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Abstract 
Tracking progress towards global biodiversity conservation targets requires appropriate 
allocation of research and monitoring efforts. We conducted a global review of camera 
trap research on mammals as a proxy for biodiversity research and monitoring over the 
last two decades. We assessed how 3395 research locations from 2324 studies tracked 
priority regions for attaining the 2020 Aichi Biodiversity Targets. We used a geospatial 
distribution modelling approach to predict the spatial allocation of biodiversity research 
and to identify its key drivers. We show that conservation research in the past two 
decades has often failed to target areas important for conservation, and that 76.8% of the 
global research allocation can be attributed to country income, biome, mammal richness 
and accessibility. We predicted lowest probabilities of research allocation in low income 
countries. The Amazon and Congo Forest basins — two highly biodiverse ecosystems 
facing unprecedented human alteration — received inadequate research attention. Even in 
the most researched regions, an average of 51.4% of the research locations were outside 
the top 20% most important areas for the global biodiversity Aichi Targets. To support 
biodiversity conservation targets, policy and practice, more research and monitoring is 
required in regions with high importance for conservation. 
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Introduction 
We are experiencing a biodiversity crisis with estimated global extinction rates 100-1000 
times greater than pre-human rates (Chapin et al., 2000; Ceballos et al., 2020). 
Biodiversity loss has altered ecological communities with impacts on ecosystem 
functioning (Bello et al., 2015) and on livelihoods of billions of people (Cardinale et al., 
2012). To mitigate these processes, 196 nations signatory to the Convention on 
Biological Diversity ratified the Aichi Biodiversity Targets in 2010 (hereafter “Aichi 
Targets”) (Convention on Biological Diversity, 2010). The aim was to halt global 
biodiversity loss by 2020. Target 12 envisioned that: “by 2020, the extinction of known 
threatened species has been prevented and their conservation status, particularly of those 
most in decline, has been improved and sustained”. This, and other Aichi Targets, 
underline that biodiversity assessment and monitoring is crucial to track progress 
(Andelman & Willig, 2004). 

Despite commitments, the international community has struggled to track 
progress towards achieving the Aichi Targets (Tittensor et al., 2014). One challenge is 
our incomplete understanding of how biodiversity is being impacted across the world 
(Andelman & Willig, 2004; Ahumada et al., 2011; Beaudrot et al., 2016). The 
assessments required to report progress on the Aichi Targets are difficult to achieve, 
particularly for terrestrial mammals (hereafter “mammals”), which often occur at low 
densities and can be difficult to detect (Bush et al., 2017). Previous attempts to assess 
disparities in biodiversity research allocation compared either the number of published 
studies (Lawler et al., 2006; Wilson et al., 2016; Hickisch et al., 2019) or research impact 
(Meijaard et al., 2015) among biomes (Christie et al., 2020) or countries and their 
constituent provinces. However, the quantity of research in previous studies is tied to a 
country (and provinces) or biome as a whole and does not reveal the nuances in research 
allocation across countries or biomes or across the global landscape. Further, we don’t 
understand how anthropogenic activity, biodiversity, economics and geography 
determine relative research allocation. Understanding how well research allocation aligns 
with the Aichi targets can inform future global conservation research allocation policy.  

Here, we spatially predict the global allocation of biodiversity research using an 
established geospatial distribution modelling approach (maximum entropy, MaxEnt) 
(Elith et al., 2011; Phillips et al., 2006), which combines a global dataset of camera trap 
research locations on mammals published between 2000 and 2019 (see Methods; Figure 
1) with ten spatial datasets (hereafter “predictors”) representing anthropogenic, 
biological, economical and topographic factors thought to relate with biodiversity 
research allocation (Table 1). We use camera trap research on mammals as a proxy for 
biodiversity research because mammals indicate ecosystem health (Ahumada et al., 
2011), and support ecosystem functioning with benefits for human wellbeing (Cardinale 
et al., 2012), climate (Brodie & Gibbs, 2009) and carbon stocks (Bello et al., 2015). 
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Mammals are also disproportionately impacted by anthropogenic activities (Schipper et 
al., 2008; Ceballos et al., 2015; Ceballos et al., 2017; Allan et al., 2019). For over two 
decades, camera traps have revolutionized the way scientists and conservation 
stakeholders survey mammals globally even in the remotest areas (Ahumada et al., 2011; 
Gibson et al., 2011; Skidmore et al., 2015; Beaudrot et al., 2016; Tilker et al., 2019), as 
camera traps operate continuously for months at a time without the need for observer 
presence. 

Our goals were to: 1) reveal the global patterns of biodiversity research allocation, 
and spatially predict its distribution across the global landscape, 2) identify the key 
predictors of global biodiversity research allocation, and 3) quantify the associated 
disparity of research allocation in relation to the Aichi Targets. Our assumption is that 
research allocation should be driven by the conservation policy needs reflected in the 
Aichi Targets and the key predictors of research allocation would be those linked with the 
Aichi Targets (Table 1). We hypothesise that the selected research locations in the past 
two decades often failed to overlap areas most important for achieving the Aichi Targets, 
for instance, where biodiversity is high and anthropogenic threats are most prevalent.  
 
Materials and Methods 
A systematic search of camera trap studies.  
On 09.09.2019, we conducted an extensive systematic literature search on the Web of 
ScienceTM (WoS, Science Citation Index Expanded) and Google Scholar (GS) 
databases, for both peer-reviewed and grey literature published between 1900 and August 
2019 that used camera traps as a research tool. We followed standard guidelines for 
conducting a systematic literature search in conservation and environmental management 
(Pullin & Stewart, 2006). We used a priori selected search string: (camera trap* OR 
camera-trap* OR remote camera* OR photo trap* OR photo-trap* OR camera NEAR/1 
trap* OR trail camera* OR automatic camera* OR remotely triggered camera* OR game 
camera* OR motion-activated camera* OR infrared camera* OR wildlife camera*) AND 
(wildlife* OR animal* OR mammal* OR vertebrate* OR terrestrial vertebrate*). For the 
WoS, we specified the search within the biological research categories: environmental 
sciences, ecology, zoology, biodiversity conservation, behavioral sciences, forestry, 
evolutionary biology, remote sensing, reproductive biology and anthropology. 

We checked the searches returned from WoS and GS for duplicate records and 
those not in English, which we removed (Lawler et al., 2006). Where possible, we then 
downloaded the studies as .pdf or MS Word or HTML files. Using the title, abstract and 
main text, we identified studies based either wholly or in part on-field use of camera traps 
to study wild animals for ecological and/or conservation research purposes. We then 
subjected these studies to a priori designed inclusion/exclusion criteria (Figure 1). We 
excluded non-camera trap studies and books, book chapters and reviews. We also 
excluded studies that did not provide research location name(s), those which provided 
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research location name(s) but, either the location could not be georeferenced or the 
geospatial information (longitude and latitude) was erroneous, and finally studies on non-
mammalian terrestrial wildlife. In the remaining studies, we extracted the location 
information (longitude and latitude) where the study was conducted. We excluded 
research locations for studies conducted before year 2000 to ensure that research location 
data matched the temporal extent of the predictors. We also removed locations not on 
land, as well as duplicates. 
 
Collating of and processing predictor datasets.   
Based on our own research experience, study objectives and published literature, we 
selected ten spatially explicit environmental predictors for their potential importance to 
the research location selection. These predictors included those that represented 
anthropogenic threats to biodiversity, those related to biodiversity, and those related to 
economical and topographic aspects. We downloaded predictor datasets from the web in 
both vector and raster formats. A detailed description of the covariate datasets is given in 
Table 1. 

The geospatial data were processed in the R statistical language (R Core Team, 
2019). Because our predictors’ data originated from different sources, we harmonized 
projections, grid cell size and alignment, and the spatial extent to ensure consistency 
across all predictor data layers using appropriate functions from the “raster” package 
(Hijmans & Robert, 2020). We chose a geographical latitude / longitude projection at 30 
arc-second resolution (ca. 1 km at the equator) for this analysis. We plotted the research 
location data on a global map to locate where research has been conducted. We then used 
the spsample function and the Fibonacci sampling type argument in “sp” package 
(Pebesma & Bivand, 2005) to create 50,000 random points for which, together with each 
of the research locations, extracted the associated predictor data. We used the extract 
function of the “raster” package for the extraction of the raster values. We then computed 
a Spearman’s rank correlation matrix to test for multi-collinearity among predictors 
(Figure S1). We assumed predictors with a correlation value r <- 0.7 or r > 0.7 to be 
correlated. If predictors were found to be collinear, only one of them was included in the 
subsequent models. We used raincloud and bar plots in the “ggplot2” R package 
(Wickham, 2009) to visualize the data distribution of the continuous and categorical 
predictors respectively, between research locations and a random sample of available 
land surface (Figure S2). 
 
MaxEnt Modelling. 
We used the MaxEnt models to 1) identify the key predictors of research allocation, and 
2) predict the spatial probability for research allocation, given the relationship of research 
allocation and predictors. We implemented the MaxEnt models using the maxent function 
in the “dismo” package in R (Hijmans et al., 2017). Before modelling, we used the 
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ENMevaluate function in the “ENMeval” package to tune our models, i.e. identify the 
optimal feature classes and regularization multiplier values needed to maximize model 
predictive ability while avoiding overfitting (Muscarella et al., 2014). We split the 
research locations into two separate partitions (80% for model training and 20% for 
model testing). We ran five MaxEnt models. 1) One global model (using all research 
locations), and 2) four biome specific models for biomes with the highest number of 
research locations (hereafter “most researched biomes”). We used feature classes and 
regularization multiplier value of the model with the lowest Akaike Information Criterion 
(AIC) value as returned by the ENMevaluate process. We set the number of background 
points to 10,000 for all models. We used the value of the Area Under the Curve (AUC) of 
the Receiver Operating Characteristic (ROC) curves on the test data to assess model 
performance. We assumed models with an AUC value of > 0.70 to be of good model fit 
(Phillips et al., 2006; Hijmans et al., 2017). We used the jackknife procedure and 
permutation importance to assess variable importance and to identify the most important 
predictors of research allocation (Phillips et al., 2006).  
 
Quantifying disparity in research location selection. 
We used bivariate choropleths to assess the relationship between the probability of 
research allocation and Aichi Targets at the four most research biomes. We first 
developed a global “Aichi map” for each of the biomes to identify areas across the 
landscape of high Aichi value (ranging between 0 and 1). We generated the Aichi map by 
identifying from our set of predictors those related to Aichi Targets (see Table 1). We 
then normalized the predictors to range from 0 to 1. For country income which may be 
negatively associated with Aichi Targets, i.e. low income countries have higher 
biodiversity and face higher anthropogenic alteration, we calculated the inverse. We then 
weighted the predictors with 2, 1 or 0 based on their importance to Aichi Targets (0 = no 
importance (not used for the map); 1 = low importance; 2 = high importance). Finally, we 
generated the Aichi map by calculating a weighted mean of the predictors’ Aichi 
importance.  

To generate a bivariate choropleth, we used a customised R function that divided 
the probabilities of research allocation and the Aichi value datasets into five classes each 
containing 20% of the available values (quintiles). The bivariate choropleth indicates the 
spatially explicit strength of associations between two variables and results in: (1) 
high�high values, here, areas with high Aichi value and high predicted probability of 
research allocation, (2) high�low values, high Aichi value and low predicted probability 
of research allocation, (3) low�high values, low Aichi value and high predicted 
probability of research allocation, and (4) low�low values, low Aichi value and low 
predicted probability research allocation. We then used the extract function of the 
“raster” package to extract the Aichi quintile for each of the research locations in the four 
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most researched biomes. We used the accruing data to calculate the percentage of 
research locations in each of the Aichi quintiles. 
 
Results 
Searches from WoS and GS returned 4350 and 7047 studies respectively. After removing 
duplicate records and those not in English, we obtained a combined list of 7001 studies. 
From the 7001 studies, we excluded 2176 as non-camera trap studies, and 79 books, book 
chapters and reviews. In the remaining 4746 records, we excluded 174 studies that did 
not provide research location name(s), 839 which provided research location name(s) but, 
either the location could not be georeferenced or the geospatial information (longitude 
and latitude) was erroneous, and 239 studies on non-mammalian terrestrial wildlife. We 
thus remained with a total of 3494 studies for which we extracted the studies’ longitude 
and latitude information. As some studies were conducted at multiple research locations, 
the 3494 studies represented a total of 5158 research locations. We then excluded 64 
research locations for studies conducted before 2000 to ensure that research location data 
matched the temporal extent of the predictors. We also removed 214 locations not on 
land, as well as 1485 duplicated research locations. We thus remained with 3395 research 
locations from 2324 studies for use in the subsequent analyses.  

The most researched biomes were; Tropical and Subtropical Moist Broadleaf 
Forests (hereafter “tropical moist forests”, n = 1075); Temperate Broadleaf and Mixed 
Forests (hereafter “temperate forests”, n = 711); Tropical and Subtropical Grasslands, 
Savannas and Shrublands (hereafter “tropical grasslands”, n = 311) and Mediterranean 
Forests, Woodlands and Scrub (hereafter “Mediterranean forests”, n = 228). The 
discriminative performance of our models gave an average model Area Under Curve 
(AUC) measure of ≥ 0.8; hence, the models were particularly useful to identify the most 
important predictors (Table S1) and specific areas of research allocation (Figure 3 and 4).  
 
Global patterns of research allocation. 
Studies were conducted in 130 countries (Figure 2c). The countries with highest number 
of studies (in descending order) were; the USA, Brazil, Australia, India, Mexico, China 
and Malaysia (Figure 2d and Table S1). Of the large countries (area >1 million km2), 
Mauritania, Democratic Republic of Congo, Niger, Angola, Libya, Kazakhstan, Algeria, 
Ethiopia and Egypt received less than five studies (Table S1). The top five countries with 
the highest density of studies were Singapore, Belize, Mauritius, Costa Rica and Panama 
(Figure 3c and Table S1). Similarly, North America, continental Europe, United 
Kingdom and Japan had a high probability of research allocation (Figure 3c). African 
countries generally had some of the lowest density of research locations and probabilities 
of research allocation (Figure 3c and Table S1). 

The biomes with the highest density of studies, research locations and predicted 
probability of research allocation were mangroves, Tropical and Subtropical Coniferous 
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Forests (hereafter “tropical coniferous forests”), Mediterranean forests, tropical moist 
forests and Tropical and Subtropical Dry Broadleaf Forests (hereafter “tropical dry 
forests”) (Figure 3b and Table S2). Boreal forests/Taiga and Tundra biomes had the 
lowest density of studies and predicted probability of research allocation (Figure 3b and 
Table S2).  

Within the tropical moist forests biome, we predicted a higher probability of 
biodiversity research allocation in Malaysia, Thailand and Indonesia, while tropical 
African countries had a much lower probability of research allocation (Figure 4c). In 
South and Central America, the Brazilian Atlantic dry forests had the highest probability 
of research allocation (Figure 4c). In the tropical grasslands biome, the Cerrado and the 
Llanos in Colombia and Venezuela had the highest probability of research allocation 
(Figure 4c). Apart from some areas in East Africa, African savannahs, grasslands and 
shrublands had a disproportionally low probability of biodiversity research allocation, 
while grasslands and shrublands in Australia had a higher probability of research 
allocation (Figure 4g). In the Mediterranean forests, California, South Africa and 
Southern Europe particularly Italy, Greece and southern France had a higher probability 
of research allocation (Figure 4). Lastly, in the temperate forests biome, Japan, the United 
Kingdom and South-Eastern Australia had the highest probability of research allocation, 
while areas in Eastern Europe and those in Russia or the Caspian region had a lower 
probability of research allocation (Figure 4o).  
 
Predictors of research allocation.  
Globally, country income was the most important predictor of research allocation 
(23.5%) followed by biome (22.6%), mammal richness (16.5%) and accessibility (14.2%) 
(Figure 3a). Country income decreased the global model AUC the most when omitted, 
suggesting that it has the most important information that isn't present in the other 
predictors (Figure S4a). The probability of research allocation was higher in high income 
countries and lower in low income countries (Figure 3b). Among biomes, the probability 
of research allocation was higher in the mangroves, tropical dry forests, tropical 
coniferous forests, Mediterranean forests; and tropical moist forests. Boreal forests/Taiga 
and Tundra biomes had the lowest probability of research allocation (Figure 3b). There 
was a strong positive trend in research allocation with mammal richness and accessibility 
(Figure 3b). 

In addition to the global analysis, we analysed the four most researched biomes 
independently to get further insights on the biome specific predictors. High country 
income and IUCN protected area status were the only predictors consistent in all four 
biomes (Figure 4a, e, i, m and Table S3), with research allocation being twice as high 
within protected areas than outside. Accessibility was a key predictor in three (tropical 
moist forests; Mediterranean forests and temperate forests) of the four most researched 
biomes, with higher research allocation in more accessible areas (Figure 4a, i, m and 
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Table S3). The number of species impacted by at least one human activity was a key 
predictor in three (tropical moist forests, tropical grasslands and Mediterranean forests) of 
the four most researched biomes (Figure 4a, e, i and Table S3). There was a positive 
trend towards more research allocation in areas with higher threat to species particularly 
in the two tropical biomes (Figure 4a, e), while the trend was less clear in the 
Mediterranean forests (Figure 4i). Lastly, mammal richness, which had a clear positive 
trend at the global level (with high species areas receiving a higher research allocation, 
Figure 3b), was a key driver only in the tropical grasslands (Figure 4e). In line with the 
global trend, we saw a general trend towards more research in more species-rich 
landscapes, although in contrast to the global level, research allocation in the grassland 
regions actually decreased again above 160 mammal species (Figure 4e). 
 
Disparity in research allocation.  
In all the four most researched biomes, the Aichi values of the researched locations were 
consistently higher than for the random locations (Figure 5e, h, k, n), particularly in the 
tropical grasslands biome. Out of the total number of research locations in the tropical 
moist forests biome, 40.8 % (n = 439) of those were in the top 20% of the most important 
areas for Aichi Targets (Figure 5c, f); 66.8 % (n = 208) in the tropical grasslands biome 
(Figure 5c, i); 43.8 % (n = 100) in the Mediterranean forests biome (Figure 5c, l) and 
42.9 % (n = 306) in the temperate forests biome (Figure 5c, o). On the other hand, 5 % (n 
= 54) of all locations in the tropical moist forests biome were in the 20% least important 
areas for Aichi Targets (Figure 5c, f); 0.3 % (n = 1) in the tropical grasslands biome 
(Figure 5c, i); 1.2 % (n = 2) in the Mediterranean forests biome (Figure 5c, l) and 2 % (n 
= 14) in the temperate forests biome (Figure 5c, o). 

We observed high research allocation in the high Aichi value areas of the 
Brazilian Atlantic dry forests, Central Europe and large parts of Southeast Asia (Figure 
5b). But there was a disparity in research allocation and Aichi value particularly in the 
Central Amazon basin, Eastern Europe, Russia, the Caspian region and some areas of 
Africa including Liberia, Central African Republic, Democratic Republic of Congo and 
Mozambique, all regions which have a high Aichi value (Figure S5) but received low 
research allocation (Figure 5b). 
 
Discussion  
Our results indicate that biodiversity research allocation is uneven with distinct biases 
(Figures 3, 4 and 5). These biases are apparent at the global and biome levels and appear 
primarily associated with country income, with only a minor amount associated with 
Aichi Targets’ related predictors such as species richness and number of species 
impacted. Thus, for the past two decades camera trap research has often failed to target 
areas important for biodiversity conservation. 
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At the country level, the probability of research allocation was highest in high 
income countries and lowest in low income countries. The importance of country income 
for research allocation is in contrast to objective research location selection for attaining 
the Aichi Targets; many of the world’s most biodiverse and high Aichi value regions 
(Figure S5) occur in the lower middle and low income countries where much of the 
current global environmental degradation (Laurance & Balmford, 2013; Hansen et al., 
2013, Laurance et al., 2014) and associated biodiversity loss is concentrated (Dirzo et al., 
2014; Beaudrot et al., 2016). A notable example are the rainforests of the Congo Basin 
which are impacted by road expansion, mining, intensive timber extraction, commercial 
hunting and other developments (Wilkie et al., 2000; Edwards et al., 2014; Kleinschroth 
et al., 2017), along with unprecedented smallholder clearing for agriculture associated 
with increasing human population (Tyukavina et al., 2018). Such developments offer 
financial gains in a region suffering severe poverty, but without care this has negative 
implications for biodiversity conservation (Edwards et al., 2014) and attaining the Aichi 
Targets. 

The importance of country income for conservation is well established. For 
example, ineffective protected area management is often associated with insufficient 
equipment, staff and other financial resources within poorer nations (Wolf et al., 2021). 
Our observation that research allocation differs among country income groups 
corroborates the important role of financing in global biodiversity conservation (see 
Aichi Target 20) (Waldron et al., 2013; Meijaard et al., 2015), as is the case in the 
medical and technology research fields (Vinkler, 2008; Iyer, 2018). High income 
countries typically invest more in scientific research, foster innovation and technological 
advancement, have established scientific infrastructure, expertise, training, and a long-
term tradition and culture of scientific inquiry (Vinkler, 2008; Waldron et al., 2013; 
Meijaard et al., 2015).  

Country income is also often related with other factors that may play a role when 
selecting research locations including political stability, good governance, safety and 
security, presence of strong domestic research programs and institutions, and 
infrastructure development (e.g. availability research stations among others). 
Accessibility, for example, is often limited in low income countries (Weiss et al., 2015), 
making areas critical for conservation in these countries hard-to-reach for researchers. 
This is clearly seen in our findings insofar as research allocation probability decreased 
rapidly with accessibility both at the global level (Figure 3) and in three of the four most 
researched biomes (Figure 4a, i and m). From a conservation perspective, effort and 
allocation should reflect conservation needs and biological interest rather than country 
wealth (Meijaard et al., 2015). 

Biome-specific biases in conservation allocation have previously been reported in 
identifying global conservation priority areas (Myers et al., 2000; Wilson et al., 2006), 
allocating conservation research (Lawler et al., 2006; Meijaard et al., 2015; Wilson et al., 
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2016), research funding allocation (Halpern et al., 2006) and in the establishment of 
protected areas (Hoekstra et al., 2005; Jenkins et al., 2009). This likely reflects how both 
biological diversity and level of threats differ among biomes (Lawler et al., 2006; 
Dinerstein et al., 2017). Currently, we see a shift in conservation priorities, from 
threatened species to threatened biomes (Hoekstra et al., 2005). For example, the IUCN 
protected area coverage, as a cornerstone for biodiversity conservation (Tilman et al., 
2017; Wolf et al., 2021), has expanded greatly in the last decades, as part of the overall 
global increase in conservation allocation in the biomes at risk (Hoekstra et al., 2005; 
Jenkins & Joppa, 2009; Wolf et al., 2021). We also recorded high research location 
densities and probabilities of research allocation in some of the biomes at risk (Hoekstra 
et al., 2005; Jenkins & Joppa, 2009); Mediterranean forests; tropical dry forests; tropical 
coniferous forests; and tropical moist forests. This finding is therefore in line with the 
Aichi Targets — that regions facing the highest anthropogenic threats should receive 
greater research allocation partnering with increased conservation effort. Our findings 
further show that, even within the biomes, spatial disparities in research allocation in 
relation to Aichi Targets occur (Figure 5b). 

Biodiversity and the threats to its persistence are unevenly distributed, and if we 
were focused on the Aichi Targets, these distributions should guide research allocation 
(Wilson et al., 2016). However, we only found such a positive association only in specific 
regions. For example, Southeast Asian tropical moist forests are both of high Aichi value 
(Figure S5) and have received substantial research allocation, likely as a result of their 
rich biodiversity (Sodhi et al., 2004), relative accessibility (compared to the Amazon or 
Congo), political stability and economic growth. At the same time, these forests are also 
among the world’s major deforestation (Achard et al., 2002; Hansen et al., 2013) and 
hunting hotspots (Dirzo et al., 2014; Tilker et al., 2019), supporting the great research 
needs to assess and monitor the consequences of these threats on biodiversity. Our 
finding from Southeast Asia inspires optimism that with additional and targeted efforts, 
similar high research allocation can be achieved in other areas where Aichi value is high, 
charismatic species are present (Marshall et al., 2016), but research allocation is currently 
low. 

The Amazon and Congo forest basins — two highly biodiverse ecosystems facing 
unprecedented human alteration (Wearn et al., 2012; Dirzo et al., 2014; Pimm et al., 
2014) — received inadequate attention. Our findings indicate low levels of research in 
these regions despite their key role in climate regulation (Malhi et al., 2004) and 
biodiversity conservation (Pimm et al., 2014). This shortfall has substantial implications, 
not only for attaining the Aichi Targets, but also for the effective implementation of 
international and national conservation policies and payment schemes. For example 
Payment for Ecosystem Services (PES) schemes or the United Nations’ Reducing 
Emissions from Deforestation and Forest Degradation (REDD+) require robust 
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biodiversity assessment and monitoring to quantify the biodiversity co-benefits 
associated with these payments (Lindenmayer et al., 2000; Sollmann et al., 2017). 

Outside the tropics, we also observed a research shortfall (Figure 5b) and a low 
probability of research allocation in Eastern Europe (Figures 3c and 4o), despite this 
region’s dominant biome, the temperate forest, possessing some value under the Aichi 
Targets (Figure S5). This again reflects a difference in country income across this biome 
(Figure 4m). Research allocation was much lower in lower middle income Ukraine, 
compared to the high probability of research allocation in the neighboring higher income 
countries of Poland, Slovakia, Hungary and Romania (Figures 3c and 4m). On the other 
hand, we also found some areas in the most researched biomes to have high research 
allocation but low Aichi value (Figures 5b and S5). These areas were mainly in the 
temperate forest biome in the USA, United Kingdom, China, Australia and Japan where 
relative research intensity is often determined by national conservation priorities, for 
example, presence of high conservation value charismatic species such as pandas in 
China or koalas in Australia. 
 
Conservation policy implications.  
To our knowledge, this is the first quantitative assessment of the degree to which research 
allocation matches global priorities for biodiversity conservation. Research allocation 
being lowest in low income countries both globally and in all the four most researched 
biomes (Figures 3 and 4) is unsurprising considering the financial and training investment 
needed for research—yet given how long this has been recognized (United Nations, 
1992), the pace of progress remains disappointing. While economic growth may facilitate 
the expansion of research allocation in the places where it is most needed, this may be too 
late given we are losing biodiversity at a precipitous rate (Chapin et al., 2000; Cardinale 
et al., 2012; Bello et al., 2015). It will be challenging to understand and track the impacts 
of anthropogenic activity on biodiversity and ecosystem functioning if we don’t take 
urgent action to expand and strengthen research and conservation in areas where it is 
most needed but lacking (Sheil, 2001; Lawler et al., 2006).  

Aichi Target 19 states that “By 2020, knowledge, the science base, and 
technologies relating to biodiversity, its values, functioning, status and trends, and the 
consequences of its loss, are improved, widely shared and transferred, and applied”. It’s 
2022, and although our understanding has improved, many aspects of this target have not 
been achieved. Our understanding remains poor in many regions where research 
allocation has been low. Because country income was the most important predictor of 
research allocation, we suggest that the global conservation community (including 
governments and non-governmental organizations (NGOs)) explore available ecosystem-
based financing mechanisms. Notable are the proposed financing through the REDD+ 
framework (Miles & Kapos, 2008; Harvey et al., 2010) and certification schemes (e.g. the 
Forest Stewardship Council) (Gullison, 2003), where the implementation of such 
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initiatives may enhance the assessment and monitoring of biodiversity’s extent and status 
in low income countries. 

As an alternative to ecosystem-based financing for biodiversity research, we 
suggest that high income countries, that ratified the Aichi Targets, fund research and 
conservation in countries where these are hampered by low income. However, any form 
of support should be provided with critical awareness for equity, inclusion and diversity, 
to ensure equal participation and empowerment of local research institutions and 
individuals (Wilson et al., 2016). This will require that the global research community 
adopts a more equitable research culture where research collaborators from host and 
international nations have mutual trust and respect. Such a culture demands the 
elimination of “parachute science”— whereby researchers from higher-income countries 
conduct research in lower income countries without engagement and investment in local 
research capacity or infrastructure (Bockarie et al., 2018; Stefanoudis et al., 2021). Truly 
collaborative research practices and effective engagement of researchers in host countries 
enhances local research capacity, eliminates dependency on external scientists, ensures 
sustainable continuation of monitoring and conservation programs when international 
researchers return to their home countries, and ensures that the research addresses local 
conservation challenges to deliver desired conservation outcomes. 

Quantifying the relationship between research allocation and Aichi Targets 
(Figure 5) represents a first step towards identifying research and conservation shortfalls. 
We believe that our findings can be used to set specific targets for biodiversity research 
allocation—an important consideration for the Post-2020 Global Biodiversity Framework 
of the Conference of the Parties to the CBD, which aims to have“… focused, concrete 
and measurable Action targets…” which will be implemented and their impacts can be 
monitored and assessed. Some Aichi Targets have set quantifiable targets, but Aichi 
Target 19, which speaks directly to biodiversity conservation knowledge creation 
(through biodiversity research), does not have specific, quantifiable targets. The 
expansion of research to areas where biodiversity conservation is needed will depend on 
whether or not the Post-2020 framework will include specific targets that can be readily 
measured and directly linked to biodiversity conservation policy and practice. 
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Table 1. The final ten predictors used in the analysis, their description, associated Aichi Target and their importance to the 
Aichi Targets.  
 

Predictor Description Aichi 
Target 

Aichi 
Importance 

Data type Comment Reference 

Accessibility Enumerates land-based 
travel time to the nearest 
densely-populated area at 
1 km2 resolution. Each 
grid cell represents the 
modeled shortest time 
from that location to a 
city. 

- 1 Continuous Accessibility has been 
linked to 
anthropogenic threats 
(Benítez-López et al., 
2019) Accessibility 
hence has an indirect 
link to Aichi Targets. 

Weise et al. (2018) 

Number of species 
impacted by human 
activity 

Indicates the number of 
species in a grid cell 
impacted by at least one 
anthropogenic threat at a 
30 km × 30 km spatial 
resolution. 

7 2 Continuous Similar to IUCN 
threatened species but 
more directly linked to 
the threats.  

Allan et al. (2019) 

Forest loss Indicates forest loss 
during the study period, 
defined as a stand-
replacement disturbance 
(a change from a forest to 
non-forest state) at a 30 m 
resolution. 

5 1 Continuous Directly linked to 
biodiversity loss and 
Aichi Target 5. We 
treat this with the same 
importance as other 
threats. 

 
Hansen et al. (2013) 

Country income Country income groups 
are based on country’s 
Gross Net Income (GNI) 
and are classified into 
four groups by the World 
Bank. We used an 

20 1 Categorical Aichi targets highlight 
that low income 
countries should 
receive financial 
support to attain their 
targets. But as it does 
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average of the country’s 
GNI data for the period 
2000-2020. 

not directly refer to 
achieving the targets, 
we treat this with the 
same importance as the 
threats. Low income 
countries are areas of 
high Aichi importance. 

Terrestrial mammal 
species richness 

Identifies centers of 
terrestrial mammal 
species richness at 10 × 
10 km spatial resolution. 

13 2 Continuous A direct measure of 
mammal biodiversity. 

Jenkins et al. (2013) 

IUCN protected area IUCN protected areas 
were obtained from the 
World Database on 
Protected Areas (WDPA). 

11 0 Categorical Directly related to 
Aichi targets, but a 
clear guidance on 
whether to survey 
more in or out of 
protected areas is 
missing. 

 

Intact Forest Landscape 
(IFL) 

Identifies intact forest 
landscapes (IFL), defined 
as a seamless mosaic of 
forest and naturally 
treeless 

NA 0 Categorical Not related to the 
Aichi targets. 

Potapov et al. (2017) 

Biomes Biomes were extracted 
from the terrestrial 
ecoregions of the world, 
as areas with distinct 
assemblages of natural 
communities and species. 

NA 0 Categorical Not related to the 
Aichi targets. 

Dinerstein et al. (2017) 

Elevation NASA’s Shuttle Radar 
Topography Mission 
(SRTM) digital elevation 
dataset which provides 

NA 0 Continuous Not related to the 
Aichi targets. 

 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
w

as not certified by peer review
) is the author/funder, w

ho has granted bioR
xiv a license to display the preprint in perpetuity. It is m

ade 
T

he copyright holder for this preprint (w
hich

this version posted A
pril 10, 2022. 

; 
https://doi.org/10.1101/2022.04.07.486958

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/2022.04.07.486958
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24

high-quality global 
elevation data. 

Terrain Ruggedness 
Index (TRI) 

A measure of the 
elevation difference 
between adjacent cells of 
a digital elevation grid, 
calculated as the square 
root of the average 
difference in elevation 
values from a center cell 
and the eight cells 
immediately surrounding 
it.  

NA 0 Continuous Not related to the 
Aichi targets. 

 

 
The Aichi importance is scored as 0 = no importance (not used for the analysis); 1 = low importance; 2 = high importance.  
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FIGURE 1 Step-by-step schematic representation of data collection and modelling workflow. 
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FIGURE 2 Temporal and spatial patterns of camera trap research. (a) Number of studies that used 

camera traps as a research tool (left axis and bar graph) and number of countries where the research 

was conducted (right axis and line graph) between 1970 and 2019. (b) Number of locations in the 

past two decades (right axis and line graph) compared among country income groups (left axis and 

stacked bar graph). (c) Global research locations before and after year 2000. (d) Number of studies 

that used camera traps as a research tool per country. 
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FIGURE 3 The most important predictors of global research allocation. (a) Permutation 

importance of the top four predictors (and others combined). (b) Relationships between the 

probability of research allocation and the top four most important predictors. (c) Probability of 

research allocation and three zoomed-in areas (insets) of the tropical moist forest biome; Southeast 

Asia (Borneo), South America (Amazon) and Africa (Congo Basin) and (d) Violin plot showing 

the probability of research allocation values and the colour ramp as a legend for the maps. The 

violin plot shows the median and the interquartile range of the probability of research allocation. 

 

The biomes are: 1= Tropical and Subtropical Moist Broadleaf Forests, 2 = Tropical and 

Subtropical Dry Broadleaf Forests, 3 = Tropical and Subtropical Coniferous Forests, 4 = 

Temperate Broadleaf and Mixed Forests, 5 = Temperate Conifer Forests, 6 = Boreal Forests/Taiga, 

7 = Tropical and Subtropical Grasslands, Savannas and Shrublands, 8 = Temperate Grasslands, 

Savannas and Shrublands, 9 = Flooded Grasslands and Savannas, 10 = Montane Grasslands and 

Shrublands, 11= Tundra, 12 = Mediterranean Forests, Woodlands and Scrub, 13 = Deserts and 

Xeric Shrublands and 14 = Mangroves. The top five biomes with the highest probability of 

research allocation in bold. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.07.486958doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.07.486958
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

 
FIGURE 4 The most important predictors and probability of research allocation in the four most 

researched biomes; the tropical moist forests (top left), tropical grasslands (bottom left), 

Mediterranean forests (top right), and temperate forests (bottom right). (a), (e), (i) and (m) 

Relationships between the probabilities of research allocation and the top four most important 

predictors.  (b), (f), (j), and (n) Permutation importance of the top four predictors (and others 

combined). (c), (g), (k), and (o) Probability of research allocation for each of the biomes. (d), (h), 

(l) and (p) Violin plots showing the probabilities of research allocation values for each of the four 

biomes also used here as a legend. The violin plots show the median and the interquartile range of 

the probability of research allocation. 
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FIGURE 5 Disparity in the probability of research allocation and the Aichi Targets. (a) Bivariate 

choropleth showing the relationship between the probability of research allocation and the Aichi 

Targets. Numbers 1 to 5 on the bivariate choropleth depict quintiles. Each colour change means a 

20% quintile change in probability of research allocation and Aichi value. (b) Disparity in the 

probability of research allocation and Aichi Targets. Notable, areas in orange are of high Aichi 

value. These areas would be the best targets for research aimed at meeting the Aichi Targets and 

hence informing actions to halt biodiversity loss. (c) Percentage of research locations in quintiles 

of areas important for Aichi Targets. (d), (g), (j) and (m) Extent of the four most researched biomes; 

tropical moist forests, tropical grasslands, Mediterranean forests, and temperate forests. (e), (h), 

(k) and (n) Aichi values of research locations compared to a random sample. (f), (i), (l) and (o) 

depict legends for the bivariate choropleth in (a); overlaid with research locations (dots).  
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