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 Abstract 
 Intracortical  brain-computer  interfaces  (iBCIs)  restore  motor  function  to  people  with  paralysis  by  translating  brain  activity 
 into  control  signals  for  external  devices.  In  current  iBCIs,  instabilities  at  the  neural  interface  result  in  a  degradation  of 
 decoding  performance,  which  necessitates  frequent  supervised  recalibration  using  new  labeled  data.  One  potential 
 solution  is  to  use  the  latent  manifold  structure  that  underlies  neural  population  activity  to  facilitate  a  stable  mapping 
 between  brain  activity  and  behavior.  Recent  efforts  using  unsupervised  approaches  have  improved  iBCI  stability  using  this 
 principle;  however,  existing  methods  treat  each  time  step  as  an  independent  sample  and  do  not  account  for  latent 
 dynamics.  Dynamics  have  been  used  to  enable  high  performance  prediction  of  movement  intention,  and  may  also  help 
 improve  stabilization.  Here,  we  present  a  platform  for  Nonlinear  Manifold  Alignment  with  Dynamics  (NoMAD),  which 
 stabilizes  iBCI  decoding  using  recurrent  neural  network  models  of  dynamics.  NoMAD  uses  unsupervised  distribution 
 alignment  to  update  the  mapping  of  nonstationary  neural  data  to  a  consistent  set  of  neural  dynamics,  thereby  providing 
 stable  input  to  the  iBCI  decoder.  In  applications  to  data  from  monkey  motor  cortex  collected  during  motor  tasks,  NoMAD 
 enables  accurate  behavioral  decoding  with  unparalleled  stability  over  weeks-  to  months-long  timescales  without  any 
 supervised recalibration. 

 Introduction 
 In  people  with  paralysis,  intracortical  brain–computer  interfaces  (iBCIs)  provide  a  pathway  to  restoring  voluntary 
 movements  by  interfacing  directly  with  the  brain  to  translate  movement  intention  into  action  1,2  .  iBCIs  use  implanted 
 electrodes  to  record  activity  from  populations  of  neurons  and  decoding  algorithms  to  translate  the  recorded  activity  into 
 control  signals  for  external  devices.  In  recent  years,  iBCIs  have  attained  impressive  performance  in  a  range  of 
 applications,  including  the  control  of  anthropomorphic  robotic  arms,  stimulation  of  paralyzed  muscles  to  enable  reaching 
 and grasping, and even rapid decoding of handwriting  3–6  . 

 Despite  these  impressive  demonstrations,  a  key  challenge  limiting  the  clinical  deployment  of  iBCIs  is  their  robustness  to 
 neuronal  recording  instabilities  that  cause  changes  in  the  particular  neurons  being  monitored  over  time  7–10  .  Recording 
 instabilities  are  attributed  to  a  variety  of  phenomena,  including  shifts  in  electrode  positions  relative  to  the  surrounding 
 tissue,  electrode  malfunction,  cell  death,  and  physiological  responses  to  foreign  materials.  As  the  particular  neuronal 
 population  being  monitored  changes,  so  does  the  relationship  between  recorded  neural  signals  and  intention,  which 
 creates  a  non-stationary  input  to  the  iBCI’s  decoder.  Without  appropriate  compensation,  iBCI  use  must  be  periodically 
 interrupted  to  perform  supervised  decoder  recalibration,  in  which  neural  data  are  collected  while  subjects  attempt 
 pre-specified  movements.  This  process  can  be  required  once  or  even  multiple  times  per  day  to  maintain 
 high-performance  2  ,  obstructing  activities  of  daily  living  and  creating  additional  burdens  for  iBCI  users.  Because  the 
 reliability  of  assistive  devices  is  a  key  predictor  of  real-world  use  11  ,  iBCI  instabilities  are  often  cited  as  motivation  for 
 alternate  neural  interfaces  such  as  electrocorticography,  which  offer  more  limited  but  potentially  more  stable 
 performance  12  . 
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 Automatic,  unsupervised  decoder  recalibration  would  provide  a  means  to  compensate  for  neural  interface  instabilities 
 using  only  neural  data  collected  during  normal  iBCI  device  use,  thus  preserving  performance  without  interrupting  use.  One 
 promising  avenue  to  unsupervised  recalibration  is  the  use  of  latent,  network-level  properties  of  neural  activity  13–16  .  In 
 particular,  a  few  recently-developed  iBCIs  leverage  latent  manifolds,  revealed  by  the  patterns  of  co-activation  within  the 
 neuronal  population,  as  the  foundation  for  a  more  stable  neural  interface  9,17,18  .  Manifold-based  iBCI  decoders  use  a 
 two-stage  approach:  first,  a  neurons-to-manifold  mapping  that  transforms  recorded  neuronal  population  activity  onto  the 
 underlying  manifold  and  second,  a  manifold-to-behavior  mapping  that  transforms  manifold  activity  into  intended 
 movements  17–19  .  Because  manifolds  are  independent  of  the  specific  neurons  being  recorded,  different  sets  of  recorded 
 neurons  can  be  mapped  onto  the  same  manifold  17–21  .  And  because  these  manifolds  have  a  consistent  relationship  with 
 behavior  extending  even  to  years  19,21  ,  stable  decoding  can  be  achieved  by  properly  recalibrating  the  neurons-to-manifold 
 mapping without changing the manifold-to-behavior mapping. 

 A  complementary  avenue  to  improve  the  performance  and  stability  of  iBCI  decoders  is  to  incorporate  latent  dynamics,  or 
 the  rules  that  govern  the  evolution  of  population  activity  over  time  22  .  Models  of  neural  population  activity  that  incorporate 
 dynamics  have  already  shown  promise  for  improving  iBCI  performance,  as  they  produce  representations  that  are 
 informative  of  behavior  on  a  moment-to-moment  basis  and  millisecond  timescale  20,23–26  .  Dynamics  may  also  be  useful  for 
 improving  stability  because  dynamics,  like  manifolds,  have  a  stable  relationship  with  behavior  for  months  to  years  and  are 
 independent  of  the  specific  population  of  neurons  being  monitored  within  a  given  area  20,21  .  To  date,  however,  unsupervised 
 efforts to stabilize iBCI decoding have not incorporated this temporal information. 

 Here  we  test  Nonlinear  Manifold  Alignment  with  Dynamics  (NoMAD),  a  novel  platform  for  unsupervised  stabilization  of 
 iBCI  decoding.  NoMAD  is  a  manifold-based  iBCI  decoder  that  incorporates  a  recurrent  neural  network  model  of  dynamics. 
 As  instabilities  cause  changes  in  the  recorded  neural  population,  the  learned  dynamics  model  can  be  used  to  help  update 
 the neurons-to-manifold mapping without knowledge of the subject’s behavior. 

 We  applied  NoMAD  to  recordings  from  monkey  primary  motor  cortex  (M1)  collected  during  motor  tasks  in  sessions  that 
 span  multiple  weeks  and  compared  it  to  two  previous  state-of-the-art  stabilization  approaches  that  use  latent  manifolds. 
 When  applied  to  recordings  from  a  monkey  performing  a  two-dimensional  isometric  wrist  force  task,  NoMAD  achieved 
 strikingly  higher  decoding  performance  compared  to  previous  approaches  without  noticeable  degradation  over  3  months. 
 Further,  when  applied  to  recordings  from  a  behavior  with  very  different  output  dynamics—a  center-out  reaching  task,  with 
 sessions  spanning  5  weeks—NoMAD  again  achieved  substantially  higher  decoding  performance  and  stability  than 
 previous  approaches.  These  results  demonstrate  that  unsupervised  decoder  recalibration  using  dynamics  can  greatly 
 extend the time spans over which stable iBCI use is feasible and provides a new pathway to more practical iBCIs. 

 Results 
 Leveraging manifolds and dynamics to stabilize iBCI decoding 
 We  begin  with  a  conceptual  schematic  (  Fig.  1  ).  As  with  previous  manifold  decoding  approaches  17,18,27,28  ,  our  approach 
 starts  with  a  supervised  training  dataset  containing  neural  activity  and  movement  information  from  an  initial  recording 
 session,  which  we  call  Day  0.  We  can  use  this  dataset  to  characterize  the  manifold  and  dynamics,  while  also  training  a 
 decoder  to  map  manifold  activity  onto  behavior.  In  some  later  recording  period,  termed  Day  K,  neural  recording 
 instabilities  have  changed  the  specific  neurons  that  are  monitored,  so  electrode  channels  may  now  have  a  different 
 relationship  to  the  underlying  manifold  and  dynamics.  Thus,  the  original  decoding  axis  no  longer  reflects  the  relationship 
 between  the  manifold  and  behavior.  As  with  other  unsupervised  methods,  the  high-level  goal  of  NoMAD  is  to  compensate 
 for  recording  instabilities  by  learning  a  mapping  from  the  Day  K  data  onto  the  original  manifold,  allowing  the  original  Day  0 
 decoder  to  be  used.  Unlike  previous  methods,  NoMAD  uses  information  about  the  temporal  evolution  of  neural  activity  to 
 help learn this mapping. 
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 Fig.  1  |  Manifold  alignment  with  dynamics  can  stabilize  representations  of  neural  activity  despite  changes  in  recording 
 conditions.  We  begin  with  a  supervised  training  dataset  containing  neural  activity  and  movement  information  from  an  initial  recording 
 session  (  Day  0  ).  For  a  3-electrode  example  (electrodes  E  1  ,  E  2  ,  E  3  ),  population  activity  exhibits  underlying  manifold  structure  in  a  3-D 
 neural  state  space  in  which  each  axis  corresponds  to  the  firing  rate  from  a  given  electrode.  The  evolution  of  population  activity  in  time 
 exhibits  consistent  dynamics  (vector  field).  The  relationship  between  manifold  activity  and  behavior,  for  simple  linear  decoding  of  a 
 hypothetical  1-D  behavioral  variable,  is  represented  by  a  Decoding  axis  ,  which  is  assumed  to  be  consistent  over  time.  In  a  subsequent 
 recording  session  (  Day  K  ),  instabilities  lead  to  changes  in  the  recorded  neural  population,  and  the  Day  K  activity  (E  1  ’,  E  2  ’,  E  3  ’)  has  a 
 different  relationship  to  the  underlying  manifold,  dynamics,  and  decoding  axis  (schematized  by  a  rotation).  With  NoMAD,  our  goal  is  to 
 learn  a  mapping  from  the  Day  K  neural  activity  to  the  original  manifold  and  dynamics  in  an  unsupervised  manner.  This  allows  the 
 original decoding axis to be applied to accurately decode behavior. 

 Adapting the LFADS architecture for manifold alignment using NoMAD 
 NoMAD  models  dynamics  using  latent  factor  analysis  via  dynamical  systems  (LFADS;  Fig.  2a  ),  a  modification  of  standard 
 sequential  variational  autoencoders  (VAEs)  29–31  which  has  been  previously  detailed  20,29,32  .  Briefly,  LFADS  approximates  the 
 dynamical  system  underlying  an  observed  neural  population  using  a  recurrent  neural  network  (RNN;  the  “Generator”)  that 
 receives  a  sequence  of  inferred  inputs.  Additional  RNNs  encode  the  initial  state  of  the  dynamical  system  and  infer  the 
 sequence  of  inputs  to  the  Generator.  The  model  outputs  firing  rate  predictions  for  the  observed  neurons  through  a  linear 
 readout  from  the  Generator—this  readout  sets  the  relationship  between  the  learned  manifold  and  the  high-dimensional 
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 neural  activity  (i.e.,  it  orients  the  manifold  within  the  high-dimensional  neural  state  space).  In  standard  LFADS,  the  model 
 training  objective  is  to  maximize  a  lower  bound  on  the  marginal  likelihood  of  the  observed  spiking  activity,  given  the  firing 
 rates  output  by  the  model.  All  weights  in  the  model  are  updated  during  training  via  backpropagation  through  time  and 
 stochastic gradient descent. 

 To  model  the  Day  0  supervised  training  dataset,  we  made  two  main  modifications  to  the  LFADS  architecture.  First,  we 
 added  a  low-dimensional  read-in  matrix  at  the  model’s  input  to  standardize  the  dimensionality  of  the  input  to  the  RNNs. 
 This  read-in  allows  the  same  LFADS  model  to  be  applied  to  Day  K  datasets  despite  changes  in  the  number  of  recorded 
 electrodes  from  Day  0,  such  as  those  which  may  occur  due  to  the  removal  of  channels  with  sparse  activity  by  the 
 experimenter.  Second,  we  added  a  readout  matrix  that  predicts  behavioral  data  from  the  Generator’s  activity,  similar  to 
 methods  that  aim  to  learn  dynamics  that  are  related  to  both  the  recorded  neural  activity  and  measured  behavioral 
 variables  33  .  Behavioral  prediction  serves  as  a  second  training  objective,  adding  a  source  of  information  that  is 
 complementary  to  the  observed  spiking  activity,  which  helps  ensure  that  the  model  converges  to  a  good  solution.  After 
 training  the  LFADS  model,  we  learn  the  manifold-to-behavior  mapping,  i.e.,  a  decoder  that  predicts  the  Day  0  behavioral 
 data  from  the  Day  0  Generator  states.  Separating  training  of  the  LFADS  model  and  Day  0  decoder  allows  the  use  of 
 decoding  architectures  with  more  complexity  and  capacity  than  a  simple,  single-timestep  linear  decoder  (e.g.,  Wiener 
 filters, RNNs, etc.) without impacting the learned manifold or dynamics. 

 Because  neural  dynamics  and  behavior  have  a  stable  relationship  over  months  to  years  20,21  ,  both  the  Day  0  neural 
 dynamics  model  and  decoder  should  be  applicable  to  data  collected  after  the  initial  supervised  dataset.  However,  because 
 recording  instabilities  distort  the  relationship  between  recorded  neurons  and  the  manifold,  we  must  periodically  update  the 
 mapping  between  the  neural  activity  and  the  manifold  through  an  alignment  transformation,  which  fortunately,  can  be  an 
 unsupervised  process.  Once  this  transformation  is  learned,  data  on  a  subsequent  Day  K  can  be  passed  through  the  Day  0 
 dynamics model, such that the Day 0 decoder can be used to predict Day K behavior with high accuracy. 

 To  update  the  Day  K  neurons-to-manifold  mapping  in  NoMAD,  the  weights  of  the  LFADS  RNNs,  including  the  Generator 
 that  expresses  the  latent  dynamics,  are  held  constant,  while  three  other  network  components  are  learned  or  updated  with 
 an  unsupervised  alignment  step:  a  feedforward  alignment  network  that  adjusts  the  input  to  the  RNNs,  the  low-D  read-in, 
 and  the  rates  readout  (  Fig.  2b  ).  During  the  alignment  step,  there  are  two  training  objectives:  1)  minimizing  the  difference 
 between  the  distributions  of  the  Generator  states  on  Day  0  and  Day  K,  and  2)  maximizing  the  likelihood  of  observed  Day 
 K  spiking  activity  given  the  firing  rates  output  by  the  model.  At  each  training  step,  the  Day  0  and  Day  K  Generator  state 
 distributions  are  compared  by  first  approximating  each  by  a  multivariate  normal  distribution  and  then  computing  the 
 Kullback-Leibler  (KL)  divergence  between  those  normal  distributions.  The  multivariate  normal  approximation  focuses  the 
 alignment  process  on  matching  first  and  second  order  statistical  moments  of  the  Generator  state  distributions,  making  the 
 alignment  problem  more  tractable  than  matching  higher  order  statistics.  Model  weights  that  are  adjusted  during  alignment 
 are updated via backpropagation through time and stochastic gradient descent. 

 To  illustrate  how  NoMAD  adjusts  the  manifold  and  dynamics,  we  applied  it  to  twenty  datasets  from  a  monkey  performing 
 an  isometric  force  task,  separated  by  up  to  95  days.  In  this  task,  neural  data  are  recorded  from  a  96-channel  electrode 
 array  in  M1  while  a  monkey  generates  wrist  forces  to  control  an  on-screen  cursor,  with  the  goal  of  reaching  a  target  in  one 
 of  eight  directions  on  each  trial.  We  visualized  the  low-D  structure  of  the  Generator  states  by  finding  a  3-dimensional 
 subspace  via  demixed  principal  component  analysis  (dPCA)  34  .  We  first  fit  dPCA  parameters  to  the  Generator  states 
 inferred  by  the  LFADS  model  from  Day  0  neural  activity.  We  then  applied  those  dPCA  parameters  to  the  Generator  states 
 on  Day  K  across  three  phases  of  unsupervised  NoMAD  alignment:  before  any  training  had  occurred,  after  one  training 
 epoch,  and  after  the  completion  of  training  (  Fig.  2c  ).  By  using  the  same  dPCA  parameters  on  Day  0  and  Day  K,  we  could 
 directly  compare  the  low-D  trajectories  across  Day  0  and  Day  K.  dPCA  reveals  a  structure  underlying  Day  0  activity  that 
 clearly  distinguishes  neural  activity  from  the  8  different  target  conditions.  Prior  to  alignment,  the  low-D  structure  of  the 
 Generator  states  on  Day  K  was  distinct  from  the  structure  on  Day  0,  as  expected.  After  alignment  with  NoMAD,  the  low-D 
 structure on Day K more closely matched Day 0. 
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 Fig.  2  |  Modeling  and  aligning  the  neural  manifold  using  NoMAD.  (a)  We  first  train  an  LFADS  model  on  a  given  reference  Day  0  to 
 estimate  the  manifold  and  dynamics  from  recorded  spiking  activity.  LFADS  models  neural  population  dynamics  using  a  series  of 
 interconnected  recurrent  neural  networks  (RNNs).  All  of  the  model  parameters  are  trained  by  simultaneously  minimizing  the 
 reconstruction  losses  of  the  spiking  activity  (Poisson  negative  log-likelihood)  and  the  recorded  behavior  (mean  squared  error).  (b)  To 
 apply  the  same  LFADS  model  on  a  later  Day  K,  we  freeze  the  parameters  of  the  trained  LFADS  model,  and  introduce  a  feedforward 
 “Alignment  network”  to  transform  the  new  day’s  spiking  activity  to  be  compatible  with  the  previously  trained  LFADS  model.  The 
 Alignment  network  is  trained  by  simultaneously  minimizing  the  KL  divergence  between  the  distributions  of  the  Day  0  and  Day  K 
 Generator  states  and  the  reconstruction  loss  of  the  spiking  activity  (Poisson  NLL).  (c)  Dimensionality  reduction  applied  to  the  Generator 
 states  for  Day  0,  and  over  the  course  of  alignment  training  for  data  collected  95  days  later.  Neural  data  were  recorded  from  M1  as  a 
 monkey  performed  an  isometric  force  task.  Colors  indicate  trajectories  for  the  different  target  directions.  Thick  lines  indicate  the  trial 
 average,  and  thin  lines  denote  single  trials  (10  representative  trials  per  condition  are  shown  here).  Initial  estimates  of  Day  95  Generator 
 states  converged  over  training  to  resemble  Day  0  Generator  states,  allowing  the  same  decoder  to  achieve  high  accuracy  force 
 predictions. 
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 NoMAD stabilizes offline decoding during an isometric force task 
 We  applied  NoMAD  to  pairs  of  recording  sessions  from  a  monkey  performing  the  isometric  force  task  over  95  days  (  Fig. 
 3a  ).  Behavioral  decoding  consisted  of  a  Wiener  filter  that  mapped  manifold  activity  onto  the  recorded  2-D  forces  with  high 
 temporal  resolution  (20  ms  time  steps).  The  Day  0  dynamics  model  (LFADS)  and  Day  0  decoder  (Wiener  filter)  were 
 trained  on  a  supervised  dataset  from  a  single  session,  and  we  evaluated  NoMAD’s  ability  to  enable  accurate  and  stable 
 decoding  performance  on  a  different  session  (Day  K)  through  unsupervised  alignment.  We  compared  NoMAD  against  a 
 standard  Wiener  filter  decoder  that  was  trained  using  smoothed  spiking  activity  and  behavior  from  Day  0  and  evaluated  on 
 Day  K  without  any  adjustment  (  Static  decoder  ),  and  also  to  two  state-of-the-art  manifold-based  stabilization  techniques: 
 aligned  factor  analysis  (Aligned  FA)  17  ,  which  is  based  on  linear  dimensionality  reduction,  and  the  adversarial  domain 
 adaptation  network  (ADAN)  18  ,  which  uses  a  neural  network  autoencoder  for  dimensionality  reduction  and  generative 
 adversarial  networks  for  alignment.  We  note  that  NoMAD  alignment  is  completely  unsupervised,  in  that  we  use  all 
 available  data  from  a  session,  including  periods  where  the  monkey  was  inactive.  For  Aligned  FA  and  ADAN,  we  use  only 
 within-trial  data  where  the  monkey  is  active,  to  be  consistent  with  the  original  demonstrations  of  these  methods.  We 
 quantified  Day  K  force  decoding  using  the  coefficient  of  determination  (R  2  ),  i.e.,  the  fraction  of  variance  of  the  recorded 
 force signal on Day K that is predicted by the decoder. We term evaluations with negative R  2  to be decoding failures. 

 To  measure  decoding  stability  across  a  wide  variety  of  recording  conditions,  we  tested  each  method  on  all  pairs  of 
 sessions  (380  pairs;  Fig.  3b  ).  As  expected,  static  decoders  trained  on  a  given  session  failed  to  generalize  to  other 
 sessions.  This  resulted  in  rapid  degradation  of  decoding  performance  over  time,  and  frequent  decoding  failures,  such  that 
 the  median  decoding  performance  was  quite  poor  for  pairs  of  sessions  spaced  less  than  5  days  apart  (R  2  =  0.14),  and 
 negative for pairs spaced further apart (223 decoding failures;  Fig. 3c, d  ). 

 Aligned  FA  achieved  more  stable  decoding  than  the  static  decoder  across  time  (slope  =  -0.13  R  2  /month),  but  with  only 
 moderate  performance  (median  R  2  =  0.59)  and  high  variability.  In  addition,  Aligned  FA  repeatedly  failed  for  most 
 alignments  that  were  initialized  using  particular  sessions  (shown  by  the  black  horizontal  bars  in  the  heatmap),  resulting  in 
 51  decoding  failures.  Separately,  we  also  attempted  to  apply  Aligned  FA  in  a  sequential  fashion,  i.e.,  performing  alignment 
 between  sequential  recording  sessions  to  try  to  maintain  stability  (the  approach  described  in  the  original  study),  but  found 
 that  this  further  decreased  performance  and  increased  variability  (results  not  shown).  ADAN  achieved  greater 
 performance  improvements  (median  R  2  =  0.65)  and  stability  (slope  =  -0.087  R  2  /month),  with  0  decoding  failures.  Yet, 
 performance for individual pairs of sessions was highly variable. 

 Compared  to  these  previous  methods,  NoMAD  achieved  strikingly  higher  performance  (median  R  2  =  0.91)  with  little 
 variability,  no  failures,  and  only  modest  performance  degradation  across  the  3-month  window  (slope  =  -0.033  R  2  /month). 
 These  differences  were  also  evident  when  visualizing  the  decoded  data:  single-trial  forces  decoded  by  NoMAD  were  more 
 consistent with the measured forces than those produced with other methods (  Fig. 3e  ). 
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 Fig.  3  |  NoMAD  enables  stable  offline  decoding  across  months  in  an  isometric  force  task.  (a)  Schematic  of  isometric  force  task. 
 (b)  R  2  of  aligned  force  decoding  for  each  pair  of  datasets  for  all  methods.  (c)  Median  R  2  of  force  decoding  within  each  5-day  bin. 
 Triangles  indicate  points  that  fall  below  the  limit  of  the  y-axis.  (d)  Top:  Percentage  of  decoding  failures  (R  2  <0)  in  5-day  bins.  Bottom: 
 Decoding  performance  as  a  function  of  time  between  sessions.  Black  points  indicate  decoding  performance  for  a  single  pair  of  days. 
 Red  line  is  the  median  within  each  bin  of  width  5  days.  (e)  Left:  Single  trial  force  trajectories,  colored  by  target  location.  Right:  decoded 
 forces for all methods when Day 95 is aligned to Day 0. 

 NoMAD stabilizes offline decoding during an unloaded reaching task 
 To  ensure  that  NoMAD’s  efficacy  extends  beyond  the  isometric  task,  we  also  evaluated  its  performance  on  recording 
 sessions  from  a  monkey  performing  a  center-out  reaching  task  19,35  .  On  each  trial,  a  monkey  used  a  manipulandum  to 
 move  a  cursor  from  the  center  of  a  screen  to  one  of  eight  targets  spaced  equally  around  a  ring  (  Fig.  4a  ).  We  applied 
 NoMAD  to  96  channels  of  data  recorded  from  M1  over  12  sessions  spanning  38  days.  As  in  the  isometric  task,  we  used  a 
 supervised  dataset  to  train  the  Day  0  LFADS  model  and  Wiener  filter  decoder.  We  evaluated  NoMAD  on  a  separate  Day  K 
 dataset  by  performing  unsupervised  alignment  prior  to  applying  the  Day  0  decoder.  We  again  tested  NoMAD’s 
 performance  against  ADAN,  Aligned  FA,  and  a  Static  decoder  on  the  same  data  17,18  .  Day  K  decoding  was  quantified  using 
 the  R  2  between  the  recorded  and  predicted  cursor  velocity  signals,  and  negative  R  2  values  were  again  classified  as 
 decoding failures. 

 We  tested  each  alignment  method  on  all  pairs  of  days  (132  pairs;  Fig.  4b  ).  Static  decoders  again  failed  to  yield  accurate 
 decoding  across  sessions,  with  poor  median  performance  even  for  sessions  separated  by  less  than  five  days  (R  2  = 
 0.022), and primarily negative performance thereafter. A total of 78 pairs of days result in decoder failures (  Fig. 4c  ,  d  ). 

 This  dataset  was  more  challenging  to  align  for  Aligned  FA  and  ADAN  than  was  the  isometric  task.  Aligned  FA  provided 
 some  accuracy  improvement  over  the  static  decoder  (median  R  2  =  0.17).  Again,  there  was  significant  variation  in  decoding 
 performance,  which  resulted  in  53  decoding  failures  and  a  clear  decline  in  performance  (slope  =  -0.64  R  2  /month).  ADAN 
 provided  some  additional  improvement  in  terms  of  accuracy  (median  R  2  =  0.29)  and  stability  (slope  =  -0.48  R  2  /month,  15 
 decoding failures), but still showed high variability amongst performance for individual pairs. 
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 NoMAD  exhibited  higher  decoding  performance  (median  R  2  =  0.77)  with  no  decoding  failures  and  less  variability  in 
 performance  over  the  5-week  timespan.  NoMAD  also  showed  less  degradation  in  decoding  accuracy  (slope  =  -0.13 
 R  2  /month).  Visualizations  of  the  decoded  cursor  trajectories  confirmed  that  NoMAD  produces  more  consistent  cursor 
 velocity estimates following stabilization than do other methods (  Fig. 4e  ). 

 Fig.  4  |  NoMAD  enables  stable  offline  decoding  across  5  weeks  in  a  reaching  task.  (a)  Schematic  of  the  center-out  reaching  task. 
 (b)  R  2  of  aligned  cursor  velocity  decoding  for  each  pair  of  datasets  for  all  methods.  (c)  Median  R  2  of  cursor  velocity  within  each  5-day 
 bin.  Triangles  indicate  points  that  fall  below  the  limit  of  the  y-axis.  (d)  Top:  Percentage  of  decoding  failures  (R  2  <0)  in  5-day  bins.  Bottom: 
 Decoding  performance  as  a  function  of  time  between  sessions.  Black  points  indicate  decoding  performance  for  a  single  pair  of  days. 
 Red  line  is  the  median  within  each  bin  of  width  5  days.  (e)  Left:  Single  trial  cursor  trajectories,  colored  by  target  location.  Right:  reach 
 trajectories integrated from the decoded cursor velocity when Day 95 is aligned to Day 0. 

 Discussion 
 We  introduced  NoMAD,  an  unsupervised  manifold  alignment  technique  that  leverages  manifolds  and  their  dynamics  to 
 achieve  stable  decoding  over  long  timespans.  In  our  tests,  NoMAD  improved  both  decoding  accuracy  and  stability  over  95 
 days  in  an  isometric  wrist  task,  and  over  38  days  in  a  reaching  task.  Other  methods  resulted  in  less  decoding 
 improvement  or  marked  performance  degradation  over  time.  By  incorporating  the  temporal  structure  of  the  neural  activity 
 into  the  manifold-alignment  process  via  dynamics,  NoMAD  enables  more  stable  neural  decoding  that  may  require  less 
 frequent BCI recalibration procedures. 

 Relation to Previous Work 
 A  variety  of  strategies  have  been  used  to  reduce  the  reliance  on  supervised  decoder  recalibration  10,17,18,27,28,36  .  One 
 approach  uses  neural  network  decoders  and  months-long  datasets  that  expose  the  decoder  to  a  wide  variety  of  recording 
 instabilities,  to  learn  a  mapping  from  neuronal  population  activity  to  movement  intention  that  is  robust  to  changes  in  the 
 recorded  neurons  10  .  However,  collecting  such  large  supervised  datasets  requires  a  substantial  time  commitment  from  the 
 user  and  is  therefore  challenging  to  perform  clinically.  A  second  strategy,  “semi-supervised”  recalibration,  involves 
 automatically  adapting  the  decoder  on  the  fly  using  a  retrospective  analysis  of  data  collected  during  the  subject’s  normal 
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 use  of  the  iBCI  36  .  For  example,  in  a  setting  with  predefined  targets,  the  neural  activity  preceding  movement  to  a  given 
 target  likely  reflects  the  user’s  intention  to  move  toward  that  target.  This  data  can  then  be  used  to  update  the  decoder, 
 much  like  supervised  decoder  training.  However,  this  strategy  only  works  when  the  user’s  intent  can  be  guessed 
 post-hoc—as  in  BCI  spellers  or  movement  among  a  limited  number  of  predefined  targets—and  is  thus  unlikely  to  scale  to 
 more complex and naturalistic settings. 

 Another  manifold  alignment  approach,  Distribution  Alignment  Decoding,  is  conceptually  similar  to  the  approach  used  here, 
 but  performs  alignment  of  low-dimensional  activity  from  two  datasets  by  doing  a  brute  force  search  of  candidate  rotations 
 in  the  low-D  space  27  .  However,  this  alignment  approach  fails  when  distributions  of  movements  are  symmetric.  Further, 
 when  dimensions  of  neural  activity  scale  beyond  extremely  simple  representations  (e.g.,  beyond  2  or  3  dimensions),  a 
 brute  force  search  quickly  becomes  intractable.  More  recently,  Hierarchical  Wasserstein  Alignment  (HiWA)  improves  on 
 this  approach  using  neural  networks  28  ,  but  relies  on  the  existence  of  discrete  structure,  such  as  clusters  within  the  neural 
 activity that represent similar movements. 

 Our  method  improves  upon  previous  manifold-alignment  efforts  by  incorporating  temporal  constraints  via  nonlinear 
 dynamics  models.  In  addition,  the  method  is  entirely  unsupervised,  in  contrast  to  methods  such  as  canonical  correlation 
 analysis (CCA) and previous methods that exploit dynamics to improve iBCI longevity  19,21  . 

 Limitations 
 A  potential  limitation  of  this  work,  and  other  manifold  alignment  methods,  is  that  it  relies  on  a  stable  relationship  between 
 activity  on  the  neural  manifold  and  behavior  over  time.  While  this  is  a  reasonable  assumption  for  consistent  behaviors  19,20  , 
 it  may  not  be  the  case  if  subjects  are  learning  new  skills.  It  has  been  shown  that  in  the  short  term,  learning  need  not 
 change  the  manifold  37  .  However,  long-term  learning  likely  results  in  manifold-level  changes  38  ,  which  would  presumably 
 affect  the  stability  of  the  relationship  between  manifold  activity  and  behavior.  More  studies  in  this  area  will  help  determine 
 whether manifold-alignment techniques need to account for learning. 

 A  practical  limitation  of  the  approach  is  that  the  NoMAD  alignment  process,  like  most  neural  network  training,  is 
 computationally  demanding.  Thus  without  further  optimization,  for  implanted  medical  devices  with  severe  power 
 constraints, the alignment process is best run on external computing hardware. 

 A  limitation  of  our  current  tests,  like  all  other  tests  of  manifold  stabilization  approaches  to  date,  is  the  consistency  of 
 behavior  in  the  datasets  used.  The  behavioral  consistency  achieved  in  the  lab  setting  assured  that  the  datasets  were  rich 
 enough  and  similar  enough  to  be  alignable.  In  practical  applications,  a  key  assumption  of  all  stabilization  approaches  is 
 that  BCI  decoding  performance  will  be  stable  for  certain  time  periods,  such  that  data  can  be  collected  during  use  of  the 
 BCI  and  periodic  alignment  can  be  performed  to  maintain  manifold  stability.  If  decoding  performance  is  stable  for 
 reasonable  time  periods  without  alignment  (e.g.,  many  hours),  this  could  ensure  that  the  datasets  cover  rich  enough  and 
 similar  enough  behavioral  distributions  (e.g.,  by  spanning  large  enough  regions  of  behavioral  space)  for  successful 
 periodic alignment. 

 Potential Future Applications 
 In  this  work  we  test  the  NoMAD  approach  with  particularly  rigorous  constraints,  specifically:  1)  the  alignment  process  must 
 be  completely  unsupervised  (i.e.,  cannot  incorporate  any  behavioral  information),  and  2)  only  a  small  (minutes-long)  initial 
 supervised  training  dataset  is  used  to  calibrate  the  model.  Even  with  these  requirements,  we  found  that  NoMAD  could 
 stabilize  decoding  performance  for  many  weeks  to  months.  However,  these  constraints  could  clearly  be  relaxed  in  a 
 practical  application.  For  example,  assuming  periods  of  reasonable  decoding  stability,  data  collected  during  BCI  use 
 comes  with  an  inherent  set  of  behavioral  labels  (i.e.,  we  know  how  the  subject  was  using  the  BCI),  and  this  information 
 could  be  incorporated  to  guide  the  alignment  process.  Similarly,  as  more  and  more  datasets  are  collected  during  BCI  use 
 for  a  given  subject,  one  could  train  an  aggregated  model  that  spans  those  datasets  (similar  to  previous  work  10,20  ),  which 
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 would  provide  decoders  that  become  inherently  more  stable  as  more  data  is  collected,  thus  lessening  the  need  for 
 frequent recalibration. 

 We  note  that  while  the  current  work  focuses  on  spiking  activity  recorded  via  intracortical  electrode  arrays,  this  is  not  an 
 inherent  limitation  of  the  approach.  Indeed,  LFADS,  upon  which  NoMAD  is  based,  has  been  applied  successfully  to 
 improve  behavioral  state  classification  from  electrocortographic  (ECoG)  recordings  40  ,  which  suggests  that  the  NoMAD 
 approach could be made to generalize to other BCI recording modalities and signal sources. 

 An  open  neuroscientific  question  is  the  degree  of  similarity  in  manifold  structure  and  dynamics  across  behaviors.  This 
 question  has  profound  implications  for  building  BCIs  that  generalize  across  behaviors.  Recent  studies  suggest  that 
 different  behaviors  may  occupy  distinct  manifolds  41  .  As  such,  BCIs  that  rely  on  manifold  structure  may  require  different 
 mappings  from  manifold  activity  to  behavior,  and  would  need  to  adjust  their  decoding  depending  on  the  manifold  or 
 manifolds  that  are  currently  occupied.  This  also  affects  stabilization  strategies—to  date,  manifold-based  stabilization 
 methods  have  been  tested  only  on  datasets  containing  single  behaviors.  However,  solutions  to  address  the  multiple 
 manifold  scenario  exist,  including  labeling  data  collected  during  BCI  use  by  the  behavior  that  was  being  performed,  and 
 using that information to guide alignment. 
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 Methods 
 Monkey Isometric Task 
 Monkey  J  was  trained  to  operate  a  2D  isometric  wrist  force  device.  The  monkey’s  left  arm  was  positioned  in  a  splint  to 
 immobilize  the  forearm  in  an  orientation  midway  between  supination  and  pronation  (with  the  thumb  upwards).  A  small  box 
 was  placed  around  the  monkey’s  open  left  hand,  incorporating  a  six-axis  load  cell  aligned  with  the  wrist  joint.  The  box  was 
 padded  to  comfortably  constrain  the  monkey’s  hand  and  minimize  its  movement  within  the  box.  The  monkey  controlled  the 
 position  of  a  cursor  displayed  on  a  monitor  by  the  force  exerted  on  the  box.  Flexion  and  extension  force  moved  the  cursor 
 right  and  left,  respectively,  while  forces  along  the  radial  and  ulnar  deviation  axis  moved  the  cursor  up  and  down.  Prior  to 
 placing  the  monkey’s  hand  in  the  box,  the  force  was  nulled  in  order  to  place  the  cursor  in  the  center  target.  Targets  were 
 displayed either at the center of the screen (zero force), or equally-spaced along a ring around the center target. 

 The  monkey  performed  a  center-out  task  that  began  with  the  appearance  of  the  center  target.  The  monkey  was  allowed 
 two  seconds  to  move  to  the  center  target  and  was  required  to  hold  for  a  time  randomly  chosen  from  a  uniform  distribution 
 between  0.2s  and  1.0s.  A  successful  center  hold  triggered  the  appearance  of  one  of  eight  possible  outer  targets,  chosen 
 in  a  block-randomized  fashion.  The  monkey  was  allowed  another  two  seconds  after  target  onset  to  move  the  cursor  to  the 
 outer  target.  The  required  hold  time  for  the  outer  target  was  0.8s.  Successful  trials  ended  with  the  delivery  of  a  liquid 
 reward.  Failure  to  reach  a  target  within  the  allowed  two  seconds  or  to  remain  within  a  target  as  required,  resulted  in  an 
 aborted (center target) or failed (outer target) trial. Successive trials were separated by a two-second inter-trial interval. 

 Monkey Reaching Task 
 Monkey  C  was  trained  to  make  reaching  movements  using  a  planar  manipulandum  in  a  two-dimensional  center-out 
 manner.  To  begin  each  trial,  the  monkey  moved  his  hand  to  the  center  of  the  workspace.  After  a  waiting  period,  the 
 monkey  was  presented  with  one  of  eight  equally  spaced  outer  targets,  arranged  in  a  circle  and  selected  uniformly  at 
 random.  The  monkey  was  trained  to  hold  for  a  variable  delay  period,  after  which  he  received  an  auditory  go  cue.  After  the 
 go  cue,  the  monkey  had  1s  to  reach  the  outer  target  and  hold  within  the  target  for  0.5s.  A  successful  trial  led  to  a  liquid 
 reward.  The  cursor  position  was  recorded  at  1kHz  using  joint  encoders.  Timing  events  such  as  go  cues  were  logged 
 digitally.  This  data  was  previously  published  in  Perich  et  al.,  Neuron  2018  and  Gallego,  et  al.,  Nature  Neuroscience 
 2020  19,35  . 

 Monkey Surgical Implants 
 After  training  animals  to  perform  the  tasks,  a  96-channel  microelectrode  array  with  1.5mm-long  electrode  shanks 
 (Blackrock  Microsystems,  Salt  Lake  City,  Utah)  was  implanted  into  the  hand  area  of  primary  motor  cortex  (M1).  Prior  to 
 implanting  the  array,  the  hand  area  of  M1  was  identified  intraoperatively  through  sulcal  landmarks  and  by  stimulating  the 
 surface of the cortex to elicit twitches of the wrist and hand muscles. 

 Data Collection 
 Collection 
 Cortical  data  was  collected  using  the  Cerebus  data  acquisition  system  from  Blackrock  Microsystems.  Raw  cortical  data 
 was  collected  at  30kHz  and  filtered  with  a  250Hz  high-pass  filter.  Timestamps  of  when  the  filtered  data  passed  below  a 
 provided  threshold  were  recorded  as  threshold  crossings,  commonly  also  called  spikes.  This  process  was  all  done  using 
 software on the Cerebus system. 

 Force  data  for  the  Isometric  Task  was  collected  at  2kHz  using  the  Cerebus  analog  inputs.  Manipulandum  joint  data  for  the 
 Reaching  Task  was  collected  using  a  NI  DAQ  card  connected  to  a  Mathworks  XPC  system  that  controlled  the  task.  The 
 XPC  system  calculated  the  endpoint  coordinates  of  manipulandum,  then  sent  the  coordinates  to  the  Cerebus  through  a 
 series of digital packets. 
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 Binning 
 The  data  was  binned  into  1ms  segments.  For  the  threshold  crossings,  the  number  of  spikes  per  bin  was  counted.  For  the 
 force  and  manipulandum  position  data,  the  data  was  filtered  and  downsampled  to  1kHz.  The  cortical  and  task  bins  were 
 aligned in time. 

 Data Preprocessing 
 We apply the following preprocessing steps to the data for all methods compared: 

 Resampling 
 In  order  to  resample  the  data  to  larger  bin  sizes  than  originally  provided  (e.g.  to  work  with  20ms  bins  from  1ms  bins),  we 
 must  handle  both  spiking  data  and  continuous-valued  data.  For  spiking  data,  we  aggregate  bins  by  summing  the  number 
 of  spikes.  For  continuous-valued  data,  we  apply  a  Chebychev  filter  (order  =  500)  for  anti-aliasing,  and  then  downsample 
 the data to the appropriate sampling rate. 

 Highly Correlated Channel Removal 
 In  order  to  prevent  overfitting  to  correlated  noise  events  across  channels,  we  remove  channels  that  are  involved  in  many 
 high  correlations  with  other  channels.  We  first  compute  the  cross  correlations  between  all  pairs  of  channels.  We  set  a 
 threshold  above  which  we  want  to  remove  correlations.  For  the  monkey  datasets,  we  set  a  threshold  of  0.2  (computed 
 when the data is in 1ms bins). We remove any channel that is involved in a correlated pair above this threshold. 

 Behavioral Outlier Removal 
 For  monkey  datasets  with  continuous  data  variables  (e.g.  force,  cursor  position),  behavior  was  evaluated  for  values  that 
 fall  far  outside  of  the  distribution  of  values  for  a  typical  trial.  These  outlier  values  can  lead  to  errors  in  training  the 
 behavioral  LFADS  models,  comparison  models,  and  decoders.  We  determined  cutoffs  for  removing  values  that  were 
 applied  to  all  datasets  during  dataset  loading.  Force  values  are  in  units  of  voltage  directly  from  the  load  cell,  and  cursor 
 position values are in terms of the handle position in units of distance. These cutoffs are shown in Table 1. 

 Table 1  . Behavioral cutoffs for outlier removal. 

 Monkey  Behavioral Variable  Lower Bound, X  Upper Bound, X  Lower Bound, Y  Upper Bound, Y 

 Isometric  Force (mV)  -1500  800  -1100  600 

 Isometric  dF/dt (mV/t)  -100  100  -100  100 

 Reaching  Cursor position (cm)  0.5  1.5  -1.1  -0.25 

 Reaching  Cursor velocity (cm/t)  -0.025  0.025  -0.025  0.025 

 The following preprocessing step was incorporated into the NoMAD architecture only: 

 Normalization 
 To  account  for  large  changes  in  the  firing  rates  of  individual  channels  across  days,  we  normalized  each  channel  to  have 
 zero  mean  and  unit  standard  deviation.  On  the  continuous  spiking  data,  we  first  smooth  the  data  with  a  20ms  Gaussian 
 kernel.  On  the  smoothed  spiking  data,  we  compute  a  per-channel  mean  and  standard  deviation.  These  means  and 
 standard  deviations  are  saved  for  every  day  so  that  they  can  be  applied  to  the  LFADS  input  spiking  data  (not  smoothed) 
 before  the  low  dimensional  read-in  layer.  Non-normalized  input  data  is  maintained  so  that  reconstruction  cost  can  be 
 computed on binned spikes. 
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 NoMAD Architecture and Parameters 
 The  NoMAD  architecture  consists  of  two  stages:  fitting  an  initial  core  Day  0  LFADS  model  on  training  data  from  an  initial 
 day and aligning that model to data from a subsequent Day K. 

 Day 0 Model Architecture 
 The  LFADS  model  has  been  detailed  previously  20,29,32  .  Briefly,  LFADS  is  an  instantiation  of  a  variational  autoencoder  (VAE) 
 extended  to  sequences.  An  encoder  RNN  (implemented  using  GRU  units)  takes  as  input  a  data  sequence  X(t),  and 
 produces  as  output  a  conditional  distribution  over  a  latent  code  Z,  Q(Z|X(t)).  In  the  VAE  framework,  an  uninformative  prior 
 P(Z)  on  this  latent  code  serves  as  a  regularizer,  and  divergence  from  the  prior  is  discouraged  via  a  training  penalty  that 
 scales  with  KL(Q(Z|X(t))  ||  P(Z)).  A  data  sample  is  then  drawn  from  Q(Z|X(t)),  which  sets  the  initial  state  of  a  decoder 
 RNN.  This  RNN  attempts  to  create  a  reconstruction  R(t)  of  the  original  data  via  a  low-dimensional  set  of  factors  F(t). 
 Specifically,  the  data  X(t)  are  assumed  to  be  samples  from  an  inhomogeneous  Poisson  process  with  underlying  rates  R(t). 
 This  basic  sequential  autoencoder  is  appropriate  for  neural  data  that  is  well-modeled  as  an  autonomous  dynamical 
 system.  In  all  applications  listed,  we  used  the  modified  sequential  autoencoder  that  was  adapted  for  modeling  input-driven 
 dynamical  systems.  This  model  contains  an  additional  controller  RNN,  which  compares  an  encoding  of  the  observed  data 
 with  the  output  of  the  decoder  RNN,  and  attempts  to  inject  a  time-varying  input  U(t)  into  the  decoder  to  account  for  data 
 that cannot be modeled by the decoder’s autonomous dynamics alone. 

 The  LFADS  objective  function  is  defined  as  the  log  likelihood  of  the  data  (given  the  Poisson  process  assumption  above), 
 marginalized  over  all  latent  variables.  This  is  optimized  in  the  VAE  setting  by  maximizing  a  variational  lower  bound  on  the 
 marginal  data  log-likelihood.  In  training,  the  objective  function  is  optimized  using  stochastic  gradient  descent  where  the 
 network  parameters  are  updated  through  backpropagation  through  time.  We  used  the  Adam  optimizer  to  optimize  the 
 objective  function,  and  implemented  gradient  clipping  to  prevent  potential  exploding  gradient  issues.  To  prevent  the 
 potentially  problematic  large  values  in  RNN  state  variables  and  achieve  more  stable  training,  we  also  limited  the  range  of 
 the values in GRU hidden state by clipping values greater than 5 and lower than -5. 

 Day 0 Model Training & Hyperparameters 
 All  experimental  data  is  modeled  without  regard  to  trial  structure,  i.e.  the  optimization  process  is  completely  unsupervised 
 at  all  stages.  To  do  so,  the  continuous  data  (an  entire  session)  is  divided  into  segments  of  length  600  ms,  with  120  ms  of 
 overlap  between  segments.  For  model  validation,  20%  of  these  segments  are  reserved.  The  start  indices  of  each  trial  are 
 stored  so  that  after  training,  model  output  can  be  reassembled.  In  order  to  avoid  artifacts  while  reassembling  the 
 overlapping  segments,  the  overlapping  region  is  linearly  scaled  from  1  to  0  and  added  to  the  corresponding  region  in  the 
 reconstructed  data,  which  is  inversely  linearly  scaled  (0  to  1).  Non-overlapping  portions  of  the  segments  are  concatenated 
 to the array normally. 

 In the Day 0 architecture, a few critical hyperparameters define the model, which we list in Table 2. 

 Table 2  . LFADS Day 0 architecture parameters. 

 parameter  value 

 Low-D Read-In Output Dimensionality  50 

 Encoder RNN Units  100 

 Generator RNN Units  100 

 Controller RNN Units  100 

 Controller Output Dimensionality  4 
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 Factors Dimensionality  30 

 Monkey  datasets  were  fit  using  single  LFADS  models  with  additional  behavioral  readout  matrices.  The  goal  of  the 
 behavioral  readout  matrices  was  to  ensure  that  manifolds  learned  on  Day  0  would  be  highly  predictive  of  behavior.  To  do 
 this,  we  trained  a  matrix  transformation  from  the  generator  states  to  the  continuous-valued  behavior.  For  the  isometric 
 task,  the  behavior  being  predicted  by  the  readout  included  both  force  and  the  derivative  of  force;  for  the  reaching  task,  the 
 behavior included cursor position and velocity. 

 For  these  experiments,  single  LFADS  models  were  trained  on  1  GPU  each.  Training  stopped  when  there  was  no 
 improvement  in  the  performance  for  10  subsequent  generations  or  when  the  learning  rate  reached  a  value  of  1e-6  during 
 the annealing process. 

 We  found  hyperparameters  that  were  able  to  train  models  for  both  the  isometric  and  kinematic  datasets  using  grid 
 searches.  We  performed  a  grid  search  over  a  set  of  values  for  a  single  hyperparameter  for  a  subset  of  isometric  and 
 kinematic  monkey  datasets  to  select  the  best  value  and  repeated  for  all  hyperparameters.  We  then  trained  all  Day  0 
 models for monkey datasets using the hyperparameters in Table 3. 

 Table 3  . LFADS Day 0 model hyperparameters. 

 hyperparameter  value 

 Dropout rate  0.05 

 Coordinated dropout rate  0.3 

 Batch size  1000 

 Initial learning rate  1e-3 

 Learning rate decay  0.95 

 L2 scale  1e-6 

 L2 ramping epochs  100 

 KL scale  1e-44 

 KL ramping epochs  100 

 Behavioral readout learning rate  1e-3 

 Behavioral readout cost scale  0.1 

 Behavioral readout cost ramping epochs  100 

 Data Augmentation 
 In  order  to  prevent  models  from  overfitting  to  individual  spikes  or  fast  oscillations  in  the  data,  a  data  augmentation  strategy 
 for  discrete  data  known  as  ‘spike  jittering’  is  applied  during  training.  In  this  approach,  the  training  procedure  shifts  spikes 
 randomly in time, up to 2 bins before or after their original time bin, prior to modeling the data. 
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 Alignment Model Training & Hyperparameters 
 Since  we  must  compare  data  distributions  from  the  first  day  to  distributions  from  subsequent  days  when  performing 
 alignment,  the  NoMAD  computational  graph  must  contain  two  data  flow  pathways.  The  first  pathway  sends  data  from  the 
 first  day  directly  through  the  core  LFADS  model.  The  second  pathway  sends  data  from  a  subsequent  day  through  an 
 aligner and then through the same LFADS model as the first day. 

 After  training  the  LFADS  model  for  Day  0,  we  trained  the  linear  read-in  matrix,  the  alignment  network  (2-layer  Dense 
 network  with  ReLU  activations,  and  identity  initialization),  the  linear  readout  matrix  from  generator  states  to  factors,  and 
 the  linear  readout  matrix  from  LFADS  factors  to  inferred  firing  rates  for  subsequent  sessions.  All  remaining  model 
 components had weights that were held fixed. 

 For  the  base  Day  0  LFADS  model  (without  the  alignment  network),  and  Day  K  model  (which  includes  the  alignment 
 network),  we  separately  obtained  the  distribution  of  the  samples  from  each  dimension  of  the  factors  for  all  time  points,  and 
 across  the  entire  batch  of  data.  We  then  calculated  the  Kullback-Leibler  Divergence  (KL  cost)  between  these  two 
 full-dimensional  distributions  assuming  they  follow  Multivariate  Normal  (Gaussian)  distributions  with  potential  correlations 
 between  each  dimension.  Therefore,  for  the  KL  calculation  we  obtained  the  mean  (  )  and  covariance  matrices  ( µ    ~    ( 0 ,  1 )

 ) of the two  m  -dimensional distributions (N  0  , N  K  ) and used them to calculate the KL divergence through: Σ    ~    ( 0 ,  1 )
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 Reconstruction cost is also applied to model training as described in the original LFADS paper. 

 We  used  the  Adam  optimizer  with  gradient  clipping  to  optimize  the  total  alignment  training  loss.  Total  loss  is  obtained  by  a 
 weighted  sum  of  the  above  KL  cost  and  reconstruction  cost.  During  the  training  the  learning  rate  was  annealed,  i.e.,  it  was 
 decreased  through  multiplication  by  a  constant  factor  of  0.95  every  time  there  was  no  improvement  in  the  validation  loss 
 for  a  certain  number  of  training  epochs.  The  training  procedure  stops  when  validation  loss  has  not  shown  any 
 improvement  for  a  fixed  number  of  consecutive  epochs.  We  selected  the  model  weights  corresponding  to  the  lowest 
 validation loss as the final model weights for inference. 

 Hyperparameters used for NoMAD Day K training are shown in Table 4. 

 Table 4  . NoMAD hyperparameters. 

 hyperparameter  value 

 Initial learning rate  2e-3 

 Batch size  300 

 NLL cost weight  10 

 NLL ramping epochs  100 

 KL ramping epochs  10 

 KL weight on initial 
 conditions 

 1e-4 

 KL weight on controller 
 outputs 

 1e-4 
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 Comparisons 
 Degenhart et al., 2020 Aligned Factor Analysis (FA) Approach 
 The  Degenhart  et  al.  algorithm  uses  the  following  high-level  procedure.  First,  they  fit  a  “Baseline  Stabilizer”  on  the  initial 
 data,  retaining  some  number  of  latents.  This  relies  on  factor  analysis,  which  is  not  guaranteed  to  converge  to  an  optimal 
 representation.  Thus  their  approach  fits  multiple  FA  models  with  random  initialization,  and  they  select  the  model  with  the 
 highest  log-likelihood.  After  fitting  the  baseline  stabilizer,  they  also  fit  the  data  to  be  aligned  with  an  FA  model  (same 
 procedure  as  step  1).  Next,  they  identify  stable  loading  rows  between  the  two  models.  This  consists  of  iteratively  trying  to 
 align  the  two  loading  matrices.  After  each  alignment,  they  identify  rows  that  are  the  most  different  after  each  alignment, 
 and  remove  them.  Finally,  they  learn  the  optimal  orthonormal  transformation  to  align  the  identified  stable  rows  (i.e.,  solving 
 the “Procrustes problem”). For our comparisons, we used the following parameters: 

 Table 5.  Degenhart et al., 2020 comparison hyperparameters. 

 parameter  value 

 Latent dimensionality  10 

 Number of FA models to fit  5 

 Maximum number of EM iterations to fit FA  100000 

 EM stopping criteria  0.00001 

 Minimum private variance threshold  0.1 

 Number of rows of loading matrix to use for alignment  90 

 Alignment L2 norm threshold  0.01 

 Based  on  preliminary  data,  smoothing  binned  spike  data  prior  to  alignment  with  this  approach  improves  performance. 
 Therefore,  we  use  20ms  binned  spike  data  smoothed  with  a  40ms  Gaussian  kernel  as  input  data  to  this  method.  Only 
 data  from  within  behavioral  trials  is  used  to  train  this  method,  and  behavioral  trials  containing  outliers  as  determined  in 
 Behavioral Outlier Removal  were discarded. 

 Adversarial Domain Adaptation Network (ADAN) 
 This  method  begins  by  fitting  an  autoencoder  to  reproduce  smoothed  binned  spiking  data  and  an  RNN  decoder  to  predict 
 force  (isometric  monkey)  or  cursor  velocity  (kinematic  monkey)  activity  from  the  manifold.  To  ensure  a  good  Day  0  fit,  we 
 train  this  autoencoder  using  5-fold  cross  validation  and  select  the  model  with  the  best  force  R  2  .  Then,  ADAN  is  trained  in  a 
 method  similar  to  that  of  generative  adversarial  networks  (GANs).  A  discriminator  network  is  an  autoencoder  that  acts  to 
 maximize  the  difference  between  the  neural  reconstruction  losses  on  the  two  days.  The  distribution  alignment  module  (the 
 generator)  works  against  the  discriminator  by  minimizing  the  neural  reconstruction  losses  on  Day  K.  This  results  in 
 alignment  of  the  Day  K  manifold  to  the  Day  0  manifold.  We  use  the  following  parameters  detailed  in  Table  6  to  train  this 
 method: 
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 Table 6  . ADAN comparison hyperparameters. 

 parameter  value 

 Decoder latent dimensionality  10 

 Decoder batch size  64 

 Decoder epochs  400 

 Decoder learning rate  1e-3 

 Decoder steps  4 

 Decoder layers  1 

 ADAN epochs  200 

 ADAN batch size  4 

 ADAN discriminator learning rate  5e-5 

 ADAN generator learning rate  1e-4 

 As  input  data  to  this  method,  we  use  20ms  binned  spiking  data  smoothed  with  a  40ms  Gaussian  kernel.  Only  data  from 
 within  behavioral  trials  is  used  to  train  this  method  and  behavioral  trials  with  outliers  are  discarded  (see  Behavioral  Outlier 
 Removal  ). 

 Static Decoder 
 Binned spikes (20ms bins) were smoothed with a 40ms Gaussian kernel. A decoder was trained on the Day 0 smoothed 
 spikes. This fixed decoder was applied to the Day K smoothed spikes and evaluated. 

 Neural Decoding 
 Wiener Filter 
 For  both  the  monkey  kinematic  and  isometric  datasets,  prediction  of  behavioral  output  was  done  using  a  Wiener  filter. 
 Wiener filters predict the current value of an output signal using previous timesteps, as defined by: 

 𝑦 [ 𝑡 ]   =    
 𝑖 = 0 

 𝐼 − 1 

∑  𝑤 
 𝑖 
 𝑥 [ 𝑡 −  𝑖 ]

 where  y[t]  is  the  output  signal  at  time  t  ,  x[t]  is  the  input  signal  at  time  t  ,  w  i  is  the  filter  coefficient,  and  I  is  the  number  of 
 previous  samples  to  use  for  decoding.  In  our  decoder,  the  input  signal  x  is  the  (aligned)  manifold,  y  is  the  behavioral 
 output to predict, and  I  was set to 3 time bins of history. The weights are fit using a matrix formation of the above equation: 

 𝑊    =    ( 𝑋  𝑇  𝑋    +     𝑅  𝑇  𝑅 )− 1  𝑋  𝑇  𝑦 

 where  W  is  a  matrix  of  filter  coefficients,  X  represents  the  predictor  data  with  history  and  bias,  and  y  represents  the  output 
 signal.  R  represents  a  diagonal  matrix  with  the  L2  regularization  constant  filling  the  diagonal.  The  bias  term  is  not 
 regularized and therefore its diagonal entry is set to zero. 
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 The  L2  regularization  aims  to  avoid  decoder  overfitting  by  penalizing  solutions  with  large  individual  weights.  L2 
 regularization  values  are  obtained  using  10-fold  cross  validation.  We  sweep  a  range  of  20  values  spanning  1e1  to  1e5  in 
 logspace.  For  each  value,  we  train  and  test  a  Wiener  filter  using  10-fold  cross  validation,  testing  the  decoder  on  a  held-out 
 fold.  The  optimal  regularization  value  was  selected  based  on  which  value  yielded  the  highest  performance  metric.  Final 
 performance was reported on the held out fold. 

 As  input  to  the  Wiener  Filter,  we  use  the  generator  states  (  x  )  and  behavior  (  y  ).  Each  trial  was  represented  as  a  window 
 250ms  before  to  500ms  after  movement  onset.  For  each  trial,  the  movement  onset  point  was  calculated  using  the  period 
 250ms  before  the  go  cue  to  750ms  after  the  go  cue.  We  first  searched  within  this  time  period  to  identify  the  point  at  which 
 the  cursor  reaches  its  maximum  speed.  From  that  point,  we  searched  backwards  in  time  to  identify  the  point  at  which  the 
 cursor  last  reached  20%  of  its  maximum  speed.  In  parallel,  we  searched  forward  in  time,  beginning  at  the  go  cue,  to  find 
 the  point  at  which  the  cursor  first  reached  20%  of  its  maximum  speed.  These  two  points  should  be  consistent—if  not,  it 
 indicates  a  trial  in  which  the  monkey  started  a  movement,  stopped,  and  then  started  again.  We  rejected  trials  with 
 inconsistent  movement  onset  calculations.  We  further  rejected  trials  in  which  the  backward  move  onset  (last  time  the 
 cursor  reaches  20%  of  max  speed)  occurred  before  the  point  at  which  the  target  is  displayed—this  typically  indicated  that 
 the  monkey  had  not  yet  begun  its  movement  in  the  time  period  analyzed,  potentially  due  to  inattention.  While  these  trial 
 rejections  have  minor  effects  on  the  analysis,  we  performed  them  to  ensure  the  decoding  metrics  were  a  consistent  and 
 robust indicator of NoMAD performance. 

 Only  trials  for  which  the  monkey  successfully  completed  the  trial  and  movement  onset  was  successfully  calculated  were 
 considered. 

 Wiener Filter Metric 
 The accuracy of neural decoding was measured using R  2  , defined as: 

 𝑅  2 ( 𝑦 ,  𝑦 
^
)   =     1    −     𝑑 = 1 
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∑    
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 where  D  is  the  number  of  dimensions  of  the  predicted  output,  N  is  the  number  of  data  samples,  y  i,m  is  an  actual  data 

 sample  for  one  dimension,  is  the  mean  of  the  actual  signal  in  one  dimension,  and  is  a  predicted  data  sample  for  𝑦 
 𝑑 

‾  𝑦 
 𝑖 , 𝑑 

^

 one  dimension.  In  practice,  we  used  the  function  sklearn.metrics.r2_score(y,  y_hat, 
 multioutput=’variance_weighted’)  42  . 

 Manifold Visualizations 
 In  order  to  create  visualizations  of  the  manifold  at  different  stages  of  the  alignment  process,  we  used  demixed  principal 
 components  analysis  (dPCA).  34  We  applied  regularized  dPCA  on  the  Day  0  manifold.  We  restricted  dPCA  fitting  to 
 successful  trials  within  the  window  250  ms  before  to  500  ms  after  target  onset.  After  learning  the  Day  0  dPCA 
 transformation,  we  applied  the  same  transformation  to  the  Day  K  manifold  using  both  the  Day  0  dPCA  weights  and  the 
 Day 0 mean offsets. 

 Visualizations  were  created  by  plotting  the  top  condition-independent  components  and  the  top  two  condition-dependent 
 components,  as  ranked  by  variance  explained.  This  allows  for  the  comparison  of  Day  0  to  Day  K  before  and  after 
 alignment without dependence on neural decoding or behavior. 
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 Calculating Decline in Decoding Performance Over Months 
 To  quantify  how  much  the  decoding  performance  declined  over  the  available  timespan,  we  computed  the  slope  of  the 
 median  performance  within  each  5-day  bin  using  linear  regression  (  sklearn.linear_model.LinearRegression  42  ). 
 We  fixed  the  y-intercept  of  each  regression  model  at  the  median  value  of  the  within-day  decoder  performance.  This  gives 
 a  value  in  terms  of  R  2  per  day,  which  we  convert  to  R  2  per  month  by  approximating  a  month  as  30  days  (R  2  /month  = 
 R  2  /day * 30). For the Aligned FA isometric task slope calculation, we exclude the final point as it is a large negative outlier. 
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