Genetically defined nucleus incertus neurons differ in connectivity and function

Emma D. Spikol,1, 2 Ji Cheng,2 Michelle Macurak,3 Abhignya Subedi,3
and *Marnie E. Halpern1, 2

*Corresponding author: Marnie.E.Halpern@dartmouth.edu

1 Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
2 Department of Molecular and Systems Biology, Dartmouth College, Geisel School of Medicine, Hanover, NH 03755, USA
3 Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA

SUMMARY
The nucleus incertus (NI), an understudied hindbrain structure implicated in the stress response, arousal, and memory, is a major site for production of the neuropeptide relaxin-3. On the basis of goosecoid homeobox 2 (gsc2) expression, we identified a neuronal cluster that lies adjacent to relaxin 3a (rln3a) neurons in the zebrafish analogue of the NI. To delineate properties of the gsc2 and rln3a neurons, we used CRISPR/Cas9 targeted integration to drive gene expression in each group, and showed that they differ in afferent input, efferent connections and functional properties. gsc2 and rln3a NI neurons innervate distinct subregions of the interpeduncular nucleus (IPN), but only gsc2 neurons receive reciprocal innervation from the IPN. Whereas gsc2 neurons are activated by electric shock, rln3a neurons exhibit spontaneous fluctuations in calcium signaling and regulate locomotor activity. Our findings define heterogeneous neurons in the NI and provide new tools to probe its diverse functions.

Keywords: zebrafish, relaxin-3, goosecoid 2, interpeduncular nucleus, locomotion
INTRODUCTION

The nucleus incertus (NI) was originally identified in the human brain (Streeter, 1903) and consists of bilaterally paired clusters of neurons at the midline of the floor of the fourth ventricle (Olucha-Bordonau et al., 2018; Ma and Gundlach, 2015). A variety of neuropeptides have been detected in the region, including cholecystokinin (Kubota et al., 1983; Olucha-Bordonau et al., 2003), neuromedin B (Lu et al., 2020), neurotensin (Jennes et al., 1982), and relaxin-3 (Burazin et al., 2002; Smith et al., 2010), however, the heterogeneity of neuronal subtypes and their functions are poorly understood. In rodents, the NI contains the largest population of neurons in the brain that produce relaxin-3 (RLN3) (Ma et al., 2017; Tanaka et al., 2005; Smith et al., 2010; Smith et al., 2011) a neuropeptide thought to mediate behavioral responses to aversive stimuli (Lawther et al., 2015; Ryan et al., 2013; Zhang et al., 2015). Although some NI neurons do not produce RLN3 (Ma et al., 2013), their characteristics are not well distinguished from the RLN3 population.

Initial investigations in rodents indicate that the NI responds to stressful cues; NI neurons are enriched in receptors for the Corticotropin Releasing Factor (CRF) and upregulate c-Fos in response to CRF exposure (Potter et al., 1994; Bittencourt and Sawchenko, 2000). Placement in an elevated plus maze, exposure to an anxiogenic drug, foot shock, or water-restraint stress also induce c-Fos expression in the NI (Tanaka et al., 2005; Lawther et al., 2015; Passerin et al., 2000; Rajkumar et al., 2016). Moreover, a recent study in mice demonstrates that optogenetic activation of GABAergic neurons in the NI during presentation of an aversive stimulus blocks fear memory formation (Szönyi et al., 2019). Other reports have implicated the NI in regulating baseline locomotor activity. For example, electrical microstimulation of the NI promotes locomotion in rats (Farooq et al., 2016), and optogenetic activation of a subset of neurons in the mouse NI that produce the neuropeptide neuromedin B increases locomotor speed (Lu et al., 2020). Given the diverse behavioral roles attributed to the NI, we examined neuronal subtypes within it to elucidate their identity and connectivity, and determine whether they mediate specialized functions.

Larval zebrafish are a powerful model to investigate neuronal diversity and connectivity because their transparency and genetic tractability are advantageous for
monitoring and manipulating specific subpopulations. In zebrafish, the presumed analogue of the NI is the griseum centrale, a longitudinally oriented nucleus situated on the ventral surface of the rhombencephalic ventricle, extending partially into the mesencephalon (Olson et al., 2017; Wullimann et al., 1996; Agetsuma et al., 2010). The griseum centrale was suggested to encompass brain regions equivalent to the mammalian NI and periaqueductal grey (PAG) (Olson et al., 2017; Agetsuma et al., 2010). Further work revealed that expression of relaxin 3a (rln3a) is restricted to two bilaterally paired clusters of neurons in the midbrain and two bilaterally paired nuclei in the hindbrain, bordering the midline (Donizetti et al., 2008). It was proposed that the midbrain rln3a expression domains correspond to the PAG, a region that also produces RLN3 in rodents (Ma et al., 2017; Tanaka et al., 2005; Smith et al., 2010), and that the hindbrain rln3a neuron clusters correspond to the NI (Donizetti et al., 2008). Zebrafish have a second paralog encoding Relaxin-3, relaxin 3b (rln3b), which is transcribed by the same PAG neurons that express rln3a, but not by neurons in the NI (Donizetti et al., 2009).

The zebrafish griseum centrale is a proposed target of the habenulo-interpeduncular nucleus (Hb-IPN) axis, a highly conserved forebrain to midbrain pathway implicated in modulating anxiety and the response to aversive stimuli (Agetsuma et al., 2010; Facchin et al., 2015; Duboué et al., 2017; McLaughlin et al., 2017). Left-right asymmetry of the habenular region is widespread among vertebrate species (Harris et al., 1996; Ahumada-Galleguillos et al., 2017) and in zebrafish, the left and right dorsal habenulae (LdHb and RdHb) exhibit prominent differences in their molecular properties, connectivity and functions (deCarvalho et al., 2014; Gamse et al., 2005; Facchin et al., 2015; Duboué et al., 2017). The LdHb projects to the dorsal IPN (dIPN) and ventral IPN (vIPN), whereas RdHb neurons largely innervate the vIPN (Gamse et al., 2005). Using tract tracing in adult zebrafish, Agetsuma et al., 2010 found that the dIPN and vIPN also have different targets: the vIPN projects to the dorsal raphe and the dIPN innervates neurons in the hindbrain griseum centrale. However, the precise neuronal populations the LdHb-dIPN pathway targets in the griseum centrale, and specifically in the NI, are unknown.
In this study, we describe a small population of neurons, defined by expression of the gsc2 gene, that is closely apposed to rln3a neurons in the zebrafish hindbrain. Through CRISPR/Cas9-mediated targeted integration, we generated QF2 transgenic driver lines (Riabinina and Potter, 2016; Subedi et al., 2014) to facilitate selective labeling and manipulation of the rln3a and gsc2 neuronal populations. Neurochemical characteristics and connectivity are consistent with NI identity. However, despite their close anatomical proximity in the NI, gsc2 and rln3a neurons differ in their efferent and afferent connectivity, spontaneous activity, responses to aversive stimuli, and control of locomotor behavior. The results demonstrate the power of genome editing to generate precise tools for interrogating the roles of neighboring neurons in understudied regions of the vertebrate brain.

RESULTS

Identification of gsc2 neurons in the nucleus incertus

The goosecoid homeobox 2 (gsc2) gene encodes a protein which has homology to goosecoid-related proteins in its homeobox domain-containing sequence. We initially identified gsc2 through transcriptional profiling aimed at distinguishing genes with enriched expression in the midbrain interpeduncular nucleus (IPN). IPN tissue was micro-dissected from the brains of adult zebrafish harboring TgBAC(gng8:Eco.NfsB-2A-CAAX-GFP), a transgene that labels dorsal habenular neurons and their axons with membrane-targeted GFP in larvae and adults. Because GFP-labeled dHb axon terminals demarcate the IPN, they serve as a guide to locate and excise this midbrain structure (deCarvalho et al., 2013). After comparing the transcriptional profile of pooled IPN samples with remaining brain tissue, gsc2 transcripts were identified as enriched approximately 5-fold in the IPN relative to the rest of the brain. We note that the gsc2 gene is not annotated in the latest genome assembly (GRCz11) and was identified by aligning reads to Zv9 (Ensembl release 77).

A cluster of neurons in the mouse brain was previously found to express the Goosecoid-2 gene. However, some reports indicate that neurons expressing Gsc2 are found within the IPN (Funato et al., 2010; Gong et al., 2003), whereas others suggest that they lie within the pons region (Saint-Jore et al., 1998; Gottlieb et al., 1998).
examined gsc2 expression in zebrafish larvae using whole-mount in situ hybridization (WISH) and detected transcripts in a cluster of neurons that appear just posterior to the midbrain-hindbrain boundary, and in a few sparsely distributed neurons anterior to this main cluster (Fig. 1A, A’). Double labeling for both gsc2 and somatostatin 1.1 (sst1.1), the latter being expressed in the IPN (Doll et al., 2011), indicates that in the larval brain, gsc2 neurons are located dorsal to the IPN, and not within it (Fig. 1B, B’).

Owing to the similar positions of gsc2 and rln3a (Donizetti et al., 2008) neurons in the larval hindbrain, we performed double-label WISH, and found that gsc2 neurons are a distinct population, located anterior to the rln3a neurons (Fig. 1C, C’, D).

Neuropeptides other than RLN3 have also been detected in the rodent NI, including neuromedin B in mice (Lu et al., 2020), and cholecystokinin (Kubota et al., 1983; Olucha-Bordonau et al., 2003) and neurotensin (Jennes et al., 1982) in rats. To determine whether transcripts encoding each of these neuropeptides are expressed in the zebrafish NI, we performed WISH for the homologous genes cholecystokinin a (ccka), cholecystokinin b (cckb), neuromedin a (nmba), neuromedin b (nmbb), and neurotensin (nts) (Supp. Fig. 1A-E’). For cholecystokinin and neuromedin, the combined expression pattern of the two zebrafish paralogues closely resembles the overall expression pattern of each single rodent gene (Albus, 1988; Ohki-Hamazaki, 2000). Only cckb and nmbb transcripts were detected in the NI, and nmbb expression was also observed in the PAG (Supp. Fig. 1B, D). Using double-label fluorescent WISH, we found that gsc2 neurons did not co-express any of these neuropeptides (data not shown). In contrast, the hindbrain nmbb neurons are intermingled with rln3a neurons in the NI, with a small subset of neurons expressing both neuropeptides (Fig. 1E, Supp. Fig. 2A’-C’’). However, rln3a and nmbb neurons exist as separate, adjacent populations in the PAG (Supp. Fig. 2A). We also found that hindbrain cckb neurons are located just posterior to rln3a and nmbb neurons (Fig. 1F). The results reveal a map of peptidergic neurons in the zebrafish NI, with a discrete group of gsc2-expressing neurons, partially overlapping expression of rln3a and nmbb in cells posterior to gsc2 neurons, and a distinct population of cckb neurons posterior to the rln3a and nmbb neurons (Fig. 1G).
gsc2 and rln3a transgenic lines drive expression in the NI

To further verify that the gsc2 and rln3a neurons reside in the zebrafish analog of the mammalian NI, we examined the properties of these closely apposed neuronal populations. Using CRISPR/Cas9-mediated genome integration, we generated transgenic lines to selectively label and manipulate each group. The gsc2 and rln3a loci were independently targeted for integration of sequences encoding QF2 (Fig. 2A, D), a modified transcription factor that binds to the upstream activating sequence (QUAS) in the bipartite Q transcriptional regulatory system of Neurospora crassa (Riabinina and Potter, 2016; Subedi et al., 2014). Tg(gsc2:QF2)c721 was generated by introducing the QF2 sequence into exon 2 of the gsc2 gene through non-homologous end joining (Kimura et al., 2014). A more recently described method for homology-directed integration called GeneWeld (Wierson et al., 2020) was adapted to include a secondary reporter that, together with the QF2 sequence, was integrated into exon 1 of the rln3a gene to produce Tg(rln3a:QF2; he1.1:YFP)c836. Identification of rln3a:QF2 transgenic carriers was facilitated by the he1.1:YFP reporter consisting of a promoter from the hatching enzyme 1, tandem duplicate 1 (he1.1) gene driving expression of yellow fluorescent protein in the hatching gland starting at 1 day post-fertilization (dpf). Because he1.1 labeling is transient, this secondary reporter does not interfere with brain imaging experiments on older larvae (Xie et al., 2012).

Labeling patterns from Tg(gsc2:QF2)c721 and Tg(rln3a:QF2; he1.1:YFP)c836 driver lines recapitulate endogenous expression patterns of gsc2 and rln3a, respectively, at both larval (Fig. 2B, C, E, F) and adult (Supp. Fig. 3A-G) stages. Consistent with their location in the NI, the rln3a neurons are located on the floor of the 4th ventricle (Supp. Fig. 3G). Similarly, gsc2 neurons are present at the floor of the 4th ventricle, just anterior to the rln3a neurons, but are also distributed more ventrally up to the dorsal surface of the raphe nucleus (Supp. Fig. 3C).

Neurotransmitter identity of gsc2 and rln3a neurons

In mice (Szönyi et al., 2019) and in rats (Olucha-Bordonau et al., 2003), the NI contains a large population of GABAergic neurons and rln3a neurons are largely GABAergic (Ma et al., 2007; Nasirova et al., 2020). To determine the neurotransmitter identity of the
zebrafish rln3a and gsc2 neurons, we mated doubly transgenic fish bearing

$Tg(gsc2:QF2)^{c721}$ or $Tg(rln3a:QF2; he1.1:YFP)^{c836}$ and a QUAS reporter to transgenic

lines that label glutamatergic neurons expressing the solute carrier family 17 member

6b ($slc17a6b$) gene (Miyasaka et al., 2009) or GABAergic neurons expressing

glutamate decarboxylase 1b ($gad1b$) (Satou et al., 2013). We did not observe co-

expression of gsc2 (Fig. 3A) or rln3a (Fig. 3C) with the glutamatergic reporter in the NI.

In contrast, an average of 82.43 ± 3.52% of neurons co-expressed GFP and mApple-

CAAX in $Tg(gad1b:GFP)^{nn25Tg}; Tg(gsc2:QF2)^{c721}; Tg(QUAS:mApple-CAAX;

he1.1:mCherry)^{c636}$ larvae (Fig. 3D, D’, G). Similarly, in $Tg(gad1b:GFP)nn25Tg;

Tg(rln3a:QF2; he1.1:YFP)^{c836}; Tg(QUAS:mApple; he1.1:CFP)^{c788}$ larvae, an average of

80.57 ± 5.57% of neurons co-expressed GFP and mApple (Fig. 3F, F’, F”, G). These

results indicate that gsc2 and rln3a neurons are predominantly GABAergic, consistent

with their NI identity.

To our knowledge, it has not been verified whether rln3a neurons in the

periaqueductal grey are also GABAergic. We found that rln3a neurons in the PAG were

not labeled by the glutamatergic reporter (Fig. 3B), whereas an average of 81.67% ±

3.81% showed labeling from the $gad1b$ transgene (Fig. 3E, E’, E”, G). This suggests

that rln3a neurons possess similar neurotransmitter identity across neuroanatomical

locations.

Distinct projection patterns of gsc2 and rln3a neurons

To compare the projection patterns of gsc2 and rln3a NI neurons, we expressed

membrane-tagged fluorescent reporters in each group and acquired optical sections of

their labeled efferents using confocal microscopy. At 6 dpf, projections from gsc2

neurons were prominent in the cerebellum, IPN, raphe, diencephalon, and rostral and

caudal hypothalamus (Fig. 4A-E, Supp. Vid. 1). Sparse gsc2 projections were also

found in the medulla (Supp. Vid. 1) and telencephalon (Fig. 4D). Projections from rln3a

neurons were found in the medulla, IPN, diencephalon, lateral hypothalamus, and optic

tectum (Fig. 4F-J), with some axons appearing to pass through the posterior

commissure (Fig. 4G, Supp. Vid. 2). Sparse fibers were also observed in the raphe and
telencephalon (Fig. 4H, J, Supp. Vid. 2).
Innervation of the IPN by \textit{rln3a} neurons originates solely from the NI cluster, whereas the bulk of axonal projections throughout the brain emanate from \textit{rln3a} neurons in the PAG (Supp. Vid. 2). This was confirmed by two-photon laser ablation of \textit{rln3a} PAG neurons, which greatly reduced fibers in the medulla, diencephalon, hypothalamus and optic tectum, but spared innervation of the IPN (Fig. 4K-L).

Reduction of \textit{rln3a} PAG neuronal projections enabled visualization of \textit{rln3a} NI efferents, which exclusively target the IPN (Fig. 4L, Supp. Vid. 3). Accordingly, ablation of \textit{rln3a} neurons solely in the NI eliminated innervation of the IPN without affecting the rest of the \textit{rln3a} neuron projection pattern (Fig. 4K, M).

To examine \textit{gsc2} and \textit{rln3a} efferent innervation of the IPN more precisely, we used \textit{TgBAC(gng8:Eco.NfsB-2A-CAAX-GFP)}375 or \textit{TgBAC(gng8:GAL4FF)}426; \textit{Tg(UAS-E1B:NTR-mCherry)}264 to delineate the IPN by labeled dHb axon terminals (deCarvalho et al., 2013; Hong et al., 2013; Davison et al., 2007). We confirmed the location of \textit{gsc2} and \textit{rln3a} neuronal cell bodies dorsal to the IPN as visualized by nuclear-tagged reporters (Fig. 5A, A', C', C'). Using membrane-tagged reporters, we identified axonal projections from both populations to the IPN (Fig. 5B, D, E-J). Intriguingly, the NI neurons innervate disparate regions of the IPN: axons of \textit{gsc2} neurons terminate at the vlPN mainly along the midline neuropil (Fig. 5B, E-F', I, K) and axons of \textit{rln3a} neurons terminate at the dIPN (Fig. 5D, G-H', J, K).

Afferent input to the NI from the dHB-IPN pathway

In mice (Lu et al., 2020) and in rats (Goto et al., 2001; Olucha-Bordonau et al., 2003), the NI has reciprocal connections with the IPN. Additionally, Agetsuma et al., 2010 showed that Dil application to the dIPN resulted in labeled fibers in the griseum centrale, which is thought to be analogous to the mammalian NI. Application of Dil to the dIPN of the adult brain labeled fibers in the ventral portion of the griseum centrale, where \textit{gsc2} neurons are located (Supp. Fig. 4A-C'). However, we did not observe any projections to the dorsal portion of the griseum centrale, just below the 4th ventricle,
where rln3a neurons are located (Supp. Fig. 3G). These results indicate that gsc2 neurons receive input from the dHb-IPN pathway, whereas rln3a neurons do not.

To confirm this finding, we optogenetically activated the red-shifted opsin ReaChR (Lin et al., 2013; Wee et al., 2019) in dHb neurons using 561 nm light, while recording calcium transients in either gsc2 or rln3a neurons using 488 nm light (Fig. 6A). We used Tg(UAS:ReaChR-RFP)550 to express ReaChR under control of TgBAC(gng8:GAL4FF)426, which labels dHb neurons that project to the IPN (Hong et al., 2013). To verify successful activation of dHb neurons by ReaChR, we also included Tg(UAS:GCaMP7a)zf415 to express the calcium indicator GCaMP7a (Muto et al., 2013) in dHb neurons (Fig. 6B, C). Simultaneously, we used Tg(QUAS:GCaMP7a)c594 to express GCaMP7a in either gsc2 or rln3a neurons under control of Tg(gsc2:QF2)c721 or Tg(rln3a:QF2; he1.1:YFP)c836 (Fig. 6B', C').

We first validated activation of dHb neurons by ReaChR (Fig. 6D-D'', F-F''). Next, we showed that ReaChR activation in the dHb increased calcium transients in gsc2 neurons, as there was greater activation of gsc2 neurons in response to 561 nm light in ReaChR-expressing larvae than in ReaChR-negative controls (Fig. 6E-E''). By contrast, similar levels of calcium signaling were detected in the rln3a NI neurons of ReaChR-expressing larvae and negative controls in response to 561 nm light (Fig. 6G-G''). There was also no statistically significant difference in the activation of rln3a PAG neurons between ReaChR-expressing larvae and ReaChR-negative controls (Fig. 6H-H''). These results confirm that gsc2 neurons receive input from the dHb-IPN axis and rln3a neurons do not, indicating that the latter do not directly mediate functions of the dHb-IPN pathway.

Spontaneous and evoked activity differs between gsc2 and rln3a neurons

In rodents, aversive stimuli such as foot shock, air puff, water-restraint stress, the anxiogenic drug FG-7142, and exposure to an elevated plus maze increase neuronal activity in the NI, yet whether these different stimuli activate similar or distinct neuronal subtypes is unclear (Tanaka et al., 2005; Lawther et al., 2015; Passerin et al., 2000; Rajkumar et al., 2016; Lu et al., 2020; Szönyi et al., 2019). To determine whether gsc2 and rln3a neurons differ in their response to an aversive stimulus, we expressed
GCaMP7a (Muto et al., 2013) in each subpopulation (Fig. 7B, C) and recorded calcium transients upon delivery of a mild electric shock (25 V, 200 ms duration) to immobilized larvae (Fig. 7A) (Duboué et al., 2017). The gsc2 neurons showed little spontaneous activity, but exhibited an immediate robust increase in calcium transients in response to shock (Fig. 7D, D’, Supp. Vid. 4). By contrast, rln3a neurons showed more frequent spontaneous fluctuations in activity throughout the recording period (Fig. 7E-E’, F, Supp. Vid. 5) and their response to shock was less robust than that of the gsc2 neurons (Fig. 7G). The gsc2 and rln3a neurons therefore differ in their spontaneous activity and in their sensitivity to an acute aversive stimulus.

Ablation of rln3a but not gsc2 neurons alters locomotor activity

Previous reports have implicated the NI in regulating locomotor activity and proposed that increased activity in the NI after delivery of an aversive stimulus might underlie the animal’s locomotor response (Farooq et al., 2016; Lu et al., 2020). Given that the gsc2 neurons are responsive to an aversive electric shock whereas rln3a neurons exhibit spontaneous fluctuations in activity, we examined the functional roles of each population of neurons in both baseline locomotor behavior and the response to electric shock, which elicits immediate hyperactivity in larval zebrafish (Duboué et al., 2017).

With GFP expression as a guide, we used a two-photon laser to selectively ablate the gsc2 (Fig. 8A, A’) or rln3a neurons in the NI (Fig. 8B, B’) or rln3a neurons in the PAG (Fig. 8C-C””) at 6 dpf. We confirmed ablation by WISH (Supp. Fig. 5A, A’, D, D’), and verified that rln3a NI neurons were spared in larvae with ablated gsc2 neurons (Supp. Fig. 5B, B’), and, conversely, that gsc2 neurons were intact in larvae with ablated rln3a NI neurons (Supp. Fig. 5C, C’). At 7 dpf, we measured locomotor activity in freely swimming ablated larvae and unablated siblings for two minutes. After recording baseline locomotion, we delivered a single electric shock (25 V, 200 ms duration) to each larva and measured the locomotor response (Duboué et al., 2017).

Larvae that had rln3a NI neurons ablated exhibited increased spontaneous locomotor activity (Supp. Vid. 6), swimming a greater distance than unablated controls, larvae with ablated gsc2 neurons, or larvae with ablated rln3a PAG neurons (Fig. 8D-E). The average bout length in larvae lacking rln3a NI neurons was greater than in...
unablated larvae, or in larvae with ablated gsc2 or rln3a PAG neurons (Fig. 8F)
although the number of swimming bouts was similar in all groups (Fig. 8G). This
suggests that ablation of rln3a NI neurons promotes prolonged periods of movement,
rather than increasing the frequency of movement bouts. All groups exhibited
hyperactivity immediately following shock (Fig. 8H-I), and statistically significant
differences in the response to shock were not detected (Fig. 8I). These findings suggest
that neither the gsc2 neurons nor the neighboring rln3a neurons are required for the
immediate behavioral response to shock, whereas rln3a neurons in the NI serve to
modulate spontaneous locomotor activity.

DISCUSSION

Although first described in the human brain in 1903 (Streeter, 1903), the nucleus
incertus (‘uncertain nucleus’) remains an enigmatic structure that has been implicated in
stress (Tanaka et al., 2005; Lawther et al., 2015; Potter et al., 1994; Bittencourt and
Sawchenko, 2000; Passerin et al., 2000; Rajkumar et al., 2016), arousal (Lu et al.,
2020) and memory (Szőnyi et al., 2019; Ma et al., 2009). As the NI is the primary source
of relaxin-3 expressing neurons in the rodent brain, they have been a primary focus of
study despite the fact that not all NI neurons produce this neuropeptide (Ma et al., 2013;
Nasirova et al., 2020). In this study, we compared the properties of the relaxin-3
expressing cells with an adjacent group of neurons in the NI. Capitalizing on
CRISPR/Cas9 technology to generate neuron-specific transgenic lines, coupled with
laser-mediated cell ablation, calcium imaging, and optogenetics, we show that the two
NI populations have distinct connections with the interpeduncular nucleus and other
brain regions, and also differ in their spontaneous activity and influence on behavior.
Owing that the NI has been proposed to act together with the median raphe and IPN, in
“a midline behavior control network of the brainstem” (Goto et al., 2001), it is important
to build the framework of neuronal subtypes that mediate such coordinated activity.

Through transcriptional profiling, we identified gsc2 as having enriched
expression in dissected IPN samples relative to the rest of the adult zebrafish brain.
However, upon examining the location of the gsc2-expressing neurons, we discovered
that they reside outside of the IPN, just anterior to the rln3a neuronal cluster. Thus, we
suspect that contamination of IPN samples isolated from the adult zebrafish brain with overlying NI tissue was the source of abundant gsc2 transcripts. Gsc2-expressing neurons have also been identified in the mouse brain, although there is conflicting information about their precise anatomical location (Funato et al., 2010; Gong et al., 2003; Saint-Jore et al., 1998; Gottlieb et al., 1998). On the basis of our results, it is unlikely that they are located within the IPN as had been previously concluded (Funato et al., 2010; Gong et al., 2003).

Previous studies examined the electrophysiological properties (Ma et al., 2013) and connectivity (Nasirova et al., 2020) of RLN3-negative neighbors of RLN3 neurons, but these neurons are intermingled with those that produce Rln3 and likely produce other known NI neuropeptides (Nasirova et al., 2020). For example, in mice, Rln3 and *Nmb* are expressed in interspersed neuronal populations and are co-expressed in a subset of cells (Lu et al., 2020; Nasirova et al., 2020) in a similar pattern observed for *rln3a* and *nmbb* neurons in the NI of larval zebrafish. By mapping the location of neuropeptide-expressing neurons within the NI, we confirmed that the gsc2 cluster is distinct from cells producing relaxin-3, neuromedin B, or cholecystokinin.

Functional specialization of NI neurons

Targeted CRISPR/Cas9-mediated genome editing enabled us to generate transgenic lines to label and manipulate gsc2 and *rln3a* neurons selectively and elucidate their characteristics. We found that their anatomical location, neurotransmitter phenotype, and hodological properties are consistent with NI identity; both groups of neurons are GABAergic, reside on the floor of the fourth ventricle and project to the IPN. However, these adjacent neuronal populations differ in their activity and connectivity (summarized in Table 1). Perturbation of *rln3a* NI neurons increases spontaneous locomotion, whereas disrupting the adjacent gsc2 neurons does not, suggesting that the distinct properties of the gsc2 and *rln3a* neurons underlie disparate functions.

Rodent studies have described the behavior of animals with null mutations in the gene encoding RLN3 (Smith et al., 2012), or its receptor, RXFP3 (Hosken et al., 2015), and found decreases in voluntary wheel running, which suggests that the relaxin-3 system is involved in regulating locomotor activity. However, it is difficult to attribute
mutant phenotypes to specific groups of Rln3 neurons. Farooq et al., 2016 found that microstimulation targeted to the NI induced movement in rats, which implicates the NI region in regulating locomotor activity but does not elucidate the relevant neuronal population. To this point, it was reported that activation of Nmb neurons in the mouse NI promotes locomotion, highlighting the importance of direct modulation of specific neuronal subgroups (Lu et al., 2020).

We show that ablation of rln3a neurons specifically in the NI results in hyperactivity of zebrafish larvae, whereas ablation of adjacent gsc2 neurons, or rln3a neurons in the PAG, does not affect locomotion. This suggests that the role of the NI in regulating baseline locomotor activity is mediated by rln3a neurons. Because some nmbb neurons are interspersed with rln3a neurons in the NI, we cannot eliminate the possibility that loss of nmbb neurons also contributes to the hyperactivity phenotype. Strikingly, whereas previous studies in adult rodents indicate that NI activity promotes locomotion, we find the opposite in larval zebrafish; NI neurons normally suppress spontaneous locomotor activity. Interestingly, a study of dopaminergic signaling in larval zebrafish found that dopamine suppressed spontaneous fictive swim episodes (Thirumalai and Cline, 2008), although dopamine is classically known for stimulating locomotor activity (Ryczko and Dubuc, 2017). Differential roles for neuromodulators during development and adulthood could be a general feature of locomotor circuitry and may be crucial for neural circuit maturation, a possibility that should be further investigated.

We recorded different patterns of activity in neuronal populations of the NI that have not been previously identified: gsc2 neurons have little spontaneous activity, whereas rln3a neurons exhibit continuous fluctuations in calcium signaling. A previous study in rats found that relaxin-3 neurons fire in synchrony with the ascending phase of the hippocampal theta oscillation (4-12 Hz), which has been implicated in spatial memory (Ma et al., 2013). Stimulation of NI neurons in rats and Nmb NI neurons in mice has been shown to increase hippocampal theta power (Nuñez et al., 2006; Lu et al., 2020). However, the oscillating calcium transients that we detected in rln3a neurons of larval zebrafish are on the order of seconds, consistent with infra-slow waves that occur at frequencies in the range of tens to hundreds of seconds, and within which fast
oscillations are often nested (Palva and Palva, 2012). Infra-slow oscillations correlate with rhythmic fluctuations in human performance observed in psychophysical experiments, in which a subject performs a task of constant difficulty for several minutes. It has been proposed, therefore, that intra-slow waves coordinate shifts between attentive and inattentive brain states (Palva and Palva, 2012). Given that ablation of rln3a NI neurons increases the length of movement bouts in zebrafish larvae, fluctuating activity in rln3a neurons may control transitions between phases of behavioral activity and inactivity.

Revisiting the NI response to aversive stimuli

A number of studies have found that aversive stimuli promote expression of c-Fos in the NI (Tanaka et al., 2005; Lawther et al., 2015; Passerin et al., 2000; Rajkumar et al., 2016), leading researchers to evaluate the role of relaxin-3 in anxiety-like behavior. In rats, intracerebroventricular infusion of a relaxin-3 receptor agonist increased entries to the open arms of an elevated plus maze and the amount of time animals spend in the light portion of a light-dark box (Ryan et al., 2013). Similar assays in mice showed that the relaxin-3 receptor agonist did not alter the basal behavioral state but rather reduced the anxiety-like behavior induced by the anxiogenic drug FG-7142 (Zhang et al., 2015). However, a role for the NI in regulating the behavioral response to acute aversive stimuli has so far not been described. Lu et al., 2020 note that Nmb neurons in the mouse NI promote spontaneous locomotor activity and are activated in response to foot shock, a stimulus that elicits immediate locomotion. However, whether Nmb neurons are involved in the behavioral response to shock has not been directly tested. Through selective ablation of the NI rln3a or gsc2 neurons we were able to assess whether each of these subtypes contributes to the observed changes in locomotion post-shock. We found that loss of either neuronal group was not sufficient to alter post-shock hyperactivity. Thus, if NI neurons play a role in the locomotor response to an acute aversive stimulus, their function may be redundant with other brain regions.

Neuronal activity following shock was not uniform across the NI; gsc2 neurons exhibited a robust response to shock that was undetected in rln3a neurons. Moreover, we show that gsc2 neurons receive input from the dHb-IPN pathway, which has been
implicated in regulating the behavioral response to aversive stimuli (Agetsuma et al., 2010; Duboué et al., 2017). A previous study reported that dHb neurons are activated several seconds after delivery of shock, and that more responsive neurons are located in the left dHb than the right. This lateralized activity is correlated with the resumption of swimming following freezing behavior exhibited by larvae post-shock (Duboué et al., 2017). However, given that the latency to respond to shock differs greatly between the dHb and gsc2 neurons (17.5 ± 5.01 (Duboué et al., 2017) versus 3.14 ± 0.28 seconds), the response of gsc2 neurons is not driven by the dHb and may serve a different role besides regulating locomotion, such as influencing fear memory formation (Szönyi et al., 2019).

The IPN as an integrating center for dHb and NI input

Previous work demonstrated that axons from LdHb and RdHb neurons innervate different regions along the dorsoventral extent of the IPN; the LdHb neurons innervate the dIPN and vIPN whereas the RdHb neurons project mainly to the vIPN (Gamse et al., 2005). We found that different populations of NI neurons also target specific IPN compartments; rln3a neurons project mainly to the dIPN, whereas gsc2 neurons predominantly innervate the vIPN along its midline neuropil. A recent study by Zaupa et al., 2021 demonstrated that axon terminals from cholinergic and noncholinergic dHb neurons, innervating the vIPN and dIPN respectively, have distinct patterns of activity. Spontaneous calcium spikes in cholinergic dHb terminals at the vIPN coincide with transient decreases in calcium signaling in dHb terminals at the dIPN. This negatively correlated activity was proposed to be mediated by activation of vIPN neurons that release GABA to inhibit non-cholinergic dHb terminals through their presynaptic GABA_B receptors. The markedly different patterns of calcium signaling observed in dHb terminals innervating the vIPN and dIPN indicate that the two IPN subregions are differentially regulated by their dHb inputs. Our results, showing that rln3a and gsc2 axons selectively terminate in the dIPN and vIPN, raise the possibility that innervation by different populations of NI neurons also shapes differential patterns of neural activity in the dorsal and ventral IPN. The IPN could thus integrate signals from disparate neuronal populations in the dHb and NI, and perhaps other brain regions. Future work
will determine whether rln3a and gsc2 axon terminals exhibit distinct patterns of activity, and examine how their activity is coordinated with cholinergic and non-cholinergic dHb input to the dorsal and ventral IPN.

Toward understanding cell type heterogeneity in the NI

Overall, our study lays the foundation for a more holistic understanding of cell type heterogeneity in the NI. By mapping gsc2, rln3a, nmbb, and cckb neurons in the zebrafish NI, we found that cckb neurons are a separate population located posterior to the rln3a and nmbb neurons. Szlag et al., 2022 also found little overlap between cholecystokinin and relaxin-3 neurons in the rat brain. The functional properties of cholecystokinin neurons in the NI are unknown. One study in zebrafish showed that overexpression of cholecystokinin increases waking locomotor activity (Woods et al., 2014). However, it is difficult to attribute this effect to Cholecystokinin neurons in any specific brain region because the neuropeptide was overexpressed globally. We also identified nmbb neurons in the PAG that are distinct from rln3a neurons and whose properties are unknown. The establishment of transgenic lines for selective labeling and manipulation of cckb and nmbb neurons, as we have demonstrated for gsc2 and rln3a, will serve to further elucidate the connectivity and function of diverse neuronal populations in the NI and PAG. Ultimately, a more comprehensive view of NI and PAG cell type heterogeneity will advance our understanding of the neuroanatomical substrates that control arousal (Lu et al., 2020), fear (Szönyi et al., 2019; Tovote et al., 2016), memory (Szönyi et al., 2019; Ma et al., 2009), and feeding behaviors (McGowan et al., 2005).

ACKNOWLEDGEMENTS

We thank Dr. Bryan Luikart for sharing his expertise and equipment for two-photon microscopy, Jean-Michael Chanchu for generating QUAS transgenic lines, Essence Vinson and Ming Wu for assistance with *in situ* hybridization, Dr. Jeffrey Mumm for providing *he1.1:YFP* plasmid, and Dr. Rejji Kuruvilla and Dr. Erik Duboué for their valuable feedback on the manuscript. This work was supported by NIH R01HD078220,
R37HD091280 (M.E.H.) and a National Science Foundation Graduate Research Fellowship DGE-1746891 (E.D.S.).

AUTHOR CONTRIBUTIONS

DECLARATION OF INTERESTS

The authors declare no competing interests.

FIGURE LEGENDS

Figure 1. gsc2 neurons localize to the nucleus incertus. (A, A’) WISH for gsc2 and (B-C’) double-label WISH for (B, B’) gsc2 and sst1.1 or (C, C’) gsc2 and rln3a was performed on (A-B’) 4 dpf or (C, C’) 6 dpf larvae. (A, C, C’) Dorsal views. (A’, B, B’) Lateral views. (B’, C’) Enlarged views of boxed regions in B and C, respectively. Scale bars, 100 µm. (D-F) Fluorescent double-label WISH for (D) rln3a and gsc2, (E) rln3a and nmbb, and (F) rln3a and cckb. Dorsal views of 6 dpf larvae, Z-projections. Scale bar, 10 µm. (G) Schematic depicting distribution of neuronal subtypes in the larval zebrafish NI. Green dots, gsc2 expression; purple dots, rln3a expression; blue dots, nmbb expression; pink dots and shading, cckb expression.

Figure 2. Transgenic driver lines recapitulate gsc2 and rln3a expression patterns. (A, D) CRISPR/Cas9 genome editing strategies used to generate (A) Tg(gsc2:QF2)c721 and (D) Tg(rln3a:QF2; he1.1:YFP)c836 driver lines. (B, C, E, F) Dorsal views of 6 dpf larvae. (B, E) WISH for (B) gsc2 and (E) rln3a. (C, F) Confocal Z-projections of (C) Tg(gsc2:QF2)c721; Tg(QUAS:GFP)c578 and (F) Tg(rln3a:QF2; he1.1:YFP)c836, Tg(QUAS:GFP)c578 larvae. Scale bars, 100 µm. sgRNA: single guide RNA, hsp70: heat
shock cognate 70-kd protein, tandem duplicate 1 promoter, 5' UTR: 5' untranslated region, HA: homology arm, he1.1: hatching enzyme promoter.

Figure 3. rln3a and gsc2 NI neurons are largely GABAergic. (A-F'') Confocal images of 6 dpf larvae. (A-C) Z-projections, lateral views. (D-F'') Optical sections, dorsal views. (A) Tg(gsc2:QF2)c721; Tg(QUAS:GFP)c578; Tg(slc17a6b:DsRed)nns9Tg larva. (B) PAG and (C) NI of a Tg(rln3a:QF2; he1.1:YFP)c836; Tg(QUAS:mApple; he1.1:CFP)c788; Tg(slc17a6b:GFP)zf139Tg larva. (D, D') Tg(gsc2:QF2)c721; Tg(QUAS:mApple-CAAX; he1.1:mCherry)c636; Tg(gad1b:GFP)n25Tg larva. (D') Magnified view of boxed region in D. White arrowhead indicates a gad1b-positive gsc2-positive neuron. (E-E'') View of PAG. (F-F'') View of NI. (E', F') Magnified views of boxed regions in E and F respectively. (E'', F'') Individual neurons indicated by arrowheads in E' and F' respectively. Top panels: GABAergic, middle panels: rln3a, bottom panels: composite. (G) Boxplot showing the percentage of gsc2 and rln3a NI neurons, and rln3a PAG neurons that express Tg(gad1b:GFP)n25Tg, n = 3 larvae. Scale bars, 100 µm.

Figure 4. gsc2 and rln3a neurons exhibit different projection patterns. (A-J) Confocal optical sections of (A-E) Tg(gng8:Eco.NfsB-2A-CAAX-GFP)c375; Tg(gsc2:QF2)c721; Tg(QUAS:mApple-CAAX; he1.1:mCherry)c636 and (F-J) Tg(gng8:Eco.NfsB-2A-CAAX-GFP)c375; Tg(rln3a:QF2; he1.1:YFP)c836; Tg(QUAS:mApple-CAAX; he1.1:mCherry)c636 6 dpf larvae ordered from dorsal to ventral. (K-M) 3D reconstructions of confocal Z-stacks generated using Zen software (Zeiss), Tg(rln3a:QF2; he1.1:YFP)c836; Tg(QUAS:GFP-CAAX)c591; Tg(QUAS:NLS-GFP; he1.1:CFP)c682 larvae at 7 dpf showing efferents from (K) intact rln3a PAG (asterisks) and NI (arrows) neurons or following two-photon laser-mediated ablation of (L) PAG or (M) NI rln3a cell bodies at 6 dpf. Scale bars, 100 µm.

Figure 5. gsc2 and rln3a NI neurons innervate different subregions of the IPN. (A-H') Confocal images of 6 dpf larvae. (A-B, E-F') TgBAC(gng8:Eco.NfsB-2A-CAAX-GFP)c375 and Tg(gsc2:QF2)c721 driving (A, A') Tg(QUAS:NLS-mApple; he1.1:CFP)c718 or
(B, E-F') Tg(QUAS:mApple-CAAX; he1.1:mCherry)c636. (C-D, G-H')

TgBAC(gng8:GAL4FF)c426; Tg(UAS-E1B:NTR-mCherry)c264 and Tg(rln3a:QF2; he1.1:YFP)c636 driving (C, C') Tg(QUAS:NLS-GFP; he1.1:CFP)c682 or (D, G-H') Tg(QUAS:NLS-GFP; he1.1:CFP)c682 and Tg(QUAS:GFP-CAAX)c591. (A', C') Higher magnification images of larvae in A and C, respectively. (A, A', C, C') Z-projections. (B, D) optical sections. (A-D) Lateral views. (E-H') Dorsal views. Optical sections at the level of the (E, E', G, G') dorsal IPN or (F, F', H, H') ventral IPN of the same larvae. (E', F', G', H') Labeled efferent projections only. (I, J) Confocal Z-projections of coronal sections (70 μm) through adult brains of (I) Tg(gsc2:QF2)c721; Tg(QUAS:GFP-CAAX; he1.1:YFP)c631 or (J) Tg(rln3a:QF2; he1.1:YFP)c836; Tg(QUAS:GFP-CAAX)c591 fish. (K) Schematic of the IPN showing distinct regions innervated by rln3a and gsc2 neurons. Scale bars, 100 μm.

Figure 6. Increased calcium signaling in gsc2 neurons upon optogenetic activation of the dHb. Calcium transients were imaged at 2.6 Hz before, during, and after illumination with 561 nm light in 7 dpf larvae. (A) Drawings depicting imaging of calcium transients and optogenetic activation using confocal microscopy. (B-C') Representative maximum intensity projections of GCaMP7a fluorescence in (B, C) dHb and (B') gsc2 or (C') rln3a NI neurons of the same larva. Scale bar, 100 μm. (D-E'') Tg(gsc2:QF2)c721 or (F-H'') Tg(rln3a:QF2; he1.1:YFP)c636 driver lines in (D-H)

TgBAC(gng8:GAL4FF)c426; Tg(UAS:GCaMP7a)c415; Tg(QUAS:GCaMP7a)c594 larvae (D, E, F, G, H) with Tg(UAS:ReaChR-RFP)c50 or (D', E', F', G', H') without. The average change in GCaMP7a signaling (%ΔF/F) is shown for (D, D', F, F') the dorsal habenulae, (E, E') gsc2 neurons, (G, G') rln3a NI neurons, and (H, H') rln3a PAG neurons. Shading indicates standard deviation. Gaps at light onset and offset due to latency in switching laser configuration. (D'', E'', F'', G'', H'') Average F_{post}/F_{pre} is shown for (D'', F'') the dHb, (E'') gsc2 neurons, (G'') rln3a NI neurons, and (H'') rln3a PAG neurons of ReaChR⁺ and ReaChR⁻ larvae (n=5 for each). F_{post} is the area under the curve for 15 frames during 561 nm illumination, and F_{pre} is the area under the curve for 15 frames preceding 561 nm illumination. Black bars indicate means. p values: Wilcoxon rank sum test. (D'') **p =
Figure 7. gsc2 and rln3a NI neurons differ in spontaneous activity and response to electric shock. Calcium transients were imaged at 5.2 Hz in 7dpf larvae during a mild electric shock (25 V, 200 ms duration). (A) Drawing depicting delivery of shock to an immobilized larva during imaging. (B, C) Examples of maximum intensity projections for NI neurons in (B) Tg(gsc2::QF2)c721; Tg(QUAS::GCaMP7a)c594 or (C) Tg(rln3a::QF2; he1.1::YFP)c836; Tg(QUAS::GCaMP7a)c594 larvae. Scale bars, 10 μm. (D, E) Changes in GCaMP7a signaling (%ΔF/F) for representative individual (D) gsc2 or (E) rln3a neurons. Arrows indicate local maxima identified as peaks by the MATLAB findpeaks function (MinPeakProminence: 0.3, MinPeakWidth: 10). (D’, E’) Average %ΔF/F for all recorded (D’) gsc2 neurons (93 from 11 larvae) or (E’) rln3a neurons (76 from 10 larvae). Shading indicates standard deviation. (F) Average number of peaks during the recording period (as depicted by arrows in examples D and E) and (G) Fpost/Fpre for gsc2 neurons (n=11 larvae) and rln3a neurons (n=10 larvae). In G, Fpost and Fpre are the area under the curve for 300 frames post-shock and for 300 frames prior to shock. (F, G) Black bars indicate means. p values: Wilcoxon rank sum test. (F) *p = 0.0124. (G) *p = 0.0265.

Figure 8. Loss of rln3a NI neurons increases spontaneous locomotor activity. (A-C’’) Single optical sections from two-photon imaging of 6 dpf (A, A’) Tg(gsc2::QF2)c721; Tg(QUAS::GFP)c578 or (B-C’’) Tg(rln3a::QF2; he1.1::YFP)c836; Tg(QUAS::GFP)c578 larvae (A, B, C, C’’) before and (A’, B’, C’, C’’’) after laser-mediated ablation of (A, A’) gsc2 neurons, (B, B’) rln3a NI neurons, or (C, C’) left and (C’, C’’) right rln3a PAG neurons. Scale bars, 10 μm. (D-D’’) Representative movement trajectories of 7 dpf (D’)
Tg(gsc2::QF2)c721; Tg(QUAS::GFP)c578 larvae with ablated gsc2 neurons, (D’’, D’’’) Tg(rln3a::QF2; he1.1::YFP)c836; Tg(QUAS::GFP)c578 larvae with ablated (D’’) rln3a NI neurons or (D’’’) rln3a PAG neurons, and (D) their sibling controls during the pre-shock period, defined as the first 115 seconds of the recording. Unablated control group includes Tg(gsc2::QF2)c721; Tg(QUAS::GFP)c578 and Tg(rln3a::QF2; he1.1::YFP)c836; Tg(QUAS::GFP)c578 larvae. (E) Total locomotor activity during the pre-shock period.
Unablated: n = 27 larvae, gsc2 neurons ablated: n = 17 larvae, rln3a NI neurons ablated: n = 17 larvae, rln3a PAG neurons ablated: n = 17 larvae. Kruskal-Wallis rank sum test: p = 0.0009853***. Dunn’s post-hoc tests with adjustment for multiple comparisons: rln3a NI neurons ablated vs. unablated p = 0.0019**, rln3a NI neurons ablated vs. gsc2 neurons ablated p = 0.0019**, or rln3a NI neurons ablated vs. rln3a PAG neurons ablated p = 0.0019**. (F) Average bout length during the pre-shock period, with bouts defined as continuous periods of movement and no more than one second of prolonged immobility. Kruskal-Wallis rank sum test: p = 0.001344**. Dunn’s post-hoc tests with adjustment for multiple comparisons: rln3a NI neurons ablated vs. unablated p = 0.03884*, rln3a NI neurons ablated vs. gsc2 neurons ablated p = 0.03884*, or rln3a NI neurons ablated vs. rln3a PAG neurons ablated p = 0.00055***.

(G) Bout number during the pre-shock period. Kruskal-Wallis rank sum test: p = 0.8895.

(H-H””) Average locomotor activity during 5 seconds prior to and 5 seconds post-shock plotted for groups shown in D-D””. Shock delivery is denoted by the gray line. (I) Total locomotor activity during 5 seconds pre-shock, and 5 seconds post-shock. Kruskal-Wallis rank sum test: 2.2 x 10^{-16}. Dunn’s post-hoc tests with adjustment for multiple comparisons: no statistically significant differences within pre-shock and post-shock groups, p < 0.001*** for each pre-shock vs. post-shock comparison.

TABLES

Table 1. Properties of gsc2 and rln3a NI neurons.

<table>
<thead>
<tr>
<th>Neuron Type</th>
<th>Neurotransmitter identity</th>
<th>Afferents from IPN</th>
<th>Efferents to IPN</th>
<th>Spontaneous activity</th>
<th>Response to shock</th>
<th>Locomotion post-ablation</th>
</tr>
</thead>
<tbody>
<tr>
<td>gsc2 neurons</td>
<td>0% vglut2a*</td>
<td>Yes</td>
<td>Ventral IPN</td>
<td>Low spontaneous activity</td>
<td>Robust activation</td>
<td>No change</td>
</tr>
<tr>
<td></td>
<td>82.43±3.52% gad1b*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rln3a NI neurons</td>
<td>0% vglut2a*</td>
<td>No</td>
<td>Dorsal IPN</td>
<td>Rhythmic calcium bursts</td>
<td>Lack of response</td>
<td>Increased</td>
</tr>
<tr>
<td></td>
<td>80.57±5.57% gad1b*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STAR METHODS

Resource availability

Lead contact
Requests for further information, resources, and reagents should be directed to and will be fulfilled by the lead contact, Dr. Marnie Halpern (Marnie.E.Halpern@dartmouth.edu).

Materials Availability
Plasmids generated in this study have been deposited to Addgene. Plasmid numbers are listed in the key resources table.

Data and Code Availability
All data reported in this paper will be shared by the lead contact upon request. All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key resources table. Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

Experimental model and subject details
Zebrafish were maintained at 27 °C in a 14:10 h light/dark cycle in a recirculating system with dechlorinated water (system water). The AB wild-type strain (Walker, 1998) was used along with the following transgenic lines: TgBAC(gng8:Eco.NfsB-2A-CAAX-GFP)c375 (described previously (deCarvalho et al., 2013)), Tg(gsc2:QF2)c721, Tg(rln3a:QF2; he1.1:YFP)c836, Tg(QUAS:GFP)c578, Tg(slc17a6b:DsRed)nn9Tg (described previously (Miyasaka et al., 2009)), Tg(QUAS:mApple; he1.1:CFP)c788, Tg(slc17a6b:EGFP)zf139Tg (described previously (Miyasaka et al., 2009)), Tg(QUAS:mApple-CAAX; he1.1:mCherry)c636 (described previously (Choi et al., 2021)), Tg(gad1b:GFP)nn25Tg (described previously (Satou et al., 2013)), Tg(QUAS:GFP-CAAX)c591, TgBAC(gng8:GAL4FF)c426 (described previously (Hong et al., 2013)), Tg(UAS-E1B:NTR-mCherry)c264 (described previously (Davison et al., 2007)).
Tg(QUAS:NLS-mApple; he1.1:CFP)c718, Tg(QUAS:NLS-GFP; he1.1:CFP)c682,
Tg(QUAS:GFP-CAAX; he1.1:YFP)c631, Tg(UAS:GCaMP7a)d415 (described previously
(Muto et al., 2013)), Tg(QUAS:GCaMP7a)c594, and Tg(UAS:ReaChR-RFP)f50 (described
previously (Wee et al., 2019)). Fluorescent larvae were screened using an Olympus
MVX10 Macro Zoom Fluorescence microscope. For imaging, larvae were incubated in
system water containing 0.003% phenylthiourea (PTU; P7629, Sigma-Aldrich) to inhibit
melanin pigmentation. Most analyses were performed at the larval stage, before sex
determination. Analyses performed at the adult stage included both males and females.
All zebrafish protocols were approved by the Institutional Animal Care and Use
Committee (IACUC) of the Carnegie Institution for Science or Dartmouth College.

Method details

Generation of transgenic lines by Tol2 transgenesis
To generate Tg(QUAS:GFP)c578, Tg(QUAS:mApple; he1.1:CFP)c788, Tg(QUAS:GFP-
CAAX)c591, Tg(QUAS:NLS-mApple; he1.1:CFP)c718, Tg(QUAS:NLS-GFP;
he1.1:CFP)c682, Tg(QUAS:GFP-CAAX; he1.1:YFP)c631 and Tg(QUAS:GCaMP7a)c594
transgenic lines, constructs for Tol2 transposition were created using the MultiSite
Gateway-based construction kit (Kwan et al., 2007). For each construct, three entry
vectors were first assembled by BP reactions (11789020, Thermo Fisher Scientific). A
16 bp QUAS sequence (Potter et al., 2010) was cloned into the 5’ entry vector
(pDONRP4-P1R, #219 of Tol2kit v1.2). DNA encoding GFP, mApple, GFP-CAAX, NLS
(nuclear localization sequence)-mApple or NLS-GFP was cloned into middle entry
vectors (pDONR221, #218 of Tol2kit v1.2). Sequences corresponding to the SV40 poly
A tail, or the poly A tail followed by a secondary marker consisting of the
zebrafish hatching enzyme 1, tandem duplicate 1 (he1.1) promoter (Xie et al., 2012)
driving CFP (cyan fluorescent protein) or YFP (yellow fluorescent protein), were cloned
into the 3’ entry vector (pDONRP2R-P3, #220 of Tol2kit v1.2). All three entry vectors
were introduced into a Tol2 destination construct (pDestTol2pA2, #394 of the Tol2kit
v1.2) using an LR reaction (11791020, Thermo Fisher Scientific).
To produce Tol2 transposase mRNA, pCS-zT2TP (Suster et al., 2009) was
digested with NotI and RNA was synthesized in vitro using the mMESSAGE
mMACHINE Transcription Kit with SP6 polymerase (AM1340, Thermo Fisher Scientific). RNA was extracted with phenol/chloroform-isoamyl alcohol, re-extracted with chloroform, and precipitated with isopropanol. A solution containing QUAS plasmid DNA (25 ng/μl), Tol2 transposase mRNA (25 ng/μl) and phenol red (0.5%) was microinjected into one-cell stage zebrafish embryos. Founders were identified by screening progeny for fluorescent hatching gland cells at 1 dpf or QUAS-driven expression.

Generation of transgenic lines by genome editing

Methods for CRISPR/Cas9-targeted integration were used to generate the Tg(gsc2:QF2)c721 and Tg(rln3a:QF2; he1.1:YFP)c836 driver lines. For Tg(gsc2:QF2)c721, the non-homologous end joining approach described by Kimura et al., 2014 was modified by using a QF2 donor plasmid, Gbait-hsp70-QF2-pA (Addgene plasmid #122563), which contains a GFP bait sequence for Cas9-mediated linearization of the plasmid (Choi et al., 2021). Cas9 RNA and sgRNAs targeting gsc2 and the GFP bait sequence were synthesized using a previously described approach (Hwang et al., 2013; Jao et al., 2013; Auer et al., 2014). Briefly, pairs of synthetic oligonucleotides (gsc2\textsubscript{sense}, 5' TAGGTCAAGCGACTCATCAG3', gsc2\textsubscript{anti-sense} 5' AACCTGTGAAGATGGTGCGGTGA3'), containing the overhangs 5'-TAGG-N\textsubscript{18}-3' and 5'-AACAC-N\textsubscript{18}-3', were annealed to each other. The resulting DNA was cloned into the pDR274 vector (Addgene, plasmid #42250; Hwang et al., 2013) following digestion of pDR274 with BsaI (R3733S, New England Biolabs). The pDR274 vector for synthesis of the GFP bait sgRNA was provided Dr. Filippo Del Bene (Auer et al., 2014). pDR274 templates were digested by DraI and sgRNAs synthesized using the MAXIscript T7 Transcription Kit (AM1312, Thermo Fisher Scientific). pT3TS-nCas9n template DNA (Addgene, plasmid #46757; Jao et al., 2013) was digested with XbaI (R0145S, New England Biolabs), and Cas9 RNA was synthesized using the mMESSAGE mMACHINE Transcription Kit (AM1348, Fisher Scientific). A solution containing gsc2 sgRNA (50 ng/μl), GFP bait sgRNA (50 ng/μl), the Gbait-hsp70-QF2-pA plasmid (50 ng/μl), Cas9 mRNA (500 ng/μl), and phenol red (0.5%) was microinjected into one-cell stage embryos.
For Tg(rln3a:QF2; he1.1:YFP), the GeneWeld approach described by Wierson et al., 2020, which uses short homology arms to facilitate integration by homology-directed repair, was modified by introduction of QF2 into the donor vector. The resulting pPRISM-QF2-he1.1:YFP donor construct contains two target sites for a universal sgRNA (ugRNA), which flank the cargo: a 2A self-cleaving sequence, QF2, and the he1.1:YFP secondary marker. To generate the construct, four PCR products were produced. QF2 was amplified from Gbait-hsp70-QF2-pA (Addgene plasmid #122563; Choi et al., 2021) (2A_QF2_F: 5’AAACCCCGGTCCTATGCCACCCAAGCGC AAA3’, 2A_QF2_R: 5’TTAATTACTAGTTTCATGCTATGATTAATGTCGGAG3’).

The he1.1:YFP cassette (Addgene, plasmid #113879) was amplified from DNA provided by Dr. Jeffrey Mumm (he1.1:YFP_F: 5’TAGTTCTTTAAACTCAACCAC TCCAGGCATAG 3’, he1.1:YFP_R: 5’TCCGCCTCAGAAGCCATAGAGCCCACCGCATC3’), and the polyA terminator (polyA_F: 5’TACGAACAGTGAACATAGTAATTAAGTCTGAGCCAC3’, polyA_R: 5’TGGAGTGGTTGAGTTTAAAGAACTAGGAACGCC3’) and plasmid backbone (Col1E_F: 5’TGGGCTCTATGGCTTCTGAGGCGGAAAGAAC 3’, Col1E_R: 5’CTTGGGTGGCATAGGACCGGGTTTTCTTC3’) were amplified from pPRISM-Stop-cmlc2-eGFP (Addgene kit #1000000154; Wierson et al., 2020) which was provided by Dr. Maura McGrail. The PCR-amplified fragments were assembled using NEBuilder HiFi DNA Assembly Cloning Kit (E5520S, New England Biosystems).

To generate rln3a homology arms, complementary oligonucleotide pairs (rln3a_5’arm_sense: 5’GCGGTTTCTGCTCCTATTCTGCTATGCTGCTGGCTGGA GTAAAGGCGCTGGAC3’, rln3a_5’arm_anti-sense: 5’GAAGGTCCAGCGCCTTTACTCCAGCGCAGAAGAA3’, rln3a_3’arm_sense: 5’CGGTTTCCGATGACTCCTGGCCGACTCAGAGGCGGAA3’, rln3a_3’arm_anti-sense: 5’AAGCGCCCGGCTCTGATGAGTCAATTATGCAGG CAGGGATTTCCGAGAGAA3’) were designed using GTagHD (Wierson et al., 2020) and annealed to each other. To clone the homology arms into the pPRISM-QF2-he1.1:YFP donor vector, pPRISM-QF2-he1.1:YFP was first digested with BfuAI and BspQI, (R0701S and R0712S, New England Biolabs) then combined with the homology arms in a ligation reaction (M0202S, New England Biolabs). To synthesize ugRNA and an sgRNA targeting the rln3a gene, synthetic oligonucleotide pairs (rln3a_sense:
5'TAATACGACTCACTATAGGAGTAAAGGCGCTGGGACGCGTTTTTAGAGCTAGAAATA
GC3', ugRNA_sense: 5'TAATACGACTCACTATAGGGAGGCGTTCGGGCCACAGGGTT
TTAGAGCTAGAAATAGC3', common_anti-sense: 5'AAAAGCACCAGACTCGGTGC3'
TTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC
3') were annealed to each other, elongated using Phusion polymerase (M0530S, New England Biolabs), and used as templates for in vitro transcription with the MAXIscript T7 Transcription Kit (AM1312, Thermo Fisher Scientific). A solution containing rln3a sgRNA (50 ng/μl), universal sgRNA (50 ng/μl), the pPRISM-QF2-he1.1:YFP-rln3a-HA plasmid (100 ng/μl), Cas9 mRNA (500 ng/μl), and phenol red (0.5%) was microinjected into one-cell stage embryos.

To verify successful integration, PCR was performed on genomic DNA from injected embryos using primers that flank the integration site, with the forward primer corresponding to genomic sequence and the reverse primer corresponding to plasmid sequence (gsc2_F: 5'GTC TGGGGAAAGCGTGTGTT3', hsp70_R: 5'TCAAGTGGCTTCTCTTCGGT3'; rln3a_F: 5'CGCTTTTGTTTCCAGAAAGG3', QF2_R: 5'CAGACCCGAGTATCGATGT3'). Sanger sequencing confirmed identity of PCR products. Transgenic founders were identified by breeding F0 adults with a QUAS reporter line and screening progeny for QUAS-driven expression. PCR and sequencing were repeated in F1 larvae to confirm integration at the target site.

RNA in situ hybridization

DNA templates for gsc2, rln3a, ccka and cckb probes were generated using PCR to incorporate a binding site for SP6 polymerase. cDNA for PCR amplification was obtained by reverse transcription of RNA extracted from 6 dpf embryos with TRIZol (15596026, Invitrogen) using the QuantiTect Reverse Transcription kit (205311, Qiagen). PCR primer sequences were: gsc2_F: 5'GTGCAGGACAAGAGGAGCTT3', gsc2_R: 5'GTTTCAATTTAGGTGACACTATAGTCCTCAGAAGACTGAAGGGAA3', rln3a_F: 5'CACAGATGAAATCCTGGACTTTGTTTTCCAGAAAGG3', rln3a_R: 5'GTTTCAATTTAGGTGACACTATAGCTGAAATGAGAGAGCGAGCA3', ccka_F: 5'TCTGTGTATGTGCCCTGCTG3', ccka_R: 5'GTTTCAATTTAGGTGACACTATAGTG
GCCAGTAGTTCCGGTTAGG3'; cckb_F: 5'GGGGTGTGTGTGTGTGTGTGTGTGA3', cckb_R:
5'GGGGTGTGTGTGTGTGTGTGTGTGA3'. DNA templates for nmba, nmbb and nts were amplified from cDNA (nmba_F:
5'ATGGGCTGATGATGGACATTG3', nmba_R: 5'CATCCTGTTGGCCAATTCTT3'; nmbb_F: 5'CAGTCCAAGCGTATCCAGGT3', nmbb_R: 5'TCATTTATTGTCTTGAATTGAGCTTT3'; nts_F: 5'TTGTGTGTTTTCTCCCTCTTCA3', nts_R: 5'CGGCCGTCTGGATTTATTAG3'), cloned using the TOPO TA kit (K465001, Invitrogen), and linearized by digestion with BamHI (R0136S, New England Biolabs). The template for the sst1.1 probe was an sst1.1 clone in a pSPORT1 vector (from Dr. Joshua Gamse) linearized by digestion with SaI (R3138L, New England Biolabs).

DNA templates were used for digoxigenin (DIG)-labeled in vitro transcription of gsc2, rln3a, ccka, cckb, nmba, nmbb, and nts probes (11175025910, Roche) and fluorescein (FITC)-labeled in vitro transcription of rln3a and sst1.1 probes (11685619910, Roche). The gsc2, rln3a, ccka, cckb and sst1.1 probes were synthesized with SP6 polymerase and the nmba, nmbb, and nts probes were synthesized with T7 polymerase (Fisher Scientific, EP0113). Probes were purified using illustra MicroSpin G-50 Columns (27533001, GE Healthcare).

RNA in situ hybridization was performed as previously described (Thisse et al., 1993; Liang et al., 2000). Larvae and dissected adult brains were fixed overnight in paraformaldehyde (PFA; 4% in 1x phosphate-buffered saline) at 4°C then dehydrated overnight in 100% methanol (A4124, Fisher Scientific) at -20°C. Tissue was rehydrated stepwise in methanol/PBS and washed with PBT (1x PBS, 0.1% Tween 20). Larvae were digested for 30 minutes and adult brains for 35 minutes in proteinase K (3115836001, Roche; 10 μg/ml in PBT). To stop the reaction, tissue was fixed in 4% PFA at room temperature for 20 minutes, then washed with PBT. Tissue was prehybridized for at least two hours at 70°C in hybridization buffer [50% formamide (17899, Fisher Scientific), 5X saline sodium citrate (SSC), 50 μg/ml heparin (H3393, Sigma-Aldrich), 500 μg/ml tRNA (10109525001, Sigma-Aldrich), 0.1% Tween 20 (P1379, Sigma-Aldrich), 9 mM citric acid] with 5% dextran and then hybridized overnight at 70°C in hybridization buffer with dextran and 30 ng of probe. Samples were then washed in hybridization buffer (without dextran), transitioned stepwise at 70°C from
hybridization buffer to 2X SSC, washed twice for 30 minutes in 0.2x SSC at 70°C, and transitioned stepwise into PBT at room temperature. Adult brains were embedded in 4% low melting point agarose (50100, Lonza) and sectioned using a Leica VT1000s vibratome. Whole mount larvae and adult brain sections were blocked for at least one hour in PBT with 2 mg/ml BSA (bovine serum albumin) and 2% sheep serum and incubated overnight at 4°C with alkaline phosphatase-coupled anti-DIG antiserum (11093274910, Roche) diluted 1/5000 in blocking solution. Samples were washed several times in PBT, and detection with 4-Nitro blue tetrazolium chloride (NBT) (11383213001, Roche) and 5-bromo-4-chloro-3-indolyl-phosphate (BCIP) (11383221001, Roche) was performed in alkaline phosphatase reaction buffer [100 mM Tris pH 9.5, 50 mM MgCl₂, 100 mM NaCl, 0.1% Tween 20].

For colorimetric double in situ hybridization (Liang et al., 2000), larvae were hybridized with DIG and FITC probes simultaneously, and the DIG probe was first detected using NBT/BCIP as described above. To inactivate alkaline phosphatase, larvae were post-fixed overnight at room temperature in 4% PFA, washed twice for 20 minutes each with MABT [100 mM maleic acid, 150 mM NaCl, 0.1% Tween-20, pH 7.5], incubated for 10 minutes at 70°C in EDTA (10 mM in MABT), and dehydrated in methanol for 10 minutes. Samples were rehydrated stepwise in methanol/MABT, washed in MABT, and blocked for 1 hour in blocking buffer: 20% sheep serum and 2% blocking reagent (11096176001, Roche) in MABT. Tissue was incubated overnight at 4°C in alkaline phosphatase-coupled anti-FITC antiserum (11426338910, Roche) diluted 1:5000 in blocking buffer. Finally, samples were washed several times in MABT, and FITC detection with BCIP and iodo-nitrotetrazolium violet was performed in alkaline phosphatase buffer with 10% polyvinyl alcohol. Following in situ hybridization, samples were cleared in glycerol and mounted for imaging with a Zeiss Axioskop microscope fitted with a Leica DFC 500 digital color camera using Leica Applications Suite software.

For fluorescent double in situ hybridization, larvae were fixed in 4% PFA, dehydrated in methanol, and incubated in 2% hydrogen peroxide in methanol for 20 minutes. After rehydration and washing in PBT as above, larvae were digested for 30 minutes in 20 μg/ml proteinase K in PBT, post-fixed in 4% PFA, washed, prehybridized as above, and hybridized overnight at 70°C in hybridization buffer with 5% dextran and...
40 ng each of DIG and FITC probes. Stringency washes were performed as above, then larvae were washed in TNT [0.1M Tris pH 7.5, 0.1M NaCl, 0.1% Tween-20] and maintained for 2 hours in 2% blocking reagent (11096176001, Roche) in TNT. Larvae were incubated overnight at 4°C in horseradish peroxidase-coupled anti-FITC antiserum (11426346910, Roche) diluted 1:500 in blocking solution, then washed several times in TNT. FITC detection was performed using TSA Plus fluorescein diluted 1:50 in amplification diluent (NEL741001KT, Akoya Biosciences). Samples were washed several times in TNT, incubated in 1% hydrogen peroxide in TNT for 20 minutes, washed again in TNT, blocked as above for 1 hour, and incubated overnight at 4°C in horseradish peroxidase-coupled anti-DIG antiserum (11207733910, Roche) diluted 1:500 in blocking solution. Tissue was washed several more times in TNT and DIG detection was performed using TSA Plus Cyanine diluted 1:50 in amplification diluent (NEL744001KT, Akoya Biosciences).

Dil labeling

Brains were dissected from TgBAC(gng8:Eco.NfsB-2A-CAAX-GFP)c375 adult zebrafish euthanized by exposure to 4°C water for 10 minutes. Brains were fixed in 4% PFA overnight at 4°C, rinsed in 1x PBS, and mounted in 4% low melting point agarose (50100, Lonza). Using a Leica VT1000s vibratome, 70 µm sections were removed, starting from the forebrain and sectioning posteriorly until the IPN was visible. Using GFP-labeled dHb axon terminals as a reference, Dil (N22880, Invitrogen) was applied to the exposed dorsal IPN using the tip of a tungsten needle under an Olympus MVX10 Macro Zoom Fluorescence microscope. The labeled hemibrains were incubated at 27°C for either 3 or 5 days and, after incubation, sectioned in 70 µm slices for confocal imaging.

Confocal imaging

Larvae were anesthetized in 0.02% tricaine and individually mounted in a droplet of 1.5% low melting point agarose (50100, Lonza) centered in a 60 mm x 15 mm Petri dish. After the agarose solidified, system water with 0.02% tricaine was added to each
Larvae were imaged using a Leica SP5 with a 25X (NA = 0.95) water immersion objective, or a Zeiss LSM 980 with a 20X (NA=0.5) water immersion objective. Adult brains were fixed overnight in 4% PFA at 4°C, rinsed in 1x PBS, and mounted in 4% low melting point agarose (50100, Lonza) for sectioning using a Leica VT1000s vibratome. Sections were mounted in glycerol for imaging using a Leica SP5 with a 20X (NA = 0.7) objective, or a Zeiss LSM 980 with a 20X (NA=0.8) objective.

Calcium imaging

Larvae were paralyzed by a 1 minute immersion in α-bungarotoxin (20 µl of 1 mg/ml solution in system water, B1601, ThermoFisher Scientific) followed by washing in fresh system water (Duboué et al., 2017; Baraban, 2013; Severi et al., 2014). Each larva was embedded in a droplet of 1.5% low melting point agarose (50100, Lonza) centered in a 60 mm x 15 mm Petri dish. After the agarose solidified, system water was added to each dish. For all calcium imaging experiments, images were acquired in xyt acquisition mode using a Zeiss LSM 980 with a 20X (NA=0.5) water immersion objective.

To record calcium transients in response to electric shock, a PVC ring holding electrodes which were connected to a Grass SD9 electrical stimulator (Grass Instruments), was placed in each dish (Duboué et al., 2017). Images of *gsc2* or *rln3a* NI neurons were acquired using a 488 nm laser at 475 x 475 pixel resolution and a rate of 5.2 Hz. Calcium transients were recorded for 600 frames, larvae were shocked once (25V, 200 msec duration; Duboué et al., 2017) and 1800 more frames were collected.

To record calcium transients in response to stimulation with 561 nm light, images were acquired using a 488 nm laser at 310 x 310 pixel resolution and a rate of 2.6 Hz. The Z-depth was adjusted to the plane of the neuronal population being imaged (i.e. dHb, PAG or NI). Spontaneous calcium transients were recorded for 200 frames, the 561 nm laser was activated while 20 more frames were acquired, and then calcium transients were recorded for another 150 frames.

For all calcium imaging experiments, image frames were extracted in Fiji (Schindelin et al., 2012) using *File -> Save As -> Separate Image Files*. Image frames were imported to MATLAB, and mean fluorescence intensities for regions of interest (ROI) were calculated. Briefly, for each larva a high contrast image was generated by
calculating a maximum intensity projection of its image series. ROIs were drawn manually using the high contrast image and the MATLAB function `roipoly`. For recordings of gsc2 and rln3a neurons, ROIs were individual neurons; for dHb recordings, each dHb nucleus was an ROI. Mean fluorescence intensity of pixels within each ROI was calculated. Finally, $\Delta F/F$ (Vogelstein et al., 2010; Duboué et al., 2017) was calculated according to the following formula:

$$F \leftarrow \frac{F_i - F_{\text{min}}}{F_{\text{max}} - F_{\text{min}}}$$

where F_i indicates the mean fluorescence intensity in an ROI at each time point, and F_{max} and F_{min} are the maximum and minimum fluorescence values respectively for that ROI during the recording period. To calculate total activity for each larva before and after the stimulus, $\Delta F/F$ was averaged across all ROIs in each larva and total activity was obtained for time period by calculating the area under the curve using the MATLAB function `trapz`.

Two-photon-mediated laser ablation

At 6 dpf, Tg(gsc2:QF2)c721, Tg(QUAS:GFP)c578 or Tg(rln3a:QF2; he1.1:YFP)c836, Tg(QUAS:GFP)c578 larvae were anesthetized in 0.02% tricaine and individually mounted in a droplet of 1.5% low melting point agarose (50100, Lonza) centered in a 30 mm x 10 mm Petri dish. After the agarose solidified, system water was added. GFP-expressing cells were located using a two-photon microscope (Bruker) with a 60X (NA = 1) objective. The laser was tuned to 885 nm and using GFP labeling as a guide, was focused on the relevant cell population and activated for several seconds at maximum power until the GFP signal disappeared. Because the two-photon laser power is delivered to a restricted Z-plane, ablations were repeated at multiple Z-depths to eliminate each cell population. For gsc2 neuron ablation, the laser was activated over an area of 600-2000 um2 on each of four Z-planes. For rln3a NI neuron ablation, the laser was activated over an area of 1000-1250 um2 on each of two Z-planes. For ablation of each rln3a PAG nucleus (left and right), the laser was activated over an area
of 1200-1800 \text{um}^2 on each of two Z-planes. For unablated controls, GFP-expressing neurons were located on the same microscope but were not exposed to the laser at maximum power.

Locomotor Assay

Behavioral experiments were performed blind to the ablation status of the larva being assayed. Unablated controls were a mix of $\text{Tg(gsc2:QF2)}^{c721}$; $\text{Tg(QUAS:GFP)}^{c578}$ and $\text{Tg(rln3a:QF2; he1.1:YFP)}^{c836}$; $\text{Tg(QUAS:GFP)}^{c578}$, and were siblings of ablated larvae. Behavioral tests were conducted in a temperature-controlled room (27°C) on 7 dpf larvae. The 6 cm3 acrylic testing chamber had a 0.5 cm platform, on top of which a 40 mm cell strainer (Falcon) was placed. The chamber was filled with fresh system water and set on top of an infrared illumination source (880 nm, ViewPoint Life Sciences). Locomotor activity was recorded by a high frame rate charged couple device (CCD) camera (Point Grey Research), which was connected to a computer (Dell). Tracking was performed in real time at 60 frames per second, using ZebraLab software (ViewPoint Life Sciences). Swimming behavior was recorded for 120 seconds, then each larva was shocked once (25 V, 200 ms duration) and activity recorded for an additional 120 seconds. To analyze locomotor activity, the x and y coordinates of a larva's position in each frame were exported from ZebraLab. Activity was quantified using R statistical software according to the following equation:

$$D = \sqrt{(x_{i+1} - x_i)^2 + (y_{i+1} - y_i)^2}$$

where i indicates a single frame. Total distances were calculated by summing the distance for each frame over the relevant period of the recording. Total number of movement bouts and average length of movement bouts during the pre-shock period were calculated for each larva using R statistical software. Movement trajectories were plotted using MATLAB.
Quantification and statistical analysis

All means are presented with standard error of the mean. Statistical details for all experiments can be found in the figure legends. Analyses were nonparametric and were performed using either R statistical software or MATLAB. The Wilcoxon rank sum test was used for comparisons between two groups, and the Kruskal-Wallis test was used for comparisons between multiple groups. When the Kruskal-Wallis test reached a threshold of \(p < 0.05 \), the Dunn's post-hoc test with correction for multiple comparisons was performed. Sample sizes were similar to those typically used in zebrafish behavior and calcium imaging studies (Agetsuma et al., 2010; Facchin et al., 2015; Duboué et al., 2017; Wee et al., 2019; Muto et al., 2013; Choi et al., 2021). Data were plotted using the MATLAB library PlotPub (K M Masum Habib, 2022) or the R package ggplot2 (Hadley Wickham, 2016).

Key resources table

See attached document

SUPPLEMENTAL INFORMATION LEGENDS

Supplementary Figure 1. Subset of neuropeptides expressed in larval zebrafish

NI. WISH for (A-A') ccka, (B-B') cckb, (C-C') nmba, (D-D') nmbb, or (E-E') nts in 6 dpf larvae. Dorsal views of the same larvae were imaged at (A, B, C, D, E) dorsal and (A', B', C', D', E') ventral planes. White arrowheads indicate NI. Scale bar, 100 µm.

Supplementary Figure 2. Overlapping expression of rln3a and nmbb in the zebrafish NI. Fluorescent double-label WISH for rln3a and nmbb. Dorsal views of 6 dpf larvae. (A) Z-projection and (A'-A'') higher magnification image of NI from larva in A. (B-C'') NI in two additional larvae. (A'-C'') Optical sections showing (A', B, C) rln3a neurons, (A'', B', C') nmbb neurons, and (A''', B'', C'') composite images. White arrowheads indicate neurons that co-express rln3a and nmbb. (A) Scale bar, 100 µm. (A'-C'') Scale bar, 10 µm.
Supplementary Figure 3. QF2 driver lines recapitulate gsc2 and rln3a expression patterns in the adult brain. (A) Schematic lateral view of adult zebrafish brain (after Wullimann et al., 1996), indicating positions of coronal sections (70 µm) shown in (B-G). (B, D, F) WISH for (B) gsc2 and (D, F) rln3a. (C, E, G) Confocal Z-projections of labeled neurons in (C) Tg(gsc2:QF2)c721; Tg(QUAS:GFP)c578 and (E, G) Tg(rln3a:QF2; he1.1:YFP)c836; Tg(QUAS:GFP)c578 brains. Scale bars, 100 µm.

Supplementary Figure 4. Axons from the dIPN terminate at gsc2 NI neurons. (A-C') Confocal Z-projections of 70 µm coronal vibratome sections of adult Tg(gsc2:QF2)c721; Tg(QUAS:GFP)c578; Tg(gng8:Eco.NfsB-2A-CAAX-GFP)c375 brains. (A-C) Three examples of Dil labeling (white arrowheads) at the application site in the IPN and (A'-C') of efferent fibers at the NI of the same brain. Brains sectioned after (A, A') 3 or (B-C') 5 days of incubation at 27° C. Scale bars, 100 µm.

Supplementary Figure 5. Confirmation of selective ablation of NI neuronal clusters. (A-D') WISH for (A, A', C, C') gsc2 or (B, B', D, D') rln3a was performed on 7 dpf larvae. (A', B') Tg(gsc2:QF2)c721; Tg(QUAS:GFP)c578 larvae whose gsc2 neurons were ablated at 6 dpf. (C', D') Tg(rln3a:QF2; he1.1:YFP)c836; Tg(QUAS:GFP)c578 larvae whose rln3a NI neurons were ablated at 6 dpf. (A, B, C, D) Unablated sibling controls for larvae in A', B', C' and D' respectively.

Supplementary Video 1. Axonal projections of gsc2 neurons. Rotating 3D reconstruction of a 6 dpf Tg(gng8:Eco.NfsB-2A-CAAX-GFP)c375; Tg(gsc2:QF2)c721; Tg(QUAS:mApple-CAAX; he1.1:mCherry)c636 larva generated using a Zeiss LSM 980 and Zen software.

Supplementary Video 2. Axonal projections of rln3a neurons. Rotating 3D reconstruction of a 6 dpf Tg(gng8:Eco.NfsB-2A-CAAX-GFP)c375; Tg(rln3a:QF2; he1.1:YFP)c836; Tg(QUAS:mApple-CAAX; he1.1:mCherry)c636 larva generated using a Zeiss LSM 980 and Zen software.
Supplementary Video 3. Axonal projections of \textit{rln3a} neurons after ablation of \textit{rln3a} PAG cell bodies. Rotating 3D reconstruction of a 7 dpf \textit{Tg(rln3a:QF2; he1.1:YFP)}c836; \textit{Tg(QUAS:GFP-CAAX)}c591; \textit{Tg(QUAS:NLS-GFP; he1.1:CFP)}c682 larva whose \textit{rln3a} PAG neurons were ablated at 6 dpf, showing the pronounced projections from the \textit{rln3a} NI neurons to the IPN. Generated using a Zeiss LSM 980 and Zen software.

Supplementary Video 4. Calcium transients in \textit{gsc2} neurons. Calcium transients in the \textit{gsc2} neurons of a 7 dpf \textit{Tg(gsc2:QF2)}c721; \textit{Tg(QUAS:GCaMP7a)}c594 larva during the delivery of an electric shock (25 V, 200 ms duration), which is denoted by text in upper left corner. Calcium transients imaged at 5.2 Hz. Video sped up 3X.

Supplementary Video 5. Calcium transients in \textit{rln3a} neurons. Calcium transients in the \textit{rln3a} neurons in the NI of a 7 dpf \textit{Tg(rln3a:QF2; he1.1:YFP)}c836; \textit{Tg(QUAS:GCaMP7a)}c594 larva during the delivery of an electric shock (25 V, 200 ms duration), which is denoted by text in upper left corner. Calcium transients imaged at 5.2 Hz. Video sped up 3X.

Supplementary Video 6. Increased locomotor behavior upon loss of \textit{rln3a} NI neurons. Freely swimming 7 dpf larvae. Left: Unablated control larva. Right: Larva whose \textit{rln3a} NI neurons were ablated at 6 dpf. Red dot marks the position of the larva for ease of tracking. Larvae were removed from 1x phenylthiourea at 6 dpf after two-photon ablation protocol to allow for the development of pigment, which increases visibility.

REFERENCES

36

K M Masum Habib (2022). PlotPub - Publication Quality Graphs in MATLAB.

Figure 1: (Dryad)
Figure 2

A

Cas9

sgRNA

5' UTR

exon 1

exon 2

hsp70

QF2

gsc2

B

gsc2

Tg(gsc2:QF2) + Tg(QUAS:GFP)

C

D

Cas9

sgRNA

5' HA

2A

QF2

No1.1YFP

3' HA

rln3a

E

rln3a

Tg(rln3a:QF2) + Tg(QUAS:GFP)

F

Exon 2

Exon 1
Figure 3 was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

gsc2 neurons + glutamatergic neurons

glutamatergic neurons + rln3a neurons

GABAergic neurons + gsc2 neurons

GABAergic neurons + rln3a neurons

![Image of Figure 3](https://doi.org/10.1101/2022.04.07.487414; this version posted April 10, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.)
Figure 4

Hb-IPN pathway + gsc2 neuron projections

Hb-IPN pathway + rln3a neuron projections

rln3a neuron projections
Figure 6

A 488 nm calcium imaging

561 nm ReaChR activation + calcium imaging

ReaChR-expressing larvae
Tg(gng8:Gal4FF) + Tg(UAS:ReaChR-RFP) + Tg(UAS:GCaMP7a) + Tg(gsc2:QF2) or Tg(rln3a:QF2) + Tg(UAS:GCaMP7a)

ReaChR-negative controls
Tg(gng8:Gal4FF) + Tg(UAS:GCaMP7a) + Tg(gsc2:QF2) or Tg(rln3a:QF2) + Tg(UAS:GCaMP7a)

B 488 nm

B' 561 nm

B' 488 nm

D ReaChR+ GCaMP7a+

dHb:

D' GCaMP7a+

10 dHb from 5 larvae

12 dHb from 6 larvae

GCaMP7a+

17 gsc2 neurons from 5 larvae

16 gsc2 neurons from 6 larvae

E gsc2 neurons

E' gsc2 neurons

E''

10 dHb from 5 larvae

10 dHb from 5 larvae

F ReaChR+ GCaMP7a+

dHb:

F' GCaMP7a+

26 rln3a neurons from 5 larvae

24 rln3a neurons from 5 larvae

G rln3a NI neurons

G' rln3a neurons

G'' n.s.

H rln3 PAG neurons

H' rln3a neurons

H'' n.s.

ReaChR-expressing larvae
Tg(gng8:Gal4FF) + Tg(UAS:ReaChR-RFP) + Tg(UAS:GCaMP7a) + Tg(gsc2:QF2) or Tg(rln3a:QF2) + Tg(UAS:GCaMP7a)

ReaChR-negative controls
Tg(gng8:Gal4FF) + Tg(UAS:GCaMP7a) + Tg(gsc2:QF2) or Tg(rln3a:QF2) + Tg(UAS:GCaMP7a)
Figure 7

A

Tg(gsc2:QF2) + Tg(QUAS:GCaMP7a)

B

C

gsc2 neuron

93 gsc2 neurons from 11 larvae

D

Example gsc2 neuron

D'

shock

Tg(rln3a:QF2) + Tg(QUAS:GCaMP7a)

E

Example rln3a neuron

E'

shock

F

Number of Peaks

G

F_{post}/F_{pre}

0

1

2

gsc2+ NI

rln3a+ NI

93 gsc2 neurons from 11 larvae

76 rln3a neurons from 10 larvae

*
Figure 8

Tg(gsc2:QF2) + Tg(QUAS:GFP) *Tg(rin3a:QF2) + Tg(QUAS:GFP)*
Supplementary Figure 4

Tg(gng8:GFP-CAAX) + Tg(gsc2:QF2) + Tg(QUAS:GFP) + Dii
Supplementary Figure 5

A

A'
gsc2 neurons ablated

unablated control

gsc2/neurons ablated

B

B'
rln3a

unablated control

rln3a/neurons ablated

C

C'
gsc2

unablated control

gsc2/neurons ablated

D

D'
rln3a

unablated control

rln3a NI neurons ablated