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Abstract 39 

Next-generation risk assessment for environmental chemicals and ingredients in consumer 40 

products involves a weight of evidence (WoE) framework integrating a suite of new approach 41 

methodologies (NAMs) based on points of departure (PoD) obtained from in vitro assays. Omics 42 

techniques provide broad coverages of the molecular toxicity pathway space. Transcriptomics 43 

assays especially play a leading role by providing relatively conservative PoDs in comparison 44 

with apical endpoints. However, it is unclear whether and how parameters measured using other 45 

omics technicquesparticipate in the cellular response to chemical perturbations, especially at 46 

exposure levels below the transcriptomically defined PoD. Multi-omics coverage may provide 47 

additional sensitive or confirmative biomarkers to complement and reduce the uncertainty in 48 

safety decisions made using targeted and transcriptomics assays. In the present study, we 49 

compared changes in transcriptomics, proteomics and phosphoproteomics with two prototype 50 

compounds, coumarin, as a main study and doxorubicin, as a complementary study to 51 

understand the sensitivity of the three omics techniques in response to chemically-induced 52 

changes in HepG2 and AC16 cells. With measurements obtained for multiple chemical 53 

concentrations and time points, we demonstrated that, compared with proteomics and 54 
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transcriptomics, phosphoproteomics alterations occur not only earlier in time as expected, but 55 

also at much lower chemical concentrations and hence are proximal to the very early effects 56 

induced by chemical exposure. The phosphoproteomics changes appear to approach maximum 57 

when the transcriptomics alterations begin to be initiated. The results are consistent with a tiered 58 

framework of cellular response to chemical insults, where posttranslational modification of 59 

preexisting proteins is first seen before transcriptomics induction is engaged to launch a more 60 

energy-expensive defense that defines a useful PoD. We conclude that as the cost becomes 61 

more affordable, proteomics covering posttranslational modifications can be utilized to provide a 62 

more complete coverage of chemical-induced cellular alteration and supplement 63 

transcriptomics-based health safety decision making. 64 

 65 

Key words: transcriptomics, proteomics, phosphoproteomics, point of departure, new approach 66 

methodology 67 

 68 

Introduction 69 

Next-generation chemical risk assessment (NGRA) is moving steadily toward relying on cell- or 70 

organoid-based assays to identify useful in vitro points of departure (PoD) that can be used in 71 

safety decision-making1-3. In assayed cells, a myriad of molecular and morphological changes 72 

can be induced by chemicals, depending on the physiochemical property of the chemicals, their 73 

concentrations and exposure durations. Some chemicals can induce these changes through 74 

recognizing specific molecular targets in the cells, such as receptors or enzymes, to activate or 75 

inhibit one or multiple toxicity pathways. Alternatively, reactive chemicals, which do not 76 

necessarily have a specific molecular target, can induce cellular responses via activating stress 77 

pathways4, 5. Regardless of the nature of chemical actions, many of these induced changes can 78 

be measured economically and used as biomarkers to cover a variety of specific cellular and 79 

molecular endpoints, such as receptor binding, enzyme inhibition, immunomodulation, DNA 80 

damage, stress responses, and mitochondrial activity4, 6-10. 81 
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Targeted analyses focusing on a suite of specific cellular and molecular endpoints cannot 82 

provide sufficient coverage of the biological space perturbed by a chemical, especially for novel 83 

chemicals whose mode of actions are unknown. Yet, any apical endpoint change indicative of 84 

impaired health must be underpinned by some alterations at the omics levels, including the 85 

metabolome, proteome, transcriptome, epigenome and genome11-13. Technical advancements of 86 

omics tools in the past two decades have enabled global coverage of molecular changes 87 

occurring in cells that is unmatched by traditional targeted analyses. Due in a large part to the 88 

relatively lower cost, broader biological coverage, higher S/N ratio, and smaller sample size, 89 

transcriptomics has been at the top of the omics assay list in the past decades for examining 90 

cellular response to biological and chemical perturbations. Starting with early functional 91 

toxicogenomics studies using gene microarrays and followed by next-generation RNA 92 

sequencing in recent years, transcriptomics has become a routine assay in toxicological 93 

research in vivo and in vitro14-16. An increasing number of studies have revealed a consensus 94 

that seems to hold across the chemical and biological space – the PoD as defined by the most 95 

sensitive transcriptomics pathway alterations in short-term animal or in vitro cell assays appears 96 

to be within a similar order of magnitude to the doses or concentrations causing pathological 97 

outcomes in long-term animal studies for many legacy chemicals whose toxicities are known17-23. 98 

This concordance in PoD between transcriptional and apical endpoint changes is largely 99 

conserved for both cancer and noncancer endpoints18. Thus, transcriptomics is emerging as one 100 

of the most promising new approach methodologies (NAMs) with broad coverage for chemical 101 

toxicity screening. As a result of these encouraging developments in toxicogenomics, developing 102 

high-throughput transcriptomics in vitro assays and associated bioinformatic tools is one of the 103 

top priorities in the next-decade blueprint recently launched by the US EPA10. 104 

It is becoming general practice now to use the beginning of transcriptomics alterations, often 105 

defined by the benchmark dose (BMD) either at gene or pathway levels24, 25, to provide a PoD for 106 

safety assessment. The cutoff values for the number of genes or fold-change of differential 107 

expression selected to determine the BMD may introduce uncertainty, along with uncertainties 108 
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associated with determining the BMD confidence lower limit. Beside the statistical considerations, 109 

mechanistically speaking, it is not completely clear how transcriptomics alterations are linked to 110 

adverse apical endpoint changes for broad classes of chemicals. Receptor-mediated or 111 

target-specific transcriptomics alterations, when of sufficient magnitude and duration, can be led 112 

to an alternative or compromised functional state in a cell, thus leading to potential apical 113 

adversity. In comparison, reactive chemicals can elicit nonspecific adaptive cellular stress 114 

responses requiring transcriptional induction of key stress genes4. Cellular stress responses are 115 

bioenergetically demanding as a suite of stress proteins need to be synthesized de nova in large 116 

quantities26-31. As a result, cells may enter a survival mode where they undergo global 117 

translational and metabolic reprogramming to preserve and divert energy for the stress response 118 

while specialized cell functions may be compromised32, 33. Therefore, the onset of adaptive 119 

transcriptional stress control, for the purpose of cell survival, may be regarded as the onset of 120 

functional adversity. 121 

If apical adverse outcomes involve obligatory transcriptome-mediated responses, it begs the 122 

question ‘what are the mechanisms that protect cells from the chemical insult and preserve 123 

functions under exposures below the transcriptomically-defined PoD doses?’. If known, these 124 

non-transcriptomics molecular changes, occurring at lower doses, may be exploited to develop 125 

sensitive biomarkers that can help reduce the uncertainty associated with PoD in a WoE safety 126 

assessment framework. Many posttranscriptional control mechanisms appear to be engaged by 127 

activating pre-existing stress proteins that are not activated at nonstressed conditions5, 34. This 128 

activation can be mediated through posttranslational modifications such as phosphorylation, 129 

oxidation, and acetylation35-37. Compared with the resource-heavy transcriptional adaptation, 130 

these posttranslational processes are fast-responding and demand much less energy. Thus cells 131 

are likely to cope with chemical stresses in a two-tiered manner5. At low concentrations, cells use 132 

posttranslational regulation of pre-existing stress proteins to maintain homeostasis without 133 

affecting their specialized functions as no global translational and metabolic reprogramming is 134 

engaged. At higher concentrations, pre-existing stress proteins are activated and transcriptional 135 
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induction is initiated to increase their abundance to continue to maintain homeostasis and 136 

survival. 137 

Therefore, the transition from posttranslational to transcriptional control, where proteomics 138 

changes are fully engaged and transcriptomics induction is initiated, may mark a PoD (i.e., the 139 

transcriptomics PoD), where specialized cell functions begin to be compromised resulting in 140 

reduced fitness. In cases where there are typically low exposures, such as environmental 141 

exposure or in the situation of cosmetic usage of ingredients at low concentrations, 142 

posttranslational-mediated protection may be at play. At higher exposures, 143 

transcriptomically-mediated protection may have collateral adverse consequence, leading to 144 

safety concerns. As a result of the two-tiered stress response, it is worth monitoring 145 

posttranslational changes as additional biomarkers that can more sensitively detect and 146 

corroborate the PoD that is defined by the onset of transcriptomics and functional alterations. 147 

In the present study, we aim to compare cellular responses at multi-omics levels, including 148 

transcriptomics, proteomics and phosphoproteomics to systemically test the two-tiered response 149 

hypothesis on a global scale and ascertain whether phosphoproteomics is more sensitive in 150 

response to chemical challenges. coumarin and doxorubicin were selected as our case study 151 

chemicals. They represent a safe compound widely used in cosmetics and a pharmaceutical with 152 

known cardiotoxicity, respectively, for which historical in vitro data generated in HepG2 cells, a 153 

hepatocyte cell line, and AC16 cells, a human cardiomyocyte cell line exist8, 9. In the present 154 

study, we conducted multi-concentration and multi-time point transcriptomics, proteomics and 155 

phosphoproteomics studies in HepG2 and AC16 cells with these two chemicals. Our results 156 

demonstrated that both concentration-wise and time-wise, phosphoproteomics is much more 157 

sensitive in detecting cellular responses to chemical exposures than proteomics and 158 

transcriptomics; phosphoproteomics provides unique values to an integrated 159 

transcriptomics-centered multi-omics approach for toxicity testing. 160 

 161 

Materials and Methods 162 
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Reagents and cell strains 163 

Phospho-(Ser/Thr) Phe Antibody (9631S) was purchased from Cell Signaling Technology 164 

(Danvers, MA, USA). Pan Phospho-Tyrosine Rabbit pAb (AP0905) was obtained from ABclonal 165 

(Wuhan, Hubei, China). Antibodies against GAPDH (CW0100) goat anti rabbit IgG-HRP 166 

(CW0103S) and goat anti-mouse IgG-HRP (CW0102) were from CoWin Biosciences (Taizhou, 167 

Jiangsu, China). Acetylated trypsin 38 were from Enzyme & Spectrum (Beijing, China). Coumarin 168 

(C4261-50G), phosphatase inhibitor cocktail 2 (P5726) and 3 (P0044) were purchased from 169 

Sigma-Aldrich (St. Louis, MO, USA), and Doxorubicin (Adriamycin) HCl (NSC 123127) was from 170 

Selleck (Houston, Texas, USA). EDTA-free protease inhibitor cocktail was from Roche (Basel, 171 

Basel-Stadt, Switzerland). HepG2 was obtained from ATCC (American type culture collection, 172 

Washington D.C., USA). 173 

Cell culture and treatment 174 

For the treatment with coumarin, HepG2 cells were seeded into a 10-cm petri dish containing 175 

Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 176 

100 U/mL penicillin and 100 mg/mL streptomycin at 37°C in a humidified 5% CO2 atmosphere 177 

incubator. Serially diluted chemicals were added on the following day without or with varied  178 

concentrations (0.001, 0.01, 0.1, 1, 10, and 100 μM) of coumarin at a 10-fold increment, which 179 

didn’t show any detectable changes in cell count and viability in our previous study39. All 180 

coumarin experiments were performed in triplicate. Cells were recovered after treatment for 6 181 

hours and 24 hours for transcriptomics analysis, and after treatment for 10 min and 24 h for 182 

proteomics and phosphoproteomics analysis. For the treatment with doxorubicin, AC16 cells, 183 

were cultured using the same conditions as for HepG2 cells. AC16 cells were treated with 10 nM 184 

doxorubicin for 10 min, 30 min and 6 hours before recovery for transcriptomics, proteomics and 185 

phosphoproteomics analysis. 186 

Transcriptomics and data processing 187 

Approximately 1×107 fresh cells as described above were washed twice with ice-cold PBS then 188 

scraped with PBS and centrifuged at 12,000 g for 10 min at 4 °C. Total RNA was extracted using 189 
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TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and treated with RNase-free DNase I (Promega, 190 

Madison, WI, USA). The concentration of RNA was measured by a NanoPhotometer 191 

spectrophotometer and the quality of extracted RNA was checked with standard electrophoresis 192 

for RNA as previously described40. RNA was randomly fragmented, and then reversely 193 

transcribed to synthesize the first strand of cDNA using SmartScribe Rtase (Clontech, Mountain 194 

View, CA, USA). Owing to the terminal transferase activity, (dC) 3 was added to the 5’-terminus 195 

during synthesis of the first strand of cDNA. The second strand was synthesized using the 196 

adapter 1 primer containing (dG) 3 at the 5’-terminus. cDNAs sized 400–500 bp were isolated 197 

from 2% agarose gels after electrophoresis to generate the libraries. The libraries were further 198 

amplified by PCR with Pfu polymerase (NEB, Beverly, MA, USA). All libraries were sequenced 199 

with the adapter 1 primer using the Illumina HiSeq-2500. Cleaned reads were aligned to the 200 

Ensemble GRCh38 reference genome with Hisat2 using strand specific parameters. 201 

The value of fragments per kilobase of transcript per million mapped reads (FPKM) was used 202 

to clean the data and for data quality control. We set a stringent filtering criterion of FPKM value > 203 

1.0 in at least one out of all 42 samples to reduce false positives. After the genes were filtered, 204 

the expressed genes and transcripts were assembled and quantified by running StringTie41. For 205 

HepG2 cells with coumarin treatment, the differentially expressed genes for the RNA-seq data 206 

were calculated with gene count value by using edgeR package. Each concentration condition 207 

was compared with vehicle control. A criterion of ratio > 1.5 or < 0.67 with p value < 0.05 was 208 

used as the threshold for differentially expressed genes. 209 

Protein extraction 210 

Approximately 5×107 fresh cells were washed with ice-cold PBS. Cell lysis was performed on ice 211 

and sonicated for 4 min (2-s on and 4-s off, amplitude 25%) in buffer containing 9 M Urea, 10 mM 212 

Tris–HCl (pH 8.0), 30 mM NaCl, 5 mM IAA, 5 mM Na4P2O7, 100 mM Na2HPO4 (pH 8.0), 1 mM 213 

NaF, 1 mM Na3VO4, 1 mM Sodium glycerophophate, 1% phosphatase inhibitor cocktail 2 & 3 214 

(Sigma) and protease inhibitor cocktail. Unbroken debris was eliminated by centrifugation 215 

(14,800 g) at 4 °C for 15 min, and the supernatant was collected and quantified by a gel-assisted 216 
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method as previously described 42. 217 

Protein digestion by gel-aided strategy 218 

Extracted protein samples (1 mg) of equal amount for all cells were reduced with 10 mM of 219 

dithiothreitol (DTT) at 45 °C for 30 min, alkylated with 20 mM of IAA in the dark at room 220 

temperature (RT) for 30 min, and cleaned by a short 10% SDS-PAGE. Each gel lane was cut into 221 

approximately 1 mm3 small cubes and digested with Ac-trypsin at 37 °C for 14 h to generate 222 

short peptides 38, 43. The tryptic peptides were collected with extracting buffer (5% formic acid 223 

(FA)，50% acetonitrile (ACN)) and dried with a vacuum dryer. About 5% of tryptic peptides were 224 

used for proteomics profiling experiments and the remaining 95% for phosphoproteomics study. 225 

Phosphopeptide enrichment and fractionation 226 

Tryptic peptides were desalted by reverse-phase C18 Sep-Pak extraction cartridges (Waters 227 

Corporation, Milford, MA, USA). Cleaned peptides were resuspended in buffer A (1% ACN, 0.1% 228 

trifluoroacetic acid) and separated into 12 fractions through a Bonna-Agela C18 column (5 µm 229 

reverse-phase fused-silica, 4.6 × 250 mm column) on a RIGOL-L3000 HPLC (RIGOL, Beijing, 230 

China).The phosphor-peptides in each fraction were enriched with a Ti4+-immobilized metal ion 231 

affinity chromatography (IMAC) method as previously described with slight modification44, 45. 232 

Briefly, dried peptides were dissolved in 500 μL binding buffer (80% ACN, 6% trifluoroacetic acid 233 

(TFA) in ddH2O) and the same volume of loading buffer (10% 500 mM NH4HCO3, 5% ACN in 234 

ddH2O) followed by addition of 25 mg Ti4+-IMAC beads. Then, the mixed samples were vortexed 235 

at RT for 30 minutes, and centrifuged at 13,000 g for 6 min. The supernatant was removed, 236 

washed with washing buffer 1 (50% ACN, 6% TFA in 200 mM NaCl) once and washing buffer 2 237 

(30% ACN, 0.1% TFA in ddH2O) twice for 30 min. After removing the supernatants, the 238 

phosphopeptides were eluted with elution buffer (10% NH3•H2O) for 15 min, and then sonicated 239 

in ice water for another 15 min. The mixtures were centrifuged at 17,000 g for 6 min, and the 240 

supernatant was transferred into a new tube and immediately acidified with 5% FA and 241 

lyophilized before LC-MS analysis. 242 

LC-MS/MS 243 
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Total cell lysate profiling 244 

The enriched phoshopeptides were separated with self-packed StageTip column46. Tryptic 245 

peptides were resuspended in loading buffer (0.1% formic acid (FA) in ddH2O) and analyzed 246 

using an EASY-nLC 1000 ultra-performance liquid chromatography (UPLC) system (Thermo 247 

Fisher Scientific, San Jose, CA, USA) equipped with a self-packed capillary column (75 μm i.d. × 248 

15 cm, 3 μm C18 reverse-phase fused-silica), with an 80 min nonlinear gradient at a flow rate of 249 

600 nL/min. The gradient was composed of an increase from 5% to 12% solvent B (0.1% FA in 250 

98% ACN) for 8 min, 12% to 24% in 46 min, 24% to 36% in 20 min, 36% to 95% in 1 min, and a 251 

final hold at 95% for the last 5 min. 252 

The eluted peptides were ionized under high voltage (2 kV) and analyzed online using a 253 

LumosTM mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA). The initial MS 254 

spectrum (MS1) was analyzed over a mass range of 300−1400 Da with a resolution of 60,000 at 255 

m/z 200. The automatic gain control (AGC) was set to 5 × 105, and the maximum injection time 256 

(MIT) was 50 ms. Subsequent MS/MS spectrum (MS2) was analyzed by using a data-dependent 257 

acquisition mode to search for the most intense ions within 3 s, which were detected in the 258 

Orbitrap at a resolution of 15,000 after fragmentation. For each scan, the threshold for triggering 259 

MS2 was set at 5,000 counts, isolation width was 1.6 m/z, normalized collision energy (NCE) was 260 

35%, AGC was 5 × 104, and MIT was 60 ms. Precursor ion charge-state screening was enabled 261 

and all unassigned charge states, as well as singly charged species, were rejected. The dynamic 262 

exclusion was set at 25 s to avoid repeated detection of the same precursor ions. 263 

Phospho-peptide profiling 264 

Phospho-peptide samples were dissolved in loading buffer (0.1% formic acid (FA) in ddH2O) and 265 

injected onto a UPLC (Ultimate 3000, Thermo Fisher Scientific, San Jose, CA, USA) equipped 266 

with self-packed capillary column (150 μm i.d.×12 cm, 1.9 μm C18 reverse-phase fused-silica). 267 

The peptides were eluted with a 78-min nonlinear gradient at a flow rate of 600 nL/min with an 268 

elution gradient and eluted samples were analyzed by Q-Exactive HF or LUMOS (Thermo Fisher 269 

Scientific, San Jose, CA, USA) in a data-dependent acquisition (DDA) mode. Briefly, the spray 270 
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voltage was set as 2.2 kV, MS full scans were performed in the ultra-high-field Orbitrap mass 271 

analyzer in range of m/z 300-1400 with a resolution of 120,000 at m/z 200, the maximum 272 

injection time (MIT) was 80 ms and the automatic gain control (AGC) was set as 3×106. The top 273 

20 intense ions were selected and subjected to Orbitrap for further fragmentation via high energy 274 

collision dissociation (HCD) activation over a mass range between m/z 200 and 2000 at a 275 

resolution of 15,000 with the intensity threshold kept at 2.6×104. We selected ions with charge 276 

state from 2+ to 6+ for sequencing. Normalized collision energy (NCE) was set at 27. For each 277 

MS2 scan, the target AGC was set as 2 × 104 and the MIT was 19 ms. The dynamic exclusion for 278 

precursor ions were set over a time window of 12 s to suppress repeated peak fragmentation. 279 

Proteomics and Phosphoproteomics Data Processing 280 

Raw data of proteomics and phosphoproteomics were processed with MaxQuant (version 281 

1.6.0.1). MS and MS/MS spectra were searched against the human Uniprot database (version 282 

201506) using the Andromeda search engine. The database search was performed with the 283 

following parameters: an initial mass tolerance of ±20 ppm and a final mass tolerance of ±0.5 Da 284 

for precursor masses, ±0.6 Da for HCD ion trap fragment ions, and two missed cleavages 285 

allowed. Cysteine carbamidomethylation was used as a fixed modification, and methionine 286 

oxidation, protein N-terminal acetylation, and serine, threonine, and tyrosine phosphorylation 287 

were included as variable modifications for phosphoproteomics data. The false discovery rate 288 

was set at 0.01 for peptides, proteins, and phosphosites; the minimum peptide length allowed 289 

was seven amino acids, and a minimum Andromeda peptide score of 60 was required. The 290 

match-between-runs feature was enabled. A site localization probability of at least 0.75 and a 291 

score difference of at least 5 were used as thresholds for the localization of phosphoresidues. 292 

Reverse and contaminated proteins were removed after database search. Next, the proteins 293 

and phosphosites with quantitative intensity values in less than 4 of the 21 samples in each time 294 

point were removed. After the filtration, the quantitative protein information was median 295 

standardized. Normalization was performed by subtracting the median of log transformed 296 

intensities for each nano-LC-MS/MS run. Given that the data followed the normal distribution, we 297 
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imputed the missing values from normal distribution in Perseus software 47. To identify 298 

significantly regulated phosphorylation sites or proteins, limma package was used for HepG2 cell 299 

with coumarin treatment. A fold change of > 1.5 or < 0.67 with p-value < 0.05 was used as the cut 300 

off threshold for differentially expressed proteins and phosphosites. As no biological replicates 301 

were included in the doxorubicin experiments on AC16 cells, we used a more stringent 2-fold 302 

change for differential expression of genes/proteins/phosphosites. The Mfuzz package was used 303 

to obtain the temporal trends of changes in phospho-sites. 304 

  KEGG enrichment analysis was analyzed and visualized in the DAVID bioinformatics database. 305 

The change at a functional level in different groups was performed with reactome analysis. 306 

Boxplot and PCA plots were generated using ggplot2 48. A pairwise Pearson correlation 307 

coefficient was calculated for all group runs in R v.3.6.149. Different colors of sample correlation 308 

analysis were used to represent different sample types in the hierarchical clustering analysis by 309 

using the ward.2 method in the pheatmap package. 310 

Western blotting 311 

After cell treatment with the same conditions as in the proteomics study. An equal amount of total 312 

protein was resolved by a 10% sodium dodecyl sulfate polyacrylamide gel (SDS-PAGE) and 313 

transferred to nitrocellulose membranes (Bio-Rad, Hercules, CA, USA). Membranes were 314 

blocked and incubated with either anti Phospho-(Ser/Thr) Phe Antibody (9631S) or anti 315 

Phospho-Tyrosine Rabbit pAb (AP0905) primary antibodies overnight at 4 °C, then washed and 316 

subsequently incubated with goat anti-mouse IgG-HRP (CW0102) secondary antibodies. 317 

GAPDH was used to control the amount of proteins loaded for western blotting, in which anti 318 

rabbit IgG-HRP (CW0103S) was used as the primary antibodies. The membranes were stained 319 

with SuperSignal™ West Pico PLUS Chemiluminescent Substrate (34580, Thermo Fisher 320 

Scientific, San Jose, CA, USA). Protein bands were visualized using Tanon-5200 (Tanon, 321 

Shanghai, China). 322 

Computational modeling 323 

A minimal mathematical model of posttranslational and transcriptional stress adaptation was 324 
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constructed to illustrate the differential responses. Model parameter values and ordinary 325 

differential equations (ODEs) are provided in Tables S15 and S16 respectively. The model was 326 

constructed and simulated in Berkeley Madonna (version 8.3.18, University of California, Berkeley, 327 

CA, USA) using the “Rosenbrock (stiff)” ODE solver. The model code was provided as supplemental 328 

material. 329 

 330 

Result 331 

Quality assurance of multi-omics study for cellular response to coumarin 332 

After evaluating the cellular response data for coumarin in the literature50-52, we found that the 333 

lowest AC50 (concentration inducing the half-maximum assay response) for coumarin in HepG2 334 

cells is about 30 µM (Table S1). Since it was anticipated that the proteome and phosoproteome 335 

are sensitive to chemical perturbations, we decided to use a wide range of concentrations biased 336 

to the lower end of 30 µM to explore the coumarin’s effects at these two omics levels as well as 337 

on the transcriptome. Besides the vehicle control, 6 concentrations were used in HepG2 cells 338 

ranging between 0.001-100 µM at a 10-fold increment (Figure 1). This range of coumarin 339 

concentrations in our previous study caused no detected changes in cell count and viability of 340 

HepG2 cells39. In addition, we defined 0 μM as control, 0.001-0.01 μM as low-concentration, 341 

0.1-1 μM as mid-concentration, and 10-100 μM as high-concentration groups. For 342 

transcriptomics analysis, the cells were treated for 6 and 24 hours for each coumarin 343 

concentration. For proteomics and phosphoproteomics analyses, the cells were treated for 10 344 

min and 24 hours. The 10 min time point was chosen because rapid changes in the 345 

phosoproteome, and possibly the proteome, are expected to occur on this time scale53. 346 

Global differences in transcriptomics, proteomics and phosphoproteomics responses to 347 

coumarin 348 

After the strict quality control on multi-omics data were conducted (Figures S1-4, Tables S2-6), 349 

we performed PCA analysis which was considered as an initial effort to investigate which omics 350 

is better at distinguishing different levels of perturbations by coumarin, we first applied principal 351 
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component analysis (PCA) to the datasets. For the 6 hours exposure groups in the RNAseq 352 

experiment, PCA can barely separate the 21 samples treated with different concentrations of 353 

coumarin, except that the three replicates treated with the highest concentration, i.e., 100 µM, 354 

tended to cluster together and stayed away from the remaining samples (Figure 2A). The 355 

segregation of the 100-µM samples from the rest is even more obvious in the 24 hours exposure 356 

group (Figure 2B). These results are consistent with the reported AC50 values for coumarin in 357 

HepG2 cells, which ranged between 28-163 µM, indicating that transcriptomics changes are 358 

likely concordant with those cellular assay changes. 359 

In contrast to the results obtained with transcriptomics, the proteome is better at distinguishing 360 

different coumarin concentrations, especially for high and low concentrations. Even for 10 min 361 

exposure, both the 10 and 100 μM samples are easily separated from the remaining 362 

concentrations and the three 10 μM replicates form a cluster that can be distinguished from the 363 

100 μM replicate cluster (Figure 2C). There also seems to be a better separation between the 364 

middle-concentration (0.1-1 μM) and low-concentration samples (0.001-0.01 μM) of the 365 

proteomics data than the transcriptomics data. Interestingly, for 24 hours exposure, the 366 

high-concentration samples can no longer be easily differentiated from the middle-concentration 367 

samples. However, the low-concentration group can be readily distinguished from middle and 368 

high-concentration groups (Figure 2D). In addition, it is interesting to found that the results of 369 

control samples were quite close to the low concentration samples which not only because of the 370 

limit of detection sensitivity for mass spectrum, but may also indicate the biological significances 371 

between them and turn out to be consistent with our knowledge that the biological activity of 372 

low-dose of coumarin were slight54. Similar to the proteomics results, the phosphoproteome 373 

could effectively distinguish high and low-concentration groups. For 10 min exposure to 374 

coumarin, the high-concentration group stands out from the rest, and the low and 375 

middle-concentration groups also seem distinguishable from each other (Figure 2E). 24 hours 376 

exposure gave the clearest distinction, where all three dose groups are clearly separated on the 377 

2D PC plot, and the samples treated with 0.001-0.01 μM coumarin are also distanced from the 378 
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vehicle control (Ph24h_1_x) samples (Figure 2F). In summary, the proteome and 379 

phosphoproteome are much more sensitive than the transcriptome in distinguishing cellular 380 

responses to coumarin exposure of different concentrations. 381 

To further compare the effects of treatments with different concentrations of coumarin for 382 

different exposure durations, we applied unsupervised hierarchical clustering to the dataset. For 383 

short exposure duration, as expected, the transcriptomics data could not distinguish coumarin 384 

concentration groups as they all are mixed together (Figure S5A). With the long exposure 385 

duration, only the 100 μM coumarin group could be separated into a distinguishable cluster from 386 

the rest of the concentration groups (Figure S5B). The proteome data could divide into two broad 387 

clusters, one for high-concentration coumarin treatment, another for mid and low-concentration 388 

coumarin treatments and control group, and the latter can be further grouped into separate 389 

clusters (Figure S5C). The control and the ultra-low (0.001 μM) samples cannot be readily 390 

distinguished from each other. With the exposure prolonged to 24 hours, different coumarin 391 

concentration groups can still be distinguished but the separation does not seem to improve over 392 

the short exposure data (Figure S5D). Similar to the PCA results, the phosphoproteome showed 393 

the most distinct dose dependent separation among the three omics datasets. The replicates for 394 

each coumarin concentration are always cleanly clustered together, for both the short and long 395 

exposure durations. The separation and similarity between treatment groups strictly follow the 396 

order of the coumarin concentrations including the control (Figure S5E&F). Taken together, the 397 

hierarchical clustering results are consistent with the results from PCA analysis, further 398 

confirming that the phosphoproteome could effectively distinguish the cellular responses to 399 

chemical treatments at different concentrations, especially for ultra-low concentrations. 400 

Phosphoproteome is several orders of magnitude more sensitive than transcriptome in 401 

response to coumarin 402 

To further understand the sensitivity of various omics techniques in detecting chemical 403 

perturbations, volcano plots were generated to identify significantly altered mRNA, protein, and 404 

phosphosite features in HepG2 cells (Figure S6). The log2 fold change of each feature in a 405 
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coumarin concentration-duration treatment group relative to control was plotted against –log10 of 406 

the p-value for the transcriptomics, proteomics, and phosphoproteomics data, as shown in 407 

Figure S6A-6C, respectively. As reflected by the widening of the volcano plots, a striking trend is 408 

that the number of significantly altered features increases tremendously moving from 409 

transcriptomics, to proteomics and phosphoproteomics responses (Figure 3A). As the coumarin 410 

concentration increases, the numbers of significantly altered features increase, which also seem 411 

to increase with longer exposure duration, especially for the mRNA data. When the numbers of 412 

significantly altered features achieved by different coumarin concentrations were normalized to 413 

that achieved at 100 μM, the highest coumarin concentration, each omics exhibits distinct 414 

concentration-response profiles (Figure 3B&C). The transcriptome is clearly the least sensitive, 415 

where a high response only takes off at >10 μM. In contrast, the phosphoproteomics response is 416 

the most sensitive, already at 50% or higher at 0.001 μM coumarin for both short and long 417 

exposure durations. Compared with transcriptomics and phosphoproteomics responses, the 418 

sensitivity of the proteomics response falls in between. 419 

High detection sensitivity is conserved for phosphoproteomics in doxorubicin-treated 420 

AC16 cells 421 

We next investigated whether the high sensitivity of phosphoproteomics observed for cellular 422 

response to coumarin in HepG2 cells can also be recapitulated in other cell types in response to 423 

other chemicals. We applied the same experimental approach to AC16 cells, a cardiomyocyte 424 

cell line, treated with doxorubicin. Doxorubicin is a chemotherapeutic agent used in the treatment 425 

of solid tumors and hematological malignancies. The most important dose-limiting toxicity of 426 

doxorubicin is its cardiotoxicity55. The previously reported PoD of doxorubicin in AC16 cells was 427 

125 nM, at which a variety of cellular responses were significantly altered, including 428 

mitochondrial ROS, membrane potential and DNA content, and key genes involved in 429 

mitochondrial biogenesis and antioxidant response56. Similarly, iPSC-derived cardiomyocytes 430 

experienced beating changes at around 150 nM of doxorubicin treatment, which is a PoD also 431 

eliciting transcriptomics changes57. To test the distinguishing power of different omics in detecting 432 
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perturbation by doxorubicin, we selected 10 nM as the concentration to treat AC16 cells, which is 433 

at least 10-folder lower than the PoD above. The omic-level responses were measured at varied 434 

exposure durations, including 10, 30 and 360 min, which covered both fast and delayed 435 

responses (Figure 4A). 436 

The qualities of the transcriptomics, proteomics and phosphoproteomics data of 437 

doxorubicin-treated AC16 cells were very similar to those of coumarin-treated HepG2 samples 438 

(Figure S7-S9, Table S7-S9). Given the high quality and the consistency of the replicates of the 439 

coumarin-treated HepG2 samples, we are confident with the low variability of our 440 

data-generating platform and moved forward with single replicates for the doxorubicin-treated 441 

AC16 cells. After normalizing the abundance, the global signals for transcriptomics and 442 

proteomics at various time points were stable compared with the control. This result is consistent 443 

with the fact that the concentration of doxorubicin used here is much lower than the PoD 444 

concentration and thus is not expected to elicit responses at transcriptomics and proteomics 445 

levels. In contrast, in response to 10 nM doxorubicin, the abundance signal of altered 446 

phosphoproteome spiked immediately to a peak level at 10 min, then decreased till 30 min, and 447 

increased slightly by 360 min (Figure 4B). Probing total cell lysate with pan-antibodies against 448 

pSer/pThr (pST) and pTyr, we found that anti-pST signal was increased in doxorubicin treated 449 

samples compared with the control, but not pTyr (Figure 4C&D). This might result from low 450 

detection sensitivity of pan-antibodies against pTyr used in this study58, 59. Taken together, these 451 

results confirmed that phosphoproteome was more sensitive to reflect cellular response under 452 

low and ultra-low concentrations of chemicals that normally do not disturb the transcriptome and 453 

proteome. 454 

Potential sensitive biomarkers for cellular response to doxorubicin  455 

Finally, we asked the question whether we could find specific sensitive biomarkers in the 456 

phosphoproteome as a mechanistic indicator for doxorubicin. We systematically analyzed the 457 

multi-omics data generated from the doxorubicin-treated AC16 samples. By using a stringent 458 

two-fold change as the threshold, we identified 695, 729 and 686 significantly up-regulated 459 
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phosphosites for samples treated with doxorubicin for 10, 30, and 360 min, respectively. The 460 

down-regulated phosphosites were 629, 640 and 742, respectively (Figure 5A). Reactome 461 

pathway analysis60 of all up-regulated phosphosites showed that the cell cycle and mitosis 462 

related pathways were significantly enriched (underlined in Figure 5B). Other altered pathways 463 

include those for RNA metabolism and Rho GTPase signaling. This is consistent with the 464 

observations that doxorubicin inhibited cell proliferation through cell cycle arrest at the G2/M 465 

phase61 and doxorubicin induced increases in mitotic activity in BE(2)-C neuroblastoma62. 466 

However, this cell cycle effect occurs at much lower concentrations than therapeutic 467 

concentrations. 468 

Time-series clustering analysis showed that a total of 194 phosphosites were upregulated 469 

persistently throughout the 360-min duration of doxorubicin treatment (Figure 5C, Table S10). 470 

These upregulated phosphosites correspond to 167 proteins, among which, 157 were also 471 

identified in the proteome dataset (Table S11). Interestingly, 19 of the proteins form a single 472 

proteomics cluster, which exhibited baseline-level responses in the first 30 min and then 473 

upregulation at 6 hours (Figure 5C). In contrast, no tangible changes in the corresponding genes 474 

were observed through the entire time course (Figure 5C). These results suggest that 475 

upregulation of these genes only occurred at the posttranscriptional, and especially 476 

posttranslational, level. 477 

We next examined how some well-known doxorubicin-induced pathways behave in the three 478 

omics datasets. By eliciting oxidative stress, doxorubicin can induce the antioxidant response in 479 

cardiomyocytes, including the master transcription factor Nrf2 and signature target gene 480 

HMOX18. Although Nrf2 is activated through protein stabilization and in some cases 481 

transcriptionally through autoregulation63, 64, it was not identified in either of our omics datasets. It 482 

is because the concentration of doxorubicin used is well below the PoD. In comparison, HMOX1, 483 

which is a highly sensitive biomarker for antioxidant response, was identified in our proteome 484 

data (Table S12). TSC2 (ser939) is an important protein that can activate p53, which mediates 485 

the DNA damage response to doxorubicin65. TSC2 was identified in our phosphoproteomics data 486 
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(Table S13). All of these three known molecular markers have been identified and included in 487 

these 19 proteins. These results strongly supported that phosphoproteomics is a sensitive 488 

approach to assess the cellular response to doxorubicin. STQSTM1/p62 is heavily related to 489 

cardiotoxicity although without any direct evidence regarding the toxicity of doxorubicin so far66, 67. 490 

The phosphorylation of p62 is controlled by CDK1 and plays biological roles in promoting cell 491 

cycle initiation, mitosis and tumor proliferation68. p62 (Ser28) was increased about 19-fold at 10 492 

min compared with control, which is consistent with the global trend of doxorubicin-induced 493 

phosphoproteomics changes (Table S14). The biological function of this molecule in the cellular 494 

response to doxorubicin treatment is unknown. 495 

A minimal mathematical model recapitulated tiered cross-omics responses 496 

To better interpret and understand the observed temporal and concentration-dependent 497 

multi-omics response patterns, we constructed a minimal mathematical model capturing the 498 

framework of tiered cross-omics cellular adaptation to stress5, 32. The model contains both post 499 

translationally and transcriptionally-mediated negative feedbacks (Figure 6A, Table S15-16). 500 

Specifically, it includes phosphorylation and thus posttranslational activation of a preexisting, 501 

basal stress protein by a kinase which is activated by controlled state (such as ROS and DNA 502 

damage) when perturbed by stressor (step 1 in Figure 6A), transcriptional induction of the mRNA 503 

and protein of the stress gene by a transcription factor that is activated by the altered controlled 504 

state (step 2), and lastly a global translational inhibition of proteins nonessential to the stress 505 

response but necessary for cell functions (step 3). The model recapitulated the general pattern of 506 

the dynamic and concentration-response of the transcriptome, proteome and phosphoproteome 507 

observed in the present study. The transient spikes of the active phospho-stress protein (Ga) at 508 

early timepoints which return to lower steady-state levels upon mild stress (Figure 6B) are 509 

consistent with the temporal profile of the phosphoproteome observed in doxorubicin-treated 510 

HepG2 cells (Figure 4B). Such dynamics are due to the initial perturbation by the stressor S and 511 

subsequent engagement of the posttranslational feedback that brings the controlled state (Y) to 512 

a nearly basal level. During this time frame of 6 hours, no transcription of mRNA (M) is tangibly 513 
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induced. Simulation of 24 hours exposure to the stressor resulted in concentration-response of 514 

different sensitivity (Figure 6C). The active stress protein (Ga) exhibited a response that arises at 515 

a low S level, while the M and total protein responses takes off at a much higher S level around 516 

10. At this S level, the cell function protein (CFP) expression begins to be repressed with the 517 

controlled state Y deviating from the baseline (Figure 6D), demarcating a PoD that may be linked 518 

to apical endpoint changes. 519 

 520 

Discussion 521 

The transcriptome, proteome, and phosphoproteome of the cell have unique properties, with 522 

information constantly flowing across these scales of biology. In the present study, we 523 

demonstrated with coumarin and doxorubicin, two compounds with fundamentally distinct 524 

molecular initiating events and modes of action, that phosphoproteomics changes occur not only 525 

earlier in time as expected, but also at lower chemical concentrations, compared with proteomics 526 

and transcriptomics alterations. As a result, changes in the phosphoproteome can provide 527 

sensitive markers compared with changes in the proteome and transcriptome to indicate 528 

alterations in cellular state following chemical exposure. Although only two compounds were 529 

examined here, to our knowledge, this is the first study that compared multi-omics changes 530 

across many concentrations and time points with replicates. 531 

A single-omics technique such as in vitro high throughput transcriptomics has recently been 532 

shown to be suitable for NAM-based hazard evaluation of environmental chemicals69. In 533 

particular, high throughput transcriptomics has been used in lower tiers of NGRA assessments 534 

as a conservative estimate of a quantitative POD in the ‘protection not prediction paradigm’ with 535 

the aim of casting the broadest net possible for capturing the potential relevant bioactivity 536 

associated with chemical treatment70. However, the use of a single omics techniques is unlikely 537 

to lead to systematic understanding of pathways’ response to chemical exposure and hence 538 

elucidate on the mode of action of the substance. This is because a single-omics technique 539 

measures biomolecule of a specific type, e.g. RNAs in case of transcriptomics, and thus captures 540 
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time-specific changes only for a small subset of components of a particular pathway. Therefore, 541 

where residual uncertainty in a safety assessment means that such mechanistic understanding 542 

is needed, other omics technologies may provide valuable data. 543 

Proteomics techniques have developed rapidly over the past decade and are now being able 544 

to identify and quantify several thousands of proteins from a single sample. Proteins represent 545 

the biomolecules that directly operate in the cells and are therefore closer to the functional level. 546 

Several studies have shown transcript expression levels for a specific transcript product may not 547 

correlate to its protein expression level71-74. Indeed, besides the transcriptionally controlled 548 

effects on protein abundance, there are translational and posttranslational effects that are not 549 

reflected on the transcriptome level. There are many different types of PTMs but the most 550 

abundant PTM is phosphorylation that has been the subject of this work. Sampadi et al has 551 

recently demonstrated in a phosphoproteomics study that chemical stressors with different 552 

modes of action can induce distinctive and complex phosphorylation signaling patterns75. In this 553 

work we were able to detect another layer of biological response upon chemical exposure, by 554 

identifying differentially expressed proteins and phosphosites. 555 

In the era of NAM, a WoE approach that integrates multiple data streams is increasingly 556 

adopted in the Next Generation Risk Assessement. Transcriptomics has gained tremendous 557 

traction as an emerging high-coverage omics platform76 and its importance to 558 

mechanistically-based safety assessment should be better appreciated and interpreted. 559 

Confidence in the use of transcriptomically-determined PoDs will increase if mechanistic 560 

justifications can be provided in the larger context of cellular responses to chemical perturbations. 561 

This is of particular importance in cases when NAMs used in lower tiers of risk assessment do 562 

not provide sufficient information to make a decision on the absence of biological activity for a 563 

given exposure scenario. In these cases, while transcriptionally-mediated cytoprotective gene 564 

induction is well understood, other protective mechanisms that operate before transcriptional 565 

induction is initiated are no less important biologically and can be exploited as biomarkers to 566 

assess the degree of cellular perturbation. Here we compared changes across transcriptomic, 567 
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proteomic and phosphoproteomic measurements obtained with many replicates, concentration 568 

and time points to understand the sensitivity of the three omics techniques in response to a 569 

toxicant. We have demonstrated that phosphoproteomics changes occur not only earlier in time 570 

as expected but also at low chemical concentrations and hence are proximal to the very early 571 

effects induced by chemical treatment. Therefore, phosphoproteomics and proteomics changes 572 

may play an essential role in investigating mechanisms of early adaptation and protection in cells. 573 

Such non-transcriptomic omics data can be cross-referenced with and corroborate the 574 

transcriptomically defined PoD as part of the multi-omics WoE approach. 575 

Although far from being as sensitive as the phosphoproteome, the proteome exhibited 576 

abundance changes of hundreds of proteins as early as 10 min in HepG2 cells after coumarin 577 

treatment (Figure 3). Protein half-lives in mammalian cells are generally in the order of hours on 578 

average, therefore at 10 min of exposure, little change would be expected in protein abundance. 579 

However, proteins can differ in turnover rates dramatically, across several orders of magnitude77, 580 

and many of them are shorted-lived53. Protein stability is also highly regulated, many with 581 

half-lives shorter than 20 min or even as short as a few minutes78-81. Therefore, if coumarin 582 

treatment leads to altered protein synthesis or degradation, protein abundance changes can be 583 

observed in 10 min for fast-turnover proteins. 584 

The current analysis showed that integration of different omics layers to be used in toxicology 585 

is not straightforward and indeed poses many challenges as recently reviewed82. One of the 586 

challenges represents the choice of time points for different experiments. The choice of time 587 

points used in this study has been based on the previous reports8, 9, although we are aware that 588 

this is a complex issue and there is not only a time variance between different omics layers, e.g. 589 

proteome is downstream of the transcriptome, but also different biological processes occur on 590 

different time scale within a single omics layer, e.g. translation occurs on a different time scale 591 

from cell division. In addition, since proteomics and phosphoproteomics have not been routinely 592 

used as NAM-based tool in hazard evaluation, their reproducibility of data acquisition and data 593 

analysis demand more consideration. Furthermore, the coverage of expressed proteins, 594 
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phosphosites and transcripts needs to be addressed in order to ensure that relevant biology has 595 

been sufficiently covered. Finally, the application of such a multi-omics approach to case studies 596 

plays a critical role in building capability, understanding and ultimately confidence in bioactivity 597 

characterization as integrating multi-omics is beginning to be considered in toxicity testing and 598 

drug development11, 12, 82, 83. Detailed pathway analyses of the phosphoproteomics, proteomics, 599 

and transcriptomics dataset reported in this study and derivation of associated PoDs at different 600 

omics levels will be reported in separate upcoming publications to further reveal mechanistic 601 

underpinnings for the tiered adaptive cellular response. 602 

  In summary, we propose to further evaluate the potential of multi-omics and its application in 603 

Next Generation Risk Assessment in future using case study chemicals. We have presented 604 

promising results by assessing proteomics and phosphoproteomics along with transcriptomics 605 

and strongly believe that such integration of multiple omics data sets will offer a substantial 606 

improvement in detecting molecular responses due to more complete representation of the 607 

perturbed toxicity pathways. 608 
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 914 

Figure 1. The experimental procedures for multi-omics measurements of cellular 915 

response to coumarin. The workflow of omics study for cellular response of coumarin treated 916 

HepG2 cells. In the transcriptomics study, in addition to vehicle control, HepG2 cells were treated 917 

with 6 concentrations of coumarin ranging from 0.001 to 100 μM as indicated. The 918 

concentrations are numerically coded as 1-7 as indicated for ease of referencing in other figures. 919 

The cells were recovered for RNAseq after treated for 6 and 24 hours, which were denoted as 920 

short-exposure and long-exposure, respectively. Each concentration-time experimental condition 921 

was repeated for three biological replicates. A total of 42 samples were collected for RNA-seq. In 922 

proteomics and phosphoproteomics studies all experimental conditions remained the same 923 

except that the treatment durations are 10 min and 6 hours. 924 

 925 
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 926 

Figure 2. PCA analysis of omics data generated from HepG2 cells treated with various 927 

concentrations of coumarin. 928 

(A & B) PCA analysis of transcriptomics data for short (6-hr) and long (24-hr) exposure to 929 

coumarin, respectively. (C & D) PCA analysis of proteomics data for short (10-min) and long 930 

(24-hr) exposure to coumarin, respectively. (E & F) PCA analysis of phosphoproteomics data for 931 

short (10 min) and long (24 hours) exposure to coumarin, respectively. Color-shaded ellipses 932 

encircle different coumarin dose groups: red, control group and low-dose (0-0.01 µM); pink, 933 

middle-dose (0.1-1 µM); and green, high-dose (10-100 µM). 934 
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 937 

Figure 3. Phosphoproteome is the most sensitive omics marker to detect cellular 938 

responses to low concentrations of coumarin in HepG2 cells. 939 

(A) The number of differentially altered features relative to control in the transcriptome, proteome 940 

and phosphoproteome of HepG2 cells treated with coumarin of various concentrations for short 941 

(10-30 min) or long durations (24 hours). (B & C) Percentage of differentially altered features 942 

normalized to the number of differentially altered features at the highest concentration (100 μM) 943 

for short (B) and long (C) exposures, respectively. 944 
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 947 

Figure 4. Phosphoproteome is the most sensitive omics marker to detect cellular 948 

responses to doxorubicin at a low concentration in AC16 cells. 949 

(A) The workflow of omics study for cellular response of AC16 cells to 10 nM doxorubicin 950 

treatment for 0, 10, 30 and 360 min. A total of 4 samples were collected for RNA sequencing. For 951 

proteomics and phosphoproteomics, each of the sample had 12 fractions. (B) The relative 952 

intensity of abundance normalized to control at 0 min for transcriptome, proteome and 953 

phosphoproteome. (C) Western blot analysis of phospho-protein in total cell lysates extracted 954 

from AC16 cells treated with 10 nM doxorubicin for 10, 30, and 360 min. Anti-pST and anti-pTyr: 955 

pan antibodies used to detect phosphorylated serine/threonine and tyrosine respectively. (D) 956 

Quantification of (C). 957 
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 958 

Figure 5. Phosphoproteomics revealed sensitive pathway enrichment in 959 

low-concentration doxorubicin-treated AC16 cells. 960 

(A) The number of significantly up- and down-regulated phosphosites in AC16 cells treated with 961 

10 nM doxorubicin for 10, 30, and 360 min (with FC > 2 or < 0.5). (B) GSEA-based enrichment 962 

analysis of GO biological processes up-regulated by10 nM doxorubicin treatment. All of the 963 

up-regulated phosphoproteins were combined for this analysis and top 20 Reactome pathways 964 

were displayed. (C) A total of 194 phosphosites were upregulated persistently throughout the 965 

360-min duration of doxorubicin treatment. 19 proteins identified in the proteomics study form a 966 

cluster that exhibited upregulation only at 360 min. No significant changes in transcriptome were 967 

identified among the corresponding genes. 968 
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 969 

Figure 6. Simulations of cell stress response by two-tiered transcriptional and 970 

posttranslational control. 971 

(A) Mode of cellular stress response to stressor S may involve both transcriptional and 972 

posttranslational control of the cellular state (Y). The transcriptional induction of mRNA (M) for 973 

stress gene (G) is activated by transcription factor (T) through pathway #2. Posttranslational 974 

modification control bypasses the slow-acting transcriptional loop by regulating the activities of 975 

preexisting inactive stress proteins (Gi) through phosphorylation to convert Gi into active stress 976 

protein (Ga) via pathway #1. The stress can also directly affect specialized cell function proteins 977 

(CFP) through step #3. Pointed arrows denote activation and blunted arrows denote inhibition. (B) 978 

Temporal responses of Y, Ga and M in response to a mild S level (0.5). (C) Dose responses of M, 979 

Ga and total G after 24-h exposure. (D) Dose responses of Y and CFP after 24-h exposure. 980 

 981 

 982 

Supplemental Figures 983 

Figure S1. Quality control for the transcriptomics study in HepG2 cells treated with Coumarin. 984 

Figure S2. Quality control for the proteomics study in HepG2 cells treated with Coumarin. 985 

Figure S3. Quality control for the phospho-proteomics study in HepG2 cells treated with 986 

Coumarin. 987 
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Figure S4. Pair-wise Pearson correlation analysis of phosphoproteomics, proteomics, and 988 

transcriptomics samples of HepG2 cells treated with Coumarin. 989 

Figure S5. Hierarchical clustering of the transcriptome, proteome, and phosphoproteome of 990 

HepG2 cells treated with Coumarin. 991 

Figure S6. Volcano plots of differentially expressed features in the proteome, phosphoproteome, 992 

and transcriptome of HepG2 cells treated with Coumarin. 993 

Figure S7.  Quality control for the transcriptomics study in AC16 cells treated with 10 nM 994 

doxorubicin for 10, 30, and 360 min. 995 

Figure S8. Quality control for the proteomics study in AC16 cells treated with 10 nM doxorubicin 996 

for 10, 30, and 360 min. 997 

Figure S9. Quality control for the phosphor-proteomics study in AC16 cells treated with 10 nM 998 

doxorubicin for 10, 30, and 360 min. 999 
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Supplemental Tables 1002 

Table S1. The AC50 values of coumarin on HepG2 cells in references 1003 

Table S2. The genes identified from HepG2 cells treated with different concentration of coumarin. 1004 

Table S3. The proteins identified from HepG2 cells treated with different concentration of 1005 

coumarin for 10 min. 1006 

Table S4. The proteins identified from HepG2 cells treated with different concentration of 1007 

coumarin for 24 hours. 1008 

Table S5. The phosphosites identified from HepG2 cells treated with different concentrations of 1009 

coumarin for 10 min. 1010 

Table S6. The phosphosites identified from HepG2 cells treated with different concentration of 1011 

coumarin for 24 hours. 1012 

Table S7. The genes identified from AC16 cells treated with doxorubicin for different times. 1013 

Table S8. The proteins identified from AC16 cells treated with doxorubicin for different times 1014 
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Table S9. The phosphosites identified from AC16 cells treated with doxorubicin for different 1015 

times. 1016 

Table S10. The number of 194 phosphosites (cluster 6) identified from AC16 cells treated with 1017 

doxorubicin for different times. 1018 

Table S11. The number of 157 proteins (match with 194 phosphosites) identified from AC16 cells 1019 

treated with doxorubicin for different times. 1020 

Table S12. The HMOX1 proteins identified from AC16 cells treated with doxorubicin for different 1021 

times. 1022 

Table S13. The phosphodites of TSC2 identified from AC16 cells treated with doxorubicin for 1023 

different times. 1024 

Table S14. The phosphodites of SQSTM1 identified from AC16 cells treated with doxorubicin for 1025 

different times. 1026 

Table S15. Parameter values of the mathematical model. 1027 

Table S16. Ordinary differential equations (ODEs) of the mathematical model. 1028 
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