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Abstract 11 

Antimicrobial resistance poses a rising threat to global health, making it crucial to understand 12 

the routes of bacterial survival during antimicrobial treatments. Treatment failure can result 13 

from genetic or phenotypic mechanisms, which diminish the effect of antibiotics. By 14 

assembling empirical data, we find that, for example, Pseudomonas aeruginosa infections in 15 

cystic fibrosis patients frequently contain persisters, transiently non-growing and antibiotic-16 

refractory subpopulations, and hyper-mutators, mutants with elevated mutation rates and 17 

thus higher probability of genetic resistance emergence. Resistance, persistence and hyper-18 

mutation dynamics are difficult to disentangle experimentally. Hence, we use stochastic 19 

population modelling and deterministic fitness calculations of bacterial evolution under 20 

antibiotic treatment to investigate how genetic resistance and phenotypic mechanisms affect 21 

treatment success. We find that treatment failure is caused by resistant mutants at lower 22 

antibiotic concentrations (with high final bacterial numbers), but by persistence phenotypes 23 

at higher antibiotic concentrations (with low final bacterial numbers). Facilitation of resistance 24 

occurs through hyper-mutators during treatment, but through persistence only after 25 

treatment is discontinued, which allows for persisters to resume growth and evolve resistance 26 

in the absence of antibiotics. Our findings highlight the time- and concentration-dependence 27 

of different bacterial mechanisms to escape antibiotic killing, which should be considered 28 

when designing ‘resistance-proof’ antimicrobial treatments. 29 

30 
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Introduction 31 

The evolution of antimicrobial resistance is a global and growing threat to human lives and 32 

contemporary medicine (Murray et al., 2022). Studies have shown that antibiotic (AB) 33 

resistance is a complicated trait that can be facilitated by resistance-enabling mechanisms, 34 

such as persistence and hyper-mutation (Levin-Reisman et al., 2017; Levin-Reisman et al., 35 

2019; Mehta et al., 2019; Rodriguez-Rojas et al., 2021). Therefore, to ensure prolonged 36 

efficacy of current and future ABs, it is crucial to investigate how resistance-enabling 37 

mechanisms impact the emergence of resistance and treatment failure in general.  38 

In long-lasting infections, such as those caused by Pseudomonas aeruginosa or 39 

Mycobacterium tuberculosis, genetic resistance can emerge via random chromosomal 40 

mutations over the course of treatment and cause complications or treatment failure (Oliver 41 

et al., 2000; Castro et al., 2021). The speed by which mutations arise is hence crucial for 42 

pathogen survival. This mutation rate is heavily influenced by replication errors and can be 43 

increased about 100 to 1000-fold (Mena et al., 2008; Lee et al., 2012) in mutants that have 44 

faulty replication pathways, so-called hyper-mutators. Most mutations will be deleterious and 45 

decrease the fitness of hyper-mutators. However, hyper-mutators are known to flourish in 46 

highly fluctuating environments by acquiring beneficial mutations, like AB resistance, which 47 

can outweigh the cost of deleterious mutations (Giraud et al., 2002; Travis & Travis, 2002; 48 

Mena et al., 2008). Hyper-mutators thereby pose a considerable threat to the efficacy of ABs 49 

by significantly increasing the probability of resistance emergence (Figure 1A), especially, 50 

since empirical studies suggest their prevalence in chronic infections with P. aeruginosa 51 

(Figure 1B, Text S1), Escherichia coli (Labat et al., 2005) and Staphylococcus aureus (Prunier et 52 

al., 2003). 53 

While emergence of genetic resistance is still considered the main cause of treatment failure, 54 

it is becoming increasingly clear that non-genetic, transient mechanisms also enable bacteria 55 

to survive AB treatment. One such mechanism is persistence, which describes a phenotypic 56 

state, defined by the formation of bacterial subpopulations that are in a temporary non-57 

growing state, which allows them to be transiently refractory, i.e. unaffected by ABs (Balaban 58 

et al., 2019). This can be observed as a biphasic killing curve in the presence of ABs (Figure 59 

1C), where the growing population dies rapidly, leaving the smaller persister population, 60 

which declines at a much slower rate. Persistence has been reported for many antibiotic 61 
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classes (Figure 1D, Text S1) and has been found to facilitate the evolution of resistance. This 62 

facilitation occurs due to higher and prolonged survival of susceptible bacteria, thereby 63 

increasing the opportunity for mutations to occur (Levin-Reisman et al., 2017) – as opposed 64 

to increasing the mutation rate itself. Moreover, there are known mutants that generate 65 

larger persister subpopulations than the wildtype, so-called high-persisters (Moyed & 66 

Bertrand, 1983; Wolfson et al., 1990; Balaban et al., 2004). High-persistence mutations, and 67 

persistence in general, are beneficial in highly fluctuating environments (Kussell et al., 2005; 68 

Van den Bergh et al., 2016) and are frequent in chronic infections with E. coli (Schumacher et 69 

al., 2015), Candida albicans (Lafleur et al., 2010) and P. aeruginosa (Bartell et al., 2020). 70 

Notably, for cystic fibrosis (CF) patients, persister subpopulations increase over the course of 71 

chronic infection (Figure 1D). This is likely due to the emergence of high-persistence mutants, 72 

which, like hyper-mutators, have been reported more frequently at later time points of 73 

infection (Mulcahy et al., 2010) (Figure 1B). Therefore, high-persisters could provide a pool of 74 

genetically susceptible, but viable cells, that survive AB treatment and thereby cause the 75 

“paradox of chronic infections”, which describes the phenomenon of chronically recalcitrant 76 

infections with non-resistant pathogens (Lewis, 2010).  77 

The involvement of hyper-mutation and high-persistence mutations in treatment failure of 78 

chronic infections suggests that genetic and phenotypic mechanisms are not only both 79 

beneficial for survival in changing environments (such as AB treatment), but also that they 80 

might interact with one another. Indeed, hyper-mutation and high-persistence mutations 81 

have been found in the same clinical strain of P. aeruginosa (Mulcahy et al., 2010), a 82 

combination that we will refer to as a mutator-persister. The presence of mutator-persisters 83 

in chronic infections suggests the possibility that hyper-mutators could lead to a beneficial 84 

high-persistence mutation. However, it could also be the other way around, with the fitter 85 

high-persisters causing sufficient population survival to enable the evolution of less fit hyper-86 

mutators. Interestingly, Mulcahy et al. (2010) found mutator-persisters to be also genetically 87 

resistant against ABs, indicating that resistance might still be beneficial, and potentially 88 

facilitated by the presence of both, hyper-mutation and high-persistence.  89 

 90 
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Figure 1. Antibiotic treatment failure via genetic resistance and phenotypic persistence. A) Population 91 

dynamics of de novo resistance evolution over the course of a one-time AB treatment obtained by stochastic 92 

modelling. Shown are the number of total bacterial cells (CFU) as the cyan, dotted line, the susceptible starting 93 

population (N) as the solid blue line and the emerging resistant population (R) as the solid green line. Growth 94 

and growth inhibition by ABs (A) are modelled as separate stochastic processes (Methods), but for simplicity 95 

shown here as net growth rate ψN for susceptibles (as given by MIC). Resistants (R) emerge from N by mutation 96 

at rate µR, which would be increased for hyper-mutators. R grows at ψR, which is given by the cost of resistance 97 

and its lower vulnerability to ABs (MICR=10xMIC). AB treatment for A) and C) was simulated with an AB dose of 98 

10xMIC for 24h (Methods, Table S1). B) Hyper-mutator frequencies of Pseudomonas aeruginosa (%) compiled 99 

from empirical studies. Shown are frequencies for samples from the environment, or from patients with regular 100 

acute infection, epidemic infection, onset of chronic infection and chronic infection. For studies marked with an 101 

asterisk (*) isolate level data is shown as patient level data was not available (Text S1). C) Characteristic biphasic 102 

killing curve obtained from a two-state population model with switching (sF, sB) between growing (N) and 103 

persister state (Np) based on the model by Balaban et al. (2004) (adapted to our notation). The persister 104 

subpopulation (Np) is shown as the blue, dashed line, other colours as in A. D) Persister numbers of multiple 105 

species as % of cells surviving exposure to different AB classes (colour-coded according to mode of action) from 106 

in vitro and in vivo studies assembled from literature (Salcedo-Sora and Kell (2020), Mulcahy et al. (2010); Text 107 

S1). For comparison with clinical data, in vivo persister numbers from isolates from early and late stages of a 108 

chronic infection with P. aeruginosa are shown separately.   109 
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Disentangling the contributions of genetic and phenotypic mechanisms to treatment failure 110 

poses several challenges. Examining the dynamics of persistence, and especially high-111 

persistence, is inherently difficult experimentally due to the stochastic and phenotypic nature 112 

of this trait (Kim & Wood, 2016; Balaban et al., 2019). Including hyper-mutators will likely 113 

aggravate this problem, for example due to the necessity of more experimental replicates 114 

owing to increased stochasticity (Raynes & Weinreich, 2019) and the higher number of 115 

different mutations that can arise. Here we use stochastic modelling to investigate (a) how 116 

mutant populations of hyper-mutators (M), high-persisters (P) and resistant (R) cells – as well 117 

as all their respective combinations – evolve over time under different AB concentrations, (b) 118 

how they affect treatment outcome and (c) derive analytical calculations to understand the 119 

simulation outputs through the long-term fitness of specific genotypes under AB treatment. 120 

We show that R, M and P populations cause or facilitate treatment failure at distinct AB 121 

concentrations, infection time scales and final cell numbers. Our goal is not to make precise 122 

quantitative predictions, but rather utilize mathematical modelling to explore under which 123 

conditions these populations can or should evolve.  124 

 125 

Results 126 

Modelling of persistence, mutator and resistance dynamics 127 

To investigate the relative importance of phenotypic and genetic mechanisms of bacterial cells 128 

to escape antibiotic killing, we use a stochastic pharmacodynamic model (Figure 2) to simulate 129 

population dynamics during antibiotic (AB) treatment of acute infections (Methods, Text S2). 130 

Bacterial persistence can complicate treatment by allowing susceptible bacteria to survive 131 

inhibitory AB concentrations, without having to acquire genetic changes (Lewis, 2010). To 132 

capture this, we first focus on a submodel that describes the susceptible genotype (N), its 133 

persister subpopulation (Np) and a resistant mutant (NR), which cannot switch into a persister 134 

state (Figure 2, 3A). N and Np stochastically switch back and forth at rates �� and �� (Figure 135 

1B). We start with N and Np in equilibrium according to the stochastic switching in the absence 136 

of AB treatment (Methods), i.e. the growing, AB-sensitive subpopulation N at ~109 CFU and 137 

the non-growing, AB-refractory persisters Np at ~5x102 CFU. From the growing subpopulation 138 

(N) a de novo resistant genotype (NR) with MICR = 10xMIC of susceptible cells can arise via  139 
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Figure 2. Schematic of the stochastic model describing resistance, high-persistence and hyper-mutator 140 

dynamics. A) Overview of all modelled genotypes, their phenotypic states (grey background for non-growing 141 

phenotypes), susceptibility to antibiotics (ABs), growth state, and incurred cost. B) Illustration of the full 142 

mathematical model. The eight genotypes consist of the WT (N), hyper-mutators (M), high-persisters (P), 143 

mutator-persisters (U) and their corresponding resistant mutants denoted by subscript R. Persister phenotype 144 

states (hatched) are denoted by a subscript p. Switching between these two states (dashed arrows) happens at 145 

rates s� and s� for N and M, and with ℎ�- and ℎ�-fold increase for P and U. Growth rates as determined by AB 146 

sensitivity (Eq. 2, Text S1) are given as 	
 for susceptible (MIC = 1) and as 	�  (MICR = 10xMIC) for resistant 147 

genotypes, together with growth costs due to resistance, ��, and due to hyper-mutation, �. Solid arrows show 148 

mutational transitions between genotypes, which happen at rates µ , µ� and µ� . Mutators (M, U) have ℎµ-fold 149 

increased mutation rates. See Table S1 for parameter values. 150 

 151 
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random mutation (Figure 1D). Since we assume that mutations are linked to cellular growth 152 

the non-growing persister subpopulation cannot mutate. Hence, Np can only facilitate 153 

resistance emergence through prolonging the survival of the N population (Figure S1). We 154 

simulate 8 days of treatment with an AB dosage equal to MICR given once every 24h, which 155 

decays over time (Table S1). As expected, N declines rapidly under treatment and Np declines 156 

at a much slower rate, which is determined by the rate of switching back to N, displaying the 157 

characteristic biphasic killing curve of persisters (Balaban et al., 2004, Figure 1A, 3A). NR 158 

evolves rapidly from the N population and reaches carrying capacity after approximately 2 159 

days. Note that the time until NR reaches carrying capacity is dependent on the cost of 160 

resistance. In contrast N and Np are fully eradicated after about 4 days. This demonstrates that 161 

while persistence prolongs clearance of the susceptible genotype, the emergence of 162 

resistance seems to be the sole cause of treatment failure under the simulated regimen. 163 

 164 

Figure 3. Submodels of resistant, persistent and hyper-mutator phenotypes. Bacterial numbers (CFU) of various 165 

phenotypes obtained by stochastic simulations over an 8-day AB treatment with AB administered at 10xMIC (= 166 

MICR) every 24 hours. Each figure shows 100 individual simulation runs. A-C) display population dynamics of sub-167 

models (as highlighted in the inset). Persister subpopulations are shown as dashed lines, colours of all 168 

populations as in Figure 2. D) shows the dynamics of the full model shown in Figure 2.  169 
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In contrast to our persister simulations (Figure 3A), treatment failure due to persistence is 170 

prevalent in chronic infections, even in the absence of resistance, but is often linked to the 171 

emergence of high-persisters (P) (Lafleur et al., 2010; Mulcahy et al., 2010; Van den Bergh et 172 

al., 2016; Bartell et al., 2020). Compared to N, P are mutants which have a higher rate of 173 

switching to persistence (ℎ�-fold) and a lower rate of switching back (ℎ�-fold <<1), resulting 174 

in larger persister fractions with a longer ‘life-span’. And indeed, if N can acquire a high-175 

persistence mutation, the emerging P genotype (P+Pp) is present at treatment failure at low 176 

numbers (Figure 3B). Specifically, our simulations show that P rapidly emerges from N, reaches 177 

~103 CFU, but then rapidly gets killed by the AB. However, in about half of the cases, a very 178 

small fraction of P enters the persister state (Pp) before eradication and persists through the 179 

whole AB treatment due to the low back-switching rate from Pp (Figure 3B). Note that 180 

resistance could emerge from P (PR), but in most cases P is eradicated before that happens. 181 

High-persisters are not the only problematic mutants prevalent in chronic infections (Mulcahy 182 

et al., 2010). There are also hyper-mutators (M) (Figure 1B), mutants which have an increased 183 

mutation rate, and are associated with facilitated evolution of resistance. However, higher 184 

mutation rates come at a growth cost (cM), due to the accumulation of detrimental mutations 185 

(Montanari et al., 2007). Like with P, we can observe the emergence of the M genotype 186 

(M+Mp) from N at the beginning of treatment at low frequencies (~103), but it rapidly gets 187 

eradicated (Figure 3C). In rare cases MR evolves before M is fully eradicated (~4%). Although 188 

MR and NR are both able to grow under the applied AB dose, due to MR emerging at a later 189 

point in the treatment and growing slower than NR by the cost cM, MR only reaches population 190 

sizes of around 109 CFU, whereas NR reaches capacity (1012 CFU).  191 

Overall, we find that the emergence of the NR genotype is the predominant cause of treatment 192 

failure in this regimen, but that the P or MR genotypes can also survive treatment in ~43% and 193 

~4% of the cases, respectively. This shows, that both P and M genotypes can confer fitness 194 

advantages to N cells and complicate treatment. These results are in line with hyper-mutator 195 

frequencies in acute infections, which we compiled from literature (Figure 1B, Text S1), but 196 

there is – to our knowledge – no data on high-persister frequencies for acute infections. 197 

Mutations conferring M and P phenotypes do not have to occur independently. As hyper- 198 

mutation is by itself detrimental, but is known to facilitate beneficial mutations other than AB 199 

resistance (Oliver & Mena, 2010), they could acquire the beneficial high-persistence mutation, 200 
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which would lead to a higher frequency of the combined genotype than that of hyper-201 

mutators alone. Consequently, we allow for the emergence of a combined mutator-persister 202 

genotype (U+Up), which has both an increased mutation rate as well as high-persistence 203 

switching rates and can evolve from P or M populations through mutation (Figure 2). Further, 204 

U can acquire a resistance mutation leading to UR. Interestingly, the population dynamics of 205 

the full model (Figure 3D) reflect the results of the partial models described above: M and P 206 

come up early in the treatment but get quickly eradicated by the AB. U also emerges at the 207 

beginning of treatment but reaches even lower population sizes than M or P and is quickly 208 

wiped out. The only viable cells left at the end of the 8-day treatment period belong mainly to 209 

NR, with low numbers of MR and Pp populations surviving as well.  210 

Resistance and high-persistence cause treatment failure at distinct AB concentrations 211 

So far, we only considered one AB concentration (10x MIC) which corresponds to the MIC of 212 

the R populations (MICR), but the fitness of the various subpopulations depends on the 213 

strength of the selection pressure due to AB. Hence, we investigated which mutant genotype 214 

is expected to emerge and establish itself under different AB concentrations. To examine this, 215 

we used the full model to determine the probability of a genotype to survive 8 days of 216 

treatment for a range of AB concentrations (0-50xMIC). Our simulations show that for sub-217 

MIC survival of all genotypes is possible but starts declining at different concentrations >MIC 218 

(Figure 4A, Figure S2). The first genotype to reach zero probability of survival is M, reflecting 219 

that hypermutability is costly and without immediate benefit. Then the probability for N 220 

survival drops to zero, followed by that of the resistant genotypes PR and UR, which already 221 

declines for AB concentrations >0.5xMICR, whereas MR survival only reaches zero at about 222 

twice the MICR. These differences between resistant genotype survival show that resistance 223 

evolution is limited by emergence from the source population (i.e. P, U, M) and that 224 

hypermutability can ameliorate this, if only few mutations are necessary. For AB 225 

concentrations below ~2xMICR survival of NR is almost 100% but drops steeply for 226 

concentrations higher than 20xMICR where NR is replaced as the dominant genotype by the 227 

high-persister population (P), which stabilises at around 35% survival for up to 50xMIC. Other 228 

subpopulations than NR and P can only be found very rarely at the end of treatment, with e.g. 229 

MR surviving in ~2% of the treatment simulations below MIC and U in <1% in ranges where P 230 

populations dominate.  231 
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 232 

Figure 4. Treatment failure due to wildtype or mutant genotypes. Effect of AB concentration on A) the 233 

probability of genotype survival at the end of treatment over 1000 simulations runs (see Figure S2 for 234 

corresponding probability of treatment failure overall), B) the mean absolute cell numbers (CFU) of surviving 235 

genotypes, and C) deterministic fitness values of the genotypes. A) and B) summarize the end points of stochastic 236 

simulation runs for 8-day AB treatments at various concentrations (0-50xMIC), starting from a population of WT 237 

cells (N+Np). Fitness of non-resistant populations in C) reflects a combination of the underlying growing and non-238 

growing (i.e. persister) subpopulations. Note that in C) the fitness curve for NR (PR) largely overlaps with the 239 

fitness curve for MR (UR) for AB concentrations >10xMIC. The vertical dashed line shows MICR. 240 

 241 

In contrast to resistance, persistence causes treatment failure with low numbers of surviving 242 

cells 243 

The survival probability does not reflect the absolute pathogen load (mean number of 244 

surviving cells) of a certain genotype. For subinhibitory AB concentrations <0.5xMIC, the 245 

subpopulations surviving at substantial absolute numbers are diverse (PR = 105-108, MR = 107-246 

1010, UR = 106-108 CFU, Figure S3). When NR populations dominate survival, they generally 247 
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reach carrying capacity (1012 CFU). Though differing by orders of magnitude from that, the 248 

other resistant genotypes also appear at substantial numbers for AB concentrations up to 249 

MICR (PR and UR at 106-107 CFU) or up to 2xMICR (MR at 109 CFU) (Figure 4B). In contrast, when 250 

P is the dominating population, the total population size drops drastically to less than 10 cells 251 

(Figure 4B). These tiny populations largely consist of P and U cells (Figure 4B), and while U 252 

survives considerably less frequently than P (Figure 4A), in the cases where U survives, its cell 253 

numbers are similar to P. Overall, treatment failure probability above MIC is dominated by NR, 254 

with bacterial cells reaching carrying capacity, until AB doses exceed MICR substantially and 255 

only persistent, non-growing cells survive at very low numbers. These results do not change if 256 

resistant cells are allowed to switch into a persister state as well (Figure S4). 257 

Differential genotype fitness during treatment is explained by mutational costs and 258 

persistence switching rates 259 

To formally understand the change from NR to P as the dominant genotype at high AB 260 

concentrations, as well as the low probability of survival of other genotypes, we determine 261 

approximate fitness measures for all genotypes as the net growth rate far from carrying 262 

capacity (Methods). Since persisters do not grow and arise from a phenotypic – not a genetic 263 

– state change, we consider the growing and the non-growing state of a genotype together to 264 

calculate its fitness (Text S3). For AB concentrations <0.5xMIC we find the highest fitness for 265 

the susceptible genotypes N and P (Figure 4C), as the fitness of all other genotypes is reduced 266 

by mutational costs, which outweigh the mutational benefits. However, for AB concentrations 267 

between 0.5xMIC and 2.5xMICR the resistant genotypes NR and PR
 display the highest fitness, 268 

while MR and UR grow slightly slower, due to the cost of hypermutability. Notably, fitness of 269 

all genotypes declines with increasing AB concentration, but more slowly for resistant ones. 270 

From ~3xMIC onwards the rate of switching back from persistence determines the fitness of 271 

non-resistant genotypes (and hence remains constant at a negative value), with P and U 272 

having higher fitness than N and M, due to their lower back-switching rates. In contrast, the 273 

resistant genotypes continue to decline with increasing AB concentration until P and U have 274 

the highest fitness (which is equal to − ℎ� ∗ �� = −10��) for AB concentrations >2.5xMICR. 275 

These findings agree with the stochastic simulations of genotype survival and abundance 276 

(Figure 4A,C), and arise from the costs of specific mutations as well as the switching rates of 277 

persister phenotypes. The residual discrepancy is explained by differences in mutation rates 278 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2022. ; https://doi.org/10.1101/2022.04.07.487440doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.07.487440
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 of 31 

and in the number of mutations necessary for genotypes to emerge, i.e. how fast a genotype 279 

can emerge from N (N→M→MR vs. N→M/P→U→UR, etc.; Figure 2). 280 

Mutator-persisters arise from hyper-mutators during acute infections and from high-281 

persisters at relapse 282 

Even though with very low probability and numbers, cells combining hyper-mutation and high-283 

persistence phenotypes (U) can survive at the end of the treatment. This could result in 284 

subsequent treatments being ineffective due to 1) the larger fraction of persistent 285 

subpopulations, or 2) the higher mutation rates facilitating the emergence of problematic 286 

mutations like resistance, or 3) a combination of both. Hence, the emergence of U deserves a 287 

closer inspection, specifically, which population they originate from, i.e. do they emerge from 288 

the fitter P cells or do M cells acquire the beneficial high-persistence mutation? By tracking 289 

the mean cumulative mutation events of either M or P populations producing U cells over the 290 

course of treatment, we find that, surprisingly, despite the high survival rate of P, 291 

contributions from M to U are higher than the contributions from P for all AB concentrations 292 

(Figure S5). As the cumulative contributions to U do not necessarily reflect the establishment 293 

of the resulting U population (Text S4), we ran simulations where either only M or only P could 294 

mutate to U. We found that the U population only emerges in a similar manner as before 295 

(Figure 4B), if M-to-U mutations are allowed (Figure S6), which makes M cells the main source 296 

population for U over the course of 8-day treatments, i.e. during acute infections.  297 

However, P subpopulations are likely to become problematic after AB treatment subsides, as 298 

they provide a pool of viable cells, which can regrow in the absence of ABs and cause relapse 299 

of the infection (Lewis, 2010). To capture this, we model the regrowth of populations surviving 300 

8-day AB treatment at less than 105 CFU, which only occurs at AB concentrations higher than 301 

1.5xMICR (Figure 4). Here, we assume that >105 cells are clinically detectable and would result 302 

in treatment continuation (Figure 5A). More than 90% of the ‘non-detectable’ surviving 303 

populations can regrow to at least 106 CFU within 10 years, causing a relapse of infection 304 

(Figure 5B). The cell numbers of different genotypes at relapse, mainly correspond to P and U, 305 

as well as small PR and UR populations (Figure 5C), suggesting that P and U subpopulations 306 

increasingly play a role in recurring infections as indicated by clinical studies (Mulcahy et al., 307 

2010; Bartell et al., 2020). Notably, the NR genotype only causes relapse at relatively low 308 

frequencies and for a very narrow range of AB concentrations (Figure 5C). These populations 309 

however result in relapse within days (Figure S7). This is in stark contrast to the time until 310 
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relapse caused by P and U, which are in a persister state at the end of treatment and must 311 

first switch back to a growing state – which on average happens within a year (median = 37 312 

weeks; Figure S7). When considering acute treatment and relapse combined, the total 313 

contributions of P to U are higher than those from M (Figure S5) as M does not survive acute 314 

treatment at AB concentrations relevant for relapse simulations (Figure 4A). Hence, while M 315 

is the main source population of U during acute infection treatment, after AB treatment ends, 316 

P becomes the main source population. 317 

 318 

 319 

Figure 5. Relapse is mainly caused by persister phenotypes. A) Bacteria can either get cleared (yellow line) or 320 

survive 8-day AB treatment (dark grey area; periodic dosing is indicated by arrows and AB decay as a gradient). 321 

Surviving bacteria either cause immediate, acute treatment failure (>105 CFU, lower dashed line) at the end of 322 

treatment (green line) or, due to regrowth from <105 CFU, which leads either to relapse (>106 CFU as indicated 323 

by the upper dashed line; blue) or no relapse (remaining below 106 CFU; orange) over the course of 10 years. B) 324 

Probability of each of the three treatment failure types to occur for a range of AB concentrations used in the 325 

treatment (0 – 50xMIC). C) Mean cell numbers (CFU) of each genotype at relapse. Vertical dashed lines in B) and 326 

C) show MICR. 327 
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Discussion 328 

Acute and especially chronic infections with bacterial pathogens like P. aeruginosa or E. coli 329 

show a concerning frequency of mutator and high-persistence phenotypes, both of which are 330 

known to facilitate the evolution of antibiotic resistance (Oliver & Mena, 2010; Levin-Reisman 331 

et al., 2017; Rodriguez-Rojas et al., 2021). Further, given their high prevalence in chronic 332 

infections (Prunier et al., 2003; Labat et al., 2005; Lafleur et al., 2010; Mulcahy et al., 2010; 333 

Schumacher et al., 2015; Bartell et al., 2020), these two phenotypes could possibly combine 334 

and aggravate the problem. In this study, we used a stochastic population model to 335 

disentangle the complicated emergence and interplay of phenotypic and genotypic survival 336 

strategies under AB treatment by investigating the evolutionary dynamics of hyper-mutator 337 

(M), high-persister (P) and resistance (R) genotypes over the course of AB treatment at various 338 

concentrations and during relapse after treatment ends. 339 

We find that for relatively low (but higher than MIC) AB concentrations treatment failure is 340 

certain and caused by R genotypes which grow to carrying capacity by the end of the 341 

treatment (Figure 4A,B). In contrast, for antibiotic concentrations much higher than MICR 342 

treatment failure happens only in about a third of the cases and is caused by high-persistence 343 

genotypes in persister state at very low population sizes. This behaviour is explained by our 344 

deterministic fitness calculations, which show that for AB concentrations >2.5xMICR fitness of 345 

the high-persistence genotypes, P and U, is larger than that of the resistant genotypes as 346 

persisters are unaffected by high AB concentrations (Figure 4C). P and U as the main cause for 347 

treatment failure at high AB concentrations fits with the clinically observed “paradox of 348 

chronic infections” in the absence of resistance (Lewis, 2010; Mulcahy et al., 2010), especially 349 

as peak AB concentrations reached in the treatment of cystic fibrosis (CF) patients with 350 

inhaled, nebulized ABs are high and on average >2.5xMICR (Eisenberg et al., 1997). Our 351 

findings suggest that treatment failure via high-persistence is most likely to occur if sufficient 352 

resistance cannot easily evolve. This means that AB concentrations targeted at exceeding MICR 353 

might instead select for ‘hidden’ chronic infections due to persisters. Hence, persisters could 354 

specifically be targeted at later time points of the treatment with anti-persister drugs 355 

(Defraine et al., 2018). This strategy could be tested under laboratory condition by treating 356 

bacterial populations with high AB doses followed by anti-persister drugs and comparing it to 357 

potential regrowth from cultures without anti-persister treatment.  358 
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The total population size of P and U during AB treatment can only decline if the persisters 359 

switch back to the growing state, which for high-persistence mutants occurs very slowly 360 

(Figure S7), hence, they die more slowly than other genotypes. Accordingly, we see that 361 

persister subpopulations primarily prolong the time to clearance and constitute a substantial 362 

fraction of the bacterial population only at later stages of treatment when all (or most) non-363 

persisters have died (Figure 3). The wildtype switching rates used here (Balaban et al., 2004) 364 

might even underestimate persister survival as they lead to shorter lifetimes of persister 365 

subpopulations than found by Svenningsen et al. (2021), who reported that E. coli persisters 366 

can survive at least 7 days of antibiotic exposure. Using random parameter sampling and linear 367 

discriminant analysis (LDA) to investigate the influence of transition rates between genotypic 368 

and phenotypic subpopulations (i.e. mutations and switching rates; Methods), we find that 369 

wildtype (N) switching rates to (sF) and from (sB) persistence influence treatment outcome 370 

substantially (Figure S8). Particularly, sB has a large impact, with higher back-switching rates 371 

leading to more clearance, which fits well with the role of sB in determining the fitness of high-372 

persisters (Figure 4C). This should be even more important in clinical infections, where 373 

multiple stressors are present and bacterial doubling times are generally much slower than 374 

under laboratory conditions. Yet, empirical determination of back-switching rates from 375 

persistence under different conditions and for different genotypes is scarce so far. Further, 376 

the commonly used time frames of 8-24h might not be sufficient to empirically investigate 377 

persistence - and especially high-persistence - dynamics appropriately.  378 

Persistence and high-persistence have been shown to facilitate the evolution of resistance 379 

over the course of antibiotic exposure under laboratory conditions (Levin-Reisman et al., 380 

2017; Rodriguez-Rojas et al., 2021). Interestingly, in our simulations P does not facilitate the 381 

evolution of resistance during the treatment of acute infections as illustrated by the low 382 

probability of survival of the PR genotype at the end of treatment (Figure 4AB). This is reflected 383 

in our LDA, where an extremely low percentage of simulations with random parameters result 384 

in PR as the dominant genotype (Figure S8A). Instead, P enables survival at AB concentrations 385 

where antibiotic resistance is not viable anymore in our regimen (Figure 4C). We find that this 386 

reasoning is robust for a wide range of parameter sets (Figure S8D) as higher mutation rates 387 

to resistance (µR) and higher AB concentrations (Amax) have the largest influence on pushing 388 

treatment outcome towards failure due to resistance or failure due to persistence 389 

respectively. Empirical evidence for the distinction between persistence and resistance in 390 
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causing treatment failure comes from chronic P. aeruginosa infection in CF patients, where 391 

high-persistence phenotypes were prevalent, but only some were additionally resistant 392 

(Mulcahy et al., 2010). This potentially indicates that resistance via chromosomal mutations, 393 

as simulated here, might be less easily attainable or less beneficial in disease settings than in 394 

the lab. Additionally, the discrepancy between clinical findings and laboratory experiments 395 

regarding resistance-facilitation by persisters can partially be explained by experimental 396 

limitations: Directed evolution experiments (Levin-Reisman et al., 2017) use only 397 

comparatively low AB concentrations for relatively short time frames while simultaneously 398 

allowing for long AB free regrowth periods. Accordingly, while we do not find that persistence 399 

facilitates resistance evolution over the course of acute treatment, when we consider relapse 400 

after AB treatment ends, we indeed see PR cells coming up (Figure 5B). However, our 401 

assumption that persisters cannot mutate is likely over-simplistic and currently remains an 402 

open question in the field, but there are empirical studies indicating that persisters can still be 403 

metabolically active (reviewed in Kim & Wood, 2016) and might even increase mutation rates 404 

(Windels et al., 2019). Further, we are not considering plasmid-borne resistance in this study, 405 

which could speed up resistance emergence, but it is unclear if plasmid conjugation occurs in 406 

persister subpopulations. 407 

Our simulations show that, in comparison to P, M is much more likely to facilitate the evolution 408 

of resistance (Figure 4), which agrees with theoretical (Travis & Travis, 2002) and experimental 409 

studies (Giraud et al., 2002). However, while MR readily evolves, it emerges later than NR 410 

(Figure 3C) and grows at a slower rate due to fitness costs of hyper-mutation, which results in 411 

MR reaching lower population sizes than NR. Hence, if resistance evolves readily enough from 412 

N, hyper-mutators cannot dominate the population due to resistance-facilitation. However, it 413 

is still possible that M could acquire other beneficial mutations mitigating its cost, which are 414 

not accounted for in our model (Oliver & Mena, 2010). Further, in clinical conditions M 415 

subpopulations might already be present at the onset of AB treatment, speeding up the 416 

emergence of MR. Nonetheless, our simulation results for M survival of acute treatment 417 

(Figure 3, Figure 4A) are in line with hyper-mutator frequencies found in acute infections, but 418 

significantly lower than those found in chronic infections, indicating a potential role of 419 

acquiring beneficial non-resistance mutations (Figure 1B).  420 

In addition to the individual impact of high-persistence and hyper-mutation on the potential 421 

for treatment failure, we investigated the emergence of a combined genotype (U). Generally, 422 
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the dynamics of the full model (Figure 3D) mirror the dynamics of the individual sub-models 423 

for M and P regarding their survival probability and end population size (Figure 3B,C). This is 424 

a priori not obvious for such a complicated system involving various genotypes and 425 

phenotypes and gives hope that studies of isolated systems can provide information about 426 

more complex combinations. Further, we find that U cells mainly emerge from the M 427 

population (Figure 4A,B, S6). Hence, in accordance with empirical studies (Oliver & Mena, 428 

2010), we find that M could hitch-hike a beneficial mutation, here the high-persistence 429 

mutation, to offset the cost of hyper-mutation. Interestingly, since the adaptive value of high-430 

persistence comes from the non-growing persister state, the growth cost of hyper-mutation 431 

could matter less in U. Thus, M could facilitate rapid emergence of U early during treatment, 432 

which would allow the hyper-mutation to get fixed at minimal cost via U – as opposed to the 433 

situation where M acquires R and enters growth competition with other R genotypes (Figure 434 

3C). 435 

Notably, we find that the subpopulation dynamics change between treatment failure of acute 436 

infection and relapse after treatment is discontinued. While U is most likely to arise from M 437 

during the treatment of acute infections, we find that during regrowth of small surviving 438 

populations, more U emerge from P than from M (Figure S5). Therefore, high-persistence 439 

mutants, such as HipQ (Wolfson et al., 1990; Balaban et al., 2004), might not facilitate 440 

evolution on a short time scale, but rather on a longer time scale after stress subsides. Since 441 

both hyper-mutators and high-persisters are generally associated with chronic infections it is 442 

crucial to consider their dynamics not only during, but also following, treatment, i.e. during 443 

potential relapse (Figure 5). Specifically, high-persisters have been proposed to cause 444 

recurring infections by providing a small pool of surviving cells, which start to regrow once AB 445 

concentrations subside (Lewis, 2010). This is in agreement with our findings, where relapse 446 

from small surviving populations is common (Figure 5A) and predominantly caused by P 447 

(Figure 5B). Additionally, we find PR, U and UR genotypes in small numbers (Figure 5B), showing 448 

that P does not only survive high AB concentrations to cause relapse, but also facilitates the 449 

emergence of resistance in the absence of ABs, as has been shown experimentally (Levin-450 

Reisman et al., 2017). 451 

Our relapse model likely overestimates the time until persisters wake up in the absence of 452 

ABs, and therefore the time until relapse (Figure S7), as we assume a constant (and especially 453 

for hyper-persisters very slow) back-switching rate. This assumption corresponds to so-called 454 
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‘spontaneous persistence’ but neglects ‘triggered persistence’ (Balaban et al., 2004; Balaban 455 

et al., 2019), which is characterized by switching rates that are dependent on “trigger” 456 

stressors, such as starvation (Svenningsen et al., 2021) or ABs (Dörr et al., 2009). Therefore, 457 

considering triggered persistence could lead to faster switching back from persistence in the 458 

absence of ABs. Disentangling the effect and magnitude of multiple stressors on triggered 459 

switching is complicated and parameterization attempts suffer from danger of overfitting (Van 460 

den Bergh et al., 2016; Carvalho et al., 2017), which is likely the reason why – to our knowledge 461 

– no parameter estimates for triggered switching are available for high-persisters. Overall, our 462 

model simulations provide a conservative estimate of the probability of relapse, which could 463 

be higher with triggered persistence. 464 

Lastly, persister frequencies show a high amount of variation in empirical studies, even in the 465 

presence of the same AB (Figure 1D), which could be caused by stochasticity or differences in 466 

cellular physiology and persistence-causing mechanisms (Allison et al., 2011; Kint et al., 2012). 467 

Notably, when grouped by mechanism of action, antimicrobials which target the bacterial 468 

membrane display the lowest persister frequencies (Salcedo-Sora & Kell, 2020). All 469 

membrane-targeting antimicrobials analysed by Salcedo-Sora and Kell (2020) were 470 

antimicrobial peptides (AMPs), which might indicate reduced persister formation or survival 471 

with AMPs as compared to ABs. Running our simulations with AMP-like pharmacodynamic 472 

parameters (Methods, Table S1), we find drastically lower survival of high-persistent and 473 

resistant bacteria (Figure S9) than for AB-like pharmacodynamics (Figure 4). This is due to 474 

AMPs killing bacteria faster than ABs, allowing less opportunity for mutation emergence and 475 

switching into the persister state. This suggests that AMPs can decrease the chance of high-476 

persister (and mutator-persister) emergence, and thereby the probability of relapse, while at 477 

the same time allowing for less resistance evolution (Yu et al., 2018).  478 

In conclusion, we find that high-persistence and hyper-mutant genotypes mainly act 479 

independently and on different timescales with hyper-mutator cells facilitating the emergence 480 

of resistance over the course of 8-day AB treatment, and high-persistence enabling survival at 481 

high AB concentrations and resistance evolution after treatment ends. Accordingly, we find 482 

that the emergence of the combined mutator-persister genotype is driven by different 483 

populations during acute treatment (M) and during relapse (P). Generally, the treatment AB 484 

dose relative to the MIC of the resistant population is an important determinant for the 485 

selection of different genotypes: while genetic resistance leads to immediate treatment 486 
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failure for AB levels up to 2.5xMICR, high-persistence dominates at higher AB levels, leading to 487 

relapse after drug removal. Hence, particularly the interplay of genotypes and phenotypes 488 

needs to be studied in environments with fluctuating stressors. More broadly, our modelling 489 

framework is not limited to AB treatment of bacterial infections but can be applied to other 490 

diseases, where drug efficacy is inhibited by genotypic and phenotypic mechanisms, such as 491 

in fungal infections (Lafleur et al., 2010; Healey et al., 2016) or cancer (Sharma et al., 2010; 492 

Campbell et al., 2017). Our results suggest that treatment strategies should consider the 493 

different timescales at which various AB-escape mechanisms operate to reduce the risk of 494 

treatment failure or relapse.  495 

 496 

Methods 497 

Stochastic population model 498 

We investigate the relative importance of high-persistence, hyper-mutation and resistance 499 

mutations (leading to P, M and R subpopulations, respectively) – and all their combinations – 500 

over the course and after discontinuation of AB treatment by using a stochastic population 501 

model (Figure 2). Our model incorporates pharmacokinetic and pharmacodynamic functions 502 

to realistically simulate AB treatment (Eq. 1) and the distinct effects of ABs on our respective 503 

subpopulations. As proposed by Balaban et al. (2004) we describe phenotypic persistence as 504 

a two-subpopulation process. For each of our AB-susceptible genotypes (the wildtype N, M, P 505 

and mutator-persisters U) we model a growing subpopulation, which is affected by ABs (Eq. 506 

2), and a non-growing (i.e. 	��� = 0) persister subpopulation, that is unaffected by ABs. The 507 

transitions between growing and persister subpopulation happen stochastically at rates 508 

�� �N → N ! and �� �N → N! for N and M, or ℎ� ∗ �� �P → P ! and ℎ� ∗ �� �P → P! for P 509 

and U. In our model switching rates are constant (i.e. not environment-dependent) and we 510 

assume that resistant subpopulations (NR, PR, MR and UR) do not generate persisters, as we 511 

found that persistence does not convey any additional benefit to already resistant bacteria 512 

(Figure S4).  513 

For our starting conditions we assume that only the susceptible WT genotype, consisting of its 514 

two phenotypic states, N and Np, is present at 1x109 colony forming units (CFU) total (N+Np), 515 

with N and Np being in equilibrium, according to their respective switching rates. The ratio 
#

#$
 516 
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at equilibrium is obtained by determining the dominant eigenvector of the analytical solution 517 

of the two-population persister model from Balaban et al. (2004) in the absence of ABs and 518 

with our respective parameters (see also Rodriguez-Rojas et al., 2021).  519 

Growth of the non-persister populations is limited by the overall carrying capacity K, which, 520 

together with a constant natural death rate d, results in realistic competition between 521 

genotypes. Since our mutations are coupled to growth, the death rate also enables mutations 522 

to occur after capacity is reached. P and M mutants can only arise by mutation from the 523 

susceptible growing N population at rates µ� and µ respectively, and U from the susceptible 524 

growing P and M populations at rates µ� and µ% respectively. To investigate the relative 525 

contribution of M and P to the emergence of U, we separately quantify mutation events from 526 

M and P leading to U when mutation to U is only possible from either M or P.  527 

Resistant mutants NR and PR emerge by mutation from N and P at mutation rate µ&, whereas 528 

MR and UR have elevated mutation rates and arise from M and U at ℎµ ∗ µ�. The maximal 529 

growth rate of hyper-mutator populations (M, MR, U and UR) is reduced by the cost of hyper-530 

mutation (cM): 	���' = 	���(1 − �) (Text S1). Similarly, the growth of resistant 531 

populations is reduced by the cost or resistance (��): 	���) = 	���(1 − ��). Note that for 532 

MR and UR these costs are multiplicative. See Text S2 for the corresponding system of ordinary 533 

differential equations. We calculate the probability of genotype survival at the end of the 534 

treatment as the fraction of simulation runs per AB concentration where the genotype 535 

population size is larger than zero. 536 

 537 

Pharmacokinetic and Pharmacodynamic functions 538 

We model bactericidal AB treatment with periodic dosing intervals and exponential AB decay, 539 

as shown in Figure S1, by using the pharmacokinetic function  540 

*(+) =  , *��� ∗ -�.∗(/�(0�1)∗2)
0

 (34. 1), 541 

with 5 = 1, … , 789:
2  representing the number of dosing events. For our simulations we model 542 

8-days of daily AB treatment (+��� = 192h, ; = 24h) and examine a broad range of drug 543 

concentrations Amax covering 0xMIC to 50xMIC of the susceptible populations. Note that due 544 

to drug decay, the concentration Amax denotes the peak AB concentration, but will be generally 545 
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referred to as drug concentration in the main text. The decay parameter k is fixed for all our 546 

simulations, except stated otherwise (Table S1).  547 

The effect of an AB on a bacterial population is defined by the pharmacodynamic function: 548 

	�*(+)! = 	��� − 3�*(+)!(34. 2), 549 

with 3(*(+)) =  (	��� − 	�=0) ∗ >?(@)
'ABC

D

>?(@)
'ABC

D
� E8FG

E89:
 (34. 3) (Zhi et al., 1986; Regoes et al., 2004). 550 

The parameters 	���  and 	�=0 describe the maximal and minimal net growth rates in the 551 

absence (	��� = 	(* = 0)) or the presence of high amounts of ABs (	�=0 = 	(* → ∞)). 552 

At AB concentrations equal to their minimal inhibitory concentration (MIC) bacterial 553 

populations do not grow (	(* = JKL) = 0). Resistant populations are assumed to have MICR 554 

= 10xMIC, meaning that their growth stops at a 10-fold higher AB concentration than for 555 

susceptibles. The Hill parameter M determines the steepness of the pharmacodynamic curve 556 

described by Eq. 2, which reflects the sensitivity of bacterial growth to AB concentration 557 

changes. See Table S1 for all parameters values of AB simulation treatments as well as for 558 

Antimicrobial Peptide (AMP) pharmacodynamics, where the latter are characterized by lower 559 

	�=0 and steeper M.  560 

 561 

Deterministic Fitness Measures 562 

To investigate which populations should be fittest for different values of Amax, we separately 563 

calculate long-term growth rates for each genetically unique population as approximate 564 

fitness measures. For all resistant populations (NR, MR, PR and UR) this is achieved by 565 

integrating the pharmacodynamic functions (Eq. 2), which describe the net growth rate plus 566 

the natural death rate d (Eq. S6, S9, S12), over one treatment period (0 to ;) and dividing by 567 

; to derive the mean growth rate per hour (see Text S3 for closed integrals). Note that we 568 

assume that population sizes are far from the carrying capacity, which allows us to neglect 569 

part of the logistic growth.  570 

For the fitness calculations of genotypes with persister phenotypes we need to consider both 571 

sub-populations together as they are linked via constant switching and, especially under AB 572 

treatment, both contribute to the fitness of the genotype. These two phenotypic states are 573 

affected by ABs to a different extent, one growing and susceptible, the other one not-growing 574 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2022. ; https://doi.org/10.1101/2022.04.07.487440doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.07.487440
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 of 31 

and not affected by ABs. Hence, we calculate the analytical solutions for the susceptible 575 

populations for combined growing/persister-pairs: N+Np, P+Pp, M+Mp and U+Up. The 576 

analytical solution of these ordinary differential equations is N(+) =  O(+) +  OQ(+) = RS ∗577 

-TU/ + R� ∗ -TV/, with W± = 1
Y (	 − �� − ��) ± Z(−	 + �� + ��)Y + 4��	 (see Balaban et 578 

al. (2004) and Komarova and Wodarz (2007), here adapted to our notation). Average net 579 

growth rates 	 of the individual pairs are derived via integration of the pharmacodynamic 580 

function of the growing subpopulation, including growth costs where appropriate (M, U), as 581 

described for resistant populations above (Text S3). The factors RS and R� can be calculated 582 

from the initial starting population sizes of O(0) = O\ and OQ(0) = OQ\ with RS =583 

− TV
TU�TV

]O\ >TU
^_

+ 1C ∗ OQ\` and R� = − TU
TU�TV

]O\ >TV
^_

+ 1C ∗ OQ\`. For relevant parameters, 584 

that is �� > 0 and �� > 0, it follows that WS > 0 for 	 > 0 (net growth), WS < 0 for 	 <585 

0 (net killing), and if WS < 0, then |WS| ≤ |W�|,  W� < 0 and RS ≥ 0. From these properties, it 586 

follows that the long-term behaviour or net growth rate of the growing/persister-pair is 587 

determined by fgh/→Si log (+m+(+)) = log (RS) + WS ∗ +, where + stands for time and +m+ for the 588 

growing/persister-pair (see also Komarova and Wodarz, 2007). The asymptote described by 589 

fgh/→Si log (+m+(+)) is best understood as the second phase of the biphasic killing curve (Figure 590 

1A), whereby WS describes the slope and log (RS) the y-intercept. Since we assume small 591 

population sizes, the effect of RS can be neglected and λS is the main descriptor for long-term 592 

behaviour of growing/persister-pairs. 593 

 594 

Relapse simulations 595 

High-persisters and hyper-mutators are both prevalent in chronic infections and persisters 596 

have been proposed to cause relapse of infection even in the absence of resistance (Lewis, 597 

2010). Hence, in addition to the 8-day AB treatment described above, we also simulate how 598 

and when surviving bacterial populations can cause an infection to relapse after AB treatment 599 

ends. For these relapse simulations we only consider treatment outcomes, where treatment 600 

failure is not apparent, which we define by the total surviving population size being <105 CFU. 601 

If >105 cells survive the treatment, we consider that as an apparent, acute treatment failure 602 

and do not run a relapse simulation. In clinic reality, due to individual differences in patients 603 

and infections, determining such a cut-off is much more complicated and as such beyond the 604 
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scope of this work. However, 105 CFU is in line with clinical detection limits, for example for 605 

the diagnosis of urinary tract infections (Schmiemann et al., 2010). The regrowth of these 606 

small surviving populations is simulated according to the equations outlined above, but in the 607 

absence of AB administration (only considering the decaying, leftover AB from the treatment), 608 

until a total bacterial population size of 106 CFU is reached, or alternatively for a maximum 609 

time of 10 years. We assume that relapse will only be noticeable at pathogen loads that are 610 

an order of magnitude higher than our detection limit of 105 CFU as monitoring of an ongoing 611 

infection likely leads to detection of lower bacterial numbers.  612 

 613 

Parameter sensitivity analysis  614 

To assess how sensitive our simulation results are to our specific choice of parameters, we 615 

investigate the effect of the main six parameters of interest regarding transitions between 616 

subpopulations: the switching rates of the wild type (sF, sB), the mutation rates to resistance 617 

(µR), to hyper-mutation (µM) and to high-persistence (µP), and the AB concentration (Amax). 618 

Note that µM and µP were explored in correlation with µR by varying the fold-change difference 619 

to µR (Table S1). We randomly sample each of these six parameters 100,000 times using Latin 620 

Hypercube Sampling (LHS) (Carnell, 2020) to ensure efficient and complete coverage of our 621 

designated parameter ranges (Table S1). Amax was sampled from a uniform distribution and all 622 

other parameters from log-uniform distributions. Briefly, LHS divides the range of each 623 

parameter into quantiles equal to the number of samples, here 100,000, and randomly 624 

samples once for each quantile. These 100,000 samples of each parameter are then combined 625 

randomly into 100,000 parameter sets. For each of these sets we run 100 simulations of 8-day 626 

AB treatment (with the other parameters as for the main simulations; see Table S1). To get an 627 

overview of the results, we first consider the dominant genotypes at the end of treatment as 628 

percentages of the 10,000,000 simulations (Figure S8A). Dominant genotypes were defined as 629 

the genotype with the absolute highest cell number and simulations where two genotypes 630 

had the highest cell number were labelled ‘equal’. If no bacterial cells survived ‘clearance’. For 631 

determining parameter effects, we chose however three broader classes of treatment 632 

outcome (Figure S8B), according to our main results in Figure 4: ‘clearance’ (no surviving 633 

bacteria), ‘resistance’ (majority of surviving bacteria are resistant genotypes) and ‘persistence’ 634 

(majority of surviving bacteria are persistent/susceptible). Here, ‘majority’ is again defined as 635 

the highest cell number at the end of treatment for all resistant genotypes or all non-resistant 636 
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genotypes combined. In 90% of the cases the cell numbers between these two classes differ 637 

by orders of magnitude. Note, that ‘persistence’ here includes all susceptible genotypes since 638 

all simulated AB concentrations are ≫MIC where susceptibles can only survive in persister 639 

state (Figure 4C).  640 

To assess the individual effects of our six parameters of interest on treatment outcome we 641 

use Linear Discriminant Analysis (LDA) on these classes (Tepekule et al., 2017). Simplified, LDA 642 

projects the multi-dimensional data onto a 2D space in a way that maximally separates the 643 

individual classes from each other.  644 

 645 

Implementation 646 

All simulations, analysis and plots were done in R version 3.6.0. Stochastic simulations were 647 

implemented via the Gillespie algorithm using the R-package adaptivetau (Johnson, 2019). To 648 

test the accuracy of our simulation results, we used different tolerance levels for the relative 649 

rate changes in step size selection, which did not change our results notably. The stochastic 650 

simulations were run 1000 times for each AB concentration (0-50xMIC at 0.1 steps) for 8 days 651 

for acute treatment and 10 years for relapse. Analytical solutions of the population models 652 

were determined by using Matlab version R2020b. 653 

 654 

Data Availability 655 

Data will be made publicly available on github. 656 
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