in accurately calling differential gene 669 

expression across all pairwise comparisons (Figure 3), with a clear reduction in 670 

false positives (Figure S3D, G). With the rapid growth of scRNA-seq atlases that 671 

complement bulk RNA-seq datasets for individual tissues, our results offer a 672 

timely and useful opportunity to improve the accuracy of cell and tissue-specific 673 

transcriptional profiles. Furthermore, our computational integration approach is 674 

general and can be applied to combine additional sequencing modalities to 675 

further incorporate complementary gene expression signals to amplify the depth 676 

of sequencing. 677 

In addition to enhancing the accuracy of differential gene expression, the 678 

integrated bulk RNA-seq dataset detects lowly expressed protein coding genes 679 

that were not detected by scRNA-seq (Figure 4B-C,E) and thus could reveal new 680 

drivers of neuron-specific traits. Because our library construction methods were 681 

designed to capture non-polyadenylated transcripts, our bulk RNA-seq data set 682 

detects noncoding RNAs that were not revealed by previous scRNA-seq results 683 

(Barrett et al., 2021; Taylor et al., 2021) (Figure 5B). Some of these noncoding 684 

RNAs are broadly expressed in the nervous system (Figure 5C-D) which is 685 

suggestive of shared functions across different types of neurons. Interestingly, a 686 

subset of non-coding RNAs are expressed in a limited number of neuron types 687 

(Figure 5E-F) pointing to potentially important roles in determining key neuron-688 

specific functions. In addition, the bulk RNA-seq dataset contains transcript 689 

information across the gene body, which might yield information about mRNA 690 

splicing that is not found in the scRNA-seq dataset.  691 

Overall, our approach achieves a comprehensive representation of all 692 

classes of transcripts expressed in individual neuron types. These data can now 693 
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drive analysis of mechanisms that control gene expression across the genome in 694 

individual neuron types, and also support identification of differentially expressed 695 

genes that define neuron-type specific differences in morphology and function. 696 

Public access to these data (described below) will enable further analysis into the 697 

regulation and function of differential gene expression in C. elegans neurons. 698 

 699 

Supplementary Tables 700 

Supplementary tables S1-8 are available on figshare 701 

(https://doi.org/10.6084/m9.figshare.19522096.v1). 702 

Data Availability 703 

 Bulk raw data are in the process of being posted at GEO, and the linking 704 

information will be posted to the CeNGEN website when available. Single cell 705 

raw data are available at Gene Expression Omnibus (GEO) 706 

(https://www.ncbi.nlm.nih.gov/geo, GEO: GSE136049). Counts data and 707 

additional supporting files can be downloaded from the CeNGEN website 708 

(https://www.cengen.org) and code is available at GitHub 709 

(https://www.github.com/cengenproject). 710 
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 714 

Figure legends 715 

 716 

Figure 1: Single neuron bulk RNA-seq via targeted marker expression 717 

and FACS isolation: A) Labeling, tissue dissociation, and FACS-enrichment 718 

schemes for capturing individual neuron types. Intersecting flp-22::GFP and unc-719 

47::mCherry markers uniquely label AVL for isolation by FACS from dissociated 720 

L4 stage larval cells. RNA from this pool of AVL-enriched cells was used for bulk 721 

RNA sequencing (see Methods). B) PCA plot showing all bulk RNA-seq 722 

replicates labeled by cell type and colored according to functional modality; 723 

Sensory neurons (blue), motor neurons (green), interneurons (red), and CAN 724 

neurons (purple). 725 

 726 

Supplementary Figure 1: Bulk RNA sequencing encompasses a broad 727 

range of neuron types and correlates with scRNA-seq results. A) Number of 728 

cell types sequenced per functional modality. B) Heatmap of Spearman 729 

Correlations between average single cell RNA-seq (row) and Bulk RNA-seq 730 

(column) profiles for each neuron type. For each row, correlations were 731 

calculated for genes called expressed in that single cell cluster (from single cell 732 

thresholding) (Taylor et al., 2021). 733 

 734 

Figure 2: Integrating bulk RNA-seq and scRNA-seq data sets 735 

improves gene detection accuracy. A) Individual pseudobulk scRNA-seq 736 

replicates and bulk RNA-seq samples from the same neuron type (NSM neuron 737 

samples illustrated) are randomly paired and integrated (50X for each neuron 738 

type) using the geometric mean (see Methods) to generate 50 integrated 739 

matrices (genes x integrated-replicate). The average integrated profile was used 740 

to call gene expression. Pairwise neuron-neuron differential expression (edgeR) 741 

was performed for each of the 50 integrated matrices which were then combined 742 

to generate consensus sets of differentially expressed genes. Bulk RNA-seq 743 

datasets are used to identify genes that are not detected in scRNA-seq data, 744 
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including noncoding RNAs and lowly expressed mRNAs. B) Receiver Operator 745 

Characteristic (ROC) curve for bulk, single-cell, and integrated datasets 746 

compared to neuronal ground-truth genes. The x-axis shows the False Positive 747 

Rate (FPR), and the y-axis shows the true positive rate (TPR). C) Precision-748 

Recall (PR) curve for bulk, single-cell, and integrated datasets compared to 749 

neuronal ground-truth genes. The x-axis shows the Precision (1 – False 750 

Discovery Rate/FDR), and the y-axis shows the TPR (Recall). D) The non-751 

neuronal FPR across a range of thresholds for bulk, single-cell, and integrated 752 

datasets compared to non-neuronal ground-truth genes. The x-axis shows the 753 

log10-transformed threshold used for each point; the y-axis shows the FPR. A 754 

pseudocount of 1 was added for the log10-transformation. Each point represents 755 

a static threshold applied to all genes in all samples (e.g., expressed >= 10 756 

normalized counts); Bulk RNA-seq data (green), scRNA-seq (blue), average 757 

integrated data (red). 758 

 759 

Supplementary Figure 2: Intra-sample normalization improves the 760 

FPR for non-neuronal genes in bulk RNA-seq samples: The non-neuronal 761 

FPR across a range of thresholds for bulk RNA-seq datasets with different 762 

normalizations compared to non-neuronal ground-truth genes. The x-axis shows 763 

the log10 transformed threshold for each point, the y-axis shows the FPR. Each 764 

point represents a static threshold applied to all genes in all samples (e.g., 765 

expressed >= 10 normalized counts). Bulk data with only inter-sample 766 

normalization using TMM factors (trimmed mean of M-values, used by edgeR) 767 

(green) vs bulk data with both intra-sample and inter-sample normalization 768 

(GeTMM) (red). AUC = Area Under Curve. A pseudocount of 1 was added for the 769 

log10-transformation. 770 

 771 

Figure 3: Integrated samples show improved accuracy in detecting 772 

differentially expressed genes. A) Density histograms of the accuracy score for 773 

all pairwise differential expression comparisons in bulk RNA-seq (blue) vs 774 

integrated (orange) datasets. B) Density histogram of the difference (integrated 775 
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minus bulk) in the accuracy score for each pairwise differential expression 776 

comparison, vertical dashed line at 0 represents no difference between the 777 

datasets. C) Density histograms of the Matthew’s Correlation Coefficient (MCC) 778 

score for all pairwise differential expression comparisons in the bulk RNA-seq 779 

(blue) vs integrated (orange) datasets. D) Density histogram of the difference 780 

(integrated minus bulk) in the MCC score for each pairwise differential 781 

expression comparison, vertical dashed line at 0 represents no difference 782 

between the datasets. E) Volcano plot for the differential expression profile of the 783 

bulk RNA-seq PVD samples vs OLQ samples. Dots represent individual genes. 784 

X-axis is log2 fold change (logFC), and the Y-axis is -log10(P-value). Grey dots 785 

are genes that are not called significant, and black dots are genes that pass 786 

significance thresholds (P-value < 0.05, and |logFC| > 2, red lines). F) Volcano 787 

plot for the differential expression profile of the Integrated PVD samples vs OLQ 788 

samples. X-axis is the log2 fold change (logFC), and the Y-axis is the -789 

log10(harmonic mean P value) (p.hmp). Grey dots are genes that are not called 790 

significant, and black dots are genes that pass significance thresholds (P-value < 791 

0.05 in >=80% of edgeR runs across all 50 integrations, and |logFC| > 2). 792 

Magenta squares mark genes expected to be enriched in PVD from the neuronal 793 

ground-truth dataset, and orange triangles denote genes expected to be enriched 794 

in OLQ. gar-1 and gar-2 are expected to be enriched in OLQ. G) Bar plot 795 

showing the differential expression True Positive Rate (TPR) for genes expected 796 

to be expressed in OLQ or PVD but not both. H) Bar plot showing the differential 797 

expression false positive rate (FPR) for genes expected to be expressed in 798 

neither OLQ nor PVD, and genes that were called enriched in the wrong neuron 799 

type. I) Bar plot showing the differential expression FPR for genes expected to be 800 

expressed only in non-neuronal tissues. 801 

 802 

Supplementary Figure 3 A) Table showing an example ground-truth 803 

matrix for OLQ and PVD neurons. Here we expect Gene a to be differentially 804 

enriched in OLQ over PVD, so it would be considered a positive ground-truth for 805 

OLQ and would be used to calculate the TPR for OLQ vs PVD. All other genes 806 
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shown are expected not to be enriched in OLQ and would thus be used as 807 

negative ground-truth, to calculate the FPR and FDR for OLQ vs PVD. When 808 

calculating the ground-truth for PVD vs OLQ, we expect Gene b to be enriched in 809 

PVD, and so it is treated as a positive ground-truth gene, and all other genes 810 

shown are treated as negative ground-truth. B) Example heatmap showing the 811 

MCC score for directional OLQ and PVD differential expression. In the OLQ row, 812 

we use edgeR to compare genes enriched in OLQ vs expected enrichment using 813 

the ground truth data. In the PVD row, we perform the same function, looking 814 

instead for enrichment in PVD. Thus, we have 595 neuron-neuron comparisons, 815 

with two entries for each pair. For OLQ vs PVD, we have an OLQ entry showing 816 

the scores for genes enriched in OLQ, and a PVD entry showing the scores for 817 

genes enriched in PVD. C-G) Heatmaps and density plots, showing scores for 818 

differential expression compared to neuronal ground-truth genes (C-F) and non-819 

neuronal genes (G) across all neuron types. C) Recall, D) Specificity (1-FPR), E) 820 

Accuracy, F) MCC score, and G) non-neuronal specificity. i) Heatmap of the 821 

score for the Bulk samples. ii) Heatmap of the score for the Integrated samples. 822 

iii) Heatmap of the difference in the scores (Integrated minus Bulk). iv) Density 823 

plot for the difference in the scores, black line at 0 indicates no difference 824 

between integrated and bulk comparisons. H-J) Bar plots showing neuronal 825 

ground-truth TPR and FPR, and the non-neuronal FPR, for four pairs of neurons. 826 

All bar graphs of TPR and FPR are shown for both directions of the comparison. 827 

 828 

Figure 4: Bulk RNA-seq samples detect protein coding genes that are 829 

not detected in scRNA-seq clusters: A) Scatter plot showing the relationship 830 

between the size of a scRNA-seq cluster (i.e., the number of cells in the cluster) 831 

and the Spearman correlation between the average bulk RNA-seq profile and the 832 

average scRNA-seq for all protein coding genes. Each dot represents one cell 833 

type. Red dashed line shows a Michaelis-Menten fit (see Methods), gmax = 834 

0.675, beta = 29.507. Blue dashed lines show the 97.5% confidence interval of 835 

the fit. B) Bar plot showing the number of protein coding genes detected per cell 836 

type in the bulk dataset. Genes plotted are: 1) called unexpressed in the 837 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.05.487209doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.05.487209
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

corresponding single cell cluster; 2) have a maximum correlation to any 838 

contaminant tissue less than 0.3; and 3) are expressed above 73 normalized 839 

counts in the average bulk profile for that cell type. C) Scatter plot showing the 840 

relationship between the size of a scRNA-seq cluster and the number of 841 

additional protein coding genes detected per cell type (as defined in panel B). 842 

Each dot represents one cell type. Red dashed line shows an exponential decay 843 

fit (see Methods), M = 140.2, m = 26.5, alpha = 89.1. Blue dashed lines show the 844 

97.5% confidence interval of the fit. D) GO enrichment analysis for protein coding 845 

genes detected in bulk IL1 samples that were not detected in the IL1 scRNA-seq 846 

cluster. GO enrichment performed using WormBase. E) Bar plot showing the 847 

number of protein coding genes detected per cell type in the bulk dataset. 848 

Restricted to genes that are never called expressed in any scRNA-seq cluster, 849 

have a contaminant correlation less than 0.3, and are expressed above 16 850 

normalized counts (determined by setting the non-neuronal FPR threshold to 0). 851 

F) Tissue enrichment analysis for protein coding genes detected in the ADL bulk 852 

samples but never called expressed in any scRNA-seq cluster (Angeles-Albores 853 

et al., 2016). 854 

 855 

Supplementary Figure 4 A-B) Scatter plots with a linear fit showing the 856 

relationship between the log10 transformed single cell cluster size and the 857 

estimated neuronal proportion of each bulk sample. Estimates were made using 858 

an NNLS regression (non-negative least squares, see Methods). A) Estimates 859 

with all single cells in each cluster. Neuronal proportion = 0.081 * log10(sc_size) 860 

+ 0.149. R2 = 0.05489, p = 0.001666 B). Estimates taken from the average 861 

Neuronal proportion estimate across 100 bootstraps, down-sampled to 30 cells 862 

for all clusters before each bootstrap. Neuronal proportion = 0.029 * 863 

log10(sc_size) + 0.268. R2 = 0.003752, p = 0.2079. C) Density plot of the gene 864 

level correlation to contaminant estimates. Only the highest correlation per gene 865 

is used. Distribution for all protein coding genes (red) vs distribution for non-866 

neuronal ground-truth protein coding genes (blue). D) Density plot of the gene 867 

level correlation to contaminant estimates for all genes that are detected in single 868 
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cell but called unexpressed in one of the 41 cell types covered by bulk 869 

sequencing. Only the highest correlation per gene is used. Blue and black 870 

dashed lines represent a Gaussian mixture model, used to threshold against 871 

contaminant genes. Red line at 0.3 indicates the cutoff, all protein coding genes 872 

with a maximum correlation above 0.3 were removed from analysis. E-H) GO 873 

term enrichment plots for genes called expressed in the bulk dataset which were 874 

called unexpressed in the corresponding scRNA-seq cluster for neurons OLL (E), 875 

RIS (F), PVD (G) and PVM (H). 876 

 877 

Figure 5: Bulk analysis reveals noncoding RNA expression pattern: A) 878 

Density plot showing the distribution of gene level correlation to contaminant 879 

estimates (purple), values plotted are the highest correlation per gene. Genes 880 

plotted were called expressed in at least one cell type. Blue and black dashed 881 

lines represent a gaussian mixture model, used to threshold against contaminant 882 

genes. All noncoding genes with a maximum correlation above 0.22 (vertical red 883 

line) were removed from analysis. B) Stacked bar graph showing the number of 884 

noncoding RNAs called expressed in each neuron type. Colors represent RNA 885 

classes. Genes were called expressed in a cell if they were detected above 5 886 

normalized counts in greater than 65% of samples for that cell. C) Bar plot 887 

showing number of cell types in which each noncoding RNA is detected. The x 888 

axis shows the number of cells, and the y axis shows the number of genes 889 

detected in that many cells. Genes to the right of the red line are called 890 

expressed in more than 90% of the sequenced cell types. D) Heatmap of log 891 

transformed GeTMM values of the pan-neuronal genes identified in panel C, 892 

columns are annotated by neuron modality. E) Histogram showing the 893 

distribution of Preferential Enrichment Measure (PEM) scores per gene, a metric 894 

for cell type specificity. Genes are considered cell type specific if they have a 895 

PEM greater than 0.65 (red line) and are expressed above 2 normalized counts 896 

in fewer than 10 cell types. F) Heatmap of average normalized counts per cell 897 

type, for genes considered cell type specific, columns are annotated by neuron 898 

modality, and rows are grouped by RNA class.  899 
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 900 

Supplementary Figure 5 A) Density plot showing the relative expression 901 

of noncoding RNAs (purple) and protein coding RNAs (orange), x-axis is 902 

maximum normalized counts per gene. B) Pie chart showing proportions of 903 

classes of pan-neuronal noncoding RNAs. C) Pie chart showing proportions of 904 

cell type specific noncoding RNAs. D) Box plot showing the number of cell type 905 

specific noncoding RNAs per cell type, grouped by neuron modality. 906 

 907 

Supplementary Table S1: All cell types sorted for bulk RNA-seq 908 

experiments, with the strain names and allele information. 909 

Supplementary Table S2: Replicate metadata for bulk RNA-seq 910 

experiments, with replicate names, strain names, and the number of cells 911 

collected. 912 

Supplementary Table S3: All cell types used for integrating bulk and 913 

single cell RNA-seq data, with the number of replicates in the bulk and single cell 914 

datasets for each cell type. 915 

Supplementary Table S4: Metadata for each single cell replicate, 916 

including the replicate name, the total UMI counts in the replicate, the number of 917 

individual cells included in the replicate, the cell type, and the experimental 918 

replicate name. 919 

Supplementary Table S5: Ground Truth expression for 160 genes in the 920 

C. elegans nervous system using fosmid and CRISPR/Cas reporter lines (see 921 

methods). 922 

Supplementary Table S6: Ground Truth expression for 445 genes that are 923 

expressed exclusively outside the C. elegans nervous system, curated from 924 

published data (see methods). 925 

Supplementary Table S7: Genes called unexpressed in all single cell 926 

clusters. 927 

Supplementary Table S8: An annotated heatmap of highly specific 928 

noncoding RNA genes and their log10 transformed expression values in each 929 

cell type.  930 
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