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 2 

Abstract 22 

Deep knowledge of crop biodiversity is essential to improve global food security. Despite 23 

bread wheat serving as a keystone crop worldwide, the population history of bread wheat and 24 

its wild relatives (a.k.a. wheats) remains elusive. By analyzing whole-genome sequences of 25 

795 wheats, we found that bread wheat originated southwest of the Caspian Sea ~11,700 26 

years ago and underwent a slow speciation process, lasting ~3,300 years due to persistent 27 

gene flow from wild relatives. Soon after, bread wheat spread across Eurasia and reached 28 

Europe, South Asia, and East Asia ~7,000 to ~5,000 years ago, shaping a diversified but 29 

occasionally convergent adaptive landscape of bread wheat in novel environments. Opposite 30 

to cultivated wheat, wild wheat populations have declined by ~82% in the past ~2,000 years 31 

due to the food choice shift of humans, and likely continue to drop because of the changing 32 

climate. These findings will guide future efforts in protecting and utilizing wheat biodiversity 33 

to improve global food security.  34 
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Introduction 35 

Climate change and the growing population are putting global food security at risk—the 36 

world crop production is projected to be inadequate by 20501. While various adaptive 37 

strategies2 and technologies3 of plant breeding have been proposed to address the challenge, 38 

many of these opportunities lie in crop biodiversity, which preserves tremendous pre-adapted 39 

and beneficial alleles to develop productive, nutritious, stress-resilient, and sustainable crop 40 

varieties4. An in-depth understanding of cultivated crops and their wild relatives is central to 41 

integrating genetic resources and breeding methods effectively. 42 

 43 

Bread wheat (Triticum aestivum ssp. aestivum, 2n = 6x = 42, AABBDD) is one of the 44 

world’s most important crops, providing ~20% calories and protein for the human diet5. 45 

Meanwhile, bread wheat and its relatives, such as domesticated einkorn (T. monococcum ssp. 46 

monococcum, AA) and domesticated emmer (T. turgidum ssp. dicoccum, AABB), were 47 

among the first crops bringing forth agriculture and subsequent civilization6. Due to the 48 

economic and cultural importance of these ancient crops, the evolutionary history of Triticum 49 

and Aegilops species, the two clades giving rise to modern bread wheat through 50 

polyploidization7, has been of great interest to both scientists7–9 and the public10,11. Fueled by 51 

the landmark bread wheat reference genome12, recent studies have reconstructed the 52 

phylogeny of Triticum-Aegilops species13,14, characterized the population structure of 53 

modern wheat9,13,15–17, and identified historical gene flow from wild populations to bread 54 

wheat13,14,16,18,19. However, the population history of wheats (bread wheat and its wild 55 

relatives, or Triticum-Aegilops species) is largely incomplete, particularly the spatiotemporal 56 

dynamics of bread wheat emergence and dispersal, together with the genetic and ecological 57 

interaction between bread wheat and its wild relatives, remain elusive6,20,21. 58 

 59 
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Here we performed a genus-level sampling of Triticum-Aegilops species and conducted 60 

whole-genome sequence analyses to disentangle the deep past of wheats since the rise of 61 

agriculture ~10,000 years ago. The paralleled reconstruction of demographic histories of both 62 

cultivated and wild wheats provided the first example of the Holocene evolution of the entire 63 

gene pool appertaining to a crop species, insights from which will benefit biodiversity 64 

conservation and breeding of many crops. 65 

 66 

Results 67 

Genomic data of Triticum-Aegilops populations 68 

We collected whole-genome sequencing data of 795 accessions, including 745 accessions 69 

from publicly available data set13,17,18, and 50 newly sequenced accessions in this study to 70 

complete the sampling of wild relatives of bread wheat. These highly diverse accessions are 71 

from 6 species and 25 subspecies in the genera Triticum and Aegilops (Fig. 1), representing 72 

a wide range of geographic distribution (73 countries, Supplementary Fig. 1), comprehensive 73 

ploidy levels (diploid, tetraploid, and hexaploid) and genome types (AA, BB/SS, AABB, 74 

AABBDD, and DD) related to the A, B, and D subgenomes of bread wheat, as well as distinct 75 

breeding status (wild progenitors, early domesticates, landraces, and cultivars) 76 

(Supplementary Table 1 and 2; for convenience, the common names of subspecies are used 77 

in this study). Notably, the collection also well represents the evolutionary trajectory of 78 

modern bread wheat7,8,14 (Fig. 1c). 79 

 80 

These high-coverage genomes (~6.5×) empowered high-quality calling of genetic 81 

variations in self-pollinated plants such as wheats (Supplementary Table 3). By applying the 82 

cross-ploidy variation discovery pipeline (Supplementary Fig. 2)13, we identified ~78 million 83 

single nucleotide polymorphisms (SNPs), and constructed version 1.1 of the whole-genome 84 
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genetic variation map of wheat (VMap 1.1) (Supplementary Note 1, and Supplementary Fig. 85 

3, and Supplementary Table 4 and 5). The false-positive error rate of variant calling, i.e., the 86 

proportion of segregating sites in the reference accession, Chinese Spring, was only 0.011%, 87 

which is similar to the error rates of high-quality SNPs in previous studies13,22. 88 

 89 

Spatiotemporal origin of bread wheat 90 

Many crops transited from weedy grasses to cultivated plants through solely domestication23. 91 

However, for bread wheat, this early transition was coupled with an additional polyploid 92 

speciation event, from which bread wheat arose through the hybridization between tetraploid 93 

wheats (AABB) and strangulata (Ae. tauschii ssp. strangulata, DD)24,25. Phylogenetic 94 

analyses of VMap 1.1 corroborated two recent findings regarding the origin of bread wheat 95 

(Fig. 1b,c, and Supplementary Note 2)13. One is the two-stage model of wheat domestication 96 

that wild emmer (T. turgidum ssp. dicoccoides, AABB) was transformed to domesticated 97 

emmer first, then free-threshing tetraploids. The other is the identification of free-threshing 98 

tetraploid wheats as the direct donor of the AB subgenomes during the polyploid speciation 99 

of bread wheat. Although the evolutionary topology of wheat populations becomes 100 

increasingly clear, there is limited consensus on the spatiotemporal dynamics of the 101 

emergence of bread wheat24. 102 

 103 

As the progenitor of domesticated emmer, wild emmer comprises two subpopulations 104 

mostly confined to the northern and southern Levant in West Asia (Fig. 2a)26,27. 105 

Archaeological records from early Neolithic sites showed that domesticated emmer appeared 106 

in the northern Levant (Abu Hureyra and Cafer Höyük) and southern Levant (Tell Aswad) 107 

almost simultaneously ~9,800-9600 BP28, raising a controversial question in which place 108 

emmer wheat was first domesticated24. By reconstructing the phylogeny of AB lineage using 109 
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150,000 random SNPs, we found that wild emmer in the northern Levant was clustered with 110 

domesticated emmer (Fig. 1b). Moreover, bread wheat showed a closer identity by state (IBS) 111 

distance with northern wild emmer rather than southern wild emmer (Fig. 2a, and 112 

Supplementary Table 13 and 14). These results support the hypothesis that emmer wheat was 113 

domesticated around the Karacadag region in the northern Levant18,26. 114 

 115 

The birthplace of bread wheat is also mysterious. As the distribution of wild emmer 116 

and strangulata is primarily restricted to the Levant and the south of the Caspian Sea, 117 

respectively, it was puzzling how the polyploid speciation of bread wheat could occur given 118 

the geographic isolation of parental taxa24. Here we identified that free-threshing tetraploids 119 

rather than wild emmer were the donor of the AB subgenomes of bread wheat (Fig. 1b and 120 

c)13, suggesting the scenario that hexaploidization of bread wheat did not occur until free-121 

threshing tetraploids expanded to the south of the Caspian Sea24. Further analyses of IBS 122 

distance showed that strangulata accessions in the southwest of the Caspian Sea have the 123 

greatest affinity to bread wheat (Fig. 2a, and Supplementary Table 15), indicating that bread 124 

wheat came into being at the southwest coast of the Caspian Sea25. 125 

 126 

To provide a temporal context of wheat speciation, we used SMC++29, which combines 127 

the simplicity of sequentially Markovian coalescent and the scalability of site frequency 128 

spectrum (SFS) based approaches, to infer divergence time between wheat populations. 129 

Given the distinct evolutionary trajectories of the AB and D subgenomes of bread wheat (Fig. 130 

1c), we inferred population split times of the AB and D lineages independently based on ~68 131 

million neutral SNPs in VMap 1.1 (Supplementary Note 3). The results from the AB lineage 132 

showed that domesticated emmer diverged from wild emmer 10,041±160 BP, free-threshing 133 

tetraploids separated from domesticated emmer 9,269±98 BP, and bread wheat split from 134 
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free-threshing tetraploids 8,441±140 BP (Fig. 2b). The temporal sequence coincides nicely 135 

with the oldest archaeological remains of domesticated emmer6,28, free-threshing 136 

tetraploids30, and bread wheat24. Considering that hexaploidization of bread wheat involves 137 

free-threshing tetraploids and strangulata simultaneously (Fig. 1c), the speciation times of 138 

bread wheat inferred from the AB and D lineages should concur. However, we observed a 139 

drastic gap of ~3,300 years between the two estimates, in which bread wheat diverged from 140 

strangulata 11,738±112 BP (Fig. 2b).  141 

 142 

Recent studies have identified an asymmetric wild-progenitor introgression in bread 143 

wheat, where introgression is much more prevalent in the AB subgenomes (19.43%) than in 144 

the D subgenome (0.49%)13. Given that gene flow can change the tempo of population 145 

differentiation31,32, the asymmetric introgression is likely to explain the different speciation 146 

times of bread wheat inferred from AB and D subgenomes. To provide a nuanced view of 147 

bread wheat speciation in the context of progenitor introgression, we investigated the 148 

chronology of gene flow between wheat populations through contrasting alternative 149 

demographic models33 (Fig. 2c, and Supplementary Note 4). By comparing the observed joint 150 

SFS of bread wheat and its progenitor population to the expected under a specific model, we 151 

found archaic gene flow from wild emmer and domesticated emmer into bread wheat before 152 

8,919 BP (95% confidence interval (CI) 8,316-9,521 BP) and 7,228 BP (95% CI 6,760-7,695 153 

BP), respectively. Moreover, the best-fitting model predicted enduring and bidirectional gene 154 

flow between free-threshing tetraploids and bread wheat since the emergence of bread wheat 155 

~11,700 BP. In contrast, the introgression from strangulata to the D subgenome of bread 156 

wheat was more ancient, predating 9,729 BP (95% CI 9,015-10,442 BP). These results 157 

suggest that the long-standing and massive gene flow to the AB subgenomes resulted in slow 158 

speciation of nascent bread wheat, lasting ~3,300 years until the distinct genetic makeup of 159 
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bread wheat was established. Notably, the near-complete reproductive isolation and 160 

concomitant clean-split between bread wheat and strangulata allow the estimate of the upper 161 

time-bound of population differentiation between cultivated crops and wild relatives, which 162 

is generally intractable in diploid crops. 163 

 164 

Trans-Eurasian dispersal of bread wheat 165 

The spread of bread wheat across Eurasia profoundly transformed human societies10. To 166 

elucidate the range expansion process, we selected 225 bread wheat landraces (hereinafter 167 

referred to as landraces) from VMap 1.1 based on the accessibility of geographic information 168 

to characterize the spatiotemporal dispersal of bread wheat (Supplementary Table 18). 169 

Model-based clustering of landraces exhibited a salient east-west axis of range expansion of 170 

bread wheat originating from West Asia (Fig. 3a, and Supplementary Fig. 18), echoed by the 171 

Asian and European clades in the phylogeny of bread wheat (Fig. 1b). To reconstruct the 172 

bidirectional migration routes precisely, we applied the Estimated Effective Migration 173 

Surfaces (EEMS) method34 to identify spatial barriers and corridors of bread wheat expansion 174 

(Fig. 3a, and Supplementary Fig. 19). EEMS presented a fast migration route westward along 175 

the northern Mediterranean coast, consistent with the uniform ancestry of landraces in the 176 

area. In contrast, EEMS eastward migration patterns identified a massive roadblock at the 177 

Pamir Mountains that splits the Inner Asian landraces into Central and South Asian 178 

populations, suggesting the further spread of bread wheat eastward through the north and 179 

south routes of the Pamir Mountains. 180 

 181 

Landraces in East and South Asia exhibited a complex population structure, illustrating 182 

a convoluted population history of Asian bread wheat as suggested by recent archeological 183 

studies35–39. To disentangle the dispersal of bread wheat in the vast land of geographic and 184 
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cultural diversity, especially how bread wheat spread into China, we used qpGraph40 to 185 

explore the relationships between local landrace populations defined by EEMS (Fig. 3b and 186 

Supplementary Table 19). By testing 61,214 candidate admixture graph models, the best-187 

fitting graph (Z-score = -2.76) predicted three dispersal routes connecting Central and East 188 

Asia, coinciding with the postulated Southern Himalaya route38, Hexi Corridor route37–39, 189 

and Steppe route35,36, respectively. The Southern Himalaya route is from Pakistan, through 190 

India, Myanmar, and Yunnan Province, into China. The mixed ancestry of landraces in 191 

southwest China (R9) provided the first evidence demonstrating the existence of the southern 192 

route38. The Hexi Corridor route can also be referred to as “proto-silk Road,” starting from 193 

Central Asia, through the Inner Asian Mountain Corridor and Hexi Corridor to inner China. 194 

This route is the most prominent hypothesis describing wheat spread in China, verified by its 195 

abundant archaeological sites37–39. The Steppe route was recently proposed because the wheat 196 

remains excavated from the lower Yellow River region (~4,250 BP) are earlier than those 197 

from the upper region (~3,850 BP), indicating an alternative northern route to China via the 198 

Mongolian Steppe other than the Hexi Corridor35. Despite the lack of wheat samples from 199 

southern Mongolia, our results support this newly hypothesized route with genetic 200 

evidence—two populations in the lower Yellow River region (R4) and East China (R5) 201 

descended from past hybridization events (Fig. 3b), with one of the parental populations 202 

likely to be the lineage that traveled across the Mongolian Steppe. The introduction of wheat 203 

to China through the Mongolian Steppe may be related to early agropastoral societies, e.g., 204 

the Afanasievo people around the Altai Mountains, moving southward in response to the 205 

abrupt global cooling during the mid-Holocene36. 206 

 207 

We used SMC++29 to calculate splitting times between locally adapted and West Asia 208 

populations to infer the timing of bread wheat dispersal across Eurasia. Given that recent 209 
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crop exchange and accompanying gene flow may reduce the divergence time estimates, we 210 

first assessed the temporal pattern of gene flow between individual local populations using 211 

fastsimcoal233. The results showed that populations in the Iberian Peninsula, Indus Valley, 212 

Yunnan Province, and East China exhibited early gene flow to the West Asia population 213 

(Supplementary Fig. 20 and Supplementary Table 20), and thus were qualified to calculate 214 

splitting times (Fig. 3c). As these four populations probably are not strictly locally confined, 215 

we inferred the timing of bread wheat dispersal at the continental level that bread wheat may 216 

have dispersed to Europe, South Asia, and East Asia ~7,000 BP, ~6,000 BP, and ~5,400 BP, 217 

which are concordant with archeological records35,37,38. 218 

 219 

New Triticum subspecies arising from bread wheat dispersal 220 

It becomes increasingly evident that interspecific hybridization is common during range 221 

expansion of species31. Bread wheat dispersal appeared to be no exception—we found 222 

several newly formed Triticum subspecies having their origins in sympatric hybridization 223 

between expanding bread wheat and locally preexisting tetraploid wheats. The phylogeny of 224 

Triticum populations showed that three hexaploid subspecies (AABBDD), including spelt (T. 225 

aestivum ssp. spelta), Macha (T. aestivum ssp. macha), and Xinjiang wheat (T. aestivum ssp. 226 

petropavlovskyi), were clustered into the tetraploid clade; similarly, a tetraploid subspecies 227 

(AABB), Persian wheat (T. turgidum ssp. carthlicum), was within the hexaploid clade (Fig. 228 

1c and Supplementary Fig. 10). To clarify the ancestry of these outliers, we used phyloNet41 229 

to infer reticulate phylogenetic networks of these subspecies based on phylogenies of 9,612 230 

orthologous genes. The result showed a mixed ancestry of the four subspecies descending 231 

from hybrids between tetraploid wheats and bread wheat, with the genetic contribution of 232 

bread wheat from 33% to 54% (Fig. 3d and Supplementary Fig. 21). It is worth noting that 233 

spelt was considered the progenitor of bread wheat because it has a primitive phenotype of 234 
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hulled seed42, our result indicates that the phenotype is inherited from its tetraploid parent, 235 

domesticated emmer, and thus disproves the once-popular theory concerning the origin of 236 

bread wheat. 237 

 238 

We then estimated the speciation time of the four subspecies using SMC++. To 239 

eliminate the noise from homoploid gene flow, we calculate the population splitting time 240 

between the hybrid offspring and only one of the parental taxa with different ploidy levels. 241 

The results showed spelt, Macha, Xinjiang wheat, and Persian wheat arose ~6,400 BP, 7,300 242 

BP, ~3,300 BP, and ~6,000 BP, respectively (Fig. 3a and Supplementary Fig. 22). By 243 

calculating the IBS distance between the four subspecies and individual accessions of their 244 

parental populations, we showed that these newly formed Triticum subspecies likely 245 

originate from Europe, West Asia, and Central Asia (Fig. 3a and Supplementary Fig. 23-26). 246 

 247 

Genetic heritage of bread wheat expansion 248 

The trans-Eurasian dispersal of bread wheat may have involved extensive adaptive changes 249 

in the genome while colonizing novel environments. To investigate how the adaptation 250 

process affects the genetic diversity of bread wheat, we examined the correlations between 251 

SNPs and environmental variables of 225 landraces using redundancy analysis (RDA)43 252 

(Supplementary Table 22). These environmental variables include altitude and 19 bioclimatic 253 

variables related to either temperature or precipitation. We found that these variables 254 

explained 13.44% of the total SNP variance. To evaluate the confounding effect of 255 

environmental adaptation and isolation-by-distance, we performed a similar RDA analysis 256 

using latitude and longitude, instead, as explanatory variables, finding that only 6.05% SNP 257 

variance was explained (Supplementary Fig. 27). The results demonstrate the importance of 258 

environmental factors in shaping the adaptive genetic diversity of bread wheat. By 259 
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conducting individual RDA analyses on environmental variable categories, temperature-260 

related variables (adjust r2 = 0.11) exhibited larger SNP variance than did precipitation 261 

(adjust r2 = 0.075) and altitude (adjust r2 = 0.013) (Fig. 4a). However, in search for the most 262 

important environmental variables, precipitation of the warmest quarter appeared on the top 263 

of the list (Fig. 4b), suggesting the complexity of local adaptation of bread wheat. To 264 

investigate the regional heterogeneity of adaptation, we performed RDA analyses on 265 

environmental variable categories using landraces from West Asia (WA), Europe (EU), Inner 266 

Asia (IA), East Asia (EA) and Southern Himalaya (SH) (Supplementary Fig. 28). The result 267 

showed that environment variables in WA explain the least SNP variance compared with 268 

other regions. In addition, the relative proportions of SNP variance explained by temperature, 269 

precipitation, and altitude varied in the five regions (Fig. 4c, Supplementary Fig. 29 and 270 

Supplementary Table 23). The results indicate that the accumulation of adaptive alleles from 271 

the range expansion has shaped a diverse adaptation landscape of bread wheat. 272 

 273 

To identify genomic regions associated with adaptation, we performed cross-274 

population composite likelihood ratio (XP-CLR)44 analyses to detect selective sweeps 275 

between paired populations from the five populations mentioned above. Collectively, 276 

185,865 selective sweeps were discovered under the top 5% XP-CLR score threshold. As 277 

these sweeps may stem from selections of human preference, farming practices, etc., we then 278 

conducted environmental association analyses using Bayenv45 to narrow down the candidate 279 

sweep regions to those related to environmental factors. Based on associations between 20 280 

environmental variables and allele frequency of 1.5M SNPs in 13 populations 281 

(Supplementary Fig. 30-32 and Supplementary Table 24), the analysis identified 269,279 282 

adaptation-associated SNPs (top 5% Bayes factor) intersecting with selective sweeps from 283 

XP-CLR, with an average of 2.15-fold enrichment for coexisting with sweep regions 284 
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(Supplementary Fig. 33 and Supplementary Table 25). A total of 19,999 genes were 285 

identified as being involved in the environmental adaptation of bread wheat, including 123 286 

cloned genes that regulate critical agronomic traits, such as disease resistance and abiotic 287 

stress response, etc. (Supplementary Fig. 34, and Supplementary Table 26-28), indicating the 288 

value of adaptation-associated genes in improving agronomic traits of modern wheat. 289 

 290 

Convergent adaptation of bread wheat to early flowering across Eurasia 291 

To further characterize these adaptation-associated genes, we focused on genes relevant to 292 

flowering time because flowering time is agriculturally important for crops and commonly 293 

deemed the most critical trait determining plant adaptation46. Remarkably, we found that the 294 

gene Ppd-D1 exhibited convergent adaptation to early flowering and best showcased local 295 

adaptation of bread wheat. Ppd-D1 on chromosome 2D is the primary determinant of 296 

photoperiod response in bread wheat. Dysfunctional Ppd-D1 exhibits photoperiod 297 

insensitivity and early flowering phenotypes, which is crucial to the adaptation of bread 298 

wheat to global environments47. A total of three loss-of-function alleles of Ppd-D1 have been 299 

identified so far in wheat populations (Fig. 4d), two of which are causal genetic variants, 300 

including a ~2kb deletion at upstream, and a 5-bp deletion in gene exons47,48. The XP-CLR 301 

analysis between IA and SH populations identified selective footprints on Ppd-D1, predicting 302 

an increased frequency of causative alleles of Ppd-D1 in the SH population (Fig. 4e). 303 

However, the two causative alleles did not exist in SH landraces (Fig. 4f and Supplementary 304 

Fig. 35). Instead, we found a novel stop-gain mutation of Ppd-D1 in the SH landraces, 305 

particularly enriched in the population from the Tibetan Plateau (Fig. 4f and g). We 306 

speculated that the stop-gain allele helped adapt bread wheat to the short growing season in 307 

high-altitude and low-temperature areas (>3,000 m). To test the hypothesis, we divided the 308 

SH landraces into high-altitude and low-altitude subpopulations and performed XP-CLR 309 
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analysis (Supplementary Table 29). The result showed that the XP-CLR score (99.75% 310 

quantile) on Ppd-D1 became more significant when compared with the score (97.61% 311 

quantile) between IA and SH landraces, indicating Ppd-D1 is involved in high-altitude 312 

adaptation (Fig. 4e and Supplementary Fig. 36). Furthermore, we found a strong correlation 313 

between the allele frequency of the stop-gain mutation and the average altitude of 314 

subpopulations from SH landraces (r2 = 0.778, Fig. 4h), showing the causal effect of the stop-315 

gain mutation in the high-altitude adaptation of bread wheat. Taken together, the three 316 

causative alleles of Ppd-D1 complement each other in geographic distribution, with the stop-317 

gain mutation in South Asia, the ~2kb deletion in East Asia, and the 5-bp deletion in Europe 318 

(Fig. 4g, i, and j), illustrating a highly diverse but convergent adaptation of bread wheat 319 

across Eurasia through its changing flowering time. 320 

 321 

Population size fluctuation of wheats 322 

Compared with cultivars, crop wild relatives has received relatively little attention from the 323 

evolutionary perspective4. To decipher the population dynamics of wild wheats, we 324 

reconstructed the history of effective population size (Ne) of Triticum-Aegilops species using 325 

SMC++29. We found that Ne of Aegilops subspecies, including strangulata, tauschii (Ae. 326 

tauschii ssp. tauschii, DD), and speltoilds (Ae. speltoides, BB/SS), appeared to decline 327 

constantly in the last 100 thousand years (Supplementary Fig. 37). In contrast, all the 328 

Triticum species experienced a marked population size expansion during the Holocene. For 329 

bread wheat and early domesticates, such as domesticated einkorn, domesticated emmer, and 330 

free-threshing tetraploids, the population growth may reflect the cultivation history of these 331 

populations6; whereas for wild wheats that had never been domesticated, such as wild einkorn 332 

(T. monococcum ssp. aegilopoides, AA), urartu (T. urartu, AA), and wild emmer (Fig. 1 and 333 

Supplementary Fig. 37, 38), such population growth may result from their mixed growing 334 
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with early domesticates for thousands of years24,49. Strikingly, we found a ubiquitous 335 

population contraction right after the population growth for all the Triticum populations 336 

except for modern cultivars of bread wheat. The population decline occurred sequentially 337 

with ploidy levels—the diploids came first, then the tetraploids, and lastly, the hexaploid 338 

landraces. Intriguingly, the rise and fall of Ne of diploids, tetraploids, and hexaploids 339 

complemented each other in the Holocene timeline even without impact from drastic climate 340 

change of glacial periods (Supplementary Fig. 37). Archeological studies showed that 341 

domesticated einkorn and domesticated emmer thrived since the Neolithic Age until they 342 

were gradually replaced by durum wheat (T. turgidum ssp. durum, AABB), spelt, and bread 343 

wheat during the Bronze Age (~5,000 BP - ~3,000 BP)6,24. The Ne fluctuation of wheats 344 

coincides with the shifts of human food choice from einkorn and emmer wheat to bread wheat. 345 

Despite largely being a natural evolutionary process, the population size decline of wild 346 

wheats is disturbing—the Ne of diploids and tetraploids in Triticum was reduced by 81.70% 347 

in the past two thousand years (Fig. 5a). 348 

 349 

Rapid climate change is likely to impact the biodiversity of wheats profoundly50. To 350 

evaluate the adaptive capacity of Triticum-Aegilops species, we conducted biogeographical 351 

modeling to predict the response of wheats to the future climate. For bread wheat, we used a 352 

tree-based machine learning approach, gradient forest, to model allele frequency of genome-353 

wide SNPs from 13 populations (Supplementary Fig. 30 and 39) with 19 bioclimatic 354 

variables. The adaptation-associated SNPs identified previously (Supplementary Fig. 33) 355 

presented a much faster turnover rate along environmental gradient than the randomly chosen 356 

SNPs (Supplementary Fig. 40). Using the adaptation-associated SNPs, we predicted the shift 357 

of allele frequency, namely genetic offset, of local landraces between present and future 358 

climates during 2040-2060 and 2080-2100. Local bread wheat populations showed varying 359 
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degrees of genetic offset, with the highest value appearing in regions of the Indus Valley and 360 

Inner Asia, indicating that wheat production in the two regions is the most vulnerable to 361 

climate change (Fig. 5b, c and Supplementary Fig. 41). Since we did not have a large enough 362 

sample size to model allele frequency of individual wild wheat populations, we used Species 363 

Distribution Modeling (SDM)51 to predict the future habitats of wild wheats. Overall, we 364 

observed either a contraction of wild wheats' habitats or shifting of their geographical ranges 365 

to the north (Supplementary Fig. 42-45). As such, two of the critical progenitors of bread 366 

wheat, wild emmer and strangulata (Fig. 1c), clearly showed the projected change of species 367 

distribution (Fig. 5d). It is worth noting that wild emmer, which is the ultimate source of 368 

genetic diversity of bread wheat52, may become a threatened species requiring conservation 369 

in a few decades. 370 

 371 

Discussion 372 

The changing climate is threatening global food security53. The evolution of major crops 373 

through immense space and time provides an unparalleled opportunity to dissect the 374 

environmental adaptation of plants and further help address the climate challenge. The 375 

population history of bread wheat and its wild relatives has long been controversial6,21,24. By 376 

leveraging a comprehensive set of genomes from the genera Triticum and Aegilops, we 377 

systematically unraveled the spatiotemporal history of bread wheat and its wild relatives in 378 

the Holocene, in particular the origin and range expansion of bread wheat, population size 379 

dynamics of wild wheats, and hybridization events between the two groups. We also found 380 

the high-altitude adaption of Tibetan landraces through a stop-gain allele of an essential 381 

flowering time gene (Ppd-D1). Remarkably, this allele and the other two independent loss-382 

of-function alleles of Ppd-D1 showed a pattern of convergent adaptation of bread wheat to 383 

early flowering across Eurasia, indicating the important role of evolutionary constraint in 384 
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shaping adaptive landscape of bread wheat. Meanwhile, the adaptive diversity demonstrates 385 

wild wheats as an invaluable resource providing pre-adapted alleles for wheat breeding. 386 

However, some of the most important wild populations exhibited a disturbing population 387 

decline driven by shifts of human food choice and environmental change, illustrating the 388 

pressing need to protect wild wheats. Taken together, our work of reconstructing the 389 

population history of Triticum-Aegilops species has laid an essential foundation to dissect 390 

the genetics of wheat adaptation effectively. It also provides a research paradigm to explore 391 

population history and adaptive genetic diversity for all crops. This study will facilitate well-392 

informed efforts in protecting wheat biodiversity and breeding climate-resilient crops in the 393 

future.  394 
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Online Methods 395 

Sampling of wheat accessions 396 

A total of 795 accessions of bread wheat and its wild relatives (a.k.a. wheats) from 73 397 

countries were used in this study (Supplementary Table 1). This natural population contains 398 

6 species and 25 subspecies, covering all subspecies with AA, AABB, and AABBDD 399 

genome types in Triticum, as well as BB/SS, and DD genome types in Aegilops. We 400 

integrated 414 accessions from the VMap1.013, 92 accessions from Northwest A&F 401 

University18, and 244 accessions sequenced at China Agricultural University17. In addition, 402 

to collect all possible genetic donors of bread wheat, we newly sequenced 50 additional 403 

accessions, including 10 accessions of speltoids (Ae. speltoides ssp. speltoides), 10 404 

accessions of spelt (T. aestivum ssp. spelta), 3 accessions of synthesis hexaploid wheat, and 405 

27 accessions of strangulata (Ae. tauschii ssp. strangulata) in this study (Supplementary 406 

Table 2 and 3). Plant materials are available at the Chinese Crop Germplasm Resources 407 

Information System (CGRIS), National Small Grains Collection (NSGC), and Genebank 408 

Gatersleben of Leibniz Institute of Plant Genetics and Crop Plant Research (IPK). 409 

 410 

Sequencing, reads mapping, and genetic variation discovery 411 

Newly added 50 samples were sequenced in two batches. The first batch of 27 accessions 412 

was sequenced with the BGISEQ500 machine using 100-base-pair pair-end reads. The 413 

second batch of 23 accessions was sequenced with the MGISEQ-2000RS machine using 150-414 

base-pair pair-end reads (Supplementary Table 3). Reads with more than half of bases with 415 

a quality value of less than Q20 or more than 5% of ‘N’ bases were removed from the raw 416 

data. Given the different ploidy levels and genome types across the population, we applied a 417 

custom pipeline for genetic variation calling13 (Supplementary Fig. 2). The reference genome 418 

(IWGSC RefSeq v1.0)12 was divided into five taxonomic groups based on their genome types, 419 
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namely AA, BB/SS, AABB, AABBDD, and DD taxa, respectively. Then, all accessions were 420 

mapped to their corresponding reference with BWA-MEM54. GATK55 was used to obtain the 421 

raw SNPs for each genome type. We used HaplotypeCaller of GATK with parameters of “--422 

native-pair-hmm-threads 5 -L -R -I -O -ERC GVCF”. The SNP filtering procedures are the 423 

same as those applied in our previous work13. 424 

 425 

Construction of VMap 1.1 by merging SNPs from five genome types 426 

The taxa containing A, B, and D lineages have different coalescence times. When 427 

coalescence is deep, the reference bias of SNP calling can be severe. For a fair comparison 428 

between A, B, and D lineages, only SNPs in syntenic sites were retained in the final genetic 429 

variation dataset, as previously described13. Finally, we built the variation library of VMap 430 

1.1 (genetic variation map of wheat version 1.1), containing ~78M SNPs (Supplementary 431 

Note. 1). Then, we genotyped 795 accessions by scanning their bam files using HapScanner 432 

(https://github.com/PlantGeneticsLab/TIGER/wiki/HapScanner)13. The SNPs of VMap 1.1 433 

are summarized in Supplementary Table 5. 434 

 435 

Reconstructing gene tree chronograms for genera Triticum and Aegilops 436 

(1) Identification of orthologous genes across Triticum and Aegilops. Hordeum vulgare56, 437 

Triticum urartu57, Aegilops tauschii58, wild emmer27, durum59, Chinese Spring12 were 438 

downloaded from ensemble plants (http://plants.ensembl.org/index.html). Ortholog 439 

prediction was carried out using SwiftOrtho60 with default parameters. Results of SwiftOrtho 440 

were parsed into three groups of A, B, and D subgenomes. Finally, 4,971 reciprocal genes 441 

were found to estimate the phylogenetic history of the A, B, and D lineages. 442 

(2) Local assembly of orthologous genes. As part of species within genera Triticum and 443 

Aegilops do not have reference genomes (e.g., einkorn and speltoides) that challenges 444 
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phylogeny reconstruction at the species level, we performed local assembly of orthologous 445 

genes for individual Triticum-Aegilops subspecies. First, fastq sequences of orthologous 446 

genes were extracted from bam files of 25 subspecies. Second, we assembled the fastq 447 

sequences for each gene of 25 subspecies with SRAssembler61. Third, the assembled 448 

segments were anchored to the reference genome of bread wheat12. Last, we used Muscle62 449 

to perform multiple sequence alignments, and only the sequence alignments longer than 450 

1,000 bp were kept in the final assembly-based gene sequences (4,806 reciprocal genes). 451 

(3) Reconstruction of the species tree. We analyzed ortholog genes of each subspecies jointly 452 

in a coalescent analysis to clarify the relationship of the Triticum and Aegilops subspecies. 453 

Multispecies coalescent analysis was carried out in BEAST263 to calculate gene tree topology. 454 

All gene trees were rooted with Hordeum vulgare with a secondary normally distributed 455 

calibration in the root about 15 Mya7. The analysis was conducted under the HKY 456 

substitution model for each gene. MCMC chains were run for 50 million generations with 457 

parameters sampled every 10,000 generations. Analyses were examined for convergence in 458 

Tracer v1.7.163, and a burn-in of 25 million generations was discarded. Those trees with mean 459 

posterior probability across all nodes of ≥0.85 were kept using TreeAnnotatorv.2.5.163. 460 

Finally, the global tree was made ultrametric using the chronos function in the ape R package 461 

(http://ape-package.ird.fr/) and drawn using ggtree64 in R. 462 

 463 

Population phylogenetic analysis 464 

We selected 150,000 random SNPs from corresponding subgenomes for each phylogeny 465 

reconstruction. Phylogenetic trees of each group were reconstructed using RAxML65 466 

software with 100 bootstrap replicates in the GTRGAMMA model, and the output tree was 467 

plotted in iTOL66. We reconstructed the tree using a 100-times bootstrap with barley as the 468 

outgroup for the A, B, AB, or D lineage. We reconstructed the tree using 100 bootstrap 469 
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replicates for the AB lineages with wild emmer as the outgroup. In addition, according to the 470 

outgroup of the hexaploid individuals closest to strangulata in the tree of D lineage, a tree of 471 

D subgenome in ABD genome type was constructed with 100 bootstrap replicates. The 472 

parameters of RAxML were “-f a -m GTRGAMMA -p 12,346 -x 12,346 -# 100.” 473 

 474 

Population genetic differentiation statistics 475 

(1) Genetic distance between populations. Pairwise distances between the bread wheat and 476 

its progenitors in the whole-genome level were calculated as the fraction differences between 477 

pairs of samples for each individual using PLINK67 with the formulation: 1-IBS, where IBS 478 

was identity by state. (2) FST values. We estimated FST values for populations using vcftools68, 479 

and Weir and Cockerham’s calculation in 1 Mb non-overlapping windows. Pairwise 480 

comparisons between each subspecies in each lineage were calculated. 481 

 482 

Speciation time estimation 483 

We used SMC++ v1.15.4 to reconstruct effective population size histories for each paired 484 

population separately29. To mitigate the effect of selection on the estimate of the most recent 485 

common ancestor, we filtered out SNP sites (1) within genes; (2) outside the possible regulate 486 

elements (3kb upstream and downstream of the gene). Next,  VCF files containing 15 pseudo-487 

diploid genotypes was generated from randomly selected 30 individuals, as the previous 488 

study for the self-fertilization plants69. We then partitioned VCF files into SMC haploblock 489 

files for each pair, and partitioned each chromosome by using the vcf2smc function in 490 

SMC++. Subsequently, we used a polarization error of 0.5 and the mutation rate of 6.5×10−9 491 

in the ESTIMATE function of SMC++ to estimate past effective population sizes70,71 (Ne). 492 

Results were scaled to real-time by applying a generation time of 1 year and plotted on a 493 

linear timescale. 494 
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In addition, we used the effective size dynamics of two subpopulations, calculating split 495 

times between subpopulations in a cross-coalescent framework of SMC++ 496 

“OMP_NUM_THREADS=1 smc++ split”. Finally, confidence intervals were estimated 497 

from population divergence time based on 20 resampling replicates (Supplementary Fig. 12 498 

and Supplementary Note. 3). 499 

 500 

Model inference of demographic history 501 

We applied the site frequency spectrum (SFS) to infer demographic scenarios using 502 

coalescent simulations to approximate the likelihood of a given model. Demographic 503 

parameter estimation was implemented in fastsimcoal version 2.633.  504 

(1) Data preparation and processing. To estimate migration rates among AB lineages and D 505 

lineage, we generated the observed SFS file as the input of fastsimcoal2 through the 506 

following steps: First, identifying the ancestral allele. Hordeum vulgare56 and Aegilops 507 

tauschii58 are the ancestral groups for AB lineages, while the Hordeum vulgare and Triticum 508 

urartu57 are the same ancestral group for D lineage. The NUCmer program implemented in 509 

the latest release of MUMmer472 was used to align the genomes of the outgroups to that of 510 

Chinese Spring12 with “--maxmatch -g 1,000 -c 90 -l 40”. Sites overlapping with VMap 1.1 511 

were retained to infer ancestral alleles. For biallelic SNPs, alleles identical in two outgroups 512 

were identified. Second, generating the site-frequency spectrum (SFS). In AB lineages, 20 513 

accessions were randomly selected from each subpopulation and paired subpopulations (wild 514 

emmer, domesticated emmer, free-threshing tetraploids, and bread wheat AB) produced 2D-515 

SFS. In D lineage, 20 accessions were randomly selected from two subpopulations 516 

(stranglulata and bread wheat D) that produced 2D-SFS. Here, we used easySFS 517 

(https://github.com/isaacovercast/easySFS) to convert the VCF to various SFS formats. 518 
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(2) Model selection and model fitting. Five demographic models (early Geneflow, no gene 519 

flow, recent gene flow, different gene flow matrices, and constant gene flow) used the site 520 

frequency spectrum (SFS) to fit model parameters to the observed data by performing 521 

coalescent simulations. For each model, the fit to the observed SFS was maximized using the 522 

composite-likelihood method implemented in fastsimcoal2 with the following options: “-N 523 

100,000 -L 50”, with other options by default. We used wide search ranges with log-uniform 524 

distributions for all parameter estimates and assumed a generation time of 1 year and a 525 

constant mutation rate of 6.5×10−9 mutation/generation/site. Subsequently, we performed 526 

100 independent fastsimcoal2 runs for each demographic model to determine the parameter 527 

estimates leading to the maximum likelihood. We compared different gene flow scenarios in 528 

AB and D lineage to get the best-fitting model. 529 

(3) Bootstrap analysis. We estimated confidence intervals for the model with maximum 530 

likelihood by estimating parameters on 50 bootstrap data sets. The bootstrap data sets were 531 

obtained by randomly re-sampling 20 accessions in specific subpopulations to match the 532 

original data set size. Then, for each bootstrapped dataset, we obtained SFS with easySFS 533 

software. Next, re-estimated parameters using the same settings as the original data set, but 534 

with 20 replicate runs instead of 100, due to computational constraints. To obtain the 95% 535 

confidence intervals, we calculated the 2.5% and 97.5% percentiles of the estimate 536 

distribution obtained with R. 537 

 538 

Population structure projected on the map 539 

We used population structure to provide insights into the migratory patterns of the bread 540 

wheat landrace. SNPs in D lineage were selected for ADMIXTURE73 by applying the 541 

following criteria: (1) SNPs with linkage disequilibrium (LD) above 0.2 were removed using 542 

Plink “--indep-pairwise 50 10 0.2”, and (2) SNPs with MAF ≥0.05. Geographical projections 543 
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of population structure were obtained using the hclust function in cluster package 544 

(https://cran.r-project.org/web/packages/cluster/index.html) in R. The spatial prediction was 545 

based on a Gaussian model, which supposes that the covariance matrix is stationary. We 546 

implemented the map projection by mapPie function in rworldmap package (https://cran.r-547 

project.org/web/packages/rworldmap/) in R. 548 

 549 

Estimated effective migration surfaces 550 

Estimated effective migration surfaces (EEMS) is an approach to estimate genetic migration 551 

patterns according to a given geographic region34. We computed genetic dissimilarity 552 

matrices using EEMS and assigned geographical coordinates to each sample from each 553 

district to contrast geographic and genetic distances between demes. Migration surface 554 

contours were estimated using 800 demes for all sections of Eurasia. We ran MCMC analysis 555 

for 500,000 MCMC iterations, including 300,000 burn-in iterations, and repeated the process 556 

with different seeds to ensure the convergence of the MCMC chains with parameters by 557 

default. 558 

Final spatial visualizations illustrating migratory surfaces were generated using R 559 

scripts provided by EEMS.PLOT function from the rEEMSplots package 560 

(https://github.com/dipetkov/eems). To test the robustness of the models, we applied a jack-561 

knife sampling approach and repeated the EEMS runs after iteratively excluding isolates 562 

from a single district. 563 

 564 

Admixture graph modeling for landrace subpopulations in East and South Asia  565 

We sought to find explicit population history models that can infer the dispersal routes in 566 

East Asia. Therefore, we reconstructed admixture graphs74 for Asian landrace subpopulations 567 

defined by the EEMS classification34. Bread wheat landraces in East and South Asia were 568 
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divided into ten subpopulations (R1-R10), and the individual list is available in 569 

Supplementary Table 19. First, we filter the data set using the following criteria: SNPs with 570 

linkage disequilibrium (LD) above 0.2 were removed using Plink “--indep-pairwise 50 10 571 

0.2”, no more than 5% missing data. Second, the CONVERTF function from AdmixTools40 572 

was used to produce eigenstrat format data files, and the qpgraph function was used to 573 

evaluate whether graph models fit the data, using the West Asian population as an outgroup. 574 

We then computed f2-, f3- and f4-statistics measuring allele sharing of two, three, or four 575 

sets of subpopulations and reported the maximum |Z|-score between predicted and observed 576 

values. To explore the space of all possible admixture graphs, we used a heuristic search 577 

algorithm named qpbrute75. Given an outgroup with which to root the graph, a stepwise 578 

addition order algorithm was used for adding leaf nodes to the graph. At each step, the 579 

insertion of a new node was tested at all branches of the graph, except the outgroup branch 580 

(West Asia landrace). Where a node could not be inserted without producing f4 outliers 581 

(|Z| ≥ 3), then all possible admixture combinations were also attempted. If a node could not 582 

be inserted via either approach, that sub-graph was discarded. If the node was successfully 583 

inserted, the remaining nodes were recursively inserted into that graph. All possible starting 584 

node orders were attempted to ensure complete coverage of the graph space. 585 

The effective use of qpGraph is to determine the relationships between subpopulations 586 

when the relationships indicated by phylogenetic trees are unclear76. We could put known 587 

subgroup relationships into the graph to reduce the amount of computation. We construct the 588 

admixture graphs of the South Asian and East Asian groups to fix the known structures using 589 

the heuristic search method, respectively. Then, the same heuristic algorithm was used to 590 

build the admixture graphs of 10 subpopulations. Finally, we fitted 61,214 possible 591 

admixture graph models and recorded the three graphs that left no f4 outliers (|Z| <3). We 592 
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then found the best-fit graph using the admixturegraph package77 in R to compute the 593 

marginal likelihood of these three models and their Bayes Factors (BF). 594 

 595 

Phylogenetic-network analysis 596 

PhyloNet41 inferred species hybridization events using the proportions of gene tree 597 

topologies to locate past hybridization within a phylogeny in the presence of incomplete 598 

lineage sorting. We inferred the hybridization events in Triticum through the following three 599 

steps. Firstly, get the individual ortholog gene trees. RAxML65 was used to build an ML gene 600 

tree for each identified ortholog gene (n = 4,806) under the GTRGAMMA substitution model. 601 

Subsequently, species networks modeled incomplete lineage sorting and gene flow using a 602 

pseudo-maximum likelihood approach were carried out with PHYLONET v.3.6.141 with the 603 

command “InferNetwork_MPL” and using the individual gene trees. Finally, network 604 

searches were performed using only nodes in the rooted ML gene trees with bootstrap support 605 

of at least 75%, allowing for 0–4 reticulations and optimizing the branch lengths and 606 

inheritance probabilities of the returned species networks under pseudo-likelihood. 607 

 608 

Abiotic variables collection and redundancy analyses 609 

We downloaded climate-related variables data and altitude information from WorldClim 610 

(https://www.worldclim.org/), which provides monthly climate precipitation and 611 

temperature data at 30 seconds (~1 km2) resolution for the period 1,970-2,000. Then the 612 

EXTRACT function of R package RASTER v.3.3.13 (https://cran.r-613 

project.org/web/packages/raster) was used for geographic data analysis. These climate 614 

variables included eleven temperature variables (Annual Mean Temperature, Mean Diurnal 615 

Range (Mean of monthly (max temp - min temp)), Isothermality (Temp2/Temp7) (×100), 616 

Temperature Seasonality (standard deviation ×100), Max Temperature of Warmest Month, 617 
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Min Temperature of Coldest Month, Temperature Annual Range (Temp5-Temp6), Mean 618 

Temperature of Wettest Quarter, Mean Temperature of Driest Quarter, Mean Temperature 619 

of Warmest Quarter, Mean Temperature of Coldest Quarter) and eight precipitation variables 620 

(Annual Precipitation, Precipitation of Wettest Month, Precipitation of Driest Month, 621 

Precipitation Seasonality (Coefficient of Variation), Precipitation of Wettest Quarter, 622 

Precipitation of Driest Quarter, Precipitation of Warmest Quarter, Precipitation of Coldest 623 

Quarter). 624 

We used redundancy analysis (RDA)43 to identify multiple climate variables important 625 

for explaining SNP variance in bread wheat landraces. We ran RDA utilizing a subset of 20K 626 

randomly chosen SNPs with no missing and MAF >0.05 for response variables. Then, RDA 627 

with variance partitioning was conducted to quantify the proportion of genome-wide SNP 628 

variation explained by 20 abiotic categories variables. To identify abiotic variables associated 629 

with genome-wide divergence among different regions, we conducted RDA using three 630 

significant variables (temperature, precipitation, and altitude) for different regions, including 631 

West Asia (WA), Europe (EU), Inner Asia (IA), East Asia (EA) and Southern Himalaya (SH) 632 

groups. Finally, all RDAs were conducted using the R package VEGAN 633 

(https://github.com/vegandevs/vegan). 634 

 635 

Selective sweeps detection in different regions of bread wheat 636 

The XP-CLR statistic44 was used to identify selective sweeps in different regions of bread 637 

wheat landraces. We divided Eurasian bread wheat landraces into five subgroups (West Asia, 638 

Europe, Inner Asia, East Asia, and Southern Himalaya) based on geographical, genetic, and 639 

ecological differences and calculated the selective sweep for each pair of subgroups. XP-640 

CLR was run with the grid size of 10 kb, the maximum number of SNPs of 500 within a 641 

window, and the correlation level as 0.95. The genetic distance was estimated from the 642 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.07.487499doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.07.487499
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

recombination rate data from a previous publication12. The R package GenWin 643 

(https://cran.r-project.org/web/packages/GenWin) was used to normalize XP-CLR statistics 644 

and detect the boundary of genomic regions with smoothness = 2,000 and method = 4. We 645 

considered the top 5% of the statistic results from each population as the threshold under 646 

selective sweep and calculated different thresholds for different subgenomes. 647 

 648 

Environmental association analysis in bread wheat 649 

Association between local environment and SNP frequency was identified using Bayenv 650 

2.045. 20 environmental variables (11 temperature variables, 8 precipitation variables, and 651 

altitude) were obtained from the WorldClim (https://worldclim.org/). A total of 13 wheat 652 

populations was identified on the basis of geographic and environmental variables using the 653 

k-means approach implemented in R package cluster (https://cran.r-654 

project.org/web/packages/cluster). To control for population structure, we used LD 655 

independent SNPs of A, B and D lineage (“--indep-pairwise 50 10 0.2”) to estimate the 656 

covariance matrix of 13 populations with 100,000 iterations. The association between the 1.5 657 

million SNPs and the 20 environmental variables was tested with 10,000 iterations for each 658 

SNP. The median value of the Bayes factor was calculated for each SNP using data from five 659 

independent Bayenv runs. The top 5% value of Bayes factor was set as the threshold to select 660 

environment associated SNPs for each of the 20 environmental variables. 661 

 662 

Detecting adaptation-associated SNPs and genes 663 

The regions with the top 5% XP-CLR score and environment-associated SNPs were 664 

identified as adaptation-associated regions. Genes in such regions were considered candidate 665 

adaptation-associated genes. Next, we used the snpEff (version 5.0)78 to annotate genetic 666 
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variations and predict the functional effects of SNPs in the longest transcript of adaptation-667 

associated genes, based on the gene annotation of IWGSC gtf v1.112. 668 

For the Ppd-D1 gene, known functional 5 bp deletion (33,953,310) and 16 bp insertion 669 

(33,952,522) loci genotypes were extracted from the raw VMap1.1 which contains the indels 670 

variants. The upstream ~2kb deletion was identified by profiling the reads depth in whole-671 

genome sequencing data for each sample. 672 

 673 

Population size fluctuation over time 674 

We used SMC++29 to infer historical effective population sizes of bread wheat and its wild 675 

relatives. The SNP data pre-processing was as same as inferring speciation time of bread 676 

wheat. Both gene and regulatory regions were removed, and pseudo-diploid genotypes were 677 

generated for the self-fertilization plants69 (Supplementary Note. 3). We set the upper bound 678 

of the number of generations as 100,000 and the lower bound to 100. We set the number of 679 

spline knots used in the internal representation of population size history to 30. The 680 

estimation process assumed a mutation rate of 6.5×10−9 mutation/generation/site. All other 681 

parameters were set to the default values. The final representation of the history of effective 682 

population size was made using a generation time of one year. To estimate the variance of 683 

effective population size in SMC++, we resampled the pseudo-diploid genotypes for each 684 

subpopulation (n = 20). If the number of subspecies is less than 5, we repeat the coalescent 685 

process of the same samples for 20 times. Finally, we plotted all independent SMC++ 686 

analyses for each considered subpopulation. The combined result was drawn in R using the 687 

"stat_smooth" function, and the confidence interval level is 0.95. 688 

 689 

Estimating the genetic offset of bread wheat in the future climates 690 
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Biogeographical modeling was used to identify environmental factors important to allele 691 

frequency change and to detect how allele frequency shifts along that factors79. We divided 692 

225 bread wheat landraces into 13 populations as described previously. We tested two sets 693 

of SNPs for modeling using gradient forest80. One SNP set was created by randomly choosing 694 

30,000 SNPs from 225 samples. The other was a random selection of 30,000 SNPs from the 695 

adaptation-associated SNPs described previously. 696 

We extended the gradient forest analysis to predict “genetic offset (GO)”79. Here, 697 

“genomic offset” measures the mismatch between current genotype and projected genotype 698 

in the future environment using associations across current environment gradients as a 699 

baseline81,82. Based on the NorESM1-M Global Climate Model (GCM), the future climate 700 

variables of 2050 (2040-2060) and 2090 (2080-2100) under four different greenhouse gas 701 

scenarios, Representative Concentration Pathways (RCPs), including RCP2.6, RCP4.5, 702 

RCP6.0, and RCP8.5, were retrieved from WorldClim (https://worldclim.org/). Those four 703 

RCPs represent different gas emission scenarios, reflecting conditions ranging from 704 

moderate (RCP2.6) to the extreme (RCP8.5)83. Nineteen bioclimatic variables from both 705 

current and predicted climates were transformed for each raster based on importance in 706 

predicting genomic variation using the gradient forest model. The Euclidean distance 707 

between the current and projected future values is the genetic offset of individual populations. 708 

The genetic offset was predicted by package gradientForest (https://gradientforest.r-forge.r-709 

project.org/) and projected by package rasterVis (https://cran.r-710 

project.org/web/packages/rasterVis/index.html) in R. 711 

 712 

Species distribution modeling 713 

Species distribution models (SDMs) combine observations of species distribution with 714 

environmental estimates51. We implemented correlative species distribution using 715 
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geographic coordinates of bread wheat and its wild relatives retrieved from online germplasm 716 

databases, such as the U.S. National Plant Germplasm System (https://npgsweb.ars-717 

grin.gov/gringlobal/search) to construct species distribution models (SDM)84,85. Nineteen 718 

environmental predictors retrieved from WorldClim (https://worldclim.org/) were used in 719 

our final SDM modeling. SDMs were then generated with package dismo in R (https://cran.r-720 

project.org/web/packages/dismo/index.html) with three modeling algorithms, Generalized 721 

Additive Models, Generalized Linear Models, and Random Forests. The species occurrence 722 

data were combined with 50 pseudo-absence data that were randomly generated within the 723 

area of study. Models were trained using 70% of data and tested with the remaining 30%. 724 

Each modeling algorithm was run 100 times and was evaluated via true skill statistics (TSS). 725 

The final models were then used for each species to project the potential distribution of each 726 

species under both current and projected future climatic (2040-2060 and 2080-2100) 727 

conditions.  728 
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Figure legends: 949 

 950 

Fig. 1 | The representative collection of wheats in this study. a, Common name, spike 951 

morphology, ploidy level, genome type, and breeding status of wheat accessions. b, 952 

Relationship of wheat accessions in the AB lineage illustrated by the phylogeny tree with 953 

wild emmer as the outgroup. c, Evolutionary relationship of bread wheat and its wild 954 

progenitors in the genera Triticum and Aegilops. The sample size of the individual taxa was 955 

labeled. The chronogram of the phylogeny was obtained by calculating the divergence of 956 

orthologous genes between species (Methods and Supplementary Fig. 9). 957 
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 959 

Fig. 2 | Demographic models of the bread wheat speciation. a, A geographic affiliation of 960 

IBS distances across bread wheat and its progenitors. Color scale indicates the distance of 961 

the AB subgenomes (blue) and the D subgenome (red) between bread wheat and progenitors. 962 

The map was created using the R package rworldmap. b, Timeline of evolutionary events 963 

related to bread wheat speciation. The top is the timeline of population split between wheats 964 

inferred from SMC++. The bottom is the wheat evolutionary timeline derived from 965 

archaeological evidence. c, The best supported demographic model of the speciation and 966 

introgression in wheats for AB subgenomes and D subgenome. The width of each grey 967 

rectangle indicates the estimated effective population size (Ne). Arrows among the grey 968 

rectangles are the migration rates (m) among different populations, and only 2Nem >1 is 969 

shown. The colored rectangle at the timeline indicates the time boundary of introgression.  970 
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 971 

Fig. 3 | Trans-Eurasian expansion of bread wheat. a, Proposed dispersal routes of bread 972 

wheat in Eurasia. The map colors showed the estimated effective migration surfaces (EEMS) 973 

representing migration barriers (orange) and channels (cyan). Pies on the map showed the 974 

ancestral proportion of the five lineages. Arrows were the estimated migration routes from 975 

the Fertile Crescent to Europe and Asia. Boxes mark subpopulation hybridization and new 976 

subspecies formation events, and the stippled areas represent the regions where the 977 

hybridization events took place. b, Admixture graph model identifies the hybridization 978 

events of bread wheat in ten regions along the eastward route. Solid lines with arrowheads 979 

represent uniform ancestries, and attached numbers show scaled drift parameter f2. Dashed 980 

lines represent mixed ancestries, and attached values indicate estimated proportion of 981 

ancestry. c, Distribution of split times estimated from cross-coalescence analysis of different 982 

regions. The median and quartiles with whiskers reaching up to 1.5 times the interquartile 983 

range are shown in boxplots. d, Inheritance probability of four Triticum subspecies formed 984 

through hybridization during bread wheat dispersal.  985 
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 986 

Fig. 4 | Geographic expansion reshaped the adaptive genetic diversity of bread wheat. 987 

a, Landraces mapped on the first two canonical axes of Redundancy analysis (RDA). Arrows 988 

represent 20 environmental factors (11 temperature factors, 8 precipitation factors, and 989 

altitude) that are correlated with genotype of landraces. Colored points representing 990 

accessions from different regions: Europe (EU), West Asia (WA), Inner Asia (IA), East Asia 991 

(EA), and South Himalayas (SH). b, Ranked importance of environmental factors based on 992 

individual RDA analyses. c, Proportion of total SNP variance explained in RDA by 993 

environmental variable categories in each region. d, Sequence Ppd-D1 gene on the 994 

chromosome 2D of the reference genome (Chinese Spring). Three causative loss-of-function 995 

alleles and non-causative frameshift mutation are marked with red rectangles. The light-996 

yellow rectangle represents the gene body. Blue rectangles represent exons. e, Selective 997 
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sweeps on chromosome 2D to identify adaptive footprints on Ppd-D1. Top: IA vs. SH. 998 

Bottom: SH1 (Altitude > 3000 m) vs. SH2 (Altitude < 1000 m). The horizontal dotted lines 999 

indicate the top 5% genome-wide cut-off level. Arrows marked the position and top quantile 1000 

of the Ppd-D1 gene. f, Haplotypes of Ppd-D1 gene in strangulata and bread wheat landrace. 1001 

The numbers represent three loss-of-function genetic variants corresponding to d. The 1002 

colored bars on the left represente different species/populations. g, Geographic distribution 1003 

of the stop-gain mutation (number 2) of Ppd-D1 gene. h, Correlation between frequency and 1004 

altitude of stop-gain mutation (number 2) of Ppd-D1 gene. i, Geographic distribution of ~2kb 1005 

deletion (number 1) of Ppd-D1 gene. j, Geographic distribution of 5-bp deletion (number 3) 1006 

of Ppd-D1 gene. Orange indicates the proportion of three loss-of-function haplotypes in g, i 1007 

and j, respectively. Geographic maps in g, i and j were created using the R package 1008 

rworldmap.  1009 
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 1010 

Fig. 5 | The population size fluctuation of wheats from the past to the future. a, Holocene 1011 

population dynamics in wheats. The top of this figure depicts the Ne for seven populations, 1012 

and the bottom of this figure is the relative Ne proportion of each population. b, Genetic 1013 

offset (GO) of bread wheat landrace based on 2040-2060 RCP8.5 and 2080-2100 RCP8.5 1014 

projections. c, Genetic offset of bread wheat landrace in six geographical regions, 1015 

corresponding to b. The median and quartiles with whiskers reaching up to 1.5 times the 1016 

interquartile range are shown in boxplots. d, Species distribution models (SDMs) projected 1017 

the geographical range of wild emmer and strangulata populations in the present and future 1018 

(2040-2060 and 2080-2100). Red dots pointed to the location of the samples in VMap1.1 and 1019 

the USDA website (https://npgsweb.ars-grin.gov/gringlobal/search). The green shaded areas 1020 

are suitable predicted regions for planting. 1021 
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