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Abstract 

The lack of understanding as to the cellular and molecular basis of clinical and genetic 

heterogeneity in progressive multiple sclerosis (MS) has hindered the search for new effective 

therapies and biomarkers. Here, to address this gap, we analysed 740,000 single nuclei 

RNAseq profiles of 165 samples of white matter (WM) lesions, normal appearing WM, grey 

matter (GM) lesions and normal appearing GM from 55 MS patients and 28 controls. We find 

that gene expression changes in response to MS are highly cell-type specific in WM and GM 

lesions but are largely shared within an individual cell-type across lesions, following a 

continuum rather than discrete lesion-specific molecular programs. The major biological 

determinants of variability in gene expression in MS samples relate to individual patient 

effects, rather than to lesion types or other metadata. Using multi-omics factor analysis 

(MOFA+), we identify three subgroups of MS patients with distinct oligodendrocyte 

composition and WM glial gene expression signatures, suggestive of engagement of different 

pathological/regenerative processes. The discovery of these three patterns significantly 

advances our mechanistic understanding of progressive MS, provides a framework to use 

molecular biomarkers to stratify patients for best therapeutic approaches for progressive MS, 

and highlights the need for precision-medicine approaches to address heterogeneity among 

MS patients. 

 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2022. ; https://doi.org/10.1101/2022.04.06.487263doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.06.487263
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

Introduction 

Despite a number of approved, highly effective therapies for the relapsing-remitting phase of 

multiple sclerosis (MS), we lack such therapies specifically targeting mechanisms of 

neurodegeneration in progressive stages of the disease. Therapeutic strategies that have 

been tested in clinical trials include enhancing neuroprotection directly and enhancing 

remyelination, aiming to provide indirect neuroprotection by restoring metabolic support and 

saltatory conduction to the demyelinated axon
1
. However, in spite of promising preclinical 

data, such trials so far have not met their primary endpoint of improvement in clinical disability, 

even though subgroup analysis has shown some promise (e.g. MS-SMART
2
, Opicinumab

3
, 

Bexarotene
4
, Clemastine

5
). This translational mismatch may result from the heterogeneity of 

the disease in people with MS. Within both primary and secondary progressive MS (PPMS 

and SPMS) clinical subtypes, there is a clear heterogeneity of clinical course, with some 

people with MS showing a slowly progressive disability phase, while others become very 

disabled very quickly. This diverse disease course is very difficult to predict at disease onset. 

Speculating that a heterogeneous neurodegenerative and/or neuroregenerative response to 

MS pathology between patients underlies these differing disease outcomes, we and others 

have, in previous work, identified cellular heterogeneity in MS using single nucleus 

transcriptomics, albeit in a limited number of patients and few pathological MS lesion types
6–

8
. However, these studies had insufficient samples to characterise inter-patient heterogeneity 

of demyelinated lesions and intra-patient heterogeneity between different lesions. To address 

this critical gap, we performed a single nucleus RNA sequencing study on the most extensive 

cohort of MS patients to date (Fig. 1a), including both white matter (WM) and grey matter (GM) 

areas. Our goals were firstly to identify the basis of heterogeneity by comparing cell type-

specific gene expression signatures and cellular compositions across WM and GM MS lesion 

types. Secondly, we sought to identify pathologically relevant ways of stratifying patients on 

the basis of this response, so as to better find and test potential therapies for progressive MS. 

Cell type-specific transcriptional landscape in normal and MS 

brains 

We profiled 173 WM and GM samples, resulting in pre-QC totals of >950,000 nuclei from 55 

MS cases (mainly PPMS and SPMS) and 30 controls. After randomization of samples during 

library preparation and sequencing to minimise batch effects (including 1 sample of each 

lesion type and 1 control in each batch), then doublet removal, cell and sample QC (Methods), 

we obtained 740,023 single-nucleus transcriptomes from 165 QC passed samples, including 
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585,998 nuclei from 55 MS patients and 154,025 nuclei from 28 controls, profiled at a median 

depth of 4,194 nuclei/sample, 3,154 reads/nucleus and 1,702 genes per nucleus (Extended 

Data Figs. 1c-e, Supplementary Files 1 and 2). Our cohort was balanced for age, gender and 

post-mortem interval, with cases and controls having similar distributions (Supplementary File 

1, Extended Data Fig. 1a,b). These included 62 WM lesions (21 active, 17 chronic active, 13 

chronic inactive and 11 remyelinated; respectively AL, CAL, CIL, RL; see Methods for details 

of dissection), 17 adjacent normal-appearing white matter (NAWM) regions from MS patients, 

and 15 cortical hemisphere WM regions from non-neurological controls
9
. In addition, we 

profiled 39 subpial cortical GM demyelinated lesions (GML), 16 adjacent normal appearing 

grey matter (NAGM) regions from MS patients and 16 cortical GM tissues from controls, all 

defined as per classical neuropathology
10

, thereby creating a comprehensive atlas of single-

nuclei MS transcriptomes (Fig. 1a). We used Conos
11

 for integration and clustering of the QC 

filtered nuclei followed by merging of highly similar clusters using SCCAF
12

. This identified 50 

distinct batch-corrected cell type clusters (Fig. 1b,c, Methods) capturing all major cell types of 

the human cortical GM and WM, with heterogeneity within these, including 18 subtypes of 

cortical excitatory neurons (across layers 2-6), 7 of inhibitory neurons, 9 of oligodendrocytes, 

3 of committed oligodendrocyte precursor (COP), 5 of astrocytes, 2 each of microglia and 

endothelial cells, and 1 each of oligodendrocyte precursor cells (OPC), pericytes, B and T 

cells (Extended Data Fig. 2a,b). Based on the expression of previously-described genes 

characterising oligodendroglia
13

, and confirming the heterogeneity we have previously 

identified
6
 (Fig. 1c,d), we allocated the committed oligodendrocyte precursors (COP) into 3 

subgroups (A1, A2 and B) and the oligodendrocytes into 9 subgroups (A1-2, B1-4, C1-2 and 

D), with the A to B to C nomenclature reflecting a blueprint usually found during developmental 

maturation and the Oligo D subgroup characterised by expression of genes associated with 

cellular stress (Fig. 1c). We annotated distinctive states of oligodendrocyte subpopulations 

using gene module analysis (Fig. 1e). PAGA analysis
14

 revealed a putative trajectory from 

OPC to Oligo A, via COP A and then COP B (Fig. 1f), and Oligo C1 and D occupy a position 

consistent with their being end states. Whether the interconnected Oligo B populations 

represent end states or intermediates in the pathway to Oligo C is unclear, as it is difficult to 

unambiguously determine direction from single nuclei data
15

. Conos-defined clusters showed 

high concordance with clusters identified using an orthogonal data integration method, Seurat 

v4.0.5+Harmony
16,17

 (Extended Data Figs. 2c), and we found no cluster composed of nuclei 

captured only from individual patients, samples, lesion types or technical covariates, indicating 

that data integration was successful (Fig. 1b and Extended Data Figs. 2d). 
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Distinct cell type specific transcriptional responses in GM and 

WM lesions  

Annotating major cell type clusters and subclusters using established cell lineage and de novo 

marker genes, we compared cell type-specific gene expression changes between WM lesions 

and control WM tissue, and between GM lesions and control GM tissue using a mixed model 

(glmmTMB
18

) fit to pseudobulk data, including age, sex and post-mortem interval (PMI) as 

possible confounding variables, and donor ID as a random component (Methods, 

Supplementary Note). The distribution of random model fits in each broad cell type showed a 

strong donor effect for many genes (Extended Data Figs. 3a,b). Nevertheless, we identified 

2,914 DEGs in GM, and 4,440 differentially expressed genes (DEGs) in WM in total across all 

9 CNS major cell types (Fig. 1g,h, Supplementary Files 3 and 4, and 

https://malhotralab.shinyapps.io/MS_broad/).  

In GM lesions, all major CNS cell types showed significant transcriptional changes in NAGM 

and GML, with strongest effects in excitatory and inhibitory neurons (Fig.1g (top)). Notably, 

both excitatory and inhibitory neurons show many more DEGs (over 4 times more up and 

downregulated genes in inhibitory neurons) in GML compared to NAGM. These changes were 

most prominent in specific subpopulations of excitatory neurons, Ex_RORB_A and 

Ex_RORB_CUX2A, and parvalbumin-positive neurons, Inh_Pvalb_A (Extended Data Fig. 4a) 

consistent with prior observations of selective vulnerability of excitatory and inhibitory neuronal 

subpopulations in MS GM lesions
7,19

. 

Transcriptomic and pathway changes in excitatory projection neurons in MS were strongly 

linked to an upregulation of genes related to glutamate signalling (GRIA1, GRIA2, GRIA4, 

GRIN2B, GRM1, GRM5), glucose or cation homeostasis (SLC2A12, SLC22A10) with 

concurrent down regulation of specific ion channels (SCN1A, SCN1B, SCN2B, SCN4B, 

KCNA1, KCNA2, KCNC1) and oxidative phosphorylation (OXPHOS) genes (ATP1A1, 

ATP1B1, NDUFB10, NDUFS3, UQCRH) (Fig. 1h(top),i). Cell stress-related genes and 

pathways such as oxidative stress and heat-shock response genes were not affected, 

suggesting that glutamate excitotoxicity via both increased excitatory and decreased inhibitory 

tone might be a critical determinant of selective neuronal GM pathology, and therefore is a 

promising therapeutic intervention in progressive MS. 

In WM lesions, astrocytes, oligodendroglia and microglia show the strongest changes in gene 

expression (Fig. 1g (bottom)). The majority of DEGs were perturbed only in one broad cell 

type indicating strong cell type specificity of perturbations across lesions. Oligodendrocytes 

showed considerably more down-regulated genes across lesions while DEGs in astrocytes, 
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microglia and OPCs showed equivalent changes in up- and down-regulated genes. The 

numbers of significant DEGs for neuronal, endothelial and pericyte populations were 

substantially smaller, likely reflecting reduced power due to lower abundance of these cell 

types in WM. 

Pathway analyses in WM lesions confirmed our prior observations that expression of genes 

involved in interferon alpha and gamma responses varied across lesions, and showed 

opposite patterns in OPCs as compared to oligodendrocytes (Fig. 1h (bottom),j). This 

suggests that the lesion environment at these stages might lead OPCs, but not 

oligodendrocytes, to transition to a state incompatible with immune competence
20

. Genes 

involved in inflammation-related pathways were enhanced in astrocytes, microglia, 

oligodendrocytes and endothelial cells in WM lesions (Fig. 1h (bottom)).  

To investigate whether genes implicated in MS genetic risk are enriched in cell type-specific 

disease gene programs in MS, we quantified the over-representation of MS GWAS genes in 

cell type-specific DEGs in WM and GM lesions using MAGMA
21

. As expected from previous 

work
22

, we found significant enrichment of MS risk genes among genes up and downregulated 

in immune cells, which was present across all MS tissue, and in MS lesions in microglia (Fig. 

1k). We also found significant enrichment of MS risk genes among genes upregulated in 

pericytes (across all MS lesion types), genes upregulated in endothelial cells (in AL, RL and 

GML), and genes upregulated in OPC/COPs in RL (Fig.1k, Supplementary File 5). 

Furthermore, in our earlier report
23

, integrating cell type-specific eQTLs with MS GWAS, we 

found cell type-specific roles for several MS risk genes; some of which show significantly 

dysregulated expression in the implicated cell-types in this snRNA-seq dataset, for example 

in excitatory neurons (STAT4, SLC12A5, ANKRD55, ARHGAP27), in inhibitory neurons 

(SLC12A5, MTFR1L, H2AFX), in oligodendrocytes (ASPHD1, DBF4B, AHI1, RPS6KA4), and 

in astrocytes (TGFBR3, NR1H2, MXD3) in GM and WM lesions, providing support for the role 

of these cells in MS disease risk and progression. 

For many cell type-specific DEGs in the WM lesions, we observed ‘u’/’n’-shaped profiles of 

transcriptional changes along the pathological category of the lesion, i.e. that NAWM lesions 

showed small fold changes relative to control WM, increasing to the largest fold changes in 

AL and CAL, then decreasing in size in CIL and RL (pattern 1 in OPCs and microglia (’n’), 

patterns 6 in astrocytes and 5 in microglia (‘u’) Fig. 2a, Methods). Furthermore, we find that 

within each glial broad type and their subclusters, the majority of DEGs are shared across 

lesions (Fig 1g (bottom), Extended Data Fig. 4b). Astrocyte A, Microglia A, Oligo B4 and Oligo 

C1 subpopulations showed strongest transcriptional changes across lesions with a similar ‘n’-

shaped pattern of increase in gene expression from NAWM to AL to CAL and then decrease 
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in CIL and RL (Extended Data Fig. 4b). These comparisons therefore show distinct changes 

associated with MS, while at the same time showing that neuropathologically-defined lesion 

categories represent mostly a continuum of transcriptional pathology, independent of cell type, 

rather than distinct gene expression programs. 

Biological determinants of transcriptional heterogeneity in MS 

brains 

We found in our analysis of transcriptional responses above that the cell-type specific changes 

are largely shared across lesions, and that for many genes, patient identity is a much stronger 

driver of variability in cell type-specific gene expression than lesion type in both WM and GM 

(Extended Data Fig. 3a,b). This led us to explore transcriptional heterogeneity in lesions within 

individual patients. Leveraging the unique strength of our study, namely many patients from 

whom we have samples with multiple different lesion types, we examined the expression 

patterns of genes that either show significant disease effect, or are highly variable between 

patients (Extended Data Fig. 3a,b). In both WM samples (Fig. 2b,c) and GM samples (Fig. 

2d,e), we find strong evidence of coherent cross-cell type (tissue level) transcriptional 

heterogeneity between patients. Within an individual patient, the gene expression profiles are 

remarkably similar across multiple lesions and NAWM, while different patients show distinct 

yet shared transcriptional profiles across their lesions (Fig. 2b-e). We conclude that the donor 

ID (patient) is a much stronger driver of variability in cell type-specific gene expression than 

lesion type in both WM and GM. 

To characterise this patient-driven transcriptional heterogeneity in our dataset we used 

MOFA+, a computational method developed for identifying low-dimensional representations 

of variation across multiple data modalities measured in the same samples
24

. In this study, we 

took the different cell types to be the different modalities. This allows us to identify responses 

that are coherent across samples, across multiple cell types simultaneously, and which may 

have cell type-specific responses (Extended Data Fig. 5a). MOFA+ does this by finding factors 

that seek to explain the variability in the input data (intuitively similar to PCA) across samples, 

and which correspond to coordinated tissue-level responses, even though the genes identified 

for each cell type are distinct. For example, a factor corresponding to remyelination might 

involve myelination genes in oligodendrocytes, debris-clearance genes in microglia, and 

metabolic support genes in astrocytes. These factors can then suggest possible ways to 

stratify patients. 
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It is recommended to first restrict to relevant genes before using MOFA+. For each cell type, 

we therefore selected genes with evidence of an MS effect and/or a donor effect (Extended 

Data Fig. 3a,b), to capture both consistent MS pathology and patient-patient variability; this 

results in sets of genes that are largely distinct for each cell type, with a small number of 

common genes. MOFA+ identified 5 factors each in both GM and WM samples that explained 

at least 5% of variability for some celltype (Extended Data Fig. 5b,c), with each factor 

describing one axis of variation in MS. If the factor explains variance in multiple cell types 

simultaneously, then the factor describes a response to MS that is coherent across multiple 

cell types, although the programs may be distinct for each celltype.  

In GM samples, for all factors except factor 1, there was considerable overlap between the 

distributions of control and MS samples (Extended Data Fig. 5d). Notably, MS diagnosis and 

lesion pathology explained 64% variability in factor 1 (Extended Data Fig. 5b) indicating that 

factor 1 gene expression could robustly distinguish GM pathology (NAGM and GML) from 

control GM. Factor 1 explains equivalent variability in expression of genes across all major 

CNS cell types (Extended Data Fig. 5b) and high factor 1 (and GM pathology) is characterised 

by downregulation of genes such as PVALB (marker for myelinated inhibitory neurons) and 

SV2C (synaptic vesicle glycoprotein), consistent with the known vulnerability of PVALB+ 

inhibitory neurons in MS GM
19

, and downregulation in oligodendrocytes of KANK4 (Extended 

Data Fig. 5e), a marker for Oligo C1, an oligodendrocyte subtype with high myelin-forming 

potential which is lost in GML (as well as WM lesions; Extended Data Fig. 5e, bottom panel).  

In WM samples, no metadata (lesions, age, sex, PMI), except donor ID, explains a large 

fraction of variability in each factor, highlighting that the factors capture patient-specific effects 

of MS (Extended Data Fig. 5c). In summary, the proportion of variance explained in the factors 

(Extended Data Fig. 5b,c) and the clustering of patients across factor values (Extended Data 

Fig. 5f,g) both suggest that patient IDs are a strong determinant of the factors identified by 

MOFA+. This further strengthens our conclusion from the analysis of transcriptional patterns, 

i.e. that given a diagnosis of MS, donor ID (patient) is a much stronger driver of variability in 

cell type-specific gene expression than lesion type. 

Analysis of cellular heterogeneity in normal and MS brains 

Next, we examined our dataset to address cellular compositional, rather than transcriptional, 

heterogeneity. Having defined the full extent of cellular heterogeneity in our dataset (Fig. 1b), 

we first examined the differences between control GM and WM. We found that four 

oligodendroglial subtypes (Oligos B1, B4, C1 and COP B) were significantly more abundant 

in WM compared to GM, which was instead enriched in other oligodendroglial subtypes COP 
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A1 and Oligo A2 (Fig. 3a, Extended Data Fig. 6a). GM also showed increased abundance of 

astrocyte subtype C, pericytes and endothelial subtype B compared to WM (Fig. 3a). Gene 

module analysis showed that astrocyte C is characterised by increased expression of 

glutamate transporter SLC1A2 (GLIT-1), D-serine and L-serine transporter SLC1A4 (ASCT1) 

and cell adhesion molecules CADM2 ,PCDH9, NRXN1, confirming known characteristics of 

GM astrocytes (Fig. 3b)
25

. 

Having characterised control GM and WM, we asked whether differences in cellular 

composition between MS WM lesions and control WM, and MS GM lesions and control GM 

tissue could be observed. We examined our data to robustly quantify cell compositional 

changes across patients and lesion types using a state-of-the art statistical method, ANCOM-

BC
26

. Modelling each cell type proportion individually suggested that, just as in the 

transcriptional analysis, composition was strongly determined by donor for some cell types 

(Fig. 3c,d). We therefore fitted models to identify variability in cell type composition due to 

lesion type using ANCOM-BC, bootstrapping the data to account for variability due to donors 

(see Methods). 

When comparing WM lesions, NAWM and control WM, we observed an increase in B cells, 

endothelial cells and pericytes in MS WM tissue, as expected in an immune-driven disease 

with hypoxia
27

. There was the expected increase in Microglia B, a microglial state with a more 

activated phenotype (Extended Data Fig. 6b), most obviously in the demyelinated lesions (AL, 

CAL, CIL). We found a significant reduction of oligodendrocyte progenitors (Fig. 3e, Extended 

Data Fig. 6c), validated by GPR17 immunohistochemistry analyses in independent samples 

(Fig. 3g), confirming our earlier report
6
, and specific oligodendroglial populations (Oligo B2 

and B3) in all lesions and NAWM, and in Oligo B1, B4, Oligo C1, COP B in most lesions and 

NAWM (Fig. 3e). However, as we observed in the transcriptional analysis, we did not observe 

lesion-specific compositional differences, but rather ‘u’/’n’-shaped profile changes (Fig. 3e). 

In GM samples, we observed a strong cortical layer-specific confounding effect between GML 

and NAGM samples due to inclusion or exclusion of specific layers during tissue dissection: 

NAGM samples were significantly enriched for deeper layer neurons whereas GML lesions 

(which are often subpial
28

) were enriched for upper-layer neurons (Extended Data Fig. 6d). 

After accounting for these layer-specific effects in the ANCOM model (see Methods, Extended 

Data Fig. 6d,e), we observed selective loss of CUX2+ RORB+ excitatory neurons and 

parvalbumin inhibitory neurons in GML and NAGM/GML respectively (Fig. 3f, Extended Data 

Fig. 6f), confirming earlier observations
7,19

. We found significant depletion of Oligo C1 in both 

NAGM and GML, as seen in WM lesions (Fig. 3e). However, in contrast to WM, OPCs were 

not depleted in NAGM or GML. Instead, Oligo A2 was depleted in GM lesions and Oligo B1, 
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B2, B3 were enriched in GM lesions and/or NAGM, perhaps suggesting a different and more 

effective oligodendroglial regenerative response in GM compared to WM, as previously 

described
29

. Astrocyte B was enriched in GM lesions and NAGM, but not in MS WM, 

suggesting that the course of astrocytosis differs between the WM and GM regions. Microglia 

A and pericytes were depleted in GM, but Microglia B (which we identified as activated 

microglia) was not enriched, as in WM, consistent with a dissimilar microglial response in GM 

compared to WM
30

. 

These data reveal that the MS pathological micro-environments in WM and GM are distinct, 

as evidenced by differences in cell compositional response, and likely reflecting differences in 

pathological and regenerative processes. NAGM or NAWM also show differences from 

controls, often as a less extreme version of the corresponding lesion samples, reinforcing our 

knowledge that they are in fact not normal
19,31–33

. Importantly, however, although we observed 

differences in cellular composition between MS and control samples, we did not identify 

differences that were specific to any particular WM lesion type. Instead, and mirroring the 

findings of the transcriptional analysis, we observed a continuum of responses, with AL and 

CAL lesions usually showing the most extreme responses, indicating that lesion type only 

weakly determines cellular composition. Rather, for specific cell populations in both WM and 

GM lesion samples, the donor (patient) ID is the major contributor to variability in abundance 

(Fig. 3c,d). There is significant inter-individual variance in Oligo A2, B1, C2 and D, and 

Microglia A in WM samples (Fig. 3c) and Oligo B1, B2, B4 and COP A1 and subpopulations 

of excitatory and inhibitory neurons in GM samples (Fig. 3d). We conclude, as we did for the 

transcriptional analysis, that given a diagnosis of MS, donor ID (patient) is a much stronger 

driver of variability than lesion type in both WM and GM. Together, these two different analyses 

of our dataset allow the important conclusion that significant heterogeneity in the 

neurodegenerative and/or neuroregenerative response to MS pathology lies between 

patients, rather than between the different types of lesions within an individual patient. 

Three distinct white matter glia patterns in MS patients 

characterised by oligodendrocyte subtypes 

Given that much of the heterogeneity in MS pathology is determined by the individual patient, 

we explored stratifying the samples and donors in our study using WM MOFA+ factors, which 

allow identification of subgroups of patients with coherent cross-cell type transcriptional 

phenotypes. Hierarchical clustering based on MOFA+ WM factor scores clearly distinguishes 

MS patients from controls, and stratifies MS patients into distinct subgroups (Fig. 4a). With 

few exceptions, controls have low scores for all 5 factors, and each subgroup of MS patients 
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has a distinct pattern of high/low factor scores. Measures of technical quality were not different 

between subgroups (Extended Data Fig. 7). 

To infer potential mechanisms, we examined the genes whose changes in expression were 

responsible for each factor (Supplementary File 6). MS patients with high factor 1 scores were 

characterised by upregulation of common stress-related genes across multiple cell types (e.g. 

HSPA4L, HSPE1-MOB4, DNAJB1, SERPINH1 account for at least one of the top 10 MOFA 

genes for each cell type). In immune cells, there is high expression of immunoglobulin genes 

(IGKC, IGHG3, IGHG4), while in astrocytes, this subset of samples has reduced expression 

of HES1 (Fig. 4b). Microglia also exhibited reduced expression of CX3CR1 for Factor 1 

samples (Fig. 4b). High factor 3 weighting, by contrast, is characterised by upregulation of two 

extracellular matrix genes, COL19A1 and MARCOL, across multiple cell types (Fig. 4c). In 

contrast, Major Histocompatibility Complex genes such as HLA-DPA1, HLA-DRB1 and HLA-

C were specifically reduced in microglia from Factor 3 samples (Figure 4c). Factor 5 is 

significant only in oligodendrocytes (Extended Data Fig. 5c), where the involvement of the 

genes for tyrosine kinase-like orphan receptor ROR1, as well as a lipid raft protein BAALC 

point to altered cellular signalling (Fig. 4d). The genes selected for input to MOFA+ are mostly 

not shared between cell types, suggesting that the factors identified capture coordinated 

tissue-level, cell type-specific responses. 

As factor 5 was only significant in oligodendrocytes and due to our finding of skewed 

oligodendrocyte subtype heterogeneity in these data (and previous
6
), we re-examined the 

proportion of oligodendroglial subtypes in each WM lesion sample at the individual donors to 

identify whether this correlated with MOFA identified patient subgroups (Fig. 4e). Regarding 

individual oligodendrocyte subtype composition, there were three patterns in MS, with a 

striking concordance in the proportion of each oligodendroglial subtype not only in WM lesions 

but also in NAWM samples from each individual patient (Fig. 4e, Extended Data Fig. 8a). The 

first, which we term Type 1, is similar to that seen in normal WM. The second, which we term 

Type 2, shows high levels of Oligo D, characterised by cellular stress genes. The third, which 

we term Type 3, shows high proportions of the early oligodendrocyte subtype A2 and reduced 

levels of the later subtype Oligo C1, suggestive of an arrest at the Oligo A2 stage in the 

regenerative process that normally generates new oligodendrocytes following demyelination. 

While the Type 1 and Type 2 phenotypes were similarly represented in MS patients and 

controls, the Type 3 phenotype was predominantly observed in MS patients. These groupings 

did not associate with any patient metadata including sex, age or subtype of progressive MS, 

or with QC metrics (Extended Data Fig. 7) and were not present in oligodendroglia of GM 

(Extended Data Fig. 8b), further confirming GM and WM differences. However, we find a 

strong correlation between these three oligodendrocyte phenotypes (Types 1-3) and the 
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patient subgroupings and factors, as defined by the MOFA analysis. In Type 3 samples, either 

factor 1 or factor 3 predominated, while in the Type 2 samples, factor 5 was high (Fig. 4a). 

Therefore, these data suggest that the Type 3 phenotype may be associated with either a 

specific response to inflammation and stress (Factor 1 high) and/or the presence of an 

inhibitory extracellular matrix (Factor 3 high), with all of these observed in distinct subsets of 

patients as a result of intrinsic (genetic, environmental or a combination of both) differences 

between these patients, which need to be taken in consideration when considering precision 

medicine approaches.  

Discussion 

This single nucleus RNA sequencing study on the most extensive cohort of MS patients to 

date, shows that GM and WM biology in MS are fundamentally different at a molecular and 

cellular level. While GM changes relate to both lesion type and patient ID, WM biology is 

associated primarily to the diagnosis of MS and individual patient effects, and is surprisingly 

agnostic to classical MS lesion categories. This study takes the first step towards the 

stratification of progressive MS cases in terms of their molecular and cellular pathology, only 

made possible by the large number of samples captured both within individuals and from 

different individuals. Recent work has explored the trade-offs between read depth and number 

of individuals
34

. While greater read depth is useful for characterising lowly expressed genes 

and rare cell types, our study suggests that there is much to be discovered by increasing 

patient breadth. 

Our WM results point to three fundamentally different oligodendrocyte-related phenotypes in 

MS, each specific for a subgroup of patients and shared by all WM lesions and NAWM in a 

single patient. First, one in which the regenerative process might be impaired or blocked at 

the Oligo A2 stage preventing the formation of sufficient oligodendrocytes for regeneration 

(Type 3 - stalled). Second, one in which a substantial number of oligodendrocytes show high 

expression of cellular stress genes (Type 2 - stressed). Finally, one in which we see no 

evidence for the process of oligodendrocyte developmental maturation being impaired as 

evidenced by the relative proportions of the oligodendrocytes subtypes being the same as in 

control white matter (Type 1 - standard). These phenotypes do not group with any patient 

metadata including age, sex, type of progressive MS, duration of disease, previous 

medications, post mortem delay or quality measures of the samples. 

We propose these patient groupings on the basis of the presumed oligodendroglial response, 

but these match well to our factor analysis of gene expression across all cell types for 

individual patients, allowing us to interrogate different pathways across all cell types involved 
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in these different patient responses. This stratification into three phenotypes each with distinct 

transcriptional patterns as revealed by our MOFA+ analysis is important and may explain the 

poor response of neuroprotective/pro-regenerative therapies in progressive MS trials. We 

propose that current pro-remyelinating drugs that enhance oligodendrocyte formation from 

precursor cells may be effective only in the patient subgroup with Type 1 (standard) phenotype 

where remyelination is possible but simply at a low level, and not in the other subgroups where 

this process is blocked or with stressed oligodendrocytes. It is also conceivable that 

Siponimod, now approved for selected SPMS patients, has a more marked effect in the Type 

2 (stressed) subgroup, through its proposed role in NRF2 signalling and antioxidant 

pathways
35

. However, any positive response in these trials of neuroprotective / pro-

regenerative therapies may therefore be diluted out by patient heterogeneity, and effective 

therapies for one of the subgroups may be lost.  

To stratify the living and so give future trials the greatest power to reveal effective therapies, 

we now need to link these post mortem phenotypes to biomarkers measurable prognostically 

or during disease, ideally in serum or CSF, or as potential targets for Positron Emission 

Tomography (PET) ligands. This will allow us to determine whether the phenotypes are stable 

in the same patients over time and to interrogate clinical trial datasets for effect or indeed lack 

of effect within post hoc stratified patient groups. In this study, we provide a resource of cell-

type specific genes, identified by MOFA factors, whose expression clearly distinguishes WM 

and GM pathology, and subgroup phenotype to aid such future biomarker efforts. This is an 

essential step change for designing effective precision medicine therapeutic strategies for 

progressive MS - a critical unmet need.  

Limitations of the study 

For practical reasons, our study uses snRNAseq from post-mortem archival tissues, with the 

limitation that this only evaluates primarily pre-mRNA nuclear transcripts. We undersampled 

rare immune cell populations e.g. activated CD8 T cells, monocytes, dendritic cells, B cells 

and microglia inflamed in MS (MIMS)
8
, which are mostly enriched at the edges of chronically 

inflamed WM lesions, perhaps as we focussed on the entire lesion. Nevertheless, the sharing 

of gene expression programs across all lesions in oligodendrocytes, astrocytes and microglia 

suggests the generalizability of our results. In addition, we cannot comment on subpial GM 

lesions adjacent to compartmentalised inflammatory meningeal infiltrates
36

, as these were not 

in our dataset. Although we use a larger cohort of individuals than often used in single cell-

omic studies, our study highlights that even larger numbers will be required to validate our 

findings of patient groupings based on oligodendrocyte subtype composition and factor 
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analysis at a transcriptional level, and the contribution of MS risk genes in such stratification. 

Increasing the scope of our analysis with other modalities, for instance at the proteomics, 

lipidomics and epigenomics level in future studies will help in the further characterization and 

stratification of MS patients. 
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Figures 

Figure 1: Single cell dissection of cellular heterogeneity and differential gene 

expression in multiple sclerosis lesions. a Overview of the study design. b UMAP plot of 

putative cell types/states. Subclustered CNS cell types are labelled with different colours. c 

UMAP plot calculated on just oligodendroglia. d UMAP as in b, separated to show nuclei from 

either MS (brown) or control donors (green) in oligodendrocytes. e Gene modules identified 

within oligodendroglia clusters, annotated with top 5 genes per module. f PAGA applied to 

oligodendrocytes and OPCs / COPs across all samples (edges with weights below 0.2 not 

shown). g Number of DE genes in GM (top) and WM (bottom) respectively, in each broad cell 

type, at 5% FDR and minimum absolute FC of 50%, split by whether they are only DE for this 

combination of lesion and cell type, only DE for this cell type (i.e. is DE in multiple lesion types 

for this cell type), or are also DE in another cell type (in principle such genes could be DE only 

in one lesion type, in practice there are very few such genes). opc_cop = OPCs and COPs; 

oligo = oligodendrocytes; astro = astrocytes; micro = microglia; excit = excitatory neurons; 

inhib = inhibitory neurons; endo = endothelial cells; peri = pericytes; immune = T and B cells. 

h Dotplots of Hallmark gene set enrichment results for GM (top) and WM (bottom). i 

Differentially expressed genes related to glutamate signalling, glucose homeostasis, ion 

channels and oxidative phosphorylation in excitatory neurons in GM lesions. Asterisks show 

FDR of this gene, using Benjamini-Hochberg correction across all genes tested for this 

combination of cell type and model coefficient; symbols indicate FDR, *** < 0.001 < ** < 0.01 

< * < 0.05 < . < 0.1 < 1.  j Differential expression of interferon alpha and gamma genes in 

oligodendroglial cells in WM lesions. FDR annotated as in i. Asterisks in gene name indicate 

whether this gene was significantly associated with MS genetic risk from GWAS (MAGMA 

gene-level FDR <5%). k Enrichment of cell type-specific differentially expressed genes in MS 

WM and GM lesions with MS GWAS risk genes. The mean strength of association (−log10P) 

of MAGMA is shown and the bar colour indicates whether up or downregulated genes are 

significantly enriched in MS risk genes. 
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Figure 2: Patterns and determinants of cell-type specific gene expression profiles in 

WM and GM lesions. a Clustering of WM gene expression fold change profiles over lesion 

types for each broad cell type (opc_cop = OPCs and COPs; oligo = oligodendrocytes; astro = 

astrocytes; micro = microglia). Restricted to genes where at least one lesion type has FDR < 

5%, hierarchical clustering with cut distance set to log(4), and clusters with fewer than 5 genes 

not shown. Figure in brackets shows number of genes in the cluster. b Pseudobulk expression 

heatmap of genes showing either MS or donor variability in broad cell types in WM, samples 

ordered by lesion type. c Pseudobulk expression heatmap as in b, row order on basis of 

hierarchical clustering. Shows that differences between MS donors are not explained by lesion 

type, sex, or type of MS, but all samples from one donor cluster together, suggesting a strong 

donor effect. d Pseudobulk expression heatmap of genes showing either MS or donor 

variability in broad cell types in GM, samples ordered by lesion type. e Pseudobulk expression 

heatmap as in d, row order based on hierarchical clustering. Column order in b-e determined 

by the first principal component of the gene matrix for each cell type. 
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Figure 3: Differential abundance analysis of cell types in MS. a Differential composition 

by proportions of fine glial cell types for control GM and WM. Neuronal cell types excluded. 

Negative binomial model fit to absolute numbers for each cell type with log number of cells in 

sample as offset (see Methods). FDR calculated across all cell types; cell types significant at 

< 5% FDR. b Gene modules identified within astrocyte clusters, annotated with top 5 genes 

per module. c,d Contribution to variability in cell type abundances explained by lesion plus 

patient in WM (c), and GM (d) (see Methods). In d, four neuronal layer PCs are included as 

confounders. FDR is Benjamini Hochberg-corrected p-values from likelihood ratio tests of 

nested models. Axes show evidence that including lesion type (y axis) or donor (x axis) 

significantly improve the fit of a model explaining cell type proportion of a sample. Dashed 

lines show 5% FDR. e Differential abundance of WM lesion samples against control WM, as 

calculated by bootstrapped ANCOM-BC (see Methods and Supplementary Note). Dashed line 

at 0 corresponds to no difference between control and lesion. Model fitted is count ~ 

lesion_type + sex + age_scale + pmi_cat (where age_scale is age at death, normalized to 

have SD = 0.5
37

, and pmi_cat is post-mortem interval split into three categories; see Methods). 

Point corresponds to median bootstrapped log2FC effect estimated by ANCOM-BC; coloured 

range is 80% bootstrapped confidence interval, grey range is 95% CI. Points are filled when 

the 95% CI excludes zero; otherwise empty. f Differential abundance of GM MS samples 

against control GM, as calculated by bootstrapped ANCOM-BC; otherwise as for e. Model 

accounts for sample layer position, by using formula count ~ lesion_type + sex + age_scale + 

pmi_cat + layer_PC1 + layer_PC2 + layer_PC3 + layer_PC4 (see Methods). g 

Immunohistochemistry validation of number of GPR17-expressing cells in independent MS 

WM samples. Upper panel shows the number of cells with non-zero expression of GPR17 in 

each WM snRNAseq sample included in this study. Lower panel shows mean GPR17+ cells 

per mm2 (total calculated over 10 randomised fields) in an independent cohort of MS WM 

samples (see Methods). In both panels: horizontal line denotes median; colour denotes donor, 

distinct sets of donors used for snRNAseq and immunohistochemistry.  
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Figure 4: WM patient stratification. a Patient stratification via MOFA+ factors. Rows are 

samples, annotated by metadata and oligo groupings. Columns are MOFA+ factors, with signs 

flipped to positively correlate with MS status. b 15 genes with largest absolute Factor 1 weights 

for each cell type where >= 10% variance is explained by Factor 1. In this plot, we exclude 

lincRNAs and show only protein coding, IG and TCR genes; the genes used as input to MOFA 

include lincRNAs. Columns are samples, ordered in increasing order of Factor 1 score. Rows 

are genes, split by broad cell type. Heatmap colours are log CPM of pseudobulk expression, 

z-scored within each row; grey indicates there were less than 10 cells of this cell type in the 

sample. Column annotations show lesion type, diagnosis and MOFA factor score. Row 

annotations show MOFA factor weight of each gene. c 15 genes with largest absolute Factor 

3 weights for each cell type where >= 5% variance is explained by Factor 3. Otherwise as for 

b. d. 15 genes with largest absolute Factor 5 weights for each cell type where >= 5% variance 

is explained by Factor 5. Otherwise as for b,c. e Bar chart of proportions of WM 

oligodendroglia grouped by individual donor, including all samples from that donor. Each row 

is annotated as anonymised donor id: lesion type. C = control white matter; NAWM= normal 

appearing white matter; AL=active lesion; CAL= chronic active lesion; CIL=chronic active 

lesion, RL= remyelinating lesion. In this panel, WM samples with unusually high proportions 

of neurons were excluded (see Methods). 
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Methods 

Sample preparation and single nuclei RNA sequencing 

Brain tissue samples, ethical compliance and clinical information  

Human tissue samples were obtained from the Netherlands Brain Bank (NBB), the MS UK 

tissue bank (UKTB) and the Edinburgh Brain Bank (EBB) via donor schemes with full ethical 

approval from respective brain banks (METc/2009/148 from Medical Ethical Committee of the 

Amsterdam UMC, MREC/02/2/39 from UK Ethics Committee), and individual material transfer 

agreements between Roche and NBB, UKTB and EBB. We have complied with all relevant 

ethical regulations regarding the use of human postmortem tissue samples. We examined a 

total of 114 (84 MS and 30 controls) snap frozen brain tissue blocks obtained at autopsies 

from 55 MS patients and 30 controls. MS patients and controls were matched for age and sex. 

For detailed donor information see Supplementary File 1. 

Brain tissue characterization 

Snap frozen tissue blocks from donors with GM lesions were provided by UKTB to Roche. 

Subpial GM lesions were determined using MBP (abcam-ab6263) by neuropathologists at 

Roche and confirmed by independent experts (Anna Williams, Roberta Magliozzi). 

Pathological staging of WM lesions from EBB and NBB donor samples was done at the 

respective brain banks. In the WM, de- and remyelinated lesions were identified by Luxol Fast 

Blue (LFB) staining, and immunohistochemistry for proteolipid protein, and demyelinated 

lesions were grouped into active, chronic active and chronic inactive lesions with Oil red O 

and/or HLA-DR staining to determine microglial activity
38

. Brain tissue specimens from the 

respective WM regions were shipped on dry ice to Roche and directly processed. 

Nuclei isolation and single nuclei RNA sequencing 

Nuclei were isolated from fresh-frozen 10μm sections, using Nuclei Pure Prep Nuclei Isolation 

Kit (Sigma Aldrich) with the following modifications. The regions of interest were macro-

dissected with a scalpel blade, lysed in Nuclei Pure Lysis Solution with 0.1% Triton X, 1mM 

DTT and 0.4U/ul SUPERase-In™ RNase Inhibitor (ThermoFisher Scientific) freshly added 

before use, and homogenised with the help first of a 23G and then of a 29G syringe. Cold 

1.8M Sucrose Cushion Solution, prepared immediately before use with the addition of 1mM 
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DTT and 0.4U/ul RNase Inhibitor, was added to the suspensions before they were filtered 

through a 30μm strainer. The lysates were then carefully layered on top of 1.8M Sucrose 

Cushion Solution. Samples were centrifuged for 45min at 16000xg at 4°C. Pellets were 

resuspended in Nuclei Storage Buffer with 0.4U/ul RNase Inhibitor, transferred in new 

Eppendorf tubes and centrifuged for 5 min at 500xg at 4°C. Pellets were again re-suspended 

in Nuclei Storage Buffer with 0.4U/ul RNase Inhibitor, and centrifuged for 5 minutes at 500xg 

at 4°C. Finally, purified nuclei were re-suspended in Nuclei Storage Buffer with 0.4U/ul RNase 

Inhibitor, stained with trypan blue and counted using an automated cell counter (Countess II, 

Life technologies). A total of 12,000 estimated nuclei from each randomised sample was 

loaded on the 10x Single Cell Next GEM G Chip. cDNA libraries have been prepared using 

the Chromium Single Cell 3’ Library and Gel Bead v3.3 kit according to the manufacturer’s 

instructions. cDNA libraries were sequenced using Illumina NovaSeq 6000 System and 

NovaSeq 6000 S2 Reagent Kit v1.5 (100 cycles), aiming at a sequencing depth of minimum 

30K reads/nucleus. 

snRNAseq data processing and quality control 

All samples were processed with CellRanger (v3.1.0), using the GRCh38 reference human 

genome and the ensembl Homo_sapiens GRCh38.96 reference annotation (modified to count 

intronic reads). Gene expression quantifications for each nucleus were obtained from the 

‘filtered_feature_bc_matrix’ CellRanger (v3.1.0) output folder. In addition, we used velocyto 

(v0.17.17) on the CellRanger output to quantify intronic and exonic reads. We identified 

putative doublets using scDblFinder (version 1.4.0), applied to each sample separately 

(multiSampleMode = “split”), with all other parameters default
39

.  

After removing doublets, we did quality control with SampleQC (version 0.4.5)
40

. We first 

removed nuclei and samples with insufficient data to be worth including, requiring nuclei to 

have a minimum of 300 expressed genes, 500 UMI counts, and samples to have at least 500 

cells remaining after this first filtering. As inputs to SampleQC, we used the metrics log10 

transformed library size (log10_counts), inverse logistic-transformed mitochondrial proportion 

(logit_mito), and the log2-transformed ratio of spliced to unspliced reads (splice_ratio). We ran 

SampleQC with default parameters, grouping the 173 samples into 9 groups with similar QC 

metric distributions. We fit separate models to each of these groups, setting the number of 

clusters assumed for each group by inspection, with these numbers ranging between 1 and 

4. In many samples, we observed a cluster of cells that had both high splice ratios and high 

mitochondrial proportions: in this cluster ~10% of reads were unspliced; for most other 

clusters, 60%-80% of reads were unspliced. We therefore excluded any cells assigned to a 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2022. ; https://doi.org/10.1101/2022.04.06.487263doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.06.487263
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

cluster with mean log2 splice ratio higher than 3 (equivalent to ~88% spliced reads). After 

excluding outliers, we again excluded any samples with fewer than 500 cells remaining. The 

full SampleQC report is included as Supplementary File 2. This resulted in 740,023 nuclei 

across 165 samples passing QC. 

Sample swap checks via genotyping 

We genotyped all samples included in this study using the GSAv3 illumina CHIP. Genotypes 

were imputed using the Haplotype Reference Consortium (HRC) reference panel (version 

r1.1)
41

 and lifted over to GRCh38. Genotype processing and quality control was performed 

using Plink v1.9
42

. SNPs with imputation score <0.4 or with missingness greater than 5% were 

excluded. We used MBV
43

 to identify sample swaps. Briefly, MBV takes as input a VCF file 

containing the genotype data of the samples, as well as bam files containing the mapped 

single nuclei sequencing reads. MBV then reports the proportion of heterozygous and 

homozygous genotypes (for each individual in the VCF file) for which both alleles are captured 

by the sequencing reads in all bam files. Correct samples can then be identified as they should 

have a high proportion of concordant heterozygous and homozygous sites between the 

genotype data and the mapped sequencing reads. We identified and corrected 3 sample 

swaps; one sample was excluded because it could not be matched to a genotype. 

Data integration and clustering 

Data integration 

Data integration was done with Conos (version 1.4.0)
11

, applied to the highly variable genes 

in each sample, with highly variable genes identified by sctransform (version 0.3.2)
44

. 

Clustering was done with the function findCommunities at resolution 8, and any cluster with 

fewer than 100 cells in total across the whole dataset was excluded, resulting in 55 clusters. 

Success of the integration was checked by calculating the entropy of the cell counts across 

all samples for each cluster; this analysis was also done at the donor level, and for various 

other metadata variables (Extended Data Fig. 2d). 

Broad cell types were assigned to each cluster on the basis of known marker genes: PLP1, 

MAG, MOG, OPALIN (Oligodendrocytes), PDGFRA, BCAN (OPCs / COPs), FGFR3, GFAP, 

SLC14A1, AQP4 (Astrocytes), P2RY12, SPP1, CSF1R, IRF8 (Microglia), SLC17A7, FEZF2, 

RORB (Excitatory neurons), GAD1, ADARB2, LHX6 (Inhibitory neurons), CLDN5, FLT1, 

EPAS1 (Endothelial cells), EPS8, LAMA2 (Pericytes), IGHG1 (B cells) and IL7R (T cells). The 
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log normalised expression of each gene was calculated for each cluster, and these values 

scaled to 0 to 1 over all clusters. For each cluster, the broad cell type with the highest scaled 

expression averaged over the known marker genes was selected as the label. 

Subclustering 

For some clusters, we had strong biological expectations that further subclustering was 

necessary: cluster cns24 (possibly a mixture of neurons and oligodendrocytes), cluster cns28 

(OPCs and COPs) and cluster cns55 (Immune cells). These clusters were further subclustered 

using the batch-corrected graph from Conos to obtain a subgraph for each individual cluster, 

then by rerunning findCommunities (with resolutions 0.5, 0.5 and 1 for clusters 24, 28 and 55 

respectively). To check the identities of these clusters, we plotted expression of the broad cell 

type marker genes listed above, a selected list of immune genes, and markers selected by 

running findMarkers from the scran package (version 1.18.7) within each set of subclusters
45

.  

Merging non-distinct clusters with SCCAF 

We merged insufficiently distinct subclusters using SCCAF (version 0.0.10)
12

. To decide 

whether a pair of clusters should be merged, SCCAF uses the maximum probability of 

misclassification in either direction. We found that this metric was too aggressive, resulting in 

merging of clusters that marker expression indicated should be kept separate. We therefore 

amended the SCCAF procedure to use the misclassification error calculated over all cells of 

both clusters in the pair. Using this amended approach, we merged clusters with a probability 

> 10% of being confused by the SCCAF classifier. In addition to this, based on marker 

expression and biological expectations, we defined a custom list of clusters that would either 

be merged or kept unmerged: two Ex_RORB_CUX2_A subclusters were merged (cns03 and 

cns05); three T cell subclusters were merged (cns55.1, cns55.4, cns55.5); and each of 

Neuro_oligo (cns24.2), COP_B (cns28.3), COP_A2 (cns28.4) and B cells (cns55.3) were kept 

separate. This resulted in 50 merged final clusters. 

We used an independent data integration and clustering method (Seurat v4
16

 + Harmony
17

) 

using QC passed samples and found high concordance between clusters identified by both 

methods (Extended Data Fig. 2c), thereby validating our approach. 

Filtering of genes contaminated by ambient RNA 

We used the maximumAmbience function in the package DropletUtils version 1.10.3
46

. In each 

sample, we used droplets with < 100 reads and calculated the proportional expression using 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2022. ; https://doi.org/10.1101/2022.04.06.487263doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.06.487263
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

Good-Turing frequency estimation to obtain a profile, with other parameters set as defaults. 

Genes with mean ambient proportion greater than 10% across samples with non-zero 

expression were excluded, separately for each cell type. Such genes were excluded in cell 

type annotation, differential expression and MOFA+ analysis. 

Cell type annotation 

We assigned cell type identity to clusters based on known cell lineage markers, as well as by 

comparison with previously published and reported snRNA-seq studies
6,47

. We identified the 

top differentially expressed genes for each subcluster of a broad cell type by running 

findMarkers from the scran package (version 1.18.7) within each set of subclusters. 

Furthermore, we ran orthogonal non-negative matrix factorization (oNMF, implemented in 

PopAlign
48

 version 0.1) to identify distinct gene modules and individual genes for each cluster 

as potential cluster marker genes. We ran oNMF separately for each of the following groups 

of clusters: OPCs / COPs and oligodendrocytes; microglia and immune; excitatory neurons; 

inhibitory neurons; astrocytes; endothelial cells and pericytes. For each fine cell type within 

these groupings, we selected up to 2,000 nuclei at random (where there were fewer than 

2,000 nuclei in the cluster, we used all nuclei). Any genes with contamination estimated to be 

greater than 10% were set to zero, and restricted to genes with the protein_coding biotype. 

We then used the SCTransform function in the Seurat package to identify the top 2,000 highly 

variable genes. We used the onmf function in popalign using these highly variable genes, and 

otherwise default parameter values. 

Differential abundance of cell types in MS lesions and control 

samples  

We first checked for samples with sample sizes that were much smaller than for other 

samples, to exclude samples where abundances might be very noisy. We excluded samples 

with log sample sizes 2*MAD (median absolute deviation) less than the median log sample 

size, separately for WM and GM; this excluded zero WM samples and two GM samples. We 

also checked for samples with unusual proportions of neuronal cells relative to other WM or 

GM samples. White matter samples with neuronal proportion at least 2*MAD (median absolute 

deviation) higher than the median neuronal proportion for all WM samples were excluded; 

grey matter samples with at least 2*MAD neuronal proportion fewer than the GM median 

neuronal proportion were excluded. This excluded 18 out of 94 WM samples and 1 out of 71 

GM samples. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2022. ; https://doi.org/10.1101/2022.04.06.487263doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.06.487263
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

To test whether abundances of fine cell types across samples were affected by lesion type 

and donor ID (Fig. 3b,c), we used likelihood ratio tests applied to models including lesion type 

and donor id. Briefly, we fit a series of nested models for each fine cell type: full (counts ~ 

lesion_type + sex + age_scale + pmi_cat + (1 | donor_id)), fixed (counts ~ lesion_type + sex 

+ age_scale + pmi_cat), covariates only (counts ~ sex + age_scale + pmi_cat) and null (counts 

~ 1). We used the R package glmmTMB (v1.1.2)
18

 to fit a negative binomial distribution to the 

raw counts for each cell type (see Supplementary Note for explanation of use of raw counts 

rather than proportions). We used the function anova to perform likelihood ratio tests of the 

following nested sequence of models: full; fixed; covariates only; null. This gives a p-value 

indicating whether the more complex model improved the fit more than would be expected by 

chance. We adjusted the p-values across these tests using the Benjamini-Hochberg 

procedure, across all cell types and models together. 

To test for differential abundance in fine cell type due to lesion type, we used ANCOM-BC 

version 1.3.2
26

. The likelihood ratio test analysis above indicated that donor ID needed to be 

taken into account, however this version of ANCOM-BC does not allow random effects. To 

factor out donor effects, we therefore did a bootstrapped analysis of abundance: each 

bootstrap took one random sample per donor, and ran ANCOM-BC on each bootstrapped 

sample (e.g. in WM, there were 76 samples across 42 donors, so each bootstrap comprised 

42 samples). We summarised the results of 20k bootstraps by taking the median, 80% and 

95% confidence intervals of the inferred coefficients for each fine cell type (20k samples is 

sufficient to properly estimate tail probabilities for 95% CIs; cf 
49

). 

To test differential abundance in WM samples, we additionally excluded all neuronal cell types, 

as these should not be present in WM. We fit ANCOM-BC with the formula ~ lesion_type + 

sex + age_scale + pmi_cat, where age_scale is patient age, scaled to have SD = 0.5 across 

all patients in the dataset
37

, and pmi_cat is post-mortem interval, split into three categories 

(under 1 hour, between 1 and 12 hours, and more than 12 hours).  

To test differential abundance in GM samples, we first fit the data with a similar formula: ~ 

lesion_type + sex + age_scale + pmi_cat2 (here, lesion_type includes ctrGM, NAGM and 

GML; pmi_cat2 has only two categories to reflect the values observed in GM, between 1 and 

12 hours, and more than 12 hours).  

Using this model produced results that conflicted with known biology, identifying multiple 

neurons as increasing in abundance in GM lesions relative to GM controls. Analysing 

differences between neuronal proportions between ctrGM, NAGM and GML, we observed that 

GML samples were enriched in L1/L2/L3 neurons, and those from NAGM samples were 

enriched in L5/L6 neurons (ctrGM samples had intermediate proportions). This indicated that 
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GML samples were taken from higher in the brain, and the matched NAGM were taken from 

beneath them (although the experimenters had made efforts to take all samples from the same 

depth). 

To identify layer effects for each sample, we calculated principal components (PCs) reflecting 

neuronal layer distributions in normal tissue. We applied PCA to the centred log ratios of the 

neuronal cell types in the control GM samples. We then identified principal components that 

could be relevant to layers (by filtering on both the absolute Spearman rank correlation 

between the PC loading and the layer numbers of neurons known to be layer-specific, 

thresholding at minimum 0.2 correlation) and which explained at least 1% of variance. This 

identified seven PCs that could contain layer information (Extended Data Fig. 6e). This 

analysis was performed in control GM samples only; we then calculated CLRs for all samples, 

and projected them into the selected PCs, using the loadings derived from the control samples.  

We then repeated the bootstrapped ANCOM-BC analysis, including layer PCs as covariates 

to factor out layer effects. We used the formula ~ lesion_type + sex + age_scale + pmi_cat2 

+ layerPC1 + … + layerPCn, i.e. we repeated the analysis using the first n layer PCs identified 

above, including from 1 up to 7 PCs. We found that including the first 4 layer PCs gave results 

that fitted well with expected biology, i.e. that almost no neuronal types were found to increase 

in abundance in either NAGM or GML relative to control GM, and PVALB+ neurons decreased 

in abundance (Extended Data Fig. 6g). We included 4 layer PCs, however there is little 

difference in the results for including between 3 and 7 layer PCs. 

Differential expression analysis using generalised linear mixed 

models 

To identify genes differentially expressed in MS WM and MS GM samples compared to 

respective control samples per cell type, we performed a differential expression analysis on 

pseudo-bulk data, i.e. analysis at the level of the transcript totals across all cells of a given 

type in each sample. Pseudobulk approaches are known to offer a good compromise between 

sensitivity and run time constraints
50,51

 (see Supplementary Note for the details of our analysis 

using different pseudobulk approaches and identification of strong patient effects). Inspection 

of gene expression at the donor level indicated that our model would need to include donor 

effects. We therefore used glmmTMB
18

 with a negative binomial model, and donor_id as a 

random intercept. The formula for WM was counts ~ lesion_type + sex + age_scale + pmi_cat 

+ (1 | donor_id), where pmi_cat is post-mortem interval, split into three categories (under 1 
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hour, between 1 and 12 hours, and more than 12 hours, and age_scale is patient age, 

normalised to have SD = 0.537. 

In the GM analysis, we accounted for layer effects by including 4 layer PCs as described in 

the ANCOM-BC analysis. The formula for GM was therefore lesion_type + sex + age_scale + 

pmi_cat2 + ctrl_PC01 + ctrl_PC02 + ctrl_PC03 + ctrl_PC04 + (1 | donor_id); to reflect values 

observed in GM samples, pmi_cat2 has only two categories (between 1 and 12 hours, and 

more than 12 hours). We included an offset of log(lib.size) - log(1e6), so that the reported 

coefficients correspond to log counts per million (logCPM). Genes with absolute log2 fold 

change in expression of at least log2(1.5) and an FDR-corrected P < 0.05 were selected as 

differentially expressed. FDRs were calculated at the level of combination of cell type and 

model coefficient. 

To quantify the extent of donor effects, for each gene we also used glmmTMB to fit three 

simpler models: with fixed effects only (counts ~ lesion_type + sex + age_scale + pmi_cat), 

with covariates only (counts ~ sex + age_scale + pmi_cat) and a null model (counts ~ 1). We 

then used the anova function to perform likelihood ratio tests for this nested sequence of 

models; we applied a Benjamini-Hochberg correction across all genes and LRTs, separately 

within each cell type. 

Gene set enrichment analysis of differentially expressed genes 

FGSEA
52

 was used to perform statistical enrichment tests of differentially expressed genes in 

each cell type (broad and fine) from each comparison in WM and GM samples. All genes 

expressed in a given cluster were used as a background list, and GO-term analysis for 

enriched biological processes and hallmark genes from MSigDB
53

 was performed. FDR 

correction was calculated within each combination of cell type, model coefficient and pathway 

collection. Processes with an FDR-corrected P < 0.1 were considered and their normalised 

enrichment scores (NES) plotted as a dotplot using ggplot2
54

 R-based libraries.  

MAGMA analysis of differentially expressed genes 

We used MAGMA v1.08
21

 to test whether the top 1000 most differentially expressed genes 

(ordered by p value) in each cell type and lesion type were enriched in MS genetic 

associations
22

 (by direction of effect). Briefly, MAGMA computes gene-level p values from 

GWAS summary statistics by aggregating p values from all SNPs around each gene (here set 

as 35kb upstream to 10kb downstream of each gene) accounting for linkage disequilibrium 

(here using the European reference panel from phase 3 of the 1000 Genomes Project
55

). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2022. ; https://doi.org/10.1101/2022.04.06.487263doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.06.487263
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 

These gene-level p values are then transformed to z-scores. A linear regression is then 

performed to test whether genes in an input gene set have higher z-scores than the rest of 

the genome (one sided test). The linear model from MAGMA accounts for the following 

covariates: gene size, gene density, mean sample size for tested SNPs per gene, the inverse 

of the minor allele counts per gene and the log of these metrics. Before selecting the top 1000 

most differentially expressed genes, we only retained genes with a gene-level p value in 

MAGMA (i.e. only protein-coding genes with tested GWAS SNPs in their vicinity). 

Assessment of cluster connectivity with PAGA 

To characterise connectivity between clusters, we used PAGA
14

 as implemented in scanpy 

version 1.8.2
56

. As input, we used the nearest neighbour graph constructed by conos, 

restricted to just cells with oligodendrocyte or OPC / COP labels. We ran PAGA clustering and 

layout embedding using fine cell types as the group variable, and otherwise used defaults. 

Patient stratification using MOFA+ 

We used MOFA+ to identify factors explaining the variability across the samples (implemented 

in the R package MOFA2, v1.4.0)
24

. MOFA+ was developed for data with multiple modalities 

measured from the same samples. In this study, we took the different cell types to be the 

different modalities. This allows us to identify responses that are coherent across samples, 

across multiple cell types simultaneously, and which may have cell type-specific responses. 

MOFA+ does this by finding factors that seek to explain the variability in the input data 

(intuitively similar to PCA) across samples, and which correspond to coordinated tissue-level 

responses, even though the genes identified for each cell type are distinct. For example, a 

factor corresponding to remyelination might involve myelination genes in oligodendrocytes, 

debris-clearance genes in microglia, and metabolic support genes in astrocytes. These factors 

can then suggest possible ways to stratify patients. 

We first identified genes with relevant variation for each cell type, based on the negative 

binomial models fitted to each gene in each cell type. We identified genes with either an MS 

effect, or a donor effect (or both). Genes with an MS effect were defined as those where at 

least one lesion type had both an FDR < 1% and an absolute log2 fold change of 1 for WM, 

or log2(1.5) for GM (we observed lower effect sizes in GM, and therefore used a more relaxed 

threshold). Genes with a donor effect were those where the likelihood ratio test of including 

the donor effect had an FDR < 1%, and the standard deviation of the donor random intercepts 

was at least log(2) for WM, and log(1.5) for GM. These thresholds are arbitrary but we have 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2022. ; https://doi.org/10.1101/2022.04.06.487263doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.06.487263
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

found the factors identified by MOFA+ to be robust to variations on these thresholds. In WM, 

this resulted in the selection of: 97 genes for OPCs + COPs, 507 for oligodendrocytes, 794 for 

astrocytes, 667 for microglia, 86 for endothelial cells, 27 for pericytes and 27 for immune cells. 

In GM, we selected: 187 genes for OPCs + COPs, 531 for oligodendrocytes, 721 for 

astrocytes, 385 for microglia, 952 for excitatory neurons, 597 for inhibitory neurons, 582 for 

endothelial cells and 298 for pericytes.  

We then calculated normalised expression for the selected genes in each cell type as input to 

MOFA+. We first excluded any samples with fewer than 10 cells observed for that cell type 

(this means that there may be missing data for some cell types in some samples). We also 

excluded any samples with log library sizes 3*MAD (median absolute deviation) less than the 

median log library size for that cell type. For the remaining samples, we calculated the 

log(CPM + 1) of the pseudobulk values, calculating CPMs with library sizes via the 

effectiveLibSizes function in edgeR
57

. To remove any possible layer effects in GM samples, 

we fit a linear model using the first four layer PCs as covariates, i.e. logCPM ~ layerPC1 + 

layerPC2 + layerPC3 + layerPC4, and used the residuals of this model as values for input to 

MOFA+. To ensure each gene contributed equally to the model, we then z-scored all resulting 

values within each combination of gene and cell type. 

For each of WM and GM, we then fit MOFA+ to this data, using 5 factors. As we are interested 

in an unbiased characterisation of the heterogeneity of the data, we did not use the group 

variable in MOFA+; otherwise we used the default parameters. In both WM and GM, we found 

5 factors which explained at least 5% of variance for some cell type. 

To calculate gene set enrichment of the genes in MOFA+ factors, we ranked the genes for a 

given cell type in descending order of the factor weight, and used the function fgseaMultilevel 

from the FGSEA package
52

, using a minimum set size of 5 genes and otherwise the default 

parameters.  

Immunohistochemistry and analysis 

FFPE tissue sections from EBB were used for immunohistochemistry staining for GPR17. 

These comprised 26 blocks in total (5 control WM, 16 NAWM, 7 AL, 6 CAL, 12 CIL, 5 RL) from 

20 donors; donors were distinct from those used for snRNAseq. 

FFPE sections (4 μm) were deparaffinized in decreasing concentrations of ethanol, and 

antigen retrieval was performed in antigen unmasking solution (Vector Laboratories, H-3300) 

for 10 min in the microwave. Sections were incubated with autofluorescence eliminator 

reagent (Millipore, 2160) for 1 min and washed with TBS 0.001% Triton-X (wash buffer). 
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Endogenous peroxidases were quenched with 3% H2O2 for 15 min at room temperature (RT), 

washed in wash buffer and blocked for 30 min at room temperature with PBS 0.5% Triton-X 

(TBS-T), 10% HIHS (blocking buffer). Primary antibody incubation was performed overnight 

at 4 °C in blocking buffer. Sections were washed and incubated for 2hrs at RT with HRP-

labelled secondary antibodies. Fluorophore reaction was performed using OPAL 570 and 

OPAL 650 reaction kits for 10 min at RT (Akoya Biosciences, FP1488001KT and 

FP1496001KT respectively, 1:500). Sections were counterstained using Hoechst (Thermo 

Fisher, 62249; 1:1,000), washed and mounted. 

The following primary antibodies were used: mouse anti-CNP (Atlas, AMAb91072, 1:1,000), 

rabbit anti-human GPR17 (Cayman Chemical, 10136, 1:100), MBP (abcam-ab6263), PLP ([]). 

The following secondary antibodies were used: Vector Laboratories, rabbit-HRP IgG (MP-

7401, Vector laboratories), mouse-HRP IgG (MP-7402, Vector laboratories). 

For quantifications of GPR17 cell numbers, sections were co-labelled with GPR17 and CNP 

which was used to define demyelinated lesions. Sections were scanned using a VectraPolaris 

slide scanner and processed using Qupath
58

 and Fiji
59

 imaging software. Within individual 

lesions, several regions of interest were selected randomly. These regions of interest were 

randomised using the Fiji randomization plugin and quantified completely blinded mixing 

samples from all conditions, regions and lesions. 

Statistical analysis 

No statistical methods were used to predetermine sample sizes, but our sample size is eight 

times larger than those reported in previous snRNAseq MS publications (Jäkel et al.
6
, 

Schirmer et al.
7
, Absinta et al.

8
). Statistical analyses and graphical visualisations were 

performed using open-source R programming software
60

. See dedicated method sections for 

the details of the snRNA-seq bioinformatic analysis; differentially expressed genes were 

defined as genes significantly expressed (P adjusted for multiple comparisons < 0.05), and 

showing, on average, >1.5-fold difference between groups of nuclei in each cell type in every 

DEG comparison. Volcano plots were constructed by plotting the log2(fold change) of lesion 

type with smallest p-value for each gene in the x axis and by plotting standard deviation of 

random (donor) effects for each gene on the y-axis. Statistical analysis used two tailed 

parametric or non-parametric t-tests for two groups, and Fisher’s exact test and one-way 

analysis of variance with corresponding post hoc tests for multiple group comparisons. Data 

distributions are presented as barplots, dotplots (with individual data points) and heatmaps. 

Log CPM gene expression values in the dot plots and heat maps were averaged, mean-
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centred, and z-score-scaled. Dot size indicates the percentage of nuclei in the cluster in which 

the gene was detected; among the nuclei in which the gene was detected, the expression 

level was mean-centred and scaled. Graphical object in Fig. 1a was created with 

BioRender.com. 

Data availability 

All raw snRNA-seq data (FASTQ files) will be deposited to EGA. An interactive web browser 

to analyse cell-type specific expression levels of genes and transcriptomic changes in MS 

versus control tissue is available at https://malhotralab.shinyapps.io/MS_broad/ (for broad cell 

types) and at https://malhotralab.shinyapps.io/MS_fine/ (for fine cell types).  

Supplementary files 

S1: Sample metadata with QC summary. 

S2: QC report generated by SampleQC. 

S3: Top 100 up- and down-regulated genes for each cell type in GM. 

S4: Top 100 up- and down-regulated genes for each cell type in WM. 

S5: Table of genes both DE in lesions and significantly associated with GWAS SNPs. 

S6: Heatmaps of MOFA factors explaining at least 5% of variance by cell type, for GM and 

WM, and GSEA results for all factor and cell type combinations in both GM and WM. 

Code availability 

The source code used to analyse the snRNA-seq data in the current study is available online 

at https://wmacnair.gitlab.io/MS_lesions_snRNAseq. 
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