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Abstract  

Introduction: Haemoglobinopathies are the commonest monogenic diseases worldwide and 

are caused by variants in the globin gene clusters. With over 2400 variants detected to date, 

their interpretation using the ACMG/AMP guidelines is challenging, with computational 

evidence able to provide valuable input about their functional annotation. While many in 

silico predictors have already been developed, their performance varies for different genes 

and diseases.  

Materials and Methods: We evaluate 31 in silico predictors using a dataset of 1627 variants 

in HBA1, HBA2, and HBB. Through varying the decision threshold for each tool, we analyse 

their performance (a) as binary classifiers of pathogenicity, and (b) using different non-

overlapping pathogenic and benign thresholds for their optimal use in the ACMG/AMP 

framework. 

Results: CADD, Eigen-PC, and REVEL are the overall top performers, with the former 

reaching moderate strength level for pathogenic prediction. Eigen-PC and REVEL achieve the 

highest accuracies for missense variants, while CADD is also a reliable predictor of non-

missense variants. Moreover, SpliceAI is the top performing splicing predictor, reaching 

strong level of evidence, while GERP++ and phyloP are the most accurate conservation 

tools.  

Discussion: This study provides evidence about the optimal use of computational evidence 

in globin gene clusters under the ACMG/AMP framework.  
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Introduction 

With genetic testing frequently employed by clinical laboratories to aid diagnosis and 

treatment decisions in different diseases
1
, advances in sequencing technology produce an 

excessive amount of sequencing data leading to a rapidly enlarging pool of new unclassified 

variants. While sequencing data provide new candidates for therapeutic interventions and 

personalized medicine, they also introduce challenges in correctly classifying variants as 

pathogenic or benign. Thus, variant interpretation often relies on human expertise to gather 

information from different and diverse sources as to combine individual pieces of evidence 

into a comprehensive estimate with high confidence
2
. 

To assist in the establishment of a common framework for standardized variant 

classification, the American College of Medical Genetics and Genomics (ACMG) and the 

Association for Molecular Pathology (AMP) published joint recommendations for the 

interpretation of genetic variants
1
. The ACMG/AMP framework was designed for use across 

different genes and diseases, thus requiring further specification in disease-specific 

scenarios. In response to this need, the Clinical Genome (ClinGen) Resource formed various 

disease-specific variant curation expert panels (VCEPs) to develop specifications to the 

ACMG/AMP framework
3
. The ClinGen Hemoglobinopathy VCEP focuses on performing and 

testing the applicability of haemoglobinopathy-specific modifications to the standard 

ACMG/AMP framework before proceeding with the classification and interpretation of 

variants related to haemoglobinopathies
4
. Haemoglobinopathies represent the commonest 

groups of inherited monogenic disorders affecting approximately 7% of the global 

population
5
. They are caused by genetic defects in genes located in the α-globin locus 

(Accession: NG_000006) and in the β-globin locus (Accession: NG_000007). To date, there 

are over 2400 different naturally occurring globin gene variants, which are collected and 
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manually curated in IthaGenes, a haemoglobinopathy-specific database on the ITHANET 

portal
6
. 

The ACMG/AMP guidelines propose the use of in silico predictors (namely criteria PP3 and 

BP4 for pathogenic and benign evidence, respectively) as supporting evidence for variant 

pathogenicity classification
1
. Several tools have already been developed to predict the 

impact of genetic variants and their relation to developing diseases. These tools fall into 

four main categories based on the theoretical background and type of data they use for 

predicting variant effect, namely sequence conservation-based, structure-based analysis, 

combined (i.e., including both sequence and structural features), and meta-predictors
7
.  

The performance of different in silico tools varies across genes and diseases as numerous 

studies illustrated discrepancies regarding variant pathogenicity prediction
2,8–11

. Previous 

studies have also evaluated the performance of in silico predictors for globin gene 

variants
12,13

, demonstrating a high degree of discordance between in silico tools. Therefore, 

it is evident that a disease- or gene-specific evaluation of in silico tools can provide evidence 

for the optimal selection or combination of tools to identify the functional impact of 

variants. Recently, ClinGen published a study on the performance of four in silico predictors 

using a set of 237 variants
14

, suggesting that custom thresholds should be explored for each 

in silico tool to establish PP3 and BP4 criteria. However, given the impact of in silico tools on 

variant classification, further calibration with larger datasets is still needed to optimize their 

performance. 

The main purpose of this study is to compare the performance of various in silico predictors 

and determine the most appropriate ones for predicting the functional impact of SNVs in 

HBA1, HBA2, and HBB related to haemoglobinopathies. We selected 31 in silico predictors, 

including those recommended by ClinGen
3
 and linked in the Variant Curation Interface 
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(VCI)
15

, along with additional tools described in literature. A total of 1627 short nucleotide 

variants (SNVs) were retrieved from the IthaGenes database
6,16

 and were annotated using a 

Delphi approach with respect to their pathogenicity by experts (co-authoring this study) 

involved in haemoglobinopathy molecular diagnosis in five different countries. The 

annotated pathogenicity of each SNV was then used to evaluate its predicted pathogenicity 

provided by in silico tools. To our knowledge, this is the largest comparative study of in silico 

tools for SNVs related to haemoglobinopathies in terms of both the number of tools used 

and the size of utilised variant dataset.  

 

Methods 

Dataset 

Figure 1 shows a schematic representation of the main steps of our methodology. SNVs 

were retrieved from the IthaGenes database of the ITHANET portal
6,16

. The dataset includes 

all SNVs (≤50bp) curated in IthaGenes (access date: 05/02/2021) located in HBA1, HBA2, and 

HBB, excluding (i) disease-modifying variants, (ii) complex variants with multiple DNA 

changes found in cis, and (iii) variants whose genomic location is unclear, such as α-chain 

variants identified by protein studies without identifying the affected α-globin gene.  

Additionally, we queried ClinVar (access date: 05/02/2021)
17

 for SNVs with a two-star 

review status and gnomAD (access date: 05/02/2021)
18

 for benign/likely benign SNVs using 

PopMax Filtering Allele Frequency (FAF) greater than 1% in HBA1, HBA2 and HBB. Any 

missing SNVs were added to both IthaGenes and the dataset of this study. The final dataset 

included 1627 distinct SNVs. Finally, the dataset was further processed using the batch 

service of Variant Validator
19

 to validate the HGVS names and correct any annotation errors. 
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Annotated variant pathogenicity 

To enable the evaluation of in silico predictions, we subsequently annotated the 

pathogenicity of each SNV and compared it to the results of in silico predictors. Specifically, 

we used existing curated information on IthaGenes and further collected available evidence 

in scientific literature for each SNV in the dataset. The pathogenicity for each SNV was 

annotated using the following criteria:  

• Pathogenic/Likely pathogenic (P/LP) 

o SNVs that result in abnormal haematology or abnormal Hb properties, or sometimes 

causing disease (i.e., dominant), when detected in heterozygotes, 

OR 

o Causes disease when observed in trans with an established pathogenic variant or in 

the homozygous state 

• Benign/Likely Benign (B/LB) 

o At least three (independent) occurrences of the variant in heterozygous state without 

any change in the haematological parameters and Hb properties 

OR 

o Not causing disease when observed in trans with an established pathogenic variant 

• Variant of uncertain significance (VUS) 

o All variants that do not meet the above criteria for benign/pathogenic or have 

conflicting evidence 

Importantly, we used a Delphi approach
20

 to allow independent evaluation of the curated 

evidence for each variant. The pathogenicity of each SNV was independently assessed by 

two different groups of haemoglobinopathy experts, using evidence curated by the 

IthaGenes database or collected as part of this study. Then, the independent annotations 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2022. ; https://doi.org/10.1101/2022.04.07.484934doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.07.484934
http://creativecommons.org/licenses/by-nc-nd/4.0/


were merged into one consensus classification. In cases of disagreement, a consensus 

pathogenicity status was decided, after discussion among all experts, or the SNV was 

marked as a VUS. SNVs that have been directly submitted to IthaGenes by experts not 

participating in this study and without a peer-reviewed publication describing the 

methodology and results, have been also annotated as VUS. After descriptive analysis of the 

full dataset, 601 SNVs annotated as VUS were filtered out of the dataset. 

For the evaluation of tools predicting the impact of variants on splicing, we further 

annotated variants with respect to their effect on gene/protein function and assembled the 

following datasets:  

(a) Variants affecting splicing: all P/LP variants annotated to affect splicing or being in the 

splicing region of the transcript, excluding variants that are annotated as both missense and 

splicing and, therefore the mechanism of pathogenicity is ambiguous 

(b) Variants not affecting splicing: all remaining variants in the dataset (P/LP and B/LB), 

excluding those annotated as both missense and splicing. 

For SpliceAI, we selected the highest of the four Delta Scores (DS) provided as output, while 

for MaxEntScan we used two different thresholds as follows: (a) the absolute difference 

between the reference and alternative allele (denoted as Diff), and (b) the absolute 

percentage of change between the reference and alternative allele (denoted as Per)
21

. 

In silico prediction tools 

Thirty one in silico predictors were compared in this study, as follows: ada
22

, BayesDel
23

, 

CADD
24

, ClinPred
25

, CONDEL
26

, DANN
27

, EIGEN-PC
28

, FATHMM
29

, FATHMM-MKL
30

, fitCons
31

, 

GERP++
32

, LIST-S2
33

, LRT
34

, MaxEntScan
35

, Meta-SVM
36

, MetaLR
37

, MutationAssessor
38

,  

MutationTaster
39

, MutPred2
40

, PolyPhen-2
41

, PROVEAN
42

, REVEL
43

, rf
22

, SIFT
44

, SpliceAI
45

, 

VEST4
46

, phastCons (phastCons17way and phastCons30way)
47

, phyloP (phyloP100way and 
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phyloP30way)
47

, and SiPhy_29way
48

. Four of the tools are focused on predicting the splicing 

impact of a variant (ada, MaxEntScan, rf, and SpliceAI), while six tools produce conservation 

scores (GERP++, phastCons17way, phastCons30way, phyloP100way, phyloP30way, and 

SiPhy_29way). We selected in silico tools recommended by ClinGen and available in the 

ClinGen VCI
15

, as well as additional established tools used in previous studies. We employed 

the online version of the Ensembl VEP
49

 and its dbNSFP
50

 plugin (version 4.2a) to obtain the 

prediction scores of the variants in our dataset. 

Predictive performance assessment 

Commonly used scalar measures were employed to compare the prediction accuracy of in 

silico tools, including specificity, sensitivity, and accuracy. All of them can be derived from 

two or more of the following quantities: (1) true positives (TP), the number of correctly 

predicted P/LP variants; (2) true negatives (TN), the number of correctly predicted B/LB 

variants; (3) false positives (FP), the number of B/LB variants incorrectly predicted as P/LP; 

(4) false negatives (FN), the number of P/LP variants incorrectly predicted as B/LB. 

Specificity is defined as the fraction of correctly predicted B/LB variants, sensitivity is the 

fraction of correctly predicted P/LP variants, and accuracy is the ratio of correct predictions 

versus the total number of predictions
51

.  

Moreover, we used the Matthews Correlation Coefficient (MCC)
52

 to compare the 

performance of in silico predictors. MCC ranges from -1 (i.e., always falsely predicted) to 1 

(i.e., perfectly predicted) with a value of 0 corresponding to random prediction. MCC is 

considered one of the most robust measures to evaluate binary classifiers
53

. Hence, in our 

analysis, the optimal threshold for binary classification was the one that maximised the MCC 

for each in silico tool. 
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Following the guidelines of a Bayesian variant classification framework
54

, likelihood ratios 

(LRs) for pathogenic (LR+) and benign (LR-) outcomes were calculated for each tool to 

evaluate the evidence strength of their pathogenicity prediction using the Odds of 

Pathogenicity (OddsP) in the Bayesian framework. According to the Bayesian framework, 

the strength of OddsP for each evidence level was set as follows: ‘Very Strong’ (350:1), 

‘Strong’ (18.7:1), ‘Moderate’ (4.3:1) and ‘Supporting’ (2.08:1).  

Comparative Analysis 

The analysis was separated into three parts. First, we performed descriptive analysis of the 

dataset, including variants annotated as VUS, based on the variant type, the variant effect 

on gene/protein function, the haemoglobinopathy disease group, thalassemia phenotype, 

molecular mechanism, and annotated pathogenicity. Subsequently, we removed variants 

annotated as VUS and we compared the 31 in silico tools as binary predictors of variant 

pathogenicity by selecting the threshold that maximized the MCC for each tool. For 

predictors whose output scores ranged from 0 to 1, we used thresholds with intervals of 

0.05, whereas for predictors with scores falling outside this range, we set 19 custom ranges 

based on the observed minimum and maximum scores in our dataset. Finally, we identified 

separate non-overlapping thresholds for prediction of pathogenic and benign effect as 

recommended by the Bayesian framework for variant interpretation
54

, by selecting 

thresholds passing the recommended LR+ and LR- thresholds, while maximising the 

percentage of correctly predicted variants for each tool. For tools passing the LR thresholds, 

we further finetuned the decision thresholds using smaller steps to optimise the prediction 

accuracy. Statistical analysis and visualisation of the results were performed using custom R 

scripts and the epiR package. 
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Results 

Descriptive analysis 

Initially, we performed a descriptive analysis of the full dataset, including variants annotated 

as VUS, which comprised 1627 SNVs. In terms of the annotated pathogenicity, 194 (11.9%) 

SNVs classified as B/LB, 832 (51.1%) as P/LP and 601 (36.9%) as VUS. The distribution per 

globin gene is the following: 553 P/LP, 77 B/LB, and 403 VUS for HBB (total: 1033 SNVs; 

63.5%), 173 P/LP, 66 B/LB, and 111 VUS for HBA2 (total: 350 SNVs; 21.5%), and 106 P/LP, 51 

B/LB, and 87 VUS for HBA1 (total: 245 SNVs; 15%). Supplementary Figure 1 illustrates the 

distribution of variants on each globin gene based on their annotated pathogenicity and 

demonstrates the highest fraction of P/LP variant in protein coding regions and in canonical 

splice sites. Increased numbers of P/LP variants are also observed in specific noncoding 

regions of the globin genes, such as polyadenylation regions and the promoter and 5’ UTR 

for HBB. 

Figure 2 summarises the distribution of SNVs in the dataset according to their effect on 

gene/protein function with respect to the annotated pathogenicity (Panel A), the annotated 

haemoglobinopathy group (Panel B), the thalassaemia allele phenotype (Panel C), altered 

oxygen affinity (Panel D), altered stability (Panel E), and the molecular mechanism involved 

in pathogenesis (Panel F). The effect on gene/protein function includes the following 

categories: (a) missense variants (SO:0001583), (b) synonymous variants (SO:0001819), (c) 

frameshift (SO:0001589), (d) initiation codon (SO:0000318), (e) in-frame indels 

(SO:0001820), (f) splicing, including cryptic splice site (SO:0001569), splice acceptor 

(SO:0001574), splice donor (SO:0001575) and splice region variants (SO:0001630), (g) stop 

lost (SO:0001578), (h) stop gained (SO:0001587), and (i) variants in regulatory elements, 

including promoter (SO:0001631), 5’ UTR (SO:0001623), 3’ UTR (SO:0001624) and 
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polyadenylation variants (SO:0001545). Importantly, there are no B/LB null variants (i.e., 

frameshifts, stop gained, canonical splice sites, initiation codon) in the dataset, which 

reflects that loss-of-function is a primary disease mechanism, particularly for thalassaemia 

syndromes. In contrast, missense variants, representing the largest variant type category 

(total: 960 SNVs; 59%), are present in all pathogenicity categories, with 115 (12% of SNVs in 

the category), 331 (34.5%), and 514 (53.5%) annotated as B/LB, P/LP, and VUS, respectively. 

The distribution of missense variants in the three categories and the high percentage of 

missense VUS highlight the challenge to interpret the pathogenicity of missense variants in 

the globin genes, requiring rigorous study of available evidence, including computational 

evidence. 

Moreover, the dataset comprises SNVs causing structural haemoglobinopathies (986 SNVs), 

thalassaemia (445 SNVs), and both thalassaemia and structural haemoglobinopathies (128 

SNVs). The thalassaemia phenotype group describes the allele phenotype and includes 

HBA1 and HBA2 variants (α
+
/α

0
 and α

+
; total: 146 SNVs) and HBB variants (β

0
, β

0
/β

+
, β+, β++ 

(silent) and β++; total: 289 SNVs). Here, we observed that most variants have allele 

phenotype of α
+
 (130 SNVs) and β

0 
(184 SNVs). The category of Hb stability is further divided 

into hyperunstable (39 SNVs) and unstable (299 SNVs), while the Hb O2 affinity group is 

divided into increased O2 affinity (212 SNVs) and decreased O2 affinity (88 SNVs). The main 

molecular mechanisms disrupted are alterations of the secondary structure (84 SNVs), heme 

pocket (57 SNVs), and α1β1 interface (46 SNVs). The disruption of the molecular 

mechanisms has been associated with clinical phenotypes, such as haemolytic anaemia, 

reticulocytosis, erythrocytosis, and cyanosis
55

.  
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Evaluation of in silico tools as binary predictors 

Table 1 shows a comparison of all in silico predictors used in this study as binary classifiers 

of pathogenicity, against the consensus dataset with VUS removed. For each tool, we varied 

the decision threshold for the whole range of possible prediction scores and calculated all 

statistical measures in each step (Supplementary Table 2). For binary pathogenicity 

classification, we selected the threshold that maximised the MCC for each tool. Accuracy 

ranged from 51% (FATHMM) to 84% (CADD) with a median value of 76%. The sensitivity 

ranged from 41% (FATHMM) to 100% (fitCons) with a median of 82.5%, while specificity 

ranged from 1% (fitCons) to 81% (BayesDel) with a median of 54%. High sensitivity and low 

specificity indicate that most predictors correctly predict the P/LP variants, but misclassify 

the B/LB ones. MCC values ranged from 0.04 (fitCons), indicating almost random prediction, 

to 0.49 (CADD) with a median value of 0.32. CADD achieved the highest accuracy and MCC 

among all in silico tools tested, using the threshold maximising the MCC (>10.44 for 

pathogenic prediction), indicating good performance as a binary classifier for globin gene 

variants. However, this threshold is not optimal for predicting benign variants, with the 

achieved specificity (0.47) being below the median, hence misclassifying 101 out of 192 B/LB 

SNVs. Eigen-PC achieved the second highest MCC (0.44), sensitivity of 0.79 and specificity of 

0.7, with decision threshold of 1.87.  

When used as binary predictors, the in silico tools were unable to reach the strength level 

required by the Bayesian Framework
54

 to provide supporting evidence for variant 

classification. Although four tools (Eigen-PC, fathmm-MKL, VEST4, MetaSVM) achieved LR+ 

higher than 2.08 and LR- lower than 0.48, required for supporting evidence strength for 

pathogenic and benign classification, respectively, their 95% Confidence Intervals (95% CI) 
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extended beyond the above thresholds and, therefore, are not recommended alone for 

variant interpretation. 
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Table 1. Results and performance comparison of in silico predictors with the optimal threshold based on MCC. #PV: number of predicted variants; Ac: Accuracy; Se: 

Sensitivity; Sp: Specificity; MCC: Matthews Correlation Coefficient; LR
+

: positive Likelihood Ratio; LR-: negative Likelihood Ratio; 95% CI: 95% Confidence Interval.  

Tool Decision Threshold #PV TP FN FP TN Ac Se Sp MCC LR+ LR+ 95% CI LR- LR- 95% CI 

BayesDel_addAF ≥0.39 531 250 164 22 95 0.65 0.6 0.81 0.34 3.21 [2.19, 4.72] 0.49 [0.42, 0.57] 

CADD >10.44 886 655 39 101 91 0.84 0.94 0.47 0.49 1.79 [1.57, 2.05] 0.12 [0.08, 0.17] 

ClinPred >0.95 481 265 99 43 74 0.7 0.73 0.63 0.32 1.98 [1.55, 2.53] 0.43 [0.35, 0.53] 

Condel >0.3 481 331 33 76 41 0.77 0.91 0.35 0.31 1.4 [1.22, 1.61] 0.26 [0.17, 0.39] 

DANN >0.96 531 372 42 71 46 0.79 0.9 0.39 0.33 1.48 [1.28, 1.72] 0.26 [0.18, 0.37] 

Eigen-PC >1.87 531 329 85 35 82 0.77 0.79 0.7 0.44 2.66 [2, 3.52] 0.29 [0.23, 0.37] 

FATHMM ≤-3.39 481 150 214 23 94 0.51 0.41 0.8 0.19 2.1 [1.42, 3.08] 0.73 [0.65, 0.83] 

fathmm-MKL >0.7 531 328 86 39 78 0.76 0.79 0.67 0.41 2.38 [1.83, 3.09] 0.31 [0.25, 0.39] 

GERP++ >3.49 531 248 166 26 91 0.64 0.6 0.78 0.31 2.7 [1.9, 3.82] 0.52 [0.44, 0.6] 

integrated_fitCons >0.05 531 414 1 117 1 0.78 1 0.01 0.04 1.01 [0.99, 1.02] 0.28 [0.02, 4.51] 

LIST-S2 ≥0.75 344 246 28 39 31 0.81 0.9 0.44 0.36 1.61 [1.3, 1.99] 0.23 [0.15, 0.36] 

LRT <0.3 270 169 7 84 10 0.66 0.96 0.11 0.13 1.07 [1, 1.16] 0.37 [0.15, 0.95] 

MetaLR_score >0.8 481 251 113 42 75 0.68 0.69 0.64 0.29 1.92 [1.49, 2.47] 0.48 [0.39, 0.59] 

MetaSVM_score >0.6 481 260 104 39 78 0.7 0.71 0.67 0.34 2.14 [1.65, 2.79] 0.43 [0.35, 0.53] 

MutationAssessor >2.53 359 249 36 41 33 0.79 0.87 0.45 0.33 1.58 [1.28, 1.94] 0.28 [0.19, 0.42] 

MutationTaster >0.95 531 386 28 102 15 0.76 0.93 0.13 0.09 1.07 [0.99, 1.15] 0.53 [0.29, 0.95] 

MutPred >0.5 467 343 12 96 16 0.77 0.97 0.14 0.2 1.13 [1.04, 1.22] 0.24 [0.12, 0.49] 

phastCons17way >0.17 531 357 57 57 60 0.79 0.86 0.51 0.38 1.77 [1.46, 2.14] 0.27 [0.2, 0.36] 

phastCons30way >0.28 531 329 85 51 66 0.74 0.79 0.56 0.33 1.82 [1.48, 2.25] 0.36 [0.28, 0.47] 

phyloP100way >0.42 531 349 65 56 61 0.77 0.84 0.52 0.35 1.76 [1.45, 2.14] 0.3 [0.23, 0.4] 

phyloP30way >0.51 531 307 107 63 54 0.68 0.74 0.46 0.18 1.38 [1.15, 1.64] 0.56 [0.43, 0.72] 

PolyPhen-2 >0.65 481 243 121 37 80 0.67 0.67 0.68 0.31 2.11 [1.6, 2.78] 0.49 [0.4, 0.59] 

PROVEAN ≤-1.03 481 358 6 106 11 0.77 0.98 0.09 0.18 1.09 [1.02, 1.15] 0.18 [0.07, 0.46] 

REVEL >0.65 481 294 70 46 71 0.76 0.81 0.61 0.39 2.05 [1.63, 2.59] 0.32 [0.25, 0.41] 

SIFT <0.1 481 325 39 74 43 0.77 0.89 0.37 0.3 1.41 [1.22, 1.63] 0.29 [0.2, 0.43] 

SiPhy_29way >10.62 531 233 181 33 84 0.6 0.56 0.72 0.23 2 [1.48, 2.7] 0.61 [0.52, 0.71] 

VEST4 >0.7 531 273 141 33 84 0.67 0.66 0.72 0.32 2.34 [1.74, 3.15] 0.47 [0.4, 0.57] 

Splicing prediction 

ada >0.5 56 47 3 1 5 0.93 0.94 0.83 0.68 5.64 [0.94, 33.8] 0.07 [0.02, 0.23] 

MaxEntScan Diff > 2 & Per > 5 54 50 2 1 2 0.95 0.96 0.67 0.55 2.88 [0.58, 14.31] 0.06 [0.01, 0.28] 

rf >0.6 56 47 3 1 5 0.93 0.94 0.83 0.68 5.64 [0.94, 33.8] 0.07 [0.02, 0.23] 

SpliceAI >0.65 663 35 23 1 604 0.96 0.6 1 0.75 365.09 [50.94, 2616.41] 0.4 [0.29, 0.55] 
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Supplementary Figure 2 shows a heatmap illustrating the extend of concordance among 27 

in silico tools (excluding splicing tools) and clustering of the tools based on their 

concordance, using the thresholds that maximised the MCC (Table 1). Notably, we observe a 

high degree of concordance for P/LP variants in HBB (top of the heatmap), while there is a 

lower degree of concordance for variants in HBA1 and HBA2 (middle of the heatmap). The 

bottom part of the heatmap illustrates a higher discordance for B/LB variants in HBA1 and 

HBA2.  

Performance of splicing predictors 

Table 1 summarises the performance of in silico splicing tools using the threshold that 

maximised the MCC. With most SNVs affecting splicing regions of the globin genes 

annotated as P/LP, the performance of splicing tools cannot be compared reliably because 

of the limited number of negative examples in the dataset, i.e. B/LB SVNs in splicing regions. 

Out of the four in silico tools tested, only SpliceAI provides a prediction score for variants 

that are not located near the canonical splicing sites. All splicing effect predictors displayed 

high accuracy, ranging from 93% (ada and rf) to 96% (SpliceAI), moderate to high sensitivity, 

ranging from 0.6 (SpliceAI) to 0.96 (MaxEntScan), and moderate to high specificity ranging 

from 0.67 (MaxEntScan) to 1 (SpliceAI). The MCC values ranged from 0.55 (MaxEntScan) to 

0.75 (SpliceAI). SpliceAI achieved a high LR+ indicating strong performance in predicting 

SNVs disrupting splicing. The low number (≤5) of TN, FP and FN in the predictions make the 

calculation of LRs for the remaining tools unreliable. 

Evaluation with different pathogenic and benign thresholds 

We subsequently calibrated separate non-overlapping thresholds for pathogenic and benign 

prediction for each in silico tool to maximise both the percentage of variants correctly 

predicted by the selected threshold pairs that meet at least the supporting strength LR 
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thresholds as defined by the Bayesian framework. More specifically, we filtered tools that 

achieved a lower bound 95% CI LR+ of 2.08 or higher for pathogenic prediction and an upper 

bound 95% CI LR- of 0.48 or lower for benign prediction. Figure 3A illustrates the changing 

LR values for the nine tools that reached these thresholds, while varying the decision 

thresholds. For these tools, we further finetuned the decision thresholds using smaller steps 

for the varying thresholds to maximise the number of correctly predicted SNVs. 

Furthermore, we tested the performance of all tools in different subsets of the dataset, 

including missense-only, non-missense, HBB, HBA2 and HBA1 variants. Table 2 shows all 

threshold pairs that reach at least supporting level of evidence for both pathogenic and 

benign prediction in different SNV subsets. The full analysis for all thresholds and subsets is 

available in the Supplementary File 2 and the finetuning of the selected tools is available in 

Supplementary File 3.  

Notably, CADD is the only tool that reached a moderate level of evidence (LR+ lower bound 

95% CI ≥ 4.3) for prediction of pathogenic variants (threshold > 25), while BayesDel, Eigen-

PC, GERP++, REVEL, MetaSVM, phyloP100way and CADD (with a lower threshold of 16.3) 

have also reached the supporting evidence strength. Importantly, CADD (at Supporting 

strength), Eigen-PC and REVEL correctly predict the highest number of SNVs with 79.35%, 

78.15% and 64.24%, respectively. Moreover, SpliceAI reached strong level of evidence for 

splicing prediction (threshold > 0.3), correctly predicting 96.08% of all variants. 

When evaluating the performance of tools on the subset of missense variants, we identified 

eight tools (BayesDel, Eigen-PC, GERP++, MetaSVM, REVEL, CADD, phyloP100way and 

phastCons30way) that reached supporting strength level. Eigen-PC, REVEL, and CADD 

achieved the highest percentages of correctly predicted SNVs with 76.61%, 63.73%, and 

60.6%, respectively. Moreover, CADD performed well for non-missense variants where a 
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single threshold of 11.5 produced an accuracy of 92.84%, while achieving supporting 

strength.  

With regards to the gene-specific analysis, BayesDel and CADD performed well for the 

prediction of HBB variants using a single threshold and accuracies of 81.08% and 91.14%, 

respectively, with CADD achieving moderate strength for pathogenic prediction with a 

threshold of 25.25. Furthermore, CADD achieved supporting strength for SNVs in HBA1, 

whilst no tool reached the required LR thresholds for HBA2.  

Figures 2B and 2C show the concordance among the top performing tools of this study for 

pathogenic and benign prediction, respectively, using the recommended thresholds shown 

in Table 2 (full dataset; supporting strength thresholds). Although the overall concordance is 

low, some tools, such as Eigen-PC and REVEL, have higher concordance rates for both 

pathogenic (54.8%) and benign (65.8%) prediction. The low concordance rate of the top 

performing tools is also reflected in the prediction of VUS (Supplementary Figure 3), where 

differences in the distribution of predicted pathogenicity classes are observed among in 

silico tools. Nonetheless, this will be further assessed when the pathogenicity status of these 

SNVs is clarified. 
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Table 2. In silico tools with pairs of non-overlapping thresholds that reach at least supporting evidence strength for both pathogenic and benign prediction. 

LR: likelihood ratio; CI: confidence interval; PV: predicted variants 

 

Tool Pathogenic 

threshold 

LR+ LR+ 95% CI Strength 

(Pathogenic) 

Benign 

threshold 

LR- LR- 95% CI Strength 

(Benign) 

Correctly PV % of correctly PV 

All SNVs 

BayesDel_addAF ≥0.39 3.21 [2.19, 4.72] Supporting <0.23 0.35 [0.26, 0.47] Supporting 302 56.87 

CADD >25 8.27 [4.34, 15.75] Moderate ≤21.75 0.42 [0.37, 0.48] Supporting 418 47.18 

CADD >16.3 2.59 [2.1, 3.2] Supporting ≤16.3 0.26 [0.21, 0.31] Supporting 703 79.35 

Eigen-PC >1.9 3 [2.21, 4.07] Supporting ≤1.9 0.28 [0.22, 0.35] Supporting 415 78.15 

GERP++ >4.22 4.33 [2.51, 7.49] Supporting ≤0.15 0.32 [0.22, 0.46] Supporting 225 42.37 

MetaSVM >0.81 3.25 [2.16, 4.89] Supporting ≤0.46 0.38 [0.3, 0.48] Supporting 272 56.55 

phyloP100way >7.32 17.8 [2.5, 127] Supporting ≤0.8 0.36 [0.28, 0.46] Supporting 130 24.48 

REVEL >0.77 3.05 [2.12, 4.4] Supporting ≤0.7 0.38 [0.31, 0.47] Supporting 309 64.24 

SpliceAI >0.3 58.12 [27.23, 124.03] Strong ≤0.3 0.33 [0.23, 0.48] Supporting 637 96.08 

Missense only 

BayesDel_addAF ≥0.41 3.35 [2.2, 5.12] Supporting <0.22 0.32 [0.23, 0.45] Supporting 241 51.72 

CADD >23.25 3.19 [2.17, 4.69] Supporting ≤20.9 0.36 [0.28, 0.46] Supporting 283 60.6 

Eigen-PC >1.9 2.93 [2.16, 3.98] Supporting ≤1.9 0.3 [0.24, 0.38] Supporting 357 76.61 

GERP++ >4.22 4.27 [2.47, 7.4] Supporting ≤-0.87 0.31 [0.2, 0.47] Supporting 187 40.13 

MetaSVM >0.8 3.08 [2.09, 4.53] Supporting ≤0.39 0.37 [0.29, 0.48] Supporting 267 57.3 

phastCons30way >0.94 3.19 [2.09, 4.88] Supporting ≤0.41 0.36 [0.28, 0.46] Supporting 252 54.08 

phyloP100way >7.32 19.11 [2.68, 136.47] Supporting ≤0.56 0.35 [0.27, 0.46] Supporting 119 25.54 

REVEL >0.77 3.02 [2.09, 4.35] Supporting ≤0.7 0.39 [0.32, 0.48] Supporting 297 63.73 

Non-missense only 

CADD >11.5 8.62 [3.42, 21.77] Supporting ≤11.5 0.08 [0.05, 0.11] Supporting 350 92.84 

SNVs in HBB 

BayesDel_addAF ≥0.31 6.43 [2.23, 18.58] Supporting <0.31 0.22 [0.17, 0.3] Supporting 210 81.08 

CADD >25.25 31.64 [4.5, 222.38] Moderate ≤22.65 0.42 [0.37, 0.48] Supporting 264 48.71 

CADD >10.8 3.26 [2.29, 4.64] Supporting ≤10.8 0.08 [0.05, 0.12] Supporting 494 91.14 

SNVs in HBA1 

CADD >22.95 4.94 [2.29, 10.68] Supporting ≤17 0.3 [0.19, 0.48] Supporting 84 61.76 
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Discussion 

The main goal of this study was to assess the performance of in silico prediction tools in the 

context of haemoglobinopathy-specific SNVs and to provide evidence to the ClinGen 

Hemoglobinopathy VCEP for the most appropriate use of computational evidence in variant 

interpretation based on the ACMG/AMP guidelines. We evaluated the performance of 31 in 

silico predictors on a set of 1627 haemoglobinopathy-specific SNVs. The pathogenicity of 

these variants was assessed using a Delphi approach by haemoglobinopathy experts based 

on literature review and experimental evidence.  

Our comparative analysis showed that, when used as binary predictors of pathogenicity, 

most tools have high sensitivity and accuracy but suffer from poor specificity. We show that 

binary classification results in low LRs for most tools and, thus, cannot be used alone based 

on the Bayesian Framework for variant classification
54

. Instead, as we demonstrated in this 

study, stronger evidence is obtained when we trichotomized the problem by independently 

defining different non-overlapping thresholds for pathogenic and benign prediction of 

globin gene variants. This approach was previously described by other ClinGen VCEPs, 

evaluating sequence variants in other genes
56

. Our findings show that Eigen-PC, REVEL and 

CADD performed well for predicting the functional effect of missense SNVs, while CADD was 

also a strong predictor of non-missense variants. Meta-predictors BayesDel and MetaSVM 

were also strong performers in our comparison, while GERP++, phyloP100way, and 

phastCons30way performed better among the conservation tools, albeit with a lower 

overall accuracy. Out of the four splicing prediction tools evaluated, SpliceAI performed 

better and produced the highest LR+ values reaching strong level of evidence. However, due 

to the low number of negative examples in our dataset for the other splicing tools 
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evaluated, these results should be interpreted with caution. Our results show that SpliceAI is 

a reliable predictor of the splicing impact of SNVs in the globin genes.  

The annotated pathogenicity of the variants in our dataset was based on criteria agreed by 

all coauthors of this paper. These criteria are not based on the ACMG/AMP framework, 

because there is currently no available standard for pathogenicity classification of globin 

gene variants. The ClinGen Hemoglobinopathy VCEP is currently piloting its ACMG/AMP 

specifications, which can be used for variant classification in the future, thus potentially 

leading to reassessment of in silico predictors for globin genes variants. Nevertheless, the 

current classification reflects the current knowledge about the pathogenicity of the variants 

in our dataset, agreed by experts involved in the molecular diagnosis of 

haemoglobinopathies in five countries (Cyprus, Greece, Malaysia, Netherlands, and 

Portugal). A potential limitation is that some benign variants have not been observed in 

trans with both a β-thalassaemia variant and the Hb S variant and, therefore, their 

pathogenicity is assigned based on the current knowledge in the field. However, our 

approach is justified, because small numbers of true benign SNVs reflect the reality in 

clinical diagnostics, where pathogenic SNVs associated with clinical phenotypes- are more 

easily interpreted than benign ones.  

This study provides evidence for the selection of the most suitable in silico tools for the 

interpretation of SNVs in the globin gene clusters using the ACMG/AMP guidelines. 

Specifically, we provide the optimal thresholds for different tools that can be used under the 

PP3/BP4 criteria, including missense and splicing variant interpretation, while optimal 

thresholds for conservation-based tools are also critical for the application of criterion BP7. 

To our knowledge, this is the largest study evaluating the disease-specific application of in 

silico predictors in variant classification under the ACMG/AMP framework and its associated 
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Bayesian framework. Our approach can be further expanded for the optimal calibration of 

thresholds of in silico tools in other genes and diseases, hence facilitating variant 

interpretation using the ACMG/AMP framework. 

 

Figure legends 

Figure 1. A schematic flowchart of the methodology followed for this comparative analysis. 

Figure 2. Descriptive plots of the SNV dataset. (A) Variant effect on gene/protein function 

with respect to the annotated pathogenicity status. (B) Haemoglobinopathy group, (C) 

Thalassaemia phenotype, (D) 02 affinity (E) Hb stability, (F) Molecular mechanisms 

Figure 3. (A) Likelihood ratios of the top performing in silico tools with variable threshold. 

Vertical dashed lines indicate the optimal threshold based on the highest MCC. (B) Top ten 

tool combinations for pathogenic prediction based on concordance rate, with the top three 

shown in blue. (C) Top ten tool combinations for benign prediction based on concordance 

rate, with the top three shown in blue. 

 

Supplementary Material 

Supplementary File 1. The list of ClinGen Hemoglobinopathy VCEP members 

Supplementary File 2. Table with the dataset used in this study and the resulting scores 

obtained by the in silico predictors, divided into different sheets and subsets: all SNVs, 

missense only, non-missense only, HBB, HBA1, and HBA2.  

Supplementary File 3. Refined thresholds for the nine selected in silico predictors, divided 

into different subsets: all SNVs, missense only, non-missense only, HBB, HBA1, and HBA2. 

Only decision thresholds passing the LR criteria are shown. 
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Supplementary Figure 1. Distribution of variants on each globin gene based on their actual 

pathogenicity. A bin size of 3 bp (inframe) and 5 bp in exonic and intronic regions, 

respectively, is used for the illustration. 

Supplementary Figure 2. Heatmap illustrating the concordance and clustering of in silico 

tools with respect to the variant type and globin gene. 

Supplementary Figure 3. Prediction of VUS using thresholds for the full dataset (at 

Supporting strength)  
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