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Abstract 
Autophagy is an intracellular recycling process that degrades harmful molecules, maintains optimal 

composition of cellular organelles and enables survival during starvation. Previous studies have 

demonstrated how transcription factors (TFs) can increase autophagy with therapeutic potential 

(impaired autophagy in the ageing brain, in particular, may be an important risk factor for dementia). 

To investigate the transcriptional regulation of autophagy from a systems perspective, we induced 

autophagy by amino acid starvation and mTOR inhibition in HeLa, HEK 293 and SH-SY5Y cells and 

used RNA-seq to measure gene expression at three time points. We observed 453 differentially 

expressed (DE) genes due to starvation and 284 genes due to mTOR inhibition (PFDR < 0.05 in every 

cell line). Pathway analyses confirmed enrichment of genes implicated in Alzheimer’s (PFDR < 0.001 in 

SH-SY5Y and HeLa) and Parkinson’s (PFDR ≤ 0.024 in SH-SY5Y and HeLa) diseases and amyotrophic 

lateral sclerosis (ALS, PFDR < 0.05 in 4 of 6 experiments). We then integrated Signaling Pathway Impact 

Analysis and TF target enrichment testing to predict which TF target genes were contributing to 

pathway perturbation. Differential expression of the Senataxin (SETX) target gene set was predicted to 

activate multiple neurodegenerative pathways (PFDR ≤ 0.04). Notably, SETX is a causal gene for a rare 

form of ALS. In the SH-SY5Y cells of neuronal origin, the E2F transcription family was predicted to 

activate Alzheimer’s disease pathway (PFDR ≤ 0.0065). SETX and E2F may be important mediators of 

transcriptional regulation of autophagy and may provide new therapeutic opportunities for neuro-

degenerative conditions. 
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Introduction 
Maintaining energy homeostasis is essential for cells and biological organisms to survive and thrive. 

Throughout most of human history, perturbations to energy metabolism were due to starvation that 

stunted growth and development [1,2], while in modern populations metabolic health is challenged by 

sedentary life style, excess adiposity and ageing [3–5]. There is evidence that both energy extremes 

involve the same cellular processes that maintain energy homeostasis [6–8] and that these disruptions 

may be important drivers for common diseases such as diabetes and cancer [1,9–11]. Autophagy is one 

such process: it is responsible for recycling cellular materials into energy resources during periods of 

nutrient deprivation [12–14], but it also has an important role in maintaining the optimal composition 

of cellular organelles during periods of abundance [15]. Importantly, autophagy is affected by ageing 

[16] and impaired autophagy in the ageing brain, in particular, may be an important risk factor for 

Alzheimer’s and Parkinson’s diseases [17–20]. For these reasons, our long-term goal is to understand 

how autophagy and energy metabolism are regulated in human cells and to use this new fundamental 

knowledge towards new treatments for age-associated diseases. 

Previous studies on autophagy regulation have revealed multiple pathways and genes [21,22], of which 

mammalian target for rapamycin (mTOR) and transcription factor EB (TFEB) are the best characterized 

[23,24]. A specific sequence, the coordinated lysosomal expression and regulation (CLEAR) motif 

seems to be the preferred DNA binding target for TFEB and its transcription factor family [25] and it 

may represent a key mechanism by which external conditions (e.g. starvation) exert a cascade of 

adaptation through mTOR, TFEB and the promoters of downstream autophagy genes [23]. As the name 

implies, the CLEAR motif is present in the promoters of lysosomal genes. This is important because 

the lysosome is the end-terminal of autophagic cascades [26] and it is responsible for the final 

degradation and recycling of materials including the two Alzheimer proteins, tau and amyloid-beta, that 

accumulate in the brains of affected individuals [20,27,28]. Lastly, we and others have identified genetic 

associations between autophagy and dementia [17,29,30]. These findings motivated us to explore the 

transcriptional responses associated with starvation-induced increase in autophagy and to investigate 

potential links between these responses and neuro-degenerative processes. 

The aim of this study was to characterize how the transcriptome changes in response to starvation or 

mTOR inhibition in model systems where we also see responses in autophagy. We used genetically 

engineered human cells where we could confirm the changes in autophagic flux into the lysosome; this 

sets the experiments apart from previous work. Furthermore, we applied RNA sequencing at multiple 

time points and three cell lines to achieve robust systems-level understanding of which genes are 

reproducibly affected. The multi-faceted study design makes our study different from previous RNA-

seq profiling experiments. Across the different cell line/treatment combinations, we report unexpected 

associations with differentially expressed genes and autophagic flux and characterize universal 
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expression patterns and their predicted driver genes that overlap with neuro-degenerative disease 

processes.  
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Results 
Overview of transcriptome responses 

We collected RNA-seq data at baseline and after two interventions (mTOR inhibition or amino-acid 

starvation) in three monoclonal cell lines (HeLa, HEK 293 and SH-SY5Y). Initially, 12 differential 

expression analyses were conducted (2 time points × 2 treatments × 3 cell lines = 12). The two time 

points were then combined to focus only on the most robust and consistent signals (details in Methods). 

The resulting six lists of differentially expressed (DE) genes were used for further analyses and we refer 

to them as the six DE “experiments” throughout the text (2 treatments × 3 cell lines = 6, Supplementary 

Figure S1, Supplementary Tables S1-S6). 

A total of 16,506 genes were detectable in at least one cell line and 11,202 (67.9%) were detectable in 

every cell line (Figure 1A). We observed 8,914 DE genes due to starvation in at least one cell line, of 

which 456 (5.1%) were classified as DE genes in every cell line (Figure 1B). We also observed 6,226 

DE genes due to mTOR inhibition in at least one cell line; 285 (4.6%) of these were classified as DE 

genes in every cell line (Figure 1C). We identified 5,672 DE genes associated with starvation or mTOR 

inhibition that were up-regulated in at least one cell line (Figure 1D, inconsistent DE genes that were 

significantly up-regulated in one cell line but significantly down-regulated in another were excluded). 

Of these, 1,541 (27.2%) genes were shared by both treatments. Lastly, we identified 5,543 down-

regulated genes of which 1,741 (31.4%) were shared between treatments (Figure 1E). 

Differentially expressed genes 

The patterns of DE signals are summarized in Figure 2. P-values were adjusted for FDR as described 

in Methods (PFDR). For each plot, genes were ranked according to the maximum FDR rule: first, we 

determined the maximum PFDR for each gene across the relevant experiments. Genes were then sorted 

according to maximum PFDR. Lastly, genes that were significantly up-regulated in one experiment, but 

down-regulated in another were excluded to maintain directional concordance. 

The gene with the lowest maximum P-value across all experiments (Figure 2A) was LETM1 Domain 

Containing 1 (LETMD1, PFDR ≤ 5.0 × 10−7, mean logFC = 1.3, involved in phagocytosis). The greatest 

increase in relative expression was observed for a cancer-associated lncRNA that may inhibit autophagy 

(Small Nucleolar RNA Host Gene 7 or SNHG7, PFDR ≤ 0.0041, mean logFC = 2.0). Genes that were 

down-regulated included a member of the PI3K family (Phosphoinositide-3-Kinase Regulatory Subunit 

3, PIK3R3, PFDR ≤ 5.6 × 10−6, mean logFC = −1.6), an L-amino acid transporter (Solute Carrier Family 

43 Member 2, SLC43A2, PFDR ≤ 0.0029, mean logFC = −1.7) and Aldolase Fructose-Bisphosphate C 

(ALDOC, PFDR ≤ 0.00015, mean logFC = −1.6, a glycolysis gene associated with Alzheimer’s disease 

[31]. 
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Top 25 genes ranked according to starvation response are shown in Figure 2B. The smallest maximum 

P-value across starvation experiments was observed for Activity Regulated Cytoskeleton Associated 

Protein (ARC, PFDR ≤ 0.00074, mean logFC = 1.6, associated with memory and cognitive disorders 

[32]). The greatest increase in expression was observed for G Protein Subunit Beta 1 Like (GNB1L, 

PFDR ≤ 0.0074, mean logFC = 1.1, associated with neurological disorders [33]). The top down-regulated 

gene was a transcriptional co-repressor involved in photoreceptor degradation and possibly autism 

(Sterile Alpha Motif Domain Containing 11, SAMD11, PFDR ≤ 8.3 × 10−5, mean logFC = −1.9 [34]). 

Arrestin Domain Containing 3 (ARRDC3, PFDR ≤ 0.00097, mean logFC = −1.8) was also down-

regulated and it is involved in endocytic recycling [35] and lysosomal degradation of receptors [36]. 

Genes that were specifically affected by mTOR inhibition are shown in Figure 2C. Upregulated genes 

included CAMP Responsive Element Binding Protein 3 Like 4 (CREB3L4, FDR ≤ 0.0025, mean logFC 

= 0.86, a transcription factor involved in glucose and lipid metabolism). Of the down-regulated genes, 

Methionyl-TRNA Synthetase 1 (MARS) had the smallest FDR (FDR ≤ 1.3 × 10−8, mean logFC = −1.2, 

involved in alveolar disease). The greatest decrease in expression was observed for Solute Carrier 

Family 6 Member 9 (SLC6A9, FDR ≤ 3.1 × 10−5, mean logFC = −2.0) which is a glycine transporter 

associated with Alzheimer’s disease [37]. Of note, we observed an mTOR-specific pattern among the 

top 25 in HEK 293 and HeLa cells, but not in SH-SY5Y. 

We isolated responses specific to SH-SY5Y in Figure 2D by applying the maximum FDR rule to the 

two SH-SY5Y experiments only (see details in figure caption). Piwi Like RNA-Mediated Gene 

Silencing 2 (PIWIL2, a piRNA regulator of autophagy and apoptosis [38]) exhibited the smallest 

maximum P-value (PFDR ≤ 4.4 × 10−6, mean logFC = 2.1). The top-ranked down-regulated gene was 

Collagen Type I Alpha 2 Chain (COL1A2, PFDR ≤ 1.4 × 10−10, mean logFC = −2.9, a structural 

component of collagen). Membrane Bound O-Acyltransferase Domain Containing 4 (MBOAT4), 

which stimulates autophagy [39], was also among the most down-regulated genes (PFDR ≤ 5.2 × 10−10, 

mean logFC = −2.8).  

Canonical pathways enriched for differentially expressed genes 

In the previous section, we observed multiple genes associated with autophagy and neuro-degeneration, 

however, a single DE gene in isolation does not reveal the wider biological consequences. To gain more 

robust insight into the biological impact, we investigated i) if genes from a known biological pathway 

were over-represented among DE genes and ii) if DE genes were likely to perturb a known pathway 

when considering the gene-gene interactions within the pathway. Selected results are depicted in Figure 

3 and full statistics are available in Supplementary Tables S7-S18. 

We identified 31 KEGG pathways over-representing DE genes in at least one of the six experiments 

(Figure 3A). No pathway was significant in every experiment. The most consistent over-representation 
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signals included Parkinson’s and Alzheimer’s diseases and Amyotrophic lateral sclerosis that were 

significant in four out of six experiments (highlighted in Figure 3A). Significant signals were also 

observed for Metabolic pathways, Cell cycle, Biosynthesis of amino acids, Carbon metabolism and 

Fluid shear stress and atherosclerosis. 

Perturbation tests revealed multiple pathways that were likely to be activated or inhibited by the changes 

in gene expression (Figure 3B). We observed a directionally consistent activation of the KEGG 

Alzheimer’s disease pathway (perturbation z-scores between +2.15 and +7.63) and Ferroptosis (z-

scores between +1.81 and +3.27) across all six experiments (highlighted in Figure 3B). We also 

observed unexpected but consistent association for inhibition of the Autophagy pathway (z-scores 

between −5.3 and −1.58). HIF-1 signaling was predicted to be inhibited across all experiments. Multiple 

immune-system pathways such as Antigen processing and presentation were also predicted to be 

inhibited due to DE. 

Transcription factor target gene sets enriched for differential expression 

Genome-wide regulatory processes are not yet fully understood and may be missed by existing pathway 

definitions. For this reason, we repeated the over-representation analysis from the previous section but 

replaced the KEGG pathways with transcription factor target (TFT) gene sets (defined in Methods). 

We observed 30 TFT gene sets that over-represented DE genes in every experiment. Based on the 

literature, TFEB may be a key regulator of autophagy [23] and, as expected, the predicted TFEB targets 

were over-representing DE genes associated with autophagy also in our study (highlighted in Figure 

4A). Noteworthy signals related to neurological health include the MORC Family CW-Type Zinc 

Finger 2 set (MORC2 is associated with multiple neurological conditions), the Senataxin set (SETX, 

also known as Amyotrophic lateral sclerosis 4 protein), the THAP Domain Containing 1 set (THAP1 is 

associated with the neurodevelopmental disease dystonia 6) and SPT16 Homolog set (SUPT16H is 

associated with neurodevelopmental problems). 

We identified 22 gene sets that were enriched for DE genes in both SH-SY5Y experiments but not in 

other cells (Figure 4B); 20 belonged to the same E2F family that shared most of their target genes (note 

also E2F2 in Figure 4A). The strongest signal was observed for the Hydroxysteroid 17-beta 

Dehydrogenase 8 (HSD17B8) gene set (PFDR ≤ 7.9 × 10−16). Full results are available in Supplementary 

Tables S19-S24. 

Transcription factors as mediators between differential expression and 
canonical pathways 

To compare the pathway and TFT responses, we first identified shared genes between a KEGG pathway 

and a TFT set, and then calculated the perturbations scores for this shared subset of genes. We observed 

ten pairs of transcription factors and KEGG pathways that satisfied PFDR < 0.05 across every experiment 

– all of them were predicted to have increased activity due to the DE pattern and seven of them were 
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pairings with KEGG neuro-degenerative diseases (Figure 5A, full results in Supplementary Tables S25-

S30). Moreover, three signals involved the THAP1 gene set (paired with Alzheimer’s disease, ALS and 

viral infection) and four involved the SETX gene set (paired with Alzheimer’s, Parkinson’s, 

Huntington’s and ALS).  

We also found 32 pairs of TFT sets and pathways that were specific to SH-SY5Y (Figure 5B). Notably, 

the perturbation scores were mostly negative, which suggests that the DE of the TFT sets may result in 

the inhibition of these pathways. Exceptions included SETX and Dopaminergic synapse (PFDR ≤ 

0.00021), and multiple pathways perturbed by the E2F family of transcription factors, such as E2F and 

Alzheimer’s disease (PFDR ≤ 0.0065).  
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Discussion 
To investigate the transcriptional regulation of autophagy in living human cells, we induced autophagic 

flux by amino acid starvation and mTOR inhibition and investigated the transcriptional responses in 

HeLa, HEK 293 and SH-SY5Y cell lines. Increase in autophagic flux was confirmed by a tandem-

fluorescent LC3 assay (tf-LC3) and gene expression was quantified by RNA sequencing. We found that 

the KEGG autophagy pathway was inhibited at 15 h and 30 h after treatment, while pathways associated 

with neuro-generative diseases were activated. In particular, our results suggest that transcription target 

genes assigned to SETX and E2F may represent important regulatory mediators that connect energy 

metabolism, autophagy and cellular stress with Alzheimer’s and Parkinson’s diseases. 

Predicted inhibition of autophagy pathway 

Previous literature and the tf-LC3 assays in this study show how autophagic flux increased in response 

to starvation or mTOR inhibition [14,24,40]. Against our expectations, we observed significant 

inhibition of the KEGG Autophagy pathway and possible autophagy regulators such as ARRDC3 and 

PIKR3 in the RNA-seq data. Moreover, putative autophagy inhibitors LETMD1 and SNHG7 were up-

regulated. We also checked an earlier small pilot study to be sure that the treatment groups were not 

mislabeled (i.e. wrong sign of the statistical signal), but we observed matching direction of DE (data 

not shown). 

We chose the time points of 15 h and 30 h based on time-series experiments to capture the inflection 

and saturation points of the autophagy response. A recent report on the dynamics of autophagy suggests 

that autophagy responses with respect to vesicular flux start within 10 min of treatment and saturate by 

15 h [41]. In the first phase, mTOR Complex 1 inhibition by rapamycin induces an increase in 

autophagosomes which represents the initial packaging of molecular cargo into vesicles. Next, the 

autophagosomes fuse with lysosomes to form autolysosomes. Lastly, the autolysosomes degrade and 

the contents are recycled. The authors found that these three stages reached a steady state by 15 h where 

the numbers of autophagosomes and autolysosomes stabilize. Other studies have also demonstrated 

autophagic flux is still supported at late timepoints such as 8 h and 24 h in mouse embryonic fibroblasts 

[42], and 48 h in HeLa cells , as demonstrated by measurement of LC3-II with and without a lysosomal 

inhibitor drug [43]. Our results from the tf-LC3 assay, which tracks the proportion of LC3 within acidic 

autolysosomes, are compatible with these findings, although we observed stabilization at 30 h rather 

than 15 h in most cases. 

Extrapolation of the dynamic autophagy process to transcriptional regulation may explain the negative 

DE we observed. We did not see substantial changes in gene expression at 1 h, which means that there 

was limited if any immediate transcriptional response associated with the initial increase in 

autophagosomes. On the other hand, by 15 h the transcriptome was responding to the nutrient 

deprivation, while the tf-LC3 assay was starting to level off. It is plausible that expressing autophagy 
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genes at 15 h onward may become less of a priority for the cell and the relative expression of the 

pathway is subsequently decreased. 

Senataxin 

SETX was first discovered via ataxia-associated mutations in a human homolog of the yeast gene Sen1 

[44] and numerous additional mutations have since been reported that are associated with a rare type of 

ALS [45,46]. Initial studies showed that SETX helps to remove unintended DNA-RNA hybrid 

molecules (R-loops) that would otherwise promote genomic instability [47,48]. Interestingly, recent 

evidence indicates that SETX may be an important regulator of autophagy, especially with respect to 

the removal of stress granules that form when a cell is starved or under other types of environmental 

pressure [47]. For example, Richard et al. investigated a SETX knock-out [49] and reported that “SETX 

depletion inhibits the progression of autophagy, leading to an accumulation of ubiquitinated proteins, 

decreased ability to clear protein aggregates, as well as mitochondrial defects” which describes most 

neuro-degenerative diseases with features of proteinopathy. In another study, Bennet et al. induced 

SETX over-expression that disrupted the cell cycle of HEK 293 cells and they concluded that neurons 

due to their long RNA transcripts (i.e. propensity for R-loops) may be particularly vulnerable if SETX 

expression is outside the optimal range [50]. 

We observed up-regulation of genes that were implicated in Alzheimer’s and Parkinson’s disease, 

respectively, and predicted to be downstream targets of SETX (Figure 5A). On the other hand, SETX 

itself was not differentially expressed, which could be the result of tightly controlled expression range 

or transient expression patterns that are characteristic of transcription factors. Given the generic nature 

of our transcriptome findings, further studies of SETX may benefit from expanding the focus from 

ataxia and ALS to other types of neuro-degenerative diseases and focusing on energy restricted cellular 

milieu that may be characteristic to an ageing brain. 

E2 promoter binding factors 

The E2F family of transcription factors is implicated in the regulation of energy metabolism, adipose 

tissue, obesity and growth in general [51–54] and our results from starved and mTOR-inhibited cells fit 

this picture well. The first family member, E2F1, is the most extensively studied. E2F1 binds with 

retinoblastoma protein to induce autophagy in cancer cells [54] and, inversely, E2F1 knockout inhibits 

autophagy to increase brown fat formation [52]. In Drosophila, E2F1 enables the regulation of TOR 

Complex 1 independent of insulin or amino acid pathways [53] and interacts with the cell cycle in a 

biphasic manner to promote organismal growth [51]. The E2F1 protein may be up-regulated in people 

with Down’s syndrome and amyloid-beta deposition [55]. 

The E2F signals we observed are most likely explained as universal consequences of energy restriction 

across cell types. In the neuroblastoma cell line, the E2F-targeted portions of cancer pathways, 
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thermogenesis, mTOR signaling, insulin signaling, and circadian entrainment were all inhibited (Figure 

5B), as one would expect based on the previous research on E2F1. On the other hand, ALS and 

Alzheimer’s disease pathways were predicted to be activated. Our data cannot reveal causal 

relationships, but we speculate that E2F transcription factors respond to age-associated metabolic 

dysfunction and may subsequently trigger neuronal apoptosis [56,57]. There is evidence that inducing 

E2F1 and E2F2 may help maintain genomic stability in neurons under toxic conditions [58] while other 

experiments showed that reducing E2F1 in mice improved the survival of dopaminergic neurons [57]. 

Given these complex and contradictory findings, additional research into the exact roles of each E2F 

family member in relation to human tissues is warranted. 

Strengths and weaknesses 

The inclusion of three cell lines, three time points and two conditions provide statistical and biological 

robustness to our findings. HEK 293, HeLa and SH-SY5Y cells are established platforms for 

experimental studies and grow predictably in standard conditions, which helped us to maintain high 

consistency between cultures. On the other hand, these immortalized cells may differ substantially from 

human cells in situ and the interventions we chose are beyond the typical physiological stresses most 

cells would encounter. Hence, we caution against over-reaching conclusions about possible therapeutic 

targets among the top DE genes. Instead, these data should be interpreted as further evidence on the 

associations between energy metabolism, autophagy machinery and neuro-degenerative diseases, 

whereas the exact causal mechanisms may be highly dependent on the cell type or on an individual’s 

genetic profile. 

The use of immortal cell lines allowed us to optimize monoclonal cultures that expressed the tf-LC3 

construct. This was important to achieve a high signal-to-noise ratio for the fluorescence assay for 

autophagic flux. Furthermore, the technical quality and depth of the RNA-seq data were high and we 

used additional permutation tests to verify signals beyond the original pathway tools. For these reasons, 

we are confident that the analytical quality of the study is high. 

Conclusions 

We conducted an experimental study to characterize transcriptomic changes associated with autophagy 

in three human cell lines. Our setup was not optimized for neuro-degenerative diseases beyond the 

neuronal SH-SY5Y cells, yet to our surprise we identified an enrichment of differentially expressed 

genes in Alzheimer’s and Parkinson’s disease pathways that emerged from the RNA-seq data. This re-

enforces the idea that autophagy and energy metabolism are intrinsically involved in these major human 

diseases. Furthermore, we identified senataxin and the E2F transcription factor family as potential 

mediators between transcriptional regulation of autophagy and neuro-degenerative conditions.  
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Materials and methods 
Study design 

The experimental part of the project comprised four subcomponents: i) an assay for autophagic flux, ii) 

the selection and culture of cell lines, iii) time series design for mTOR inhibition and starvation, and 

iv) final experiments for transcriptomic analysis. Firstly, we used a tandem fluorescent LC3 (tf-LC3) 

assay to measure autophagic flux. LC3 is a core protein component of the autophagosome membrane 

that is eventually incorporated into the lysosome at the end of the vesicular autophagy pipeline [40]. 

The tf-LC3, which comprises the LC3 protein fused to a red fluorescence protein and a pH-sensitive 

green fluorescence protein, is incorporated into the autophagosome in the same manner as the native 

LC3. Once the tf-LC3 proteins reach the acidic interior of the lysosome the pH-sensitive green 

fluorophore is quenched while the red fluorophore is unaffected. Therefore, the ratio between red and 

green fluorescence indicates the proportion of tf-LC3 in lysosomes versus total cellular tf-LC3, which 

we use as a proxy for autophagic flux.  

Secondly, we selected three different cell lines to identify consistent and universal RNA expression 

changes associated with changes in autophagy flux. We chose Hela and HEK 293 cells due to their 

robust growth in cultures and the SH-SY5Y due to their brain-tissue origin. Each cell line of interest 

was transfected with lentiviral particles that contained the sequence for the tf-LC3 construct under the 

cytomegalovirus promoter [59]. Multiple monoclonal lines were cultured for each cell line, each of 

which had total red and green fluorescence quantified by flow cytometry, thus allowing for selection of 

clones most appropriate for quantifying autophagic flux in the proposed experiments. 

Thirdly, we subjected the clones to mTOR inhibition using 1 μM of AZD8055 (Selleck Chemicals LLC, 

Houston TX, USA) and to amino-acid starvation using Earl’s balanced salt solution (EBSS; MSD, 

Kenilworth NJ, USA) to induce autophagy. Temporal curves of autophagic flux were determined by 

measuring the tf-LC3 red/green ratio at 1 h intervals (Supplementary Figure S2). Based on the curves, 

we chose 1 h, 15 h and 30 h time points as the initial response, inflection point and saturation point of 

autophagic flux respectively. Three technical replicates were collected from every experimental arm. 

We observed no difference between the baseline and 1 h RNA profiles, thus only 15 h and 30 h time 

points were used for statistical analyses. 

Cell culture and materials 

HeLa and HEK 293 cell lines were cultured in Dulbecco’s Modified Eagle Medium (DMEM; Life 

Technologies, Thermo Fisher Scientific, Waltham MA, USA), while SH-SY5Y cells were cultured in 

1:1 DMEM:Ham’s F12 (MSD, Kenilworth NJ, USA). All three cell lines were maintained with 10% 

(v/v) foetal bovine serum (Life Technologies), and 5 mg/mL penicillin and streptomycin (MSD, 

Kenilworth NJ, USA) in a humidified atmosphere of 5% CO2 at 37°C. For RNA profiling, T25 flasks 

were seeded with 1.24 × 106 cells from 80% confluent T75 flasks 24 h prior to the start of experiments. 
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Both the treated and non-treated samples were seeded from the same flask. Parental clones without the 

tf-LC3 proteins were used to calibrate the flow cytometer before measuring autophagic flux. 

RNA sequencing 

Total RNA was extracted using the RNeasy Plus Mini Kit (QIAGEN, Hilden North Rhine-Westphalia, 

Germany) as per the manufacturer’s instructions (sample RNA concentration ≥15 ng/μL, ≤2809 ng/μL, 

median 361.5 ng/μL). The RNA library was prepared with indices and was sequenced on an Illumina 

NovaSeq 6000 S4 at 2 × 150 bp at the David R Gunn Genomics Suite in the South Australian Health 

and Medical Research Institute. 

RNA data processing 

The scripts that were used for the analyses are available at https://github.com/Wenjun-

Liu/Induced_autophagy. Default parameter settings were used at each step unless otherwise indicated. 

Each sample was sequenced to a median of 132 million paired reads per sample. We applied a three-

step protocol to process raw reads into gene-level expression estimates. Firstly, we used cutadapt 

version 1.14 [60] to trim away low quality bases, adapters and other non-useful sequences. Secondly, 

trimmed reads were aligned to the human genome assembly GRCh38.p13 from Ensembl Release 98 

[61] using STAR v2.7 [62]. Thirdly, total read counts for each gene (i.e. gene-level expression 

estimates) were quantified using featureCounts from the Subread package version 1.5.2 [63], with the 

setting 1 for fracOverlap and 10 for Q. Gene annotations were obtained from Ensembl Release 98 [61]. 

For each of the three steps, quality checks were performed using FastQC v0.11.7 (URL: 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and ngsReports [64]. We observed no 

issues related to low sequencing quality, variable GC content or high adapter content across the set of 

libraries. We considered a gene detectable for a cell line if we observed >1.5 counts per million in >3 

samples out of 15, representing all samples from a complete treatment arm. A total of 16,506 (24.3%) 

out of 67,946 annotated genes were detectable in at least one cell line and 11,202 (16.5%) genes were 

detectable in every cell line. Lastly, we applied the conditional quantile normalization method to 

mitigate remaining artefacts from GC content and gene length in preparation for the statistical analysis 

[65]. 

Differential expression analysis 

We identified differentially expressed (DE) genes between the treated and untreated cell lines by quasi-

likelihood negative binomial generalised log-linear regression as implemented in edgeR [66,67]. We 

defined DE that exceeded the range of ±20% fold change as biologically meaningful [68]. We then used 

the quasi-likelihood F-test to calculate P-values. P-values were further adjusted by the Benjamini-

Hochberg method of false discovery rates (PFDR) to account for multiple testing [11]. 
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We conducted 12 initial DE analyses where we compared the expression levels at 15 h and 30 h against 

the baseline at 0 h (3 cell lines × 2 treatments × 2 time points, Supplementary Figure S1). Statistically 

significant genes (PFDR < 0.05) were then selected for further investigation from each DE analysis. 

Given the overlap between significant genes at 15 h and 30 h time-points (mean 53.4% across cell lines 

and treatments), we included only those that showed significant DE in the same direction at both time 

points, as a strategy to focus on the most consistently changed genes. For a single estimate of fold-

change, we used the mean log2 fold change across both time-points. Hence the final set of results 

comprised six separate DE listings (3 cell lines × 2 treatments × 1 combined time point, Supplementary 

Figure S1). 

Pathway enrichment analysis 

We investigated i) if genes in pre-defined biological pathways were over-represented among DE genes 

and ii) to what extent DE genes were likely to perturb a given pathway when considering the known 

functional relationships between the pathway members. Firstly, over-representation of DE genes was 

tested with using goseq [12]. We included an offset term to account for bias due to gene size that can 

confound other over-representation approaches. 

Secondly, we applied the Signaling Pathway Impact Analysis (SPIA) method to identify potentially 

perturbed pathways [69]. The SPIA adds to the results from goseq since it provides deeper functional 

insight into the consequences from altered gene expression. In SPIA, pathways are represented as 

networks of genes based on pathway topology and activating/inhibitory roles of individual genes. 

Perturbation is defined as the propagating effect from altering the expression of one or more genes 

within the network. Crucially, the SPIA algorithm predicts the accumulated perturbation effect from 

multiple DE genes and summarizes the total effect as a single numerical score. This perturbation score 

is directional: a negative score indicates down-regulation of a pathway, whereas a positive score 

indicates up-regulation. In this study, we used a novel permutation procedure to calculate the statistical 

significance of the perturbation score (Supplementary Figure S3).  

Canonical pathway definitions were obtained from the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) database [70]. We retrieved 312 KEGG pathways and converted them into an SPIA-compatible 

network format using the tool graphite [71]. Over-representation and perturbation tests were applied to 

each of the six DE listings, respectively. The threshold for significant over-representation was set at 5% 

FDR. The same threshold was also applied to define significant perturbation. 

Transcription factor target genes 

We retrieved 957 transcription factor (TFT) gene sets from the Molecular Signatures Database version 

7.2 [72,73] where, for a specific transcription factor, the TFT gene set was determined according to the 

binding sites or promoter binding motifs in the target genes. TFT gene sets were analysed for over-

representation of DE genes the same way as the KEGG pathways, however, as the TFT definitions do 
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not include interaction information between the target genes, we developed a strategy to combine the 

TFT information with KEGG pathway topologies. First, we determined subsets of genes that were 

shared between a KEGG pathway and a TFT gene-set; these subsets represent potential mechanisms by 

which a transcription factor may regulate a KEGG pathway. To test the regulatory potential further, we 

applied SPIA the same way as before, but using the subset of genes within the KEGG pathway (that 

were also TFT genes). KEGG pathways with PFDR < 0.05 were considered to be significantly perturbed 

due to the given transcription factor.  
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Figure 1 

 

Overview of differentially expressed (DE) genes. A) Genes were considered detectable if there were 

>1.5 counts per million in >3 samples out of all samples from the same cell line. B) Genes that were 

DE between starved and control samples in at least one cell line. C) Genes that were DE between mTOR 

inhibited and control samples in at least one cell line. D) We collected DE genes associated with 

starvation or mTOR inhibition that were up-regulated in at least one cell line (inconsistent DE genes 

that were significantly up-regulated in one cell line but significantly down-regulated in another were 

excluded). E) Down-regulated DE genes associated with starvation or mTOR inhibition. 
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Figure 2 

 

Top 25 differentially expressed (DE) genes based on the maximum FDR rule. Genes mentioned in the 

main text are highlighted for easier visual localization. A) Genes were sorted according to the maximum 

FDR-adjusted P-value across six experiments. Discordant genes that were significantly (PFDR < 5%) up-

regulated in one and down-regulated in another experiment were excluded. B) Genes were sorted 

according to the maximum PFDR across all starvation experiments. We also required that all starvation 

responses were directionally concordant and that the mean log2 fold change across mTOR experiments 

was in the opposite direction. C) Genes were sorted according to the maximum PFDR across all mTOR 

inhibition experiments. We required that all mTOR inhibition responses were directionally concordant 

and that the mean log2 fold change across starvation experiments was in the opposite direction. D) 

Genes were sorted according to the maximum PFDR across responses in the SH-SY5Y cells. Missing 

signals were set to zero log2 fold change in other cell lines. We also required that the mean log2 fold 

changes in other cells were in the opposite direction to SH-SY5Y responses. 
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Figure 3 

 

Enrichment of differentially expressed genes in the Kyoto Encyclopedia of Genes and Genomes 

pathway repository. A) Over-representation analysis of DE genes. Pathways that produced a significant 

signal (PFDR < 0.05) in at least one experiment are shown. B) Normalized perturbation scores from 

Signaling Pathway Impact Analysis. A negative (positive) score implies that the aggregate impact of 

DE genes is likely to decrease (increase) the activity of a pathway. Pathways that were directionally 

concordant (all significant signals in the same direction) and that produced at least three significant 

signals (PFDR < 0.05) are included. 
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Figure 4 

 

Enrichment of differentially expressed genes in transcription factor target (TFT) sets. A) Over-

representation analysis of DE genes. Pathways that produced a significant signal (PFDR < 0.05) in at 

least one experiment are shown. B) DE enrichment within TFT sets in SH-SY5Y cells but not in other 

cells. 
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Figure 5 

 

Combined perturbation analysis of canonical pathways and TFT sets. First, we identified DE genes that 

were shared between a KEGG pathway and TFT sets. Then, we used Signaling Pathway Impact analyses 

to test if the shared genes would impact the activity of the KEGG pathway. Therefore, the perturbation 

scores are predictions on the potential regulatory effects differentially expressed transcription factor 

target genes will have on canonical pathways. A) TFT-pathway pairs that showed directionally 

consistent and significant (PFDR < 0.05) perturbation scores across every experiment. B) TFT-pathway 

pairs that showed directionally consistent and significant (PFDR < 0.05) perturbation scores in the two 

experiments on SH-SY5Y cells but no significant signals in other cells.  
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