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Summary: In vitro fertilization (IVF) treatment protocols re-
quire frequent monitoring of the ovarian follicle growth process.
We report FollicleFinder, an open source pipeline for the auto-
mated, 3D segmentation of ovarian follicles. FollicleFinder also
accurately measures clinically-relevant morphological properties
such as diameter, surface area, and volume.
Availability: The FollicleFinder pipeline is available at
https://git.bsse.ethz.ch/iber/ovary- analysis
and the graphical user interface is available at h t t p s :
//git.bsse.ethz.ch/iber/follicle-tracker.

∗Correspondence: iberd@ethz.ch

1 Introduction

Assisted reproductive technology (ART) offers a range of treat-
ment options to couples having trouble conceiving. In vitro
fertilization (IVF) treatment protocols include the collection
of gametes. Successful IVF requires a set of multiple oocytes
and ovarian hyper stimulation is therefore used to support the
maturation of a larger number of ovarian follicles. During hy-
perstimulation, the ovarian response is monitored by repeated
transvaginal ultrasound (TVUS) examination, and clinical deci-
sions regarding the dosage and timing of hormonal stimulation
are based on the follicle number and size.

Previously, 2D slices were imaged in clinical settings, but 3D
segmentation algorithms have since been developed [1], and
several commercial software packages now offer the 3D segmen-
tation of ovarian follicles [2]. General Electric (GE) offers two
3D segmentation algorithms, VOCAL and SonoAVC [3], directly
with its ultrasound scanner. Both software packages measure
the volume and surface area of follicles [4]. Unfortunately, there
are too many segmentation errors that require correction by
hand as that either package could be used routinely in a clini-
cal setting [5]. Measurements by hand are, however, slow and
introduce a user-dependent variability. Accordingly, there is a
need for better algorithms that enable the automatic, accurate
detection and 3D segmentation of ovarian follicles.

Deep learning approaches have improved image segmentation
across scientific domains, and have recently been explored in the
context of ovarian follicle detection and segmentation. CR-UNet,
which combines a spatial Recurrent Neural Network (RNN) with
a standard 2D U-Net, yields promising results with 2D TVUS
images [2, 1]. A subsequent study used an S-Net architecture
for the simultaneous segmentation of ovary and follicles in 3D
TVUS volumes [6]. These deep learning approaches provide

more accurate segmentation of follicles in ultrasound images.
However, the source code and models were not made available,
making it difficult to build upon and reproduce this work.

To facilitate the translation of image-derived features into the
clinic and the development of new models of follicular selection,
there is a need for open source software that will serve as the
basis for these innovations. To fill this gap, we have developed
FollicleFinder, an open source platform for the detection and
measurement of follicles from transvaginal ultrasound images.

2 Approach

FollicleFinder performs instance segmentation of the follicles
from transvaginal ultrasound images using a 3D Unet via a
two step segmentation pipeline: first the ovary is segmented
and then the ovary is extracted and the follicles are segmented
within the extracted ovary volume (Figure 1A). See the Methods
section in the Supplementary Information for details on image
acquisition and network training. We constrain the segmenta-
tion to the biologically plausible region by first segmenting the
ovary. Since obtaining ground truth labels is laborious, we have
implemented a self-supervised denoising preprocessing step. De-
noising reduces the amount of training data required because
denoising and semantic segmentation are related tasks [7]. In-
deed our segmentations are on par with state of the art results
while training on only 4% of the data (Supplemental Informa-
tion, section 2). Morphological properties such as the volume,
surface area, and effective diameter are directly measured from
the segmented follicles. Thus, follicle growth dynamics can be
tracked over the course of the menstrual cycle (Figure 1C)

To facilitate usage of the FollicleFinder pipeline in research
and clinical settings, we have created a graphical user interface
as a napari plugin called FollicleTracker (Figure 1B). The Fol-
licleTracker plugin loads images from standard image formats
(e.g., TIFF, DICOM) and renders them in 2D and 3D in the
napari viewer. Via the graphical user interface, the user can use
FollicleFinder to segment the follicles and measure their prop-
erties. Since FollicleTracker is written as a napari plugin with
standard python libraries, we expect that others will be able to
extend it for usage with other analyses.

3 Results

3.1 Dataset

To help others further improve follicle segmentation algorithms,
we are releasing our image dataset of raw images plus ground
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Figure 1: (A) Overview of the segmentation pipeline. (B) Screenshot of the FollicleTracker graphical user interface. (C) Example
logitudinal morphometry of ovarian follicles.

truth masks. The dataset contains 94 3D transvaginal ultra-
sound images annotated by a medical doctor. These data were
collected by vaginosonographic examination as part of the Bicy-
cle study [8]. The data can be accessed via the ETH openBIS
instance.

3.2 Measurement of clinically relevant metrics

First, we compared the number of detected follicles to the num-
ber of follicles in the ground truth. Follicle count is a clinical
measure that can be used to guide IVF treatment. In particu-
lar, the antral follicle count, or the count of follicles 2-5 mm in
diameter can be used to assess ovarian reserve. FollicleFinder
counts are well correlated with the ground truth and have low
error (1.2 follicle mean error, Figure S2). Next, we considered
how accurately the size of follicles was measured. To do so,
we compared the effective diameter and volumes measured on
the FollicleFinder predictions to those measured in the ground
truth. For both effective diameter and volume, the measure-
ments were highly correlated (Pearson’s correlation coefficient,
r=0.99, Figure S3). Finally, we calculated the localization error
when comparing the centroid detected by FollicleFinder to the
centroid calculated from the ground truth. FollicleFinder had a
median localization error of 0.15 mm, which is within one voxel
(Figure S4).

4 Conclusion

In conclusion, we have developed a segmentation algorithm and
software that achieves clinically-relevant and state of the art
performance while only using 4% of the amount of training data.
We expect that model performance can be further improved
by increasing the amount of training data. By releasing both
our model and dataset as an open resource, we anticipate other
researchers will be able to build upon and improve segmentation
algorithms and integrate the rich 3D information into clinical
practice.
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1 Methods

1.1 Ethical Statement
The study was presented to and approved by the local ethics
review board (EKNZ ID 2016-01824). All activities were con-
ducted in accordance with the Declaration of Helsinki of 1975
(revised 2013), the International Council on Harmonisation of
Technical Requirements for Registration of Pharmaceuticals for
Human Use Good Clinical Practice guidelines and current na-
tional guidelines. All participants provided written informed
consent.

1.2 Image Acquisition
Transvaginal ultrasound images of both ovaries were acquired
in 50 women every second day during two natural cycles by a
medical doctor using a GE Healthcare Voluson E8 + RIC5-9-D
ultrasound imaging system.

1.3 Image Export and Training Dataset
The 3D images were exported in the DICOM format using GE
4D View software, and converted to tiff images. For training
and testing, a clinical expert hand-segmented 94 ovaries using
3D slicer (https://www.slicer.org, [9]).

1.4 Pre-processing
To prepare the ultrasound images for processing, we first rescaled
the images to 0.157288 mm x 0.157288 mm x 0.157288 mm vox-
els. Then we performed self-supervised denoising using the aydin
Noise2SelfFGR restoration function [10]. Finally, we replaced
the padding voxels with the mean intensity of the image. The
padding voxels are the voxels added to yield a rectangular image
from cone shaped detection volume.

1.5 3D UNet
We segmented the ovary using a 3D UNet [11] and extracted the
voxels corresponding to the ovary. Then, we used a second 3D
UNet to segment the follicles from the extracted image of the
ovary. Finally, we identified individual follicles via connected
component analysis.

1.6 Training ovary segmentation
We trained the ovary segmentation network using the ADAM
optimizer. We set the initial learning rate to 0.0004 and the

weight decay to 0.00001. We reduced the learning rate by a
factor of 5 after no improvement of 10 validation runs. We set
the batch size to 1 and validated after 1000 iterations. We used
the intersection over union as our validation metric. To augment
our training data, we applied random flips, random 90 degree
rotations, random rotations (± 30 degrees), and random elastic
deformations. We stopped training when the learning rate was
reduced to below 1E-6.

1.7 Training follicle segmentation
We trained the follicle segmentation network using the ADAM
optimizer. As an auxillary task, the network predicted the folli-
cle boundaries in addition to the follicles themselves. We set the
initial learning rate to 0.0002 and the weight decay to 0.00001.
We reduced the learning rate by a factor of 5 after no improve-
ment of 10 validation runs. We used intersection over union as
our validation metric. We set the batch size to 1 and validated
after 1000 iterations. To augment our training data, we applied
random flips, random 90 degree rotations, random rotations
(± 30 degrees), and random elastic deformations. We stopped
training when the learning rate was reduced to below 1E-6.

1.8 Volume measurement and surface area
measurements

We measured the volume of the segmented follicles with the
scikit-image[12] regionprops table function. To measure the
surface area of the of the follicles, we generated meshes from
the segmented objects. First, we generated a mesh using the
scikit-image marching cubes algorithm. Then we cleaned up the
mesh (i.e, made it watertight) using pymeshfix [13]. Finally, we
smoothed the mesh using the trimesh[14] filter taubin function
(a Laplacian filter). Finally, we calculated the surface area using
the Trimesh.area method().

1.9 FollicleTracker Graphical User Interface
We developed the graphical user interface (GUI) as a plugin
for napari [15], a GPU-accelerated nD data viewer. Within the
plugin, users can explore the data in both 2D and 3D. Our
plugin is structured in three parts: IO1, GUI and Model (Figure
S1).

Napari allows users to import 3D images in various formats
by drag-and-dropping them into the GUI. This includes images
saved in the TIFF or standard DICOM format. Note, that some

1Input-Output: Functions defining how data is loaded and saved.
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Figure S1: FollicleTracker is implemented as a napari plugin and has a modular architecture.

GE ultrasound machines have a feature to save 3D ultrasound
images as ”DICOM”, but then do not save them using the
universal DICOM standard but a proprietary image file format
[16]. The plugin allows users to save images as hdf5 files with
separate datasets for the ”left” and ”right” ovaries. The plugin
saves the follicle segmentations and all intermediate results from
each side. These files can then be opened in napari using the
plugin.

Through the controls on the napari plugin GUI, users can
start the segmentation of ovarian ultrasound images and mor-
phological feature analysis, such as volume and surface area of
all detected follicles. The morphological measurements of the
follicles in each ovary are then displayed in table similar to ex-
isting reproductive electronic health record programs. Users can
select a morphological feature to plot so they can understand the
distribution of follicle sizes. The default morphological feature
is volume.

The model that processes and analyses the input ovary images
is implemented separately from the GUI to ensure all variables,
images and settings only have one state. The model computa-
tion is run in a separate thread than the GUI, so that the viewer
remains responsive during segmentation and analysis. Any in-
termediate results are directly send back to the user interface
thread and added to the viewer. The intermediate results are
the de-noised image, the initial ovary segmentation, the pro-
cessed ovary segmentation, the initial follicle segmentation and
the processed follicle segmentation. The final results are the
morphological follicle measurements.

1.10 Data Availability

All images and corresponding ground truth annotations are avail-
able via the ETH openBIS instance.

1.11 Installation and Code Availability

All source code used to produce the quantitative plots is released
under the 3-clause BSD license, and is publicly available as a git
repository. Installation instructions are available on the readme
of each code repository.

• FollicleFinder: https://git.bsse.ethz.ch/iber/ovary-
analysis

• FollicleTracker: https://git.bsse.ethz.ch/iber/follic
le-tracker

• Source code for publication figures:
https://git.bsse.ethz.ch/iber/Publications/2021 y
amauchi follicle analysis

2 Quantitative Benchmarking of Ovarian
Follicle Segmentation

To validate our segmentation algorithm, we performed a 10-fold
cross-validation with each fold using a 80-10-10 train-validate-
test split. We evaluated the precision (true positives / (true
positives + false positives) ) and recall (true positives / (true
positives + false negatives )). We classify the error modes as
described in Greenwald et al.[17]. True positive is assigned when
the predicted object has an intersection-over-union greater than
0.5 with a matching object in the ground truth. A false positive
is when a predicted object does not match any ground truth
objects. A false negative is when a ground truth object does
not match any predicted objects. A merge error is when one
prediction object matches multiple ground truth objects. A split
error is when multiple predicted objects match to a single ground
truth object.

To benchmark the performance, we compared to the results
of a previous study [18], which reports results from a neural
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network architecture called CR-Unet. CR-Unet is network ar-
chitecture that incorporates a spatial recurrent neural network
unit between the encoder and decoder arms of a Unet and has
top end performance of recently-published algorithms (Table
1). A more recent study has achieved a recall of 0.91 for 4-12
mm diameter follicles with a network architecture called S-Net
[19], but the authors do not report the precision, so we did not
include it in the benchmarking. Similarly, a direct comparison
with CR-Unet is difficult because authors did not report the
method used to call detection events for calculating precision
and recall.

Table 1: Benchmarking of FollicleFinder performance. Prec.
is precision and Rec. is recall. CR-Unet benchmarks are taken
from [18].

2-5 mm 5-10 mm >10 mm
Prec. Rec. Prec. Rec. Prec. Rec.

Ours 0.79 0.79 0.92 0.93 1.00 0.95
CR-Unet 0.96 0.85 0.99 0.85 0.88 0.95

For large follicles (>10 mm diameter), FollicleFinder achieves
14% higher precision and similar recall when compared to CR-
Unet. For medium follicles (5-10 mm diameter), FollicleFinder
achieves 9% higher recall and 7% lower precision. Finally, for
small follicles, CR-Unet has higher precision and recall (18%
and 7%). As we explore in the following section, in spite of
the difference in precision, FollicleFinder is still able to make
accurate clinical measurements (e.g., counts and sizes). In sum-
mary, when compared to CR-Unet, FollicleFinder achieves better
performance on large follicles, similar performance on medium
follicles, and slightly worse performance. Finally, we note that
we have trained on far fewer images than CR-Unet (90 versus
2509 images) and we anticipate FollicleFinder’s performance
will be further improved as we incorporate more training data is
collected. Taken together, in spite of training on less data than
CR-Unet, FollicleFinder achieves similar performance.

3 Clinically-relevant Measurements

To characterize the performance of FollicleFinder on clinically-
relevant metrics, we compared the values obtained from our pre-
dictions from fold 0 of our 10-fold cross validation to the ground
truth values. In particular, we compared the follicle counts (Fig-
ure S2), follicle sizes (Figure S3), and follicle localization (Figure
S4). We see that for all measurements, the FollicleFinder values
closely match ground truth.
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Figure S2: (left) Predicted follicle counts are well-correlated
with ground truth for all follicle classes. (right) Mean absolute
count error is 1.2 follicles across all follicle classes.
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Figure S3: (left) Measured effective diameters from the pre-
dictions are well-correlated with ground truth measurements
(Pearson’s R=0.99)(right) Measured follicle volume from the
predictions are well-correlated with ground truth measurements
(Pearson’s R=0.99). Horizontal and vertical axes are log scale.
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Figure S4: Median follicle localization error is 0.15 mm, which
is less than one voxel.
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