
 Stabilizing brain-computer interfaces through alignment of latent dynamics
 Brianna M. Karpowicz 1 , Yahia H. Ali 1 , Lahiru N. Wimalasena 1 , Andrew R. Sedler 2,1 , Mohammad Reza Keshtkaran 1 , Kevin
 Bodkin 3 , Xuan Ma 3 , Lee E. Miller 3,4,5,6 , Chethan Pandarinath *1,7

 1. Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
 2. Center for Machine Learning, Georgia Institute of Technology, Atlanta, GA, USA
 3. Department of Neuroscience, Northwestern University, Chicago, IL, USA
 4. Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
 5. Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
 6. Shirley Ryan AbilityLab, Chicago, IL, USA
 7. Department of Neurosurgery, Emory University, Atlanta, GA, USA

 * Correspondence: chethan [at] gatech.edu

 Abstract
 Intracortical brain-computer interfaces (iBCIs) restore motor function to people with paralysis by translating brain activity
 into control signals for external devices. In current iBCIs, instabilities at the neural interface result in a degradation of
 decoding performance, which necessitates frequent supervised recalibration using new labeled data. One potential
 solution is to use the latent manifold structure that underlies neural population activity to facilitate a stable mapping
 between brain activity and behavior. Recent efforts using unsupervised approaches have improved iBCI stability using this
 principle; however, existing methods treat each time step as an independent sample and do not account for latent
 dynamics. Dynamics have been used to enable high performance prediction of movement intention, and may also help
 improve stabilization. Here, we present a platform for Nonlinear Manifold Alignment with Dynamics (NoMAD), which
 stabilizes iBCI decoding using recurrent neural network models of dynamics. NoMAD uses unsupervised distribution
 alignment to update the mapping of nonstationary neural data to a consistent set of neural dynamics, thereby providing
 stable input to the iBCI decoder. In applications to data from monkey motor cortex collected during motor tasks, NoMAD
 enables accurate behavioral decoding with unparalleled stability over weeks- to months-long timescales without any
 supervised recalibration.

 Introduction
 In people with paralysis, intracortical brain–computer interfaces (iBCIs) provide a pathway to restoring voluntary
 movements by interfacing directly with the brain to translate movement intention into action 1,2 . iBCIs use implanted
 electrodes to record activity from populations of neurons and decoding algorithms to translate the recorded activity into
 control signals for external devices. In recent years, iBCIs have attained impressive performance in a range of
 applications, including the control of anthropomorphic robotic arms, stimulation of paralyzed muscles to enable reaching
 and grasping, and even rapid decoding of handwriting 3–6 .

 Despite these impressive demonstrations, a key challenge limiting the clinical deployment of iBCIs is their robustness to
 neuronal recording instabilities that cause changes in the particular neurons being monitored over time 7–10 . Recording
 instabilities are attributed to a variety of phenomena, including shifts in electrode positions relative to the surrounding
 tissue, electrode malfunction, cell death, and physiological responses to foreign materials. As the particular neuronal
 population being monitored changes, so does the relationship between recorded neural signals and intention, which
 creates a non-stationary input to the iBCI’s decoder. Without appropriate compensation, iBCI use must be periodically
 interrupted to perform supervised decoder recalibration, in which neural data are collected while subjects attempt
 pre-specified movements. This process can be required once or even multiple times per day to maintain
 high-performance 2 , obstructing activities of daily living and creating additional burdens for iBCI users. Because the
 reliability of assistive devices is a key predictor of real-world use 11 , iBCI instabilities are often cited as motivation for
 alternate neural interfaces such as electrocorticography, which offer more limited but potentially more stable
 performance 12 .

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.06.487388doi: bioRxiv preprint

https://www.zotero.org/google-docs/?abwkXi
https://www.zotero.org/google-docs/?ClOJ62
https://www.zotero.org/google-docs/?VYCCDQ
https://www.zotero.org/google-docs/?A6OIHx
https://www.zotero.org/google-docs/?wv5rWm
https://www.zotero.org/google-docs/?yqU2cK
https://doi.org/10.1101/2022.04.06.487388

 Automatic, unsupervised decoder recalibration would provide a means to compensate for neural interface instabilities
 using only neural data collected during normal iBCI device use, thus preserving performance without interrupting use. One
 promising avenue to unsupervised recalibration is the use of latent, network-level properties of neural activity 13–16 . In
 particular, a few recently-developed iBCIs leverage latent manifolds, revealed by the patterns of co-activation within the
 neuronal population, as the foundation for a more stable neural interface 9,17,18 . Manifold-based iBCI decoders use a
 two-stage approach: first, a neurons-to-manifold mapping that transforms recorded neuronal population activity onto the
 underlying manifold and second, a manifold-to-behavior mapping that transforms manifold activity into intended
 movements 17–19 . Because manifolds are independent of the specific neurons being recorded, different sets of recorded
 neurons can be mapped onto the same manifold 17–21 . And because these manifolds have a consistent relationship with
 behavior extending even to years 19,21 , stable decoding can be achieved by properly recalibrating the neurons-to-manifold
 mapping without changing the manifold-to-behavior mapping.

 A complementary avenue to improve the performance and stability of iBCI decoders is to incorporate latent dynamics, or
 the rules that govern the evolution of population activity over time 22 . Models of neural population activity that incorporate
 dynamics have already shown promise for improving iBCI performance, as they produce representations that are
 informative of behavior on a moment-to-moment basis and millisecond timescale 20,23–26 . Dynamics may also be useful for
 improving stability because dynamics, like manifolds, have a stable relationship with behavior for months to years and are
 independent of the specific population of neurons being monitored within a given area 20,21 . To date, however, unsupervised
 efforts to stabilize iBCI decoding have not incorporated this temporal information.

 Here we test Nonlinear Manifold Alignment with Dynamics (NoMAD), a novel platform for unsupervised stabilization of
 iBCI decoding. NoMAD is a manifold-based iBCI decoder that incorporates a recurrent neural network model of dynamics.
 As instabilities cause changes in the recorded neural population, the learned dynamics model can be used to help update
 the neurons-to-manifold mapping without knowledge of the subject’s behavior.

 We applied NoMAD to recordings from monkey primary motor cortex (M1) collected during motor tasks in sessions that
 span multiple weeks and compared it to two previous state-of-the-art stabilization approaches that use latent manifolds.
 When applied to recordings from a monkey performing a two-dimensional isometric wrist force task, NoMAD achieved
 strikingly higher decoding performance compared to previous approaches without noticeable degradation over 3 months.
 Further, when applied to recordings from a behavior with very different output dynamics—a center-out reaching task, with
 sessions spanning 5 weeks—NoMAD again achieved substantially higher decoding performance and stability than
 previous approaches. These results demonstrate that unsupervised decoder recalibration using dynamics can greatly
 extend the time spans over which stable iBCI use is feasible and provides a new pathway to more practical iBCIs.

 Results
 Leveraging manifolds and dynamics to stabilize iBCI decoding
 We begin with a conceptual schematic (Fig. 1). As with previous manifold decoding approaches 17,18,27,28 , our approach
 starts with a supervised training dataset containing neural activity and movement information from an initial recording
 session, which we call Day 0. We can use this dataset to characterize the manifold and dynamics, while also training a
 decoder to map manifold activity onto behavior. In some later recording period, termed Day K, neural recording
 instabilities have changed the specific neurons that are monitored, so electrode channels may now have a different
 relationship to the underlying manifold and dynamics. Thus, the original decoding axis no longer reflects the relationship
 between the manifold and behavior. As with other unsupervised methods, the high-level goal of NoMAD is to compensate
 for recording instabilities by learning a mapping from the Day K data onto the original manifold, allowing the original Day 0
 decoder to be used. Unlike previous methods, NoMAD uses information about the temporal evolution of neural activity to
 help learn this mapping.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.06.487388doi: bioRxiv preprint

https://www.zotero.org/google-docs/?3rrFmM
https://www.zotero.org/google-docs/?4byaSh
https://www.zotero.org/google-docs/?2WZhyM
https://www.zotero.org/google-docs/?sd8RTn
https://www.zotero.org/google-docs/?ndetnX
https://www.zotero.org/google-docs/?9f4RIQ
https://www.zotero.org/google-docs/?oGBp7D
https://www.zotero.org/google-docs/?p2x2t0
https://www.zotero.org/google-docs/?rFg0Pc
https://doi.org/10.1101/2022.04.06.487388

 Fig. 1 | Manifold alignment with dynamics can stabilize representations of neural activity despite changes in recording
 conditions. We begin with a supervised training dataset containing neural activity and movement information from an initial recording
 session (Day 0). For a 3-electrode example (electrodes E 1 , E 2 , E 3), population activity exhibits underlying manifold structure in a 3-D
 neural state space in which each axis corresponds to the firing rate from a given electrode. The evolution of population activity in time
 exhibits consistent dynamics (vector field). The relationship between manifold activity and behavior, for simple linear decoding of a
 hypothetical 1-D behavioral variable, is represented by a Decoding axis , which is assumed to be consistent over time. In a subsequent
 recording session (Day K), instabilities lead to changes in the recorded neural population, and the Day K activity (E 1 ’, E 2 ’, E 3 ’) has a
 different relationship to the underlying manifold, dynamics, and decoding axis (schematized by a rotation). With NoMAD, our goal is to
 learn a mapping from the Day K neural activity to the original manifold and dynamics in an unsupervised manner. This allows the
 original decoding axis to be applied to accurately decode behavior.

 Adapting the LFADS architecture for manifold alignment using NoMAD
 NoMAD models dynamics using latent factor analysis via dynamical systems (LFADS; Fig. 2a), a modification of standard
 sequential variational autoencoders (VAEs) 29–31 which has been previously detailed 20,29,32 . Briefly, LFADS approximates the
 dynamical system underlying an observed neural population using a recurrent neural network (RNN; the “Generator”) that
 receives a sequence of inferred inputs. Additional RNNs encode the initial state of the dynamical system and infer the
 sequence of inputs to the Generator. The model outputs firing rate predictions for the observed neurons through a linear
 readout from the Generator—this readout sets the relationship between the learned manifold and the high-dimensional

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.06.487388doi: bioRxiv preprint

https://www.zotero.org/google-docs/?Ad6l5n
https://www.zotero.org/google-docs/?GvCWDQ
https://doi.org/10.1101/2022.04.06.487388

 neural activity (i.e., it orients the manifold within the high-dimensional neural state space). In standard LFADS, the model
 training objective is to maximize a lower bound on the marginal likelihood of the observed spiking activity, given the firing
 rates output by the model. All weights in the model are updated during training via backpropagation through time and
 stochastic gradient descent.

 To model the Day 0 supervised training dataset, we made two main modifications to the LFADS architecture. First, we
 added a low-dimensional read-in matrix at the model’s input to standardize the dimensionality of the input to the RNNs.
 This read-in allows the same LFADS model to be applied to Day K datasets despite changes in the number of recorded
 electrodes from Day 0, such as those which may occur due to the removal of channels with sparse activity by the
 experimenter. Second, we added a readout matrix that predicts behavioral data from the Generator’s activity, similar to
 methods that aim to learn dynamics that are related to both the recorded neural activity and measured behavioral
 variables 33 . Behavioral prediction serves as a second training objective, adding a source of information that is
 complementary to the observed spiking activity, which helps ensure that the model converges to a good solution. After
 training the LFADS model, we learn the manifold-to-behavior mapping, i.e., a decoder that predicts the Day 0 behavioral
 data from the Day 0 Generator states. Separating training of the LFADS model and Day 0 decoder allows the use of
 decoding architectures with more complexity and capacity than a simple, single-timestep linear decoder (e.g., Wiener
 filters, RNNs, etc.) without impacting the learned manifold or dynamics.

 Because neural dynamics and behavior have a stable relationship over months to years 20,21 , both the Day 0 neural
 dynamics model and decoder should be applicable to data collected after the initial supervised dataset. However, because
 recording instabilities distort the relationship between recorded neurons and the manifold, we must periodically update the
 mapping between the neural activity and the manifold through an alignment transformation, which fortunately, can be an
 unsupervised process. Once this transformation is learned, data on a subsequent Day K can be passed through the Day 0
 dynamics model, such that the Day 0 decoder can be used to predict Day K behavior with high accuracy.

 To update the Day K neurons-to-manifold mapping in NoMAD, the weights of the LFADS RNNs, including the Generator
 that expresses the latent dynamics, are held constant, while three other network components are learned or updated with
 an unsupervised alignment step: a feedforward alignment network that adjusts the input to the RNNs, the low-D read-in,
 and the rates readout (Fig. 2b). During the alignment step, there are two training objectives: 1) minimizing the difference
 between the distributions of the Generator states on Day 0 and Day K, and 2) maximizing the likelihood of observed Day
 K spiking activity given the firing rates output by the model. At each training step, the Day 0 and Day K Generator state
 distributions are compared by first approximating each by a multivariate normal distribution and then computing the
 Kullback-Leibler (KL) divergence between those normal distributions. The multivariate normal approximation focuses the
 alignment process on matching first and second order statistical moments of the Generator state distributions, making the
 alignment problem more tractable than matching higher order statistics. Model weights that are adjusted during alignment
 are updated via backpropagation through time and stochastic gradient descent.

 To illustrate how NoMAD adjusts the manifold and dynamics, we applied it to twenty datasets from a monkey performing
 an isometric force task, separated by up to 95 days. In this task, neural data are recorded from a 96-channel electrode
 array in M1 while a monkey generates wrist forces to control an on-screen cursor, with the goal of reaching a target in one
 of eight directions on each trial. We visualized the low-D structure of the Generator states by finding a 3-dimensional
 subspace via demixed principal component analysis (dPCA) 34 . We first fit dPCA parameters to the Generator states
 inferred by the LFADS model from Day 0 neural activity. We then applied those dPCA parameters to the Generator states
 on Day K across three phases of unsupervised NoMAD alignment: before any training had occurred, after one training
 epoch, and after the completion of training (Fig. 2c). By using the same dPCA parameters on Day 0 and Day K, we could
 directly compare the low-D trajectories across Day 0 and Day K. dPCA reveals a structure underlying Day 0 activity that
 clearly distinguishes neural activity from the 8 different target conditions. Prior to alignment, the low-D structure of the
 Generator states on Day K was distinct from the structure on Day 0, as expected. After alignment with NoMAD, the low-D
 structure on Day K more closely matched Day 0.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.06.487388doi: bioRxiv preprint

https://www.zotero.org/google-docs/?b2tFSv
https://www.zotero.org/google-docs/?Am0GO9
https://www.zotero.org/google-docs/?Yv6tMu
https://doi.org/10.1101/2022.04.06.487388

 Fig. 2 | Modeling and aligning the neural manifold using NoMAD. (a) We first train an LFADS model on a given reference Day 0 to
 estimate the manifold and dynamics from recorded spiking activity. LFADS models neural population dynamics using a series of
 interconnected recurrent neural networks (RNNs). All of the model parameters are trained by simultaneously minimizing the
 reconstruction losses of the spiking activity (Poisson negative log-likelihood) and the recorded behavior (mean squared error). (b) To
 apply the same LFADS model on a later Day K, we freeze the parameters of the trained LFADS model, and introduce a feedforward
 “Alignment network” to transform the new day’s spiking activity to be compatible with the previously trained LFADS model. The
 Alignment network is trained by simultaneously minimizing the KL divergence between the distributions of the Day 0 and Day K
 Generator states and the reconstruction loss of the spiking activity (Poisson NLL). (c) Dimensionality reduction applied to the Generator
 states for Day 0, and over the course of alignment training for data collected 95 days later. Neural data were recorded from M1 as a
 monkey performed an isometric force task. Colors indicate trajectories for the different target directions. Thick lines indicate the trial
 average, and thin lines denote single trials (10 representative trials per condition are shown here). Initial estimates of Day 95 Generator
 states converged over training to resemble Day 0 Generator states, allowing the same decoder to achieve high accuracy force
 predictions.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.06.487388doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.06.487388

 NoMAD stabilizes offline decoding during an isometric force task
 We applied NoMAD to pairs of recording sessions from a monkey performing the isometric force task over 95 days (Fig.
 3a). Behavioral decoding consisted of a Wiener filter that mapped manifold activity onto the recorded 2-D forces with high
 temporal resolution (20 ms time steps). The Day 0 dynamics model (LFADS) and Day 0 decoder (Wiener filter) were
 trained on a supervised dataset from a single session, and we evaluated NoMAD’s ability to enable accurate and stable
 decoding performance on a different session (Day K) through unsupervised alignment. We compared NoMAD against a
 standard Wiener filter decoder that was trained using smoothed spiking activity and behavior from Day 0 and evaluated on
 Day K without any adjustment (Static decoder), and also to two state-of-the-art manifold-based stabilization techniques:
 aligned factor analysis (Aligned FA) 17 , which is based on linear dimensionality reduction, and the adversarial domain
 adaptation network (ADAN) 18 , which uses a neural network autoencoder for dimensionality reduction and generative
 adversarial networks for alignment. We note that NoMAD alignment is completely unsupervised, in that we use all
 available data from a session, including periods where the monkey was inactive. For Aligned FA and ADAN, we use only
 within-trial data where the monkey is active, to be consistent with the original demonstrations of these methods. We
 quantified Day K force decoding using the coefficient of determination (R 2), i.e., the fraction of variance of the recorded
 force signal on Day K that is predicted by the decoder. We term evaluations with negative R 2 to be decoding failures.

 To measure decoding stability across a wide variety of recording conditions, we tested each method on all pairs of
 sessions (380 pairs; Fig. 3b). As expected, static decoders trained on a given session failed to generalize to other
 sessions. This resulted in rapid degradation of decoding performance over time, and frequent decoding failures, such that
 the median decoding performance was quite poor for pairs of sessions spaced less than 5 days apart (R 2 = 0.14), and
 negative for pairs spaced further apart (223 decoding failures; Fig. 3c, d).

 Aligned FA achieved more stable decoding than the static decoder across time (slope = -0.13 R 2 /month), but with only
 moderate performance (median R 2 = 0.59) and high variability. In addition, Aligned FA repeatedly failed for most
 alignments that were initialized using particular sessions (shown by the black horizontal bars in the heatmap), resulting in
 51 decoding failures. Separately, we also attempted to apply Aligned FA in a sequential fashion, i.e., performing alignment
 between sequential recording sessions to try to maintain stability (the approach described in the original study), but found
 that this further decreased performance and increased variability (results not shown). ADAN achieved greater
 performance improvements (median R 2 = 0.65) and stability (slope = -0.087 R 2 /month), with 0 decoding failures. Yet,
 performance for individual pairs of sessions was highly variable.

 Compared to these previous methods, NoMAD achieved strikingly higher performance (median R 2 = 0.91) with little
 variability, no failures, and only modest performance degradation across the 3-month window (slope = -0.033 R 2 /month).
 These differences were also evident when visualizing the decoded data: single-trial forces decoded by NoMAD were more
 consistent with the measured forces than those produced with other methods (Fig. 3e).

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.06.487388doi: bioRxiv preprint

https://www.zotero.org/google-docs/?u2msFi
https://www.zotero.org/google-docs/?ijTkih
https://doi.org/10.1101/2022.04.06.487388

 Fig. 3 | NoMAD enables stable offline decoding across months in an isometric force task. (a) Schematic of isometric force task.
 (b) R 2 of aligned force decoding for each pair of datasets for all methods. (c) Median R 2 of force decoding within each 5-day bin.
 Triangles indicate points that fall below the limit of the y-axis. (d) Top: Percentage of decoding failures (R 2 <0) in 5-day bins. Bottom:
 Decoding performance as a function of time between sessions. Black points indicate decoding performance for a single pair of days.
 Red line is the median within each bin of width 5 days. (e) Left: Single trial force trajectories, colored by target location. Right: decoded
 forces for all methods when Day 95 is aligned to Day 0.

 NoMAD stabilizes offline decoding during an unloaded reaching task
 To ensure that NoMAD’s efficacy extends beyond the isometric task, we also evaluated its performance on recording
 sessions from a monkey performing a center-out reaching task 19,35 . On each trial, a monkey used a manipulandum to
 move a cursor from the center of a screen to one of eight targets spaced equally around a ring (Fig. 4a). We applied
 NoMAD to 96 channels of data recorded from M1 over 12 sessions spanning 38 days. As in the isometric task, we used a
 supervised dataset to train the Day 0 LFADS model and Wiener filter decoder. We evaluated NoMAD on a separate Day K
 dataset by performing unsupervised alignment prior to applying the Day 0 decoder. We again tested NoMAD’s
 performance against ADAN, Aligned FA, and a Static decoder on the same data 17,18 . Day K decoding was quantified using
 the R 2 between the recorded and predicted cursor velocity signals, and negative R 2 values were again classified as
 decoding failures.

 We tested each alignment method on all pairs of days (132 pairs; Fig. 4b). Static decoders again failed to yield accurate
 decoding across sessions, with poor median performance even for sessions separated by less than five days (R 2 =
 0.022), and primarily negative performance thereafter. A total of 78 pairs of days result in decoder failures (Fig. 4c , d).

 This dataset was more challenging to align for Aligned FA and ADAN than was the isometric task. Aligned FA provided
 some accuracy improvement over the static decoder (median R 2 = 0.17). Again, there was significant variation in decoding
 performance, which resulted in 53 decoding failures and a clear decline in performance (slope = -0.64 R 2 /month). ADAN
 provided some additional improvement in terms of accuracy (median R 2 = 0.29) and stability (slope = -0.48 R 2 /month, 15
 decoding failures), but still showed high variability amongst performance for individual pairs.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.06.487388doi: bioRxiv preprint

https://www.zotero.org/google-docs/?VhH5SQ
https://www.zotero.org/google-docs/?thFrX2
https://doi.org/10.1101/2022.04.06.487388

 NoMAD exhibited higher decoding performance (median R 2 = 0.77) with no decoding failures and less variability in
 performance over the 5-week timespan. NoMAD also showed less degradation in decoding accuracy (slope = -0.13
 R 2 /month). Visualizations of the decoded cursor trajectories confirmed that NoMAD produces more consistent cursor
 velocity estimates following stabilization than do other methods (Fig. 4e).

 Fig. 4 | NoMAD enables stable offline decoding across 5 weeks in a reaching task. (a) Schematic of the center-out reaching task.
 (b) R 2 of aligned cursor velocity decoding for each pair of datasets for all methods. (c) Median R 2 of cursor velocity within each 5-day
 bin. Triangles indicate points that fall below the limit of the y-axis. (d) Top: Percentage of decoding failures (R 2 <0) in 5-day bins. Bottom:
 Decoding performance as a function of time between sessions. Black points indicate decoding performance for a single pair of days.
 Red line is the median within each bin of width 5 days. (e) Left: Single trial cursor trajectories, colored by target location. Right: reach
 trajectories integrated from the decoded cursor velocity when Day 95 is aligned to Day 0.

 Discussion
 We introduced NoMAD, an unsupervised manifold alignment technique that leverages manifolds and their dynamics to
 achieve stable decoding over long timespans. In our tests, NoMAD improved both decoding accuracy and stability over 95
 days in an isometric wrist task, and over 38 days in a reaching task. Other methods resulted in less decoding
 improvement or marked performance degradation over time. By incorporating the temporal structure of the neural activity
 into the manifold-alignment process via dynamics, NoMAD enables more stable neural decoding that may require less
 frequent BCI recalibration procedures.

 Relation to Previous Work
 A variety of strategies have been used to reduce the reliance on supervised decoder recalibration 10,17,18,27,28,36 . One
 approach uses neural network decoders and months-long datasets that expose the decoder to a wide variety of recording
 instabilities, to learn a mapping from neuronal population activity to movement intention that is robust to changes in the
 recorded neurons 10 . However, collecting such large supervised datasets requires a substantial time commitment from the
 user and is therefore challenging to perform clinically. A second strategy, “semi-supervised” recalibration, involves
 automatically adapting the decoder on the fly using a retrospective analysis of data collected during the subject’s normal

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.06.487388doi: bioRxiv preprint

https://www.zotero.org/google-docs/?Fqz9OJ
https://www.zotero.org/google-docs/?DnQwm0
https://doi.org/10.1101/2022.04.06.487388

 use of the iBCI 36 . For example, in a setting with predefined targets, the neural activity preceding movement to a given
 target likely reflects the user’s intention to move toward that target. This data can then be used to update the decoder,
 much like supervised decoder training. However, this strategy only works when the user’s intent can be guessed
 post-hoc—as in BCI spellers or movement among a limited number of predefined targets—and is thus unlikely to scale to
 more complex and naturalistic settings.

 Another manifold alignment approach, Distribution Alignment Decoding, is conceptually similar to the approach used here,
 but performs alignment of low-dimensional activity from two datasets by doing a brute force search of candidate rotations
 in the low-D space 27 . However, this alignment approach fails when distributions of movements are symmetric. Further,
 when dimensions of neural activity scale beyond extremely simple representations (e.g., beyond 2 or 3 dimensions), a
 brute force search quickly becomes intractable. More recently, Hierarchical Wasserstein Alignment (HiWA) improves on
 this approach using neural networks 28 , but relies on the existence of discrete structure, such as clusters within the neural
 activity that represent similar movements.

 Our method improves upon previous manifold-alignment efforts by incorporating temporal constraints via nonlinear
 dynamics models. In addition, the method is entirely unsupervised, in contrast to methods such as canonical correlation
 analysis (CCA) and previous methods that exploit dynamics to improve iBCI longevity 19,21 .

 Limitations
 A potential limitation of this work, and other manifold alignment methods, is that it relies on a stable relationship between
 activity on the neural manifold and behavior over time. While this is a reasonable assumption for consistent behaviors 19,20 ,
 it may not be the case if subjects are learning new skills. It has been shown that in the short term, learning need not
 change the manifold 37 . However, long-term learning likely results in manifold-level changes 38 , which would presumably
 affect the stability of the relationship between manifold activity and behavior. More studies in this area will help determine
 whether manifold-alignment techniques need to account for learning.

 A practical limitation of the approach is that the NoMAD alignment process, like most neural network training, is
 computationally demanding. Thus without further optimization, for implanted medical devices with severe power
 constraints, the alignment process is best run on external computing hardware.

 A limitation of our current tests, like all other tests of manifold stabilization approaches to date, is the consistency of
 behavior in the datasets used. The behavioral consistency achieved in the lab setting assured that the datasets were rich
 enough and similar enough to be alignable. In practical applications, a key assumption of all stabilization approaches is
 that BCI decoding performance will be stable for certain time periods, such that data can be collected during use of the
 BCI and periodic alignment can be performed to maintain manifold stability. If decoding performance is stable for
 reasonable time periods without alignment (e.g., many hours), this could ensure that the datasets cover rich enough and
 similar enough behavioral distributions (e.g., by spanning large enough regions of behavioral space) for successful
 periodic alignment.

 Potential Future Applications
 In this work we test the NoMAD approach with particularly rigorous constraints, specifically: 1) the alignment process must
 be completely unsupervised (i.e., cannot incorporate any behavioral information), and 2) only a small (minutes-long) initial
 supervised training dataset is used to calibrate the model. Even with these requirements, we found that NoMAD could
 stabilize decoding performance for many weeks to months. However, these constraints could clearly be relaxed in a
 practical application. For example, assuming periods of reasonable decoding stability, data collected during BCI use
 comes with an inherent set of behavioral labels (i.e., we know how the subject was using the BCI), and this information
 could be incorporated to guide the alignment process. Similarly, as more and more datasets are collected during BCI use
 for a given subject, one could train an aggregated model that spans those datasets (similar to previous work 10,20), which

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.06.487388doi: bioRxiv preprint

https://www.zotero.org/google-docs/?zOArQY
https://www.zotero.org/google-docs/?iET1Fn
https://www.zotero.org/google-docs/?ejqdMw
https://www.zotero.org/google-docs/?wVZsEn
https://www.zotero.org/google-docs/?D5hUm9
https://www.zotero.org/google-docs/?YVvuIC
https://www.zotero.org/google-docs/?LRr0bO
https://www.zotero.org/google-docs/?EdwPeK
https://doi.org/10.1101/2022.04.06.487388

 would provide decoders that become inherently more stable as more data is collected, thus lessening the need for
 frequent recalibration.

 We note that while the current work focuses on spiking activity recorded via intracortical electrode arrays, this is not an
 inherent limitation of the approach. Indeed, LFADS, upon which NoMAD is based, has been applied successfully to
 improve behavioral state classification from electrocortographic (ECoG) recordings 40 , which suggests that the NoMAD
 approach could be made to generalize to other BCI recording modalities and signal sources.

 An open neuroscientific question is the degree of similarity in manifold structure and dynamics across behaviors. This
 question has profound implications for building BCIs that generalize across behaviors. Recent studies suggest that
 different behaviors may occupy distinct manifolds 41 . As such, BCIs that rely on manifold structure may require different
 mappings from manifold activity to behavior, and would need to adjust their decoding depending on the manifold or
 manifolds that are currently occupied. This also affects stabilization strategies—to date, manifold-based stabilization
 methods have been tested only on datasets containing single behaviors. However, solutions to address the multiple
 manifold scenario exist, including labeling data collected during BCI use by the behavior that was being performed, and
 using that information to guide alignment.

 Acknowledgements
 We thank Matthew Perich and Stephanie Naufel for the collection of the data used in this work. We thank Ali Farshchian
 for helpful discussions regarding ADAN and Fabio Rizzoglio for helpful discussions regarding ADAN and Aligned FA. This
 work was supported by the Emory Neuromodulation and Technology Innovation Center (ENTICe), NSF NCS 1835364,
 DARPA PA-18-02-04-INI-FP-021, NIH Eunice Kennedy Shriver NICHD K12HD073945, NIH-NINDS/OD DP2NS127291,
 the Alfred P. Sloan Foundation, the Burroughs Wellcome Fund, and the Simons Foundation as part of the Simons-Emory
 International Consortium on Motor Control (CP), NIH NINDS NS053603 and NS074044 (LEM), NIH NIBIB T32EB025816
 (BMK, YHA), NSF Graduate Research Fellowship DGE-1650044 (ARS).

 Code availability
 Code will be made available upon publication.

 Data availability
 Data will be made available upon publication.

 Author Contributions
 BMK YHA LNW ARS MRK KB XM LEM CP

 Conceptualization

 Funding acquisition

 Investigation

 Data Preparation

 Writing

 Revision

 Competing Interests
 C.P. is a consultant to Synchron and Meta (Reality Labs).

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.06.487388doi: bioRxiv preprint

https://www.zotero.org/google-docs/?4gOLAt
https://www.zotero.org/google-docs/?6CEwXI
https://doi.org/10.1101/2022.04.06.487388

 References
 1. Collinger, J. L., Gaunt, R. A. & Schwartz, A. B. Progress towards restoring upper limb movement and sensation

 through intracortical brain-computer interfaces. Curr. Opin. Biomed. Eng. 8 , 84–92 (2018).

 2. Pandarinath, C. & Bensmaia, S. J. The science and engineering behind sensitized brain-controlled bionic hands.

 Physiol. Rev. 102 , 551–604 (2022).

 3. Ajiboye, A. B. et al. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a

 person with tetraplegia: a proof-of-concept demonstration. The Lancet 389 , 1821–1830 (2017).

 4. Collinger, J. L. et al. High-performance neuroprosthetic control by an individual with tetraplegia. The Lancet 381 ,

 557–564 (2013).

 5. Wodlinger, B. et al. Ten-dimensional anthropomorphic arm control in a human brain-machine interface: difficulties,

 solutions, and limitations. J. Neural Eng. 12 , 016011 (2014).

 6. Willett, F. R., Avansino, D. T., Hochberg, L. R., Henderson, J. M. & Shenoy, K. V. High-performance brain-to-text

 communication via handwriting. Nature 593 , 249–254 (2021).

 7. Perge, J. A. et al. Intra-day signal instabilities affect decoding performance in an intracortical neural interface system.

 J. Neural Eng. 10 , 036004 (2013).

 8. Downey, J. E., Schwed, N., Chase, S. M., Schwartz, A. B. & Collinger, J. L. Intracortical recording stability in human

 brain–computer interface users. J. Neural Eng. 15 , 046016 (2018).

 9. Wimalasena, L. N., Miller, L. E. & Pandarinath, C. From unstable input to robust output. Nat. Biomed. Eng. 4 , 665–667

 (2020).

 10. Sussillo, D., Stavisky, S. D., Kao, J. C., Ryu, S. I. & Shenoy, K. V. Making brain–machine interfaces robust to

 future neural variability. Nat. Commun. 7 , 13749 (2016).

 11. Huggins, J. E., Moinuddin, A. A., Chiodo, A. E. & Wren, P. A. What Would Brain-Computer Interface Users Want:

 Opinions and Priorities of Potential Users With Spinal Cord Injury. Arch. Phys. Med. Rehabil. 96 , S38-S45.e5 (2015).

 12. Silversmith, D. B. et al. Plug-and-play control of a brain–computer interface through neural map stabilization. Nat.

 Biotechnol. 39 , 326–335 (2020).

 13. Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487 , 51–56 (2012).

 14. Yu, B. M. et al. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population

 activity. in Advances in Neural Information Processing Systems vol. 21 (Curran Associates, Inc., 2008).

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.06.487388doi: bioRxiv preprint

https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://doi.org/10.1101/2022.04.06.487388

 15. Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17 ,

 1500–1509 (2014).

 16. Dabagia, M., Kording, K. P. & Dyer, E. L. Comparing high-dimensional neural recordings by aligning their

 low-dimensional latent representations. Nat. Biomed. Eng. in press , 20.

 17. Degenhart, A. D. et al. Stabilization of a brain–computer interface via the alignment of low-dimensional spaces of

 neural activity. Nat. Biomed. Eng. 4 , 672–685 (2020).

 18. Farshchian, A. et al. Adversarial Domain Adaptation for Stable Brain-Machine Interfaces. ICLR 2019 (2019).

 19. Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A. & Miller, L. E. Long-term stability of cortical population

 dynamics underlying consistent behavior. Nat. Neurosci. 23 , 260–270 (2020).

 20. Pandarinath, C. et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nat.

 Methods 15 , 805–815 (2018).

 21. Kao, J. C., Ryu, S. I. & Shenoy, K. V. Leveraging neural dynamics to extend functional lifetime of brain-machine

 interfaces. Sci. Rep. 7 , 7395 (2017).

 22. Pandarinath, C. et al. Latent Factors and Dynamics in Motor Cortex and Their Application to Brain–Machine

 Interfaces. J. Neurosci. 38 , 9390–9401 (2018).

 23. Kao, J. C. et al. Single-trial dynamics of motor cortex and their applications to brain-machine interfaces. Nat.

 Commun. 6 , 7759 (2015).

 24. Keshtkaran, M. R. et al. A large-scale neural network training framework for generalized estimation of single-trial

 population dynamics. Nat. Methods in press , (2021).

 25. Zhu, F. et al. Deep inference of latent dynamics with spatio-temporal super-resolution using selective

 backpropagation through time. Adv. Neural Inf. Process. Syst. 34 (2021).

 26. Pei, F. et al. Neural Latents Benchmark ’21: Evaluating latent variable models of neural population activity. Adv.

 Neural Inf. Process. Syst. NeurIPS 34 Track Datasets Benchmarks (2022).

 27. Dyer, E. L. et al. A cryptography-based approach for movement decoding. Nat. Biomed. Eng. 1 , 967–976 (2017).

 28. Lee, J., Dabagia, M., Dyer, E. L. & Rozell, C. J. Hierarchical Optimal Transport for Multimodal Distribution

 Alignment. Neural Inf. Process. Syst. NeurIPS (2019).

 29. Sussillo, D., Jozefowicz, R., Abbott, L. F. & Pandarinath, C. LFADS - Latent Factor Analysis via Dynamical

 Systems. ArXiv160806315 Cs Q-Bio Stat (2016).

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.06.487388doi: bioRxiv preprint

https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://doi.org/10.1101/2022.04.06.487388

 30. Chung, J. et al. A Recurrent Latent Variable Model for Sequential Data. Adv. Neural Inf. Process. Syst. 28 , (2016).

 31. Gregor, K., Danihelka, I., Graves, A., Rezende, D. J. & Wierstra, D. DRAW: A Recurrent Neural Network For

 Image Generation. ArXiv150204623 Cs (2015).

 32. Keshtkaran, M. R. & Pandarinath, C. Enabling hyperparameter optimization in sequential autoencoders for spiking

 neural data. Adv. Neural Inf. Process. Syst. (2019).

 33. Sani, O. G., Abbaspourazad, H., Wong, Y. T., Pesaran, B. & Shanechi, M. M. Modeling behaviorally relevant

 neural dynamics enabled by preferential subspace identification. Nat. Neurosci. 24 , 140–149 (2021).

 34. Kobak, D. et al. Demixed principal component analysis of neural population data. eLife 5 , e10989 (2016).

 35. Perich, M. G., Gallego, J. A. & Miller, L. E. A Neural Population Mechanism for Rapid Learning. Neuron 100 ,

 964-976.e7 (2018).

 36. Jarosiewicz, B. et al. Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer

 interface. Sci. Transl. Med. 7 , 313ra179 (2015).

 37. Sadtler, P. T. et al. Neural constraints on learning. Nature 512 , 423–426 (2014).

 38. Oby, E. R. et al. New neural activity patterns emerge with long-term learning. Proc. Natl. Acad. Sci. 116 ,

 15210–15215 (2019).

 39. Orsborn, A. L. et al. Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control.

 Neuron 82 , 1380–1393 (2014).

 40. Flint, R. D. et al. The representation of finger movement and force in human motor and premotor cortices. eNeuro

 (2020).

 41. Ma, X., Bodkin, K. L. & Miller, L. E. Population Activity in Motor Cortex is Influenced by the Contexts of the Motor

 Behavior. in 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER) 1152–1155 (2021).

 doi:10.1109/NER49283.2021.9441430.

 42. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12 , 2825−2830 (2018).

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.06.487388doi: bioRxiv preprint

https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://www.zotero.org/google-docs/?14CvIf
https://doi.org/10.1101/2022.04.06.487388

 Methods
 Monkey Isometric Task
 Monkey J was trained to operate a 2D isometric wrist force device. The monkey’s left arm was positioned in a splint to
 immobilize the forearm in an orientation midway between supination and pronation (with the thumb upwards). A small box
 was placed around the monkey’s open left hand, incorporating a six-axis load cell aligned with the wrist joint. The box was
 padded to comfortably constrain the monkey’s hand and minimize its movement within the box. The monkey controlled the
 position of a cursor displayed on a monitor by the force exerted on the box. Flexion and extension force moved the cursor
 right and left, respectively, while forces along the radial and ulnar deviation axis moved the cursor up and down. Prior to
 placing the monkey’s hand in the box, the force was nulled in order to place the cursor in the center target. Targets were
 displayed either at the center of the screen (zero force), or equally-spaced along a ring around the center target.

 The monkey performed a center-out task that began with the appearance of the center target. The monkey was allowed
 two seconds to move to the center target and was required to hold for a time randomly chosen from a uniform distribution
 between 0.2s and 1.0s. A successful center hold triggered the appearance of one of eight possible outer targets, chosen
 in a block-randomized fashion. The monkey was allowed another two seconds after target onset to move the cursor to the
 outer target. The required hold time for the outer target was 0.8s. Successful trials ended with the delivery of a liquid
 reward. Failure to reach a target within the allowed two seconds or to remain within a target as required, resulted in an
 aborted (center target) or failed (outer target) trial. Successive trials were separated by a two-second inter-trial interval.

 Monkey Reaching Task
 Monkey C was trained to make reaching movements using a planar manipulandum in a two-dimensional center-out
 manner. To begin each trial, the monkey moved his hand to the center of the workspace. After a waiting period, the
 monkey was presented with one of eight equally spaced outer targets, arranged in a circle and selected uniformly at
 random. The monkey was trained to hold for a variable delay period, after which he received an auditory go cue. After the
 go cue, the monkey had 1s to reach the outer target and hold within the target for 0.5s. A successful trial led to a liquid
 reward. The cursor position was recorded at 1kHz using joint encoders. Timing events such as go cues were logged
 digitally. This data was previously published in Perich et al., Neuron 2018 and Gallego, et al., Nature Neuroscience
 2020 19,35 .

 Monkey Surgical Implants
 After training animals to perform the tasks, a 96-channel microelectrode array with 1.5mm-long electrode shanks
 (Blackrock Microsystems, Salt Lake City, Utah) was implanted into the hand area of primary motor cortex (M1). Prior to
 implanting the array, the hand area of M1 was identified intraoperatively through sulcal landmarks and by stimulating the
 surface of the cortex to elicit twitches of the wrist and hand muscles.

 Data Collection
 Collection
 Cortical data was collected using the Cerebus data acquisition system from Blackrock Microsystems. Raw cortical data
 was collected at 30kHz and filtered with a 250Hz high-pass filter. Timestamps of when the filtered data passed below a
 provided threshold were recorded as threshold crossings, commonly also called spikes. This process was all done using
 software on the Cerebus system.

 Force data for the Isometric Task was collected at 2kHz using the Cerebus analog inputs. Manipulandum joint data for the
 Reaching Task was collected using a NI DAQ card connected to a Mathworks XPC system that controlled the task. The
 XPC system calculated the endpoint coordinates of manipulandum, then sent the coordinates to the Cerebus through a
 series of digital packets.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.06.487388doi: bioRxiv preprint

https://www.zotero.org/google-docs/?mY2Ytg
https://doi.org/10.1101/2022.04.06.487388

 Binning
 The data was binned into 1ms segments. For the threshold crossings, the number of spikes per bin was counted. For the
 force and manipulandum position data, the data was filtered and downsampled to 1kHz. The cortical and task bins were
 aligned in time.

 Data Preprocessing
 We apply the following preprocessing steps to the data for all methods compared:

 Resampling
 In order to resample the data to larger bin sizes than originally provided (e.g. to work with 20ms bins from 1ms bins), we
 must handle both spiking data and continuous-valued data. For spiking data, we aggregate bins by summing the number
 of spikes. For continuous-valued data, we apply a Chebychev filter (order = 500) for anti-aliasing, and then downsample
 the data to the appropriate sampling rate.

 Highly Correlated Channel Removal
 In order to prevent overfitting to correlated noise events across channels, we remove channels that are involved in many
 high correlations with other channels. We first compute the cross correlations between all pairs of channels. We set a
 threshold above which we want to remove correlations. For the monkey datasets, we set a threshold of 0.2 (computed
 when the data is in 1ms bins). We remove any channel that is involved in a correlated pair above this threshold.

 Behavioral Outlier Removal
 For monkey datasets with continuous data variables (e.g. force, cursor position), behavior was evaluated for values that
 fall far outside of the distribution of values for a typical trial. These outlier values can lead to errors in training the
 behavioral LFADS models, comparison models, and decoders. We determined cutoffs for removing values that were
 applied to all datasets during dataset loading. Force values are in units of voltage directly from the load cell, and cursor
 position values are in terms of the handle position in units of distance. These cutoffs are shown in Table 1.

 Table 1 . Behavioral cutoffs for outlier removal.

 Monkey Behavioral Variable Lower Bound, X Upper Bound, X Lower Bound, Y Upper Bound, Y

 Isometric Force (mV) -1500 800 -1100 600

 Isometric dF/dt (mV/t) -100 100 -100 100

 Reaching Cursor position (cm) 0.5 1.5 -1.1 -0.25

 Reaching Cursor velocity (cm/t) -0.025 0.025 -0.025 0.025

 The following preprocessing step was incorporated into the NoMAD architecture only:

 Normalization
 To account for large changes in the firing rates of individual channels across days, we normalized each channel to have
 zero mean and unit standard deviation. On the continuous spiking data, we first smooth the data with a 20ms Gaussian
 kernel. On the smoothed spiking data, we compute a per-channel mean and standard deviation. These means and
 standard deviations are saved for every day so that they can be applied to the LFADS input spiking data (not smoothed)
 before the low dimensional read-in layer. Non-normalized input data is maintained so that reconstruction cost can be
 computed on binned spikes.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.06.487388doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.06.487388

 NoMAD Architecture and Parameters
 The NoMAD architecture consists of two stages: fitting an initial core Day 0 LFADS model on training data from an initial
 day and aligning that model to data from a subsequent Day K.

 Day 0 Model Architecture
 The LFADS model has been detailed previously 20,29,32 . Briefly, LFADS is an instantiation of a variational autoencoder (VAE)
 extended to sequences. An encoder RNN (implemented using GRU units) takes as input a data sequence X(t), and
 produces as output a conditional distribution over a latent code Z, Q(Z|X(t)). In the VAE framework, an uninformative prior
 P(Z) on this latent code serves as a regularizer, and divergence from the prior is discouraged via a training penalty that
 scales with KL(Q(Z|X(t)) || P(Z)). A data sample is then drawn from Q(Z|X(t)), which sets the initial state of a decoder
 RNN. This RNN attempts to create a reconstruction R(t) of the original data via a low-dimensional set of factors F(t).
 Specifically, the data X(t) are assumed to be samples from an inhomogeneous Poisson process with underlying rates R(t).
 This basic sequential autoencoder is appropriate for neural data that is well-modeled as an autonomous dynamical
 system. In all applications listed, we used the modified sequential autoencoder that was adapted for modeling input-driven
 dynamical systems. This model contains an additional controller RNN, which compares an encoding of the observed data
 with the output of the decoder RNN, and attempts to inject a time-varying input U(t) into the decoder to account for data
 that cannot be modeled by the decoder’s autonomous dynamics alone.

 The LFADS objective function is defined as the log likelihood of the data (given the Poisson process assumption above),
 marginalized over all latent variables. This is optimized in the VAE setting by maximizing a variational lower bound on the
 marginal data log-likelihood. In training, the objective function is optimized using stochastic gradient descent where the
 network parameters are updated through backpropagation through time. We used the Adam optimizer to optimize the
 objective function, and implemented gradient clipping to prevent potential exploding gradient issues. To prevent the
 potentially problematic large values in RNN state variables and achieve more stable training, we also limited the range of
 the values in GRU hidden state by clipping values greater than 5 and lower than -5.

 Day 0 Model Training & Hyperparameters
 All experimental data is modeled without regard to trial structure, i.e. the optimization process is completely unsupervised
 at all stages. To do so, the continuous data (an entire session) is divided into segments of length 600 ms, with 120 ms of
 overlap between segments. For model validation, 20% of these segments are reserved. The start indices of each trial are
 stored so that after training, model output can be reassembled. In order to avoid artifacts while reassembling the
 overlapping segments, the overlapping region is linearly scaled from 1 to 0 and added to the corresponding region in the
 reconstructed data, which is inversely linearly scaled (0 to 1). Non-overlapping portions of the segments are concatenated
 to the array normally.

 In the Day 0 architecture, a few critical hyperparameters define the model, which we list in Table 2.

 Table 2 . LFADS Day 0 architecture parameters.

 parameter value

 Low-D Read-In Output Dimensionality 50

 Encoder RNN Units 100

 Generator RNN Units 100

 Controller RNN Units 100

 Controller Output Dimensionality 4

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.06.487388doi: bioRxiv preprint

https://www.zotero.org/google-docs/?3WOOzI
https://doi.org/10.1101/2022.04.06.487388

 Factors Dimensionality 30

 Monkey datasets were fit using single LFADS models with additional behavioral readout matrices. The goal of the
 behavioral readout matrices was to ensure that manifolds learned on Day 0 would be highly predictive of behavior. To do
 this, we trained a matrix transformation from the generator states to the continuous-valued behavior. For the isometric
 task, the behavior being predicted by the readout included both force and the derivative of force; for the reaching task, the
 behavior included cursor position and velocity.

 For these experiments, single LFADS models were trained on 1 GPU each. Training stopped when there was no
 improvement in the performance for 10 subsequent generations or when the learning rate reached a value of 1e-6 during
 the annealing process.

 We found hyperparameters that were able to train models for both the isometric and kinematic datasets using grid
 searches. We performed a grid search over a set of values for a single hyperparameter for a subset of isometric and
 kinematic monkey datasets to select the best value and repeated for all hyperparameters. We then trained all Day 0
 models for monkey datasets using the hyperparameters in Table 3.

 Table 3 . LFADS Day 0 model hyperparameters.

 hyperparameter value

 Dropout rate 0.05

 Coordinated dropout rate 0.3

 Batch size 1000

 Initial learning rate 1e-3

 Learning rate decay 0.95

 L2 scale 1e-6

 L2 ramping epochs 100

 KL scale 1e-44

 KL ramping epochs 100

 Behavioral readout learning rate 1e-3

 Behavioral readout cost scale 0.1

 Behavioral readout cost ramping epochs 100

 Data Augmentation
 In order to prevent models from overfitting to individual spikes or fast oscillations in the data, a data augmentation strategy
 for discrete data known as ‘spike jittering’ is applied during training. In this approach, the training procedure shifts spikes
 randomly in time, up to 2 bins before or after their original time bin, prior to modeling the data.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.06.487388doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.06.487388

 Alignment Model Training & Hyperparameters
 Since we must compare data distributions from the first day to distributions from subsequent days when performing
 alignment, the NoMAD computational graph must contain two data flow pathways. The first pathway sends data from the
 first day directly through the core LFADS model. The second pathway sends data from a subsequent day through an
 aligner and then through the same LFADS model as the first day.

 After training the LFADS model for Day 0, we trained the linear read-in matrix, the alignment network (2-layer Dense
 network with ReLU activations, and identity initialization), the linear readout matrix from generator states to factors, and
 the linear readout matrix from LFADS factors to inferred firing rates for subsequent sessions. All remaining model
 components had weights that were held fixed.

 For the base Day 0 LFADS model (without the alignment network), and Day K model (which includes the alignment
 network), we separately obtained the distribution of the samples from each dimension of the factors for all time points, and
 across the entire batch of data. We then calculated the Kullback-Leibler Divergence (KL cost) between these two
 full-dimensional distributions assuming they follow Multivariate Normal (Gaussian) distributions with potential correlations
 between each dimension. Therefore, for the KL calculation we obtained the mean () and covariance matrices (µ ~ (0 , 1)

) of the two m -dimensional distributions (N 0 , N K) and used them to calculate the KL divergence through: Σ ~ (0 , 1)

 𝐷
 𝐾𝐿

(𝑁
 0
 || 𝑁

 𝐾
) = 1

 2 (𝑡𝑟 (Σ
 𝐾

− 1 Σ
 0
) + (µ

 𝐾
 − µ

 0
) 𝑇 Σ

 𝐾
− 1 (µ

 𝐾
− µ

 0
) − 𝑚 + 𝑙𝑛 (

 𝑑𝑒𝑡 Σ
 𝐾

 𝑑𝑒𝑡 Σ
 0

))

 Reconstruction cost is also applied to model training as described in the original LFADS paper.

 We used the Adam optimizer with gradient clipping to optimize the total alignment training loss. Total loss is obtained by a
 weighted sum of the above KL cost and reconstruction cost. During the training the learning rate was annealed, i.e., it was
 decreased through multiplication by a constant factor of 0.95 every time there was no improvement in the validation loss
 for a certain number of training epochs. The training procedure stops when validation loss has not shown any
 improvement for a fixed number of consecutive epochs. We selected the model weights corresponding to the lowest
 validation loss as the final model weights for inference.

 Hyperparameters used for NoMAD Day K training are shown in Table 4.

 Table 4 . NoMAD hyperparameters.

 hyperparameter value

 Initial learning rate 2e-3

 Batch size 300

 NLL cost weight 10

 NLL ramping epochs 100

 KL ramping epochs 10

 KL weight on initial
 conditions

 1e-4

 KL weight on controller
 outputs

 1e-4

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.06.487388doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.06.487388

 Comparisons
 Degenhart et al., 2020 Aligned Factor Analysis (FA) Approach
 The Degenhart et al. algorithm uses the following high-level procedure. First, they fit a “Baseline Stabilizer” on the initial
 data, retaining some number of latents. This relies on factor analysis, which is not guaranteed to converge to an optimal
 representation. Thus their approach fits multiple FA models with random initialization, and they select the model with the
 highest log-likelihood. After fitting the baseline stabilizer, they also fit the data to be aligned with an FA model (same
 procedure as step 1). Next, they identify stable loading rows between the two models. This consists of iteratively trying to
 align the two loading matrices. After each alignment, they identify rows that are the most different after each alignment,
 and remove them. Finally, they learn the optimal orthonormal transformation to align the identified stable rows (i.e., solving
 the “Procrustes problem”). For our comparisons, we used the following parameters:

 Table 5. Degenhart et al., 2020 comparison hyperparameters.

 parameter value

 Latent dimensionality 10

 Number of FA models to fit 5

 Maximum number of EM iterations to fit FA 100000

 EM stopping criteria 0.00001

 Minimum private variance threshold 0.1

 Number of rows of loading matrix to use for alignment 90

 Alignment L2 norm threshold 0.01

 Based on preliminary data, smoothing binned spike data prior to alignment with this approach improves performance.
 Therefore, we use 20ms binned spike data smoothed with a 40ms Gaussian kernel as input data to this method. Only
 data from within behavioral trials is used to train this method, and behavioral trials containing outliers as determined in
 Behavioral Outlier Removal were discarded.

 Adversarial Domain Adaptation Network (ADAN)
 This method begins by fitting an autoencoder to reproduce smoothed binned spiking data and an RNN decoder to predict
 force (isometric monkey) or cursor velocity (kinematic monkey) activity from the manifold. To ensure a good Day 0 fit, we
 train this autoencoder using 5-fold cross validation and select the model with the best force R 2 . Then, ADAN is trained in a
 method similar to that of generative adversarial networks (GANs). A discriminator network is an autoencoder that acts to
 maximize the difference between the neural reconstruction losses on the two days. The distribution alignment module (the
 generator) works against the discriminator by minimizing the neural reconstruction losses on Day K. This results in
 alignment of the Day K manifold to the Day 0 manifold. We use the following parameters detailed in Table 6 to train this
 method:

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.06.487388doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.06.487388

 Table 6 . ADAN comparison hyperparameters.

 parameter value

 Decoder latent dimensionality 10

 Decoder batch size 64

 Decoder epochs 400

 Decoder learning rate 1e-3

 Decoder steps 4

 Decoder layers 1

 ADAN epochs 200

 ADAN batch size 4

 ADAN discriminator learning rate 5e-5

 ADAN generator learning rate 1e-4

 As input data to this method, we use 20ms binned spiking data smoothed with a 40ms Gaussian kernel. Only data from
 within behavioral trials is used to train this method and behavioral trials with outliers are discarded (see Behavioral Outlier
 Removal).

 Static Decoder
 Binned spikes (20ms bins) were smoothed with a 40ms Gaussian kernel. A decoder was trained on the Day 0 smoothed
 spikes. This fixed decoder was applied to the Day K smoothed spikes and evaluated.

 Neural Decoding
 Wiener Filter
 For both the monkey kinematic and isometric datasets, prediction of behavioral output was done using a Wiener filter.
 Wiener filters predict the current value of an output signal using previous timesteps, as defined by:

 𝑦 [𝑡] =
 𝑖 = 0

 𝐼 − 1

∑ 𝑤
 𝑖
 𝑥 [𝑡 − 𝑖]

 where y[t] is the output signal at time t , x[t] is the input signal at time t , w i is the filter coefficient, and I is the number of
 previous samples to use for decoding. In our decoder, the input signal x is the (aligned) manifold, y is the behavioral
 output to predict, and I was set to 3 time bins of history. The weights are fit using a matrix formation of the above equation:

 𝑊 = (𝑋 𝑇 𝑋 + 𝑅 𝑇 𝑅)− 1 𝑋 𝑇 𝑦

 where W is a matrix of filter coefficients, X represents the predictor data with history and bias, and y represents the output
 signal. R represents a diagonal matrix with the L2 regularization constant filling the diagonal. The bias term is not
 regularized and therefore its diagonal entry is set to zero.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.06.487388doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.06.487388

 The L2 regularization aims to avoid decoder overfitting by penalizing solutions with large individual weights. L2
 regularization values are obtained using 10-fold cross validation. We sweep a range of 20 values spanning 1e1 to 1e5 in
 logspace. For each value, we train and test a Wiener filter using 10-fold cross validation, testing the decoder on a held-out
 fold. The optimal regularization value was selected based on which value yielded the highest performance metric. Final
 performance was reported on the held out fold.

 As input to the Wiener Filter, we use the generator states (x) and behavior (y). Each trial was represented as a window
 250ms before to 500ms after movement onset. For each trial, the movement onset point was calculated using the period
 250ms before the go cue to 750ms after the go cue. We first searched within this time period to identify the point at which
 the cursor reaches its maximum speed. From that point, we searched backwards in time to identify the point at which the
 cursor last reached 20% of its maximum speed. In parallel, we searched forward in time, beginning at the go cue, to find
 the point at which the cursor first reached 20% of its maximum speed. These two points should be consistent—if not, it
 indicates a trial in which the monkey started a movement, stopped, and then started again. We rejected trials with
 inconsistent movement onset calculations. We further rejected trials in which the backward move onset (last time the
 cursor reaches 20% of max speed) occurred before the point at which the target is displayed—this typically indicated that
 the monkey had not yet begun its movement in the time period analyzed, potentially due to inattention. While these trial
 rejections have minor effects on the analysis, we performed them to ensure the decoding metrics were a consistent and
 robust indicator of NoMAD performance.

 Only trials for which the monkey successfully completed the trial and movement onset was successfully calculated were
 considered.

 Wiener Filter Metric
 The accuracy of neural decoding was measured using R 2 , defined as:

 𝑅 2 (𝑦 , 𝑦
^
) = 1 − 𝑑 = 1

 𝐷

∑
 𝑖 = 1

 𝑁

∑ (𝑦
 𝑖 , 𝑑

^
 − 𝑦

 𝑖 , 𝑑
) 2

 𝑑 = 1

 𝐷

∑
 𝑖 = 1

 𝑁

∑ (𝑦
 𝑖 , 𝑑

 − 𝑦
 𝑑

‾) 2

 where D is the number of dimensions of the predicted output, N is the number of data samples, y i,m is an actual data

 sample for one dimension, is the mean of the actual signal in one dimension, and is a predicted data sample for 𝑦
 𝑑

‾ 𝑦
 𝑖 , 𝑑

^

 one dimension. In practice, we used the function sklearn.metrics.r2_score(y, y_hat,
 multioutput=’variance_weighted’) 42 .

 Manifold Visualizations
 In order to create visualizations of the manifold at different stages of the alignment process, we used demixed principal
 components analysis (dPCA). 34 We applied regularized dPCA on the Day 0 manifold. We restricted dPCA fitting to
 successful trials within the window 250 ms before to 500 ms after target onset. After learning the Day 0 dPCA
 transformation, we applied the same transformation to the Day K manifold using both the Day 0 dPCA weights and the
 Day 0 mean offsets.

 Visualizations were created by plotting the top condition-independent components and the top two condition-dependent
 components, as ranked by variance explained. This allows for the comparison of Day 0 to Day K before and after
 alignment without dependence on neural decoding or behavior.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.06.487388doi: bioRxiv preprint

https://www.zotero.org/google-docs/?JX9bQs
https://www.zotero.org/google-docs/?TH7A9b
https://doi.org/10.1101/2022.04.06.487388

 Calculating Decline in Decoding Performance Over Months
 To quantify how much the decoding performance declined over the available timespan, we computed the slope of the
 median performance within each 5-day bin using linear regression (sklearn.linear_model.LinearRegression 42).
 We fixed the y-intercept of each regression model at the median value of the within-day decoder performance. This gives
 a value in terms of R 2 per day, which we convert to R 2 per month by approximating a month as 30 days (R 2 /month =
 R 2 /day * 30). For the Aligned FA isometric task slope calculation, we exclude the final point as it is a large negative outlier.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.06.487388doi: bioRxiv preprint

https://www.zotero.org/google-docs/?XAoxJx
https://doi.org/10.1101/2022.04.06.487388

