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Abstract

Recognizing that diverse morphologies of neurons are reminiscent of structures of branched polymers,

we put forward a principled and systematic way of classifying neurons that employs the ideas of polymer

physics. In particular, we use 3D coordinates of individual neurons, which are accessible in recent neuron

reconstruction datasets from electron microscope images. We numerically calculate the form factor, F (q),

a Fourier transform of the distance distribution of particles comprising an object of interest, which is

routinely measured in scattering experiments to quantitatively characterize the structure of materials. For

a polymer-like object consisting of n monomers spanning over a length scale of r, F (q) scales with the

wavenumber q(= 2π/r) as F (q) ∼ q−D at an intermediate range of q, where D is the fractal dimension

or the inverse scaling exponent (D = ν−1) characterizing the geometrical feature (r ∼ nν) of the object.

F (q) can be used to describe a neuron morphology in terms of its size (Rn) and the extent of branching

quantified by D. By defining the distance between F (q)s as a measure of similarity between two neuronal

morphologies, we tackle the neuron classification problem. In comparison with other existing classification

methods for neuronal morphologies, our F (q)-based classification rests solely on 3D coordinates of neurons

with no prior knowledge of morphological features. When applied to publicly available neuron datasets

from three different organisms, our method not only complements other methods but also offers a physical

picture of how the dendritic and axonal branches of an individual neuron fill the space of dense neural

networks inside the brain.
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INTRODUCTION

Form determines function in biology. Neurons, which are the basic signaling units of the ner-

vous system, are not an exception [1]. Since Ramón y Cajal provided evidence that this general

hypothesis was also at work in neurons [2], the problem of neuron classification based on their

morphology has been a subject of considerable interest in brain research. Along with a causal

relationship for the correlation between the neuronal morphologies and spiking patterns of elec-

trophysiological recordings [3], the morphological detail of a neuron has been suggested as one of

the key determinants of physiology and functional differentiation of neurons [4–8], engendering a

number of morphology-based classification methods [9–23].

Neurons, demonstrating a variety of elaborate arborization and branching patterns, are consid-

ered fractal objects, which has led several studies to calculate fractal dimensions to characterize

neurons by the box-counting method [7, 24–28]. As a physical object, many neurons entangled

and filling the space inside the brain are reminiscent of a solution or a melt of branched polymers

whose space-filling structure can also be quantitatively mapped to the corresponding fractal dimen-

sion. Scattering experiments have long been employed to study the structures of polymer chains

in various solvent conditions or polymer concentrations [29, 30], and they can also offer the fractal

dimension of polymer chains. Thus, it would be natural to analyze the neuronal morphologies by

utilizing the ideas of scattering experiments. To be specific, we put forward calculating the form

factor, F (q), to quantify the structures of individual neurons, calculate the fractal dimension of

neurons just like the analyses done for polymer chains, and then grouping the neurons based on

the similarity between the calculated F (q)s.

Here we perform our F (q)-based analysis on publicly available datasets of neuron morphologies

obtained for (i) C. elegans nervous system [31], (ii) Drosophila olfactory projection neurons [13], and

(iii) the mouse primary visual cortex (V1) neurons in the Allen Cell Type database [11]. The F (q)-

based analysis leverages the full 3D coordinates of neurons reconstructed from electron microscope

images without resorting to any prior knowledge of the neuron morphology. The outcomes from our

classification method are found comparable to other existing analyses; yet, they offer novel insights

into neuron morphologies in the language of branched polymers under various conditions.

THEORETICAL BACKGROUND
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Here we overview basic concepts of polymer physics and key quantities, such as scaling exponent

(ν) and fractal dimension (D = 1/ν), that we will use to describe the neuron morphologies. A

description of two length scales in neuron morphology is given in the first subsection. The second

subsection provides the definition of the form factor. The remaining two subsections describe the

basic argument by Flory that is employed to determine the scaling relationship of polymer size

(Flory radius, RF) with the polymer length (N), i.e., RF ∼ N ν , under various conditions. The

solvent quality and polymer concentration-dependent ν (or D) are summarized in Table I.

Two length scales in neuron morphology

Individual neurons tend to feature densely branched structures, and hence their morphological

characteristics can be analyzed in the language of polymer physics describing the conformation

of branched polymers. Since branched polymers are composed of multiple sections of linear

polymers, it is natural to consider two distinct ranges of length scale (r) (Fig. 1A) [32]: (i) The

first range is defined at b̄ < r < l̄. Here, b̄ is the mean segment size defined between the data

points in the reconstructed neurons, and l̄(= N−1
l

∑Nl

i li) is the average length of linear sections

(branches) between branch points or from one branch point to an axonal or dendritic tip. There

is a great variation in length (li) (Fig. 1B). The neurons over this scale are effectively described

as a linear polymer. If the flexibility of a polymer in this length scale is significant, one could

divide the polymer chain into multiple segments of Kuhn length; yet we have found that neurons

in this length scale are typically stiff, lacking flexibility. (ii) The second range is defined at

l̄ < r < Rn, where Rn is the average size of the neuron, which is tantamount to the gyration

radius (R2
g = 1

2N2

∑N
i=1

∑N
j=1(ri − rj)

2) for a globular object (i.e., Rn = Rg). In this range, the

structural features of a neuron can be best represented by employing the structural characteristics

of branched polymers.

Form Factor

The form factor is routinely measured in scattering experiments to study the structure of ma-

terials [33–37]. Regardless of whether a given object is a polymer chain or a neuron, if the 3D

coordinates of N monomers comprising the objects, {ri} (i = 1, 2, . . . , N) are available, one can
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numerically calculate the form factor using the following expression,

F (q) =
1

N

〈 N∑
i

N∑
j

e−iq·(ri−rj)
〉
=

1

N

N∑
i

N∑
j

sin (qrij)

qrij
, (1)

where q is the scattering wave vector, and q · (ri − rj) = qrij cos θ with q = |q| and rij = |ri − rj|.

The second expression in Eq. 1 is obtained by averaging over the azimuthal angle θ between q and

ri− rj and the polar angle ϕ, i.e., ⟨e−iqrij cos θ⟩ = (4π)−1
∫ 2π

0
dϕ

∫ π

0
dθ sin θe−iqrij cos θ = sin (qrij)/qrij.

The wavenumber q, which can be considered as a resolution of the microscope, is inversely related

to the length scale (r) to be probed (q = 2π/r), so that the F (q) at a high q regime probes an

object locally, whereas F (q) at low q regime probes it globally.

Despite the numerical usefulness of the expression of F (q) given in Eq. 1, however, its physical

meaning may not be immediately clear. In fact, in a physically more interpretable form, Eq. 1 is

equivalent to the Fourier transform of distance distribution p(r) (see Method), namely

F (q) =

∫
p(r)e−iq·rdr. (2)

For l̄ ≪ r ≪ Rg with r ≡ |r|, p(r) corresponds to the density of monomers inside a volume of

a radius r, i.e., p(r) ≃ n/rd where n is the average number of monomers inside the volume ∼ rd

at d dimensions. Provided that there is a scaling relationship between n and r, r ∼ nν with the

scaling exponent ν (or the inverse fractal dimension D = 1/ν that satisfies n ∼ rD), which reflects

how n monomers comprising the object span over the space defined by the length scale r [38], a

dimensional analysis with p(r) ∼ r1/ν−d and dr ∼ rd−1dr in Eq. 2 yields [33]

F (q) ∼ q−1/ν ∼ q−D. (3)

Depending on the wavenumber in the range of either 2π/l̄ < q < 2π/b̄ or π/Rn < q < 2π/l̄, F (q)

reveals different structures of neurons in terms of the scaling exponent ν (or D). On the other

hand, for qRg ∼ 1, corresponding to the Guinier regime, where the Fourier regime corresponding

to the inverse of gyration radius is probed, F (q) is expressed as

F (q) ∼
∫

drp(r)

[
1− i(q · r)− 1

2
(q · r)2 + · · ·

]
= N

[
1−

q2⟨R2
g⟩

3
+ · · ·

]
≃ F (0)e−

q2⟨R2
g⟩

3 . (4)

Thus, the radius of gyration of an object, R2
g = 1

2N

∫
r2p(r)dr, can be obtained from the slope of

logF (q) vs q2 at small q, such that ⟨R2
g⟩ = −3 limq→0

∂ logF (q)
∂q2

.
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Depending on the solvent quality and concentration of polymer solution as well as on whether

the polymer chain is linear or branched, polymer chains adopt different conformations whose

space-filling feature is captured in terms of the scaling exponent ν. In what follows, we review the

scaling exponents of a linear or a branched polymer chain under various solvent conditions and at

different concentrations of polymer solution [32, 33, 36].

A polymer chain in dilute solution

According to the basic theory of polymer physics, the size (RF , Flory radius) of a polymer chain

scales with its length N as RF ∼ Nν , where the scaling exponent ν changes with the solvent quality.

In three dimensions (d = 3), a single flexible linear polymer adopts swollen conformations in a good

solvent with ν = 0.588 but collapses to a globular form in a poor solvent with ν = 1/3 [33]. At

the Θ-condition, which is a tri-critical point between a good and poor solvent condition where

the attraction and repulsion at the level of two-body interaction compensate each other, a flexible

polymer adopts conformation like those of ideal polymer that obeys the scaling law of RF ∼

N1/2 [33, 39, 40]. Meanwhile, for a stiff polymer characterized by a large persistence length, it is

expected that RF ∼ N with ν = 1 regardless of the solvent quality.

For l̄ < r < Rn, the neuron morphology can be studied by considering the structure of a branched

polymer. To obtain the scaling exponent ν from RF vs N under various conditions, one can employ

the Flory argument [32, 33, 36], which is often used to determine the solvent-quality dependent

size of the polymer chain. In general, the Flory free energy of a polymer consisting of N monomers

with the statistical segment of size b can be written as a function of polymer size R:

βF(R) ≈ R2

⟨R2
0⟩

+
B2

2!
⟨ρ2⟩Rd +

B3

3!
⟨ρ3⟩Rd + · · · . (5)

The first term is due to entropic contribution, −TS(R) ∼ TR2/⟨R2
0⟩, that arises from the elasticity

of a polymer chain, which constrains the size of the polymer so that any attempt to deform the

polymer engenders a restoring force of −kR with the spring constant of k ≃ 1/⟨R2
0⟩, where ⟨R2

0⟩ is

the mean square size of an ideal polymer: ⟨R2
0⟩ ≃ b2N1/2 for randomly branched ideal polymers [36,

41], whereas ⟨R2
0⟩ ≃ b2N for linear polymers. The second, third, and remaining terms arise from

the interaction between the monomers, E(R), whose effective density inside the pervaded volume

of a polymer of size R is given as ⟨ρ⟩ ≃ N/Rd. B2 is the second virial coefficient, which decides
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the strength of the two-body interaction; B2 > 0 is for the interaction between monomers in good

solvent condition, making the two-body interaction repulsive, whereas B2 < 0 along with B3 > 0

delineates the poor solvent condition. Thus, the total free energy of a polymer chain results from

the sum of entropic and energetic contribution F(R) = −TS(R) +E(R), where the term −TS(R)

tends to decrease R, whereas E(R) expands it. The size of the chain (Flory radius R = RF) is

determined by the balance between the two contributions, namely, by the minimization of Flory

free energy, ∂F(R)/∂R|R=RF = 0.

With an assumption of zero correlation (⟨ρn⟩ = ⟨ρ⟩n = (N/Rd)n), the Flory free energy is

simplified as

βF(R) ≈ R2

b2N1/2
+

B2

2!

N2

Rd
+

B3

3!

N3

R2d
+ · · · . (6)

Under the good solvent condition, the two-body interaction is more dominant than the higher-order

terms, and the free energy can be truncated up to the two-body interaction term, allowing us to

determine the RF in a good solvent,

RF ≃ b
( v

bd

) 1
d+2

N
5

2(d+2) (7)

with B2 = v. Thus, the size scaling exponent of a randomly branched polymer in a good solvent

at d = 3 is ν = 5
2(d+2)

= 1/2 (i.e., D = 2) [32].

Under the Θ-solvent condition, the second virial coefficient vanishes (B2 = 0), and the Flory

radius of a branched polymer is determined from the balance between the elastic free energy and

the three-body interaction term with B3 = w in Eq. 5 as

RF ≃ b
( w

b2d

) 1
2(d+1)

N
7

4(d+1) . (8)

Thus, the size scaling exponent of a randomly branched polymer under Θ-solvent condition at

d = 3 is ν = 7/16 (D = 1/ν = 2.29) [32].

A polymer chain in semi-dilute/dense polymer solution.

When the concentration of polymer solution increases, the individual chains start overlapping,

influencing the chain conformation of neighboring polymers, which defines the overlap volume
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fraction Φc ∼ Nb3/RF
3 ∼ N1−3ν . In the semi-dilute regime (Φc ≲ Φ ≪ 1), it is no longer

discernible whether two spatially adjacent monomers are from the same chain or different chains,

and the original strength of the intra-polymer two-body interaction (B2 = v) is screened to yield

B2 ≃ v/N1/2. In this case, the Flory free energy is written as

βF(R) ≈ R2

b2N1/2
+

1

2

( v

N1/2

) N2

Rd
, (9)

and ∂F(R)/∂R
∣∣∣
R=RF

= 0 yields the Flory radius of

RF = b
( v

bd

) 1
d+2

N
2

d+2 . (10)

Thus, the size scaling exponent of a randomly branched polymer in a semi-dilute polymer solution

under good solvent conditions is ν = 2/(d+ 2) = 2/5 = 0.4. This number is close to the exponent

ν = 0.395, the inverse fractal dimension of percolating clusters at percolation threshold (p = pc),

D = 1/ν = 2.53, estimated from computer simulations [42].

For dense melts of branched polymers (Φc ≪ Φ ≈ 1), the interactions between polymer segments

are fully screened. In this case, individual branched polymers behave as if they are effectively in

an ideal condition, giving rise to the scaling relationship of RF ∼ N1/4, and interesting scaling

F (q) ∼ q−4 emerges in the range of intermediate q (π/Rn < q < 2π/l̄). Since the linear sections

of neurons (b̄ < r < l̄) are stiff and effectively rigid rod-like, the length of the statistical segment

(Kuhn length) is ∼ l̄, and the number of statistical segments comprising the branched polymer

is b̄N/l̄. Therefore, the size of polymer scales as RF ≃ l̄(b̄N/l̄)1/4 = b̄(l̄/b̄)3/4N1/4. The fractal

dimension of D = 4 may sound geometrically impossible; however, an object with fractal dimension

D = 4 is still permissible in the range of l̄ < r < RF because the stiff linear section creates extra

space at b̄ < r < l̄ [36].

Note that a scaling behavior of F (q) ∼ q−4 could also emerge at a large q regime (q ≳ b−1),

although it is not directly relevant to our problem that discusses branched polymer-like neurons

comprised of rigid segments with large persistence length. This corresponds to the Porod scattering

F (q) ∼ q−(6−Ds) with Ds = 2 [43–45], contributed by smooth surfaces of compact globules (Ds = 2)

that are formed by a flexible chain under a poor solvent condition.

Although neurons are without looped topology, the Flory argument, demonstrated in the forego-

ing two subsections, can be used to derive the scaling relations of polymer chains with closed-loop

structures as well. The looped chain objects are smaller in size, affecting the pre-factor of scaling
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relation; yet their scaling exponents remain unaltered from those of linear objects as long as the

solvent quality is unchanged.

The scaling exponents (fractal dimensions) for different types of polymers are summarized in

Table I.

TABLE I: Scaling exponent ν and fractal dimension D of polymer chains under various conditions.

Type Solvent property ν D

Linear polymer in dilute solution

Poor 1/3 3

Θ-condition 1/2 2

Good 0.588 1.70

Branched polymer in dilute

polymer solution

Ideal 1/4 4

Θ-condition 7/16 2.29

Good 1/2 2

Branched polymer in semidilute

polymer solution

Semi-dilute (good solvent) 0.395 2.53

Branched polymer in dense

polymer solution

Melts 1/4 4

RESULTS

Here we present our F (q)-based analysis on the datasets of neuron morphology reconstructions

from three distinct organisms with an increasing degree of complexity (Fig. 2): (i) the C. elegans

nervous system, (ii) projection neurons in the Drosophila olfactory system, and (iii) mouse primary

visual cortex neurons.

Neurons in C. elegans

C. elegans is one of the organisms whose neural connectivity has been fully mapped. Morpho-

logical reconstruction of the C. elegans nervous system is available as a part of the OpenWorm

initiative which created a complete connectome of the organism [31] (see Fig. 2A). C. elegans has
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302 neurons with their morphologies and inter-neural connectivity being fully specified [46, 47].

Because of its relative simplicity, it is an ideal organism to explore the basis of neural dynam-

ics and brain function [48–50]. Partial, but more detailed reconstructions are also available for

small parts of the sensory neurons [51–53]. Complex neural behaviors of both associative and

non-associative learning are realized through these neurons [47] which are functionally classified

into sensory, motor, interneurons, polymodal, and unknowns [31, 47, 54, 55] (Fig. 3). Respective

circuits for specific behaviors such as locomotion and chemosensory responses are well-documented

as well [47, 49, 52, 56].

The overall architecture of neurons in the C. elegans nervous system largely conforms to the

organism’s tubular body shape, which is reflected in the F (q) plots of large neurons classified into

clusters CCE
1 , CCE

2 , and CCE
3 . The neurons in these clusters exhibit D ≈ 1 at the wavenumber

smaller than the dips formed at q ≈ 2π/dC(≈ 0.13 µm−1) (dotted lines in Fig. 4A) where dC(≈ 47.9

µm) is the average diameter of the cross-section [57, 58]. The 2/3 of neurons (N = 198) come in a

pair projecting on the left and right sides of the body, and the rest (N = 104) are largely confined

either in the head or in the tail region.

The F (q)-based clustering groups 302 neurons into five clusters based on their overall morpho-

logical features (see Fig. 4 and Fig. 5). (i) The neurons involved with the interneurons (N = 34)

and motor function (N = 37), which span across the entire body, are grouped into the cluster CCE
1

(N = 85). The rest of the cluster is composed of 6 sensory neurons, a polymodal neuron, and 6

unknowns. (ii) The cluster CCE
2 is made of 2 PVD neurons (PVDL and PVDR), which are known

to be responsible for the sensory detection of drastic changes in mechanical forces, osmolarity,

and temperature [59–61]. They feature a dendritic morphology of exceptional branching patterns

repeating across the entire body (Fig. 4B). The F (q) of the PVD neurons scales F (q) ∼ q−2,

exhibiting the fractal dimension of D = 2 at 2π/dC < q < 2π/l̄ (Fig. 4A), indicating that the mor-

phology of PVDs with intricate branching pattern (CCE
2 of Fig. 4B) is similar to the configuration

of a self-avoiding branched polymer in dilute solution. (iii) The neurons in cluster CCE
3 (N = 44),

structurally similar to those in CCE
1 but are shorter in branch length (l̄), are mostly motor neurons

(N = 32). The cluster also contains a small number of sensory (N = 5) and interneurons (N = 7).

(iv) The clusters CCE
4 and CCE

5 are comprised of small to mid-sized neurons mainly confined around

the head region. Unlike the other neuron clusters, the neurons grouped in cluster CCE
4 (N = 100)

are diverse in terms of neuron type composition, containing 44 sensory neurons, 22 interneurons,
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22 motor neurons, 6 polymodal neurons, and 6 unknowns. The cluster CCE
5 (N = 71) consists of 4

sensory neurons, 33 interneurons, 26 motor neurons, and 4 polymodal neurons. The clusters CCE
4

and CCE
5 can be further classified into smaller clusters by repeating the application of the same

clustering algorithm to each cluster (CCE
4 and CCE

5 in Fig. 5A, and Figs. 5B and 5C).

Taken together, it is found that the motor and interneurons grouped in CCE
1 and CCE

3 extend

across the entire body of C. elegans, lacking branches. In contrast, the neurons with sensory

function (PVDs) grouped in CCE
2 are characterized by the pattern of extensive branching. Although

the neurons classified in the clusters CCE
4 and CCE

5 are still in a mixture of many neurons with

different functional types, their sizes (contour lengths) are smaller than those in CCE
1 , CCE

2 , and

CCE
3 . Overall, the F (q)-based clustering, which captures the morphological features of neurons, has

grouped the neurons in the C. elegans nervous system into their respective functional type to a

first approximation.

Projection neurons in three neuropils of Drosophila olfactory system

The full Drosophila hemibrain connectome constructed from electron microscope images [13, 62]

offers neuron morphologies at high resolution. The neurons constituting the second-order layer

of the Drosophila olfactory system are made of three types of projection neurons, which include

uniglomerular PNs (uPNs), multiglomerular PNs (mPNs), and local neurons (LNs). Among them,

uPNs (N = 111) are bundled together into on average 3 uPNs and comprise ∼ 50 distinct glomeruli,

which receive signals from ∼ 50 different types of olfactory receptor neurons (ORNs) where a diverse

array of chemical signals are encoded via the combinatorial coding [63–67]. The uPNs extend across

the layer of second-order neurons, bridging between ORNs and higher olfactory centers (see Fig. 2B).

The multiglomerular PNs (mPN) (N = 30) extend over multiple glomeruli, and the local neurons

(LNs) (N = 12) are confined within the neuropil.

The PNs extend their dendritic and axonal branches and these branches are densely entangled

to form three neuropils. Along the neural signal transmission pathway, the antennal lobe (AL) is

the first neuropil, consisting of the ∼ 50 glomeruli, and the axonal extensions of the uPNs in AL

project to the other two neuropils, mushroom body (MB) calyx and lateral horn (LH), which are

the sites that synapse with Kenyon cells and lateral horn neurons for learned and innate responses

to olfactory signals, respectively [68–72]. Since neuron projections in each neuropil feature unique
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morphology which is discernible from one neuropil to another, we segmented the uPNs into the

parts contributing to each of the three neuropils [73] and analyzed them separately.

In AL, F (q)-based clustering results in seven clusters (Fig. 6), characterized by 2 ≤ D ≤ 4 at

π/Rn < q < 2π/l̄. The clusters CAL
1 , CAL

2 , CAL
3 , and CAL

4 , which represent the major population of

the 127 PN projections to AL, are characterized by the structure of a branched polymer in melts

(D = 4), semi-dilute polymer solution (D = 2.53), and dilute polymer solution under Θ-solvent

(D = 2.29) or good solvent (D = 2) condition.

In MB calyx, F (q)-based clustering identifies six clusters (Fig. 7). The minor cluster C1 is

comprised of 3 regulatory neurons. These neurons are either an MB output neuron (MBON) or an

MB-C1 (inhibitory interneurons) [13], whose shapes greatly differ from typical PNs. Remarkably,

the F (q)-based clustering correctly separates them. In the clusters C2, C3, C4, and C5, the PNs

exhibit boutons of the size around 3 − 6 µm [74] at the tip of protrusions stemming from the

main axon (Fig. 7). KCs form claw-like projections and envelope boutons at the synaptic site [75].

The structural characteristic of the two-layered hierarchy manifests itself in the F (q) plots with

D ≈ 2.29, indicating that axonal branches adopt the configurations of branched polymer in the

Θ-solvent at two different length scales, below and above the ‘plateau’ at q ≈ 0.4 µm−1 (r ≈ 16 µm)

(see the arrows pointing the plateau of C2 and C3 in Fig. 7). This trend is practically absent in

clusters C5 and C6 which have only a small number of boutons in each PN.

In LH, there are six clusters (Fig. 8). Similar to C2 and C3 in MB calyx, the clusters CLH
1 and

CLH
2 in LH are characterized by the F (q) displaying a ‘plateau’. Despite the overall similarity in

the shape of F (q) in that a plateau is present at intermediate q, the details of F (q) and the actual

PN morphologies in LH are slightly different from those in MB calyx (Fig. 8). The plateaux of

CLH
1 and CLH

2 are identified at q ≃ 0.5− 0.6 µm−1 (r ≃ 11 µm). Furthermore, visual inspection of

the morphologies indicates that smaller axonal branches are uniformly distributed over the main

branches of PNs in LH. From CLH
1 to CLH

3 , the PNs change their morphologies from D = 4 to

D = 2.29 and D = 2. In the remaining clusters, CLH
4 , CLH

5 , and CLH
6 , PNs are small in size and

relatively featureless (D = 1). The difference between the clusters stems from the overall size (Rn).

In the second-order neurons of the Drosophila olfactory system, PNs with different morphology

are mixed to constitute synaptically dense MB calyx and LH.
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Neurons in mouse primary visual cortex

The Allen Cell Type database contains full and partial reconstructions of neurons in the mouse

primary visual cortex (V1), which plays a critical role in visual processing as the first cortical region

to receive visual input [76]. Visual signals processed in V1 are sorted [77] and relayed to at least

18 different brain areas [78–80] which are deemed functionally distinct [81]. The V1 is divided

into 6 functionally distinct layers [82]. For example, layers 2 and 3 house many direction-selective

oriented cells [83]. Layer 5 is known for mostly non-oriented cells with a large receptive field [83].

Diverse types of neurons with varying sizes spanning across multiple layers (see Fig. 2A) comprising

V1 are rich in pyramidal cells, whose organization maps the orientation preferences [84]. Gouwens

et al. performed hierarchical clustering on the Allen Cell Type database using a combination of

morphometric features such as branch number and the total contour length of the neurons [11].

All neurons in the Allen dataset are categorized under two different dendrite types, either spiny or

aspiny based on the existence of dendritic spines, which are small protrusions along the dendrite

where synaptic inputs occur. Although individual neurons are labeled with dendrite type informa-

tion, these minuscule structures are not represented in the morphological reconstructions. Here,

instead of relying on morphometry, we calculated the F (q)s of V1 neurons by leveraging the 3D

coordinates provided in the database to assess the similarity between them and repeated Gouwens

et al ’s clustering procedure.

In comparison with Gouwens et al. who classified V1 neurons into 19 clusters for spiny neurons

and 19 clusters for aspiny neurons [11], our F (q)-based clustering produced 11 and 8 clusters

for spiny and aspiny neurons, respectively (see Fig. 9, Fig. 10, and visit https://github.com/

kirichoi/FqClustering for the complete neuron morphologies per cluster). The difference in the

number of clusters likely stems from the fact that information on relative soma depth, for instance,

utilized in morphometry-based clustering, is not explicitly included in the F (q)-based clustering.

From the F (q) plots, it becomes clear that neurons are classified based on D and Rn into several

distinct subgroups. For spiny neurons, clusters Cspiny
1 , Cspiny

3 , Cspiny
6 , and Cspiny

8 all share D = 2.29

for π/Rn < q < 2π/l̄ (or l̄ < r < Rn) (Fig. 9). The clusters Cspiny
2 , Cspiny

5 , and Cspiny
9 are featured

withD ≈ 2.53. Morphologically, these clusters exhibit relatively denser dendrites with more number

(or higher density) of branches than those clusters with D = 2.29 (Fig. 9). The clusters Cspiny
4 ,

Cspiny
7 , and Cspiny

11 display the same fractal dimension, D = 2, at π/Rn < q < 2π/l̄; yet differ from
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each other by their neuron size (Rn(C
spiny
4 ) > Rn(C

spiny
7 > Rn(C

spiny
11 )). The cluster Cspiny

10 displays

2.53 < D < 4, featuring unusually dense arborization, similar to that of a branched polymer in

a melt. For aspiny neurons (Fig. 10), we find that the clusters Caspiny
1 , Caspiny

3 , and Caspiny
5 are

characterized with D = 4; Caspiny
4 , Caspiny

7 , and Caspiny
8 with D = 2; Caspiny

2 with D = 2.29; and

Caspiny
6 with D = 2.53.

We notice that the spiny neurons are on average characterized with D̄spiny ≈ 2.37, whereas the

aspiny neurons with D̄aspiny = 2.55. Thus, the neuron mass density (ρ ∼ n/r3 ∼ rD−3 ∼ n1−3/D) is

higher in aspiny neurons (D̄spiny < D̄aspiny). It is noteworthy that the absence (or presence) of apical

dendrites, whose size is comparable to the size of a neuron (Rn), does not contribute significantly

to the fractal dimension in the intermediate scale π/Rn < q < 2π/l̄.

Compared with the morphology types defined by Gouwens et al., F (q)-based clustering prioritizes

the overall structural similarity dictated by D and Rn (and more precisely by dij of Eq. 12). Still,

the similarity between the two clustering outputs is statistically meaningful, as the Pearson’s χ2-

test of independence between the two clustering outputs results in very small p-values for both

the spiny and the aspiny neurons (p = 9.368 × 10−33 and p = 8.736 × 10−21 respectively). Other

similarity metrics that enable us to compare the two clustering outputs, such as the Baker’s Gamma

index [85] (Gspiny
Baker = 0.304, Gaspiny

Baker = 0.328), normalized mutual information [86] (NMIspiny = 0.355,

NMIaspiny = 0.302), and v-measure [87] (vspiny = 0.355, vaspiny = 0.302) all point to a moderate

similarity between the two clustering outputs. The F (q)-based clustering correctly captures the

morphological characteristics of the neurons and can be utilized as an alternative criterion for

clustering.

DISCUSSION

The F (q)-based clustering produces a comprehensible and systematic classification of neurons,

complemented by the size (Rn) and the fractal dimension (D) that quantifies the extent of the

branching pattern of reconstructed neurons. We argue that different groups of neurons classified

based on their morphology has functional significance. In particular, the branchness of neurons,

quantified by D, is of great significance to the firing activities of neurons, which should be deter-

mined by the densities of ion channels on the membrane surface. For a neuron characterized with

D, it is expected that the conductance (G) per neuron is proportional to the total number of ion
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channels (nch) or the capacity of the neuron dictated by the total contour length (L ∼ RD
n ). If

one imagines that a neuron is locally a cylindrical object with a cross-sectional diameter d(x) at a

given position x along its contour [28] and that the density (σch) of ion channels on the membrane

surface is given, the conductance of ions across the membrane surface of a neuron is estimated as

G ∼ nch ∼ σchπ

∫ L

0

d(x)dx ∼ σchπR
D
n d̄, (11)

where d̄ =
∫ L

0
d(x)dx/L is the average cross-sectional diameter of a neuron. A densely branched

neuron characterized with a greater fractal dimension, say D = 4, is expected to display a higher

conductance than a branchless neuron with D = 1. Functional differentiation of neurons, dic-

tated by various firing patterns, has indeed been associated with a morphologically heterogeneous

neuronal population [3].

The clustering based on topological characteristics (e.g. morphometrics) [11, 15, 17–19] is con-

ceptually akin to our F (q)-based clustering. Although the morphometrics-based classification could

be more comprehensive with a set of geometrical features selected, it requires a more extensive pre-

processing as well as careful selection of feature sets to avoid introducing a bias or redundancy. It

is not our intention to argue that our F (q)-based analysis is superior to other metric-based anal-

yses, but it can still be said that our F (q)-based analysis is more objective in that it relies on

the 3D coordinates of neurons with no prior knowledge of the neuron structure. Accompanied by

electrophysiological measurement [10, 11] and stimuli response profiles [88], our F (q)-based classi-

fication holds good promise for a systematic study to elucidate the structure-function relationship

in neurons, namely, the relationship between the neuron morphologies and the neural activities.

METHODS

Data preparation

• A total of 302 morphological reconstructions of neurons in the C. elegans nervous system

were collected from the OpenWorm dataset [31]. The neuron type information available from

the dataset was used to assign each neuron into one of the five functional categories (sensory,

motor, interneuron, polymodal neuron, and others).

• For the Drosophila olfactory projection neurons, we use the TEMCA2 dataset [13]. A total of

162 Drosophila olfactory neurons are present in the dataset, which is extracted from the right
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hemisphere of the female Drosophila. From the dataset, three neurons (ID=203840, 2738003,

2738059) that are identified to be not PNs and six neurons (ID=1549518, 2738042, 2738083,

2738261, 2970058, 2970073) that did not project to any of the neuropils are dropped. We

removed artifacts in the data in which certain data points are dramatically offset from the

expected trajectories due to misalignments of images when constructing the original mor-

phological skeleton. These data points were identified by a geometrical criterion that the

distances between three consecutive points should be smaller than 10 µm. Next, we system-

atically segmented the neurons inside the three neuropils using the same process detailed in

[73].

• The Allen Cell Type Database [11] contains 509 full and partial morphological reconstructions

of neurons in the mouse primary visual cortex. Following Gouwens et al. [11], we classify the

whole neurons into 234 spiny and 275 aspiny neurons. When comparing the clustering results,

we noticed that Gouwens et al. used 461 morphological reconstructions which is smaller than

what is currently available in the database. Gouwens et al. provided the exact cell IDs for

461 morphological reconstructions, but a subset of cell IDs do not match with those currently

present in the database. Therefore, when performing χ2-independence tests, we use only the

neurons present in both the current Allen Cell Type Database and the list of neurons shared

by Gouwens et al. A total of 430 neurons matched this criterion (230 spiny and 200 aspiny).

In all datasets, the morphological information of each neuron is stored as a set of 3D coordinates

with the connectivity specified in the parent samples. Complete reconstruction of neuron mor-

phology is made by connecting data points based on their parent-child relationship. Reconstructed

neuronal morphology is analyzed to identify branching points, where more than one child points

identify as a parent. Tips of the neuron were defined if no other child points were present. In this

study, a branch is defined as a set of points between two branching points or between a branching

point and a tip.

F (q)-based clustering of neurons

After calculating the F (q) for each neuron, we cluster the set of neurons using a hierarchical

clustering algorithm. We define the ‘distance’ between the F (q)s of i-th and j-th neurons by using
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the Euclidian distance (L2 norm),

dij =

√√√√ N∑
n=1

|Fi(qn)− Fj(qn)|2. (12)

Since our interest largely lies in the intermediate q regime where the features of branched polymers

are observed, dij’s are calculated over the range of π/Rn < q < 2π/l̄. Calculation of dijs over all i

and j pairs gives rise to a square distance matrix, to which the hierarchical clustering algorithm

is applied. For the Allen Cell type dataset, we follow the same procedure as Gouwens et al., who

separated spiny and aspiny/sparsely spiny neurons before clustering [11]. Hierarchical clustering

was carried out separately on spiny and aspiny neurons, and the clusters were collected based on

the dynamic hybrid cut tree method [89]. The minimal cluster size of 4 was imposed for the mouse

V1 in Gouwens et al. [11] and smaller clusters are automatically merged to a neighboring cluster.

For the neurons in C. elegans and Drosophila olfactory system, we applied the same criterion of

clustering as that of the mouse V1 neurons for consistency but did not impose the minimal cluster

size restriction so that if necessary we can sample small clusters as well.

Pearson’s χ2-test of independence

In this study, Pearson’s χ2-test is used to evaluate if there is any statistically significant rela-

tionship between the two clustering outputs, one from our F (q)-based analysis and another from

Gouwens et al ’s [11], which are summarized in the contingency tables for the cases of spiny and

aspiny neurons in mouse V1 (see Supplementary Tables S1 and S2). For the null hypothesis, it

is assumed that the clustering outputs obtained from the two different methods are statistically

independent of each other, such that knowing a clustering output from one method does not help

us predict the output of another method. For the statistical evaluation of independence between

two clustering outputs, we calculate the χ2 value of the data in the contingency tables. If the two

clustering outputs were not random, a large value of χ2 that greatly deviates from the expected χ2

distribution would be obtained. Specifically, the χ2 value is calculated using

χ2 =
R∑
i=1

C∑
j=1

(Oij − Eij)
2

Eij

, (13)
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where R and C are the numbers of rows (Gouwens et al.’s clustering outputs) and columns (F (q)-

based clustering outputs) of the contingency table, respectively, and Oij and Eij are the observed

and expected frequencies of the neurons in the i-th row and the j-th column of the table. The

expected frequency Eij(= Npi·p·j) would be obtained under the assumption that the null hypothesis

is correct (two clustering labels are independent), where pi· =
∑C

j Oij/N and p·j =
∑R

i Oij/N with

N being the total number of neurons. Once the χ2 value is calculated with Eq. 13, the probability

of obtaining a χ2 value larger than what is expected from the null hypothesis, namely, the p-value

is calculated from

p-value = 1−
∫ χ2

0

fk(x)dx (14)

where fk(x) = 1
2k/2Γ(k/2)

xk/2−1e−x/2 is the χ2-distribution with k[= (R − 1)(C − 1)] denoting the

degree of freedom of the contingency table. If the p-value is smaller than a chosen significance level,

the null hypothesis is rejected, and one can claim that there is a statistically significant association

between the two clustering outputs.

17

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 7, 2022. ; https://doi.org/10.1101/2022.04.07.487455doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.07.487455
http://creativecommons.org/licenses/by-nd/4.0/


Declarations

• Authors’ contributions – K.C., W.K.K. and C.H. wrote the main manuscript text and

K.C. prepared figures. All authors reviewed the manuscript.

• Competing interests – The authors declare no competing interests.

• Ethics approval – Not applicable.

• Consent to participate – Not applicable.

• Data availability statement – Python scripts used for this manuscript and the complete

neuron morphologies in each cluster for the C. elegans nervous system, Drosophila PNs, and

mouse V1 neuron are available at https://github.com/kirichoi/FqClustering.

• Funding – This study was supported by KIAS Individual Grants CG077002 (K.C.),

CG076002 (W.K.K.), and CG035003 (C.H.).

• Acknowledgments – We thank the Center for Advanced Computation in KIAS for providing

computing resources.

[1] E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. A. Seigelbaum, and A. J. Hudspeth, eds., Principles

of Neural Science (McGraw Hill, 2013), 5th ed.

[2] S. R. y Cajal, Histologie du système nerveux de l’homme & des vertébrés: Cervelet, cerveau moyen,
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[19] B. Mihaljević, P. Larrañaga, R. Benavides-Piccione, S. Hill, J. DeFelipe, and C. Bielza, BMC bioin-

formatics 19, 1 (2018).

[20] X. Vasques, L. Vanel, G. Villette, and L. Cif, Front. Neuroanatomy 10, 102 (2016).

[21] H. Zeng and J. R. Sanes, Nature Reviews Neuroscience 18, 530 (2017).

[22] A. P. Buccino, T. V. Ness, G. T. Einevoll, G. Cauwenberghs, and P. D. Häfliger, in 2018 40th Annual
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FIG. 1: (A) Two different range of length scales associated with typical neuronal architecture mapped on

a structure of branched polymer: (i) b̄ < r < l̄ and (ii) l̄ < r < Rn. The black filled circles depict the

branching points. li is the contour length of a branch, which is the segment between two branching points

or between a branching point and a tip. b̄ is the average size of segment defined between two consecutive

data points along the neuron branch, l̄(= N−1
l

∑Nl
i li) is the average length of branches, and Rn is the size

of neuron. (B) The distribution of the branch length (li) of neurons in the cluster Cspiny
5 from the mouse

V1.
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FIG. 2: Diagrams of three systems where F (q)-based analysis was made: (A) the C. elegans nervous

system, (B) Drosophila olfactory projection neurons, and (C) Mouse primary visual cortex.
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FIG. 3: Illustrations depicting the morphological reconstructions of neurons in C. elegans. Depicted at the

top is the entire C. elegans nervous system. The nervous systems are redrawn for the neurons of different

functional types.
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FIG. 4: (A) F (q) plots of neurons in the C. elegans nervous system grouped by the F (q)-based clustering

result. The dotted lines denote q(= 2π/dC) corresponding to the inverse scale of the average diameter

(dC) of adult C. elegans. The dashed lines denote q(= 2π/l̄) correspond to the average branch size l̄ of

neurons in the cluster. Reference fractal dimensions (Ds) are highlighted in the F (q)-plots with the slopes.

The clusters from CCE
1 to CCE

5 are indexed based on the average size (Rn) of neurons in each cluster in

a decreasing order. (B) Illustrations depicting the morphological reconstructions of neurons in C. elegans

grouped by the F (q)-based clustering. The same colors are used as in (A) for each cluster.
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FIG. 5: (A) Pie charts depicting the functional composition of F (q)-based clusters in the C. elegans nervous

system. The subclusters of CCE
4 and CCE

5 when the same clustering algorithm is applied repeatedly are

shown inside the boxes. The size of the pie charts reflects the total contour length of neurons in each

cluster. Illustrations depicting the morphological reconstructions of neurons in (B) the cluster CCE
4 and

(C) the cluster CCE
5 with functional labeling. The enlarged 3D reconstruction of neurons in the head

region, marked by gray boxes, is depicted below for each functional type.
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FIG. 6: F (q) plots of the PN projections to AL in the Drosophila olfactory system grouped by the

F (q)-based clustering result. The dotted lines denote q corresponding to the inverse scale of neuron size

(q = π/Rn) of the cluster, and the dashed lines correspond to the average branch size l̄ of neurons in the

cluster (q = 2π/l̄). Reference fractal dimensions (Ds) are highlighted in the F (q)-plots with the slopes.

The clusters from CAL
1 to CAL

7 are indexed based on the average size (Rn) of neurons in each cluster in a

decreasing order.
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FIG. 7: F (q) plots of the PN projections to MB in the Drosophila olfactory system grouped by the F (q)-

based clustering result. The locations of plateau in C2 and C3 at q ≈ 0.4 µm−1 are indicated by the

arrows. Other details are the same as Fig. 6.
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FIG. 8: F (q) plots of the PN projections to LH in the Drosophila olfactory system grouped by the F (q)-

based clustering result. The locations of plateau in CLH
1 and CLH

2 at q ≈ 0.5− 0.6 µm−1 are indicated by

the arrows. Other details are the same as Fig. 6.
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FIG. 9: F (q) plots of spiny neurons in the mouse primary visual cortex grouped by the F (q)-based

clustering result. Other details are the same as Fig. 6.
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FIG. 10: F (q) plots of aspiny neurons in the mouse primary visual cortex grouped by the F (q)-based

clustering result. Other details are the same as Fig. 6.
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