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Abstract: Resting-state fMRI studies have revealed that individuals exhibit stable, functionally 
meaningful divergences in large-scale network organization. The strongest deviations (called 
network “variants”) have a characteristic spatial distribution, with qualitative evidence from prior 
reports suggesting that this distribution differs across hemispheres. Hemispheric asymmetries 
can inform us on the developmental constraints of idiosyncratic regions. Here, we used data from 
the Human Connectome Project to systematically investigate hemispheric differences in network 
variants. Variants were significantly larger in the right hemisphere, particularly along the frontal 
operculum and medial frontal cortex. Variants in the left hemisphere were smaller but slightly 
more numerous, appearing most commonly around the temporoparietal junction. We investigated 
how variant asymmetries vary by functional network and how they compare with typical 
network distributions. For some networks, variants seemingly increase group-average network 
asymmetries (e.g., the language network is slightly bigger in the left hemisphere and variants 
appeared more frequently in the ipsilateral hemisphere). For other networks, variants counter the 
group-average network asymmetries (e.g., the default mode network is slightly bigger in the left 
hemisphere, but variants were more frequent in the right hemisphere). Intriguingly, left- and 
right-handers differed in their network variant asymmetries for the cinguloopercular and 
frontoparietal networks, suggesting that variant asymmetries are relevant to lateralized traits. 
These findings demonstrate that idiosyncratic aspects of brain organization differ systematically 
across the hemispheres. We discuss how these asymmetries in brain organization may inform us 
on developmental constraints of network variants, and how they may relate to functions 
differentially linked to the two hemispheres.  
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Introduction: 1 

Resting-state functional Magnetic Resonance Imaging (rs-fMRI) has become a powerful tool for 2 

studying the underlying functional architecture of the brain by examining correlated intrinsic 3 

activity between brain regions ((Biswal et al., 1995); for a review see (Buckner et al., 2013; 4 

Power et al., 2015)). This approach has resulted in a robust description of functional networks  5 

that are linked to cognitive and sensorimotor processes (Doucet et al., 2011; Power et al., 2011; 6 

Yeo et al., 2011). The majority of research on this topic has used the traditional approach of 7 

grouping data together from many participants. However, there is a high degree of individual 8 

variability in functional connectivity patterns, particularly in association cortex (Mueller et al., 9 

2013). Thus, unique features at the individual level are blurred as a result of averaging across 10 

brains with varying network topography. Recent efforts to map network architectures at the 11 

individual level have developed precision-fMRI protocols: an approach that involves collecting 12 

extended amounts of rs-fMRI data across multiple sessions for each subject to produce reliable 13 

individualized measurements (Braga & Buckner, 2017; Gordon, Laumann, Gilmore, et al., 2017; 14 

Greene et al., 2020; Laumann et al., 2015) that are stable across days and tasks (Gratton et al., 15 

2018) and predict individual differences in cognition (Bijsterbosch et al., 2018; R. Kong et al., 16 

2019; Seitzman et al., 2019). While precision fMRI studies suggest that functional networks 17 

follow roughly the same organizational principles across participants, each person also exhibits 18 

idiosyncratic features in the form of localized regions where functional connectivity patterns 19 

diverge from the group average (i.e. the region shows a pattern of connectivity that is more 20 

correlated with a different network than what would typically be found at that location) (Gordon, 21 

Laumann, Gilmore, et al., 2017; Laumann et al., 2015; Seitzman et al., 2019).  We refer to these 22 

regions as network variants. Intriguingly, by visual examination, these individual differences 23 

appear to be relatively lateralized, with seemingly more variants appearing in the right 24 

hemisphere (see Fig. 3A in (Seitzman et al., 2019)). 25 

Network variants have been shown to be present in every individual, stable across days, and to 26 

exhibit a characteristic spatial distribution—they are most commonly observed in frontal and 27 

temporo-parietal cortex in regions overlapping higher-order cognitive networks in the group 28 

average (Seitzman et al., 2019). Additionally, network variants are often associated with higher-29 

level attention, default, and language networks, and rarely associated with networks involved in 30 

sensorimotor processes. While the relationship between network variants and individual 31 

differences in cognition and behavior is not yet fully understood, a previous report found that 32 

individuals cluster into subgroups that are associated with differences in behavior based on their 33 

variant characteristics (Seitzman et al., 2019). This relationship, together with the spatial 34 

distribution and typical network associations of variants suggest a potential link between their 35 

properties and individual differences in higher-level cognition. Factors including evolutionary 36 

(Buckner & Krienen, 2013), genetic (Anderson et al., 2021), and experiential variables (Newbold 37 

et al., 2020) have been proposed to guide the organization of closely-juxtaposed networks as they 38 

fractionate and specialize in the cortex (DiNicola & Buckner, 2021). However, the constraints 39 

that influence how and where network variants occur are currently largely unknown. 40 

Examining hemispheric asymmetries in network variants may inform how individual differences 41 

in functional brain organization arise. While there is a large degree of homology between the two 42 

hemispheres, several asymmetries have been reported in the human brain, ranging from 43 
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functional to anatomical and cytoarchitectonic in nature (see (Toga & Thompson, 2003) for a 1 

review). Macrostructural asymmetries are observed in a number of locations, including the 2 

trajectory of the Sylvian fissure (Hou et al., 2019), the volume of the temporal plane (Geschwind 3 

& Levitsky, 1968; Steinmetz, 1996), and in frontal and occipital petalia (X.-Z. Kong et al., 2018, 4 

2019). In addition, the two hemispheres have been differentially tied to specific functions. 5 

Perhaps the most notable examples for asymmetric function are language and visuospatial 6 

attention. While the right hemisphere makes important contributions to language processing 7 

(Jung-Beeman, 2005; Lindell, 2006), most individuals exhibit left-hemispheric dominance for 8 

core language function (Breier et al., 2000; Stippich et al., 2003), especially language production 9 

(Lidzba et al., 2011). In contrast, the majority of the population exhibits right-hemisphere bias 10 

for visuospatial processing (Cai et al., 2013; Weintraub & Mesulam, 1987). Asymmetries can 11 

also be present in behavioral traits like handedness, auditory perception, and motor preferences 12 

(Toga & Thompson, 2003). Functional brain networks also show hemispheric differences in 13 

group-averages (Gotts et al., 2013; Wang et al., 2014). This is especially true in the default mode 14 

network, which shows a left-hemispheric specialization, the ventral and dorsal attention 15 

networks which show right-hemispheric specialization, and the frontoparietal network, which is 16 

equally present but fractionates across the two hemispheres  (Wang et al., 2014). The language 17 

network is often hard to detect in group-averages due to strong variation across people (Braga et 18 

al., 2020; Fedorenko, 2012), but individual data suggest that it is relatively left-lateralized. 19 

These previous investigations show that hemispheric asymmetries exist at every level of brain 20 

organization. Here, we ask how individual differences in network organization vary across the 21 

two hemispheres by studying asymmetries in network variants. Such asymmetries can help our 22 

understanding of how individual differences arise and may elucidate important aspects of the 23 

relationship between brain organization and cognitive function. 24 

In this project, we first examine hemisphere-wide asymmetries in the number and size of 25 

idiosyncratic variants in a large group of young adult subjects from the Human Connectome 26 

Project. These asymmetries in the general features of variants would suggest differences in the 27 

overall developmental constraints of the two hemispheres. For example, a rightward 28 

lateralization in the frequency of network variants would indicate a more variable architecture of 29 

the right hemisphere compared to the left. Speculatively, this may indicate that the right 30 

hemisphere is less constrained by developmental programs and more malleable to experience-31 

dependent re-shaping. Next, we focus on specific locations and networks exhibiting hemispheric 32 

asymmetries and study how these asymmetries in network variants relate to group-average 33 

network asymmetries. Lastly, we investigate a potential link between individual differences in 34 

functional connectivity and behavior by looking at the relationship between network variant 35 

asymmetries and handedness. 36 

Materials and Methods: 37 

Datasets and overview 38 

Two independent and publicly available datasets were used for these analyses: The Human 39 

Connectome Project (Van Essen, Ugurbil, et al., 2012) and the Midnight Scan Club (Gordon, 40 

Laumann, Gilmore, et al., 2017). These datasets were used due to their relatively high amount of 41 
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low-motion data per subject, which allows individual-specific measures of functional networks 1 

to reach high reliability levels. Specifically, network variant measurements of the cortex can 2 

reach high reliability levels (r > 0.8) with about >45 minutes of good quality data or more (Kraus 3 

et al., 2021; Laumann et al., 2015).  4 

Our primary analyses were based on a subsample (N = 384) of unrelated subjects with > 45 min. 5 

of low-motion data from the HCP dataset. The HCP 1200-subject release includes one hour of 6 

resting-state data collected across two sessions for 1018 subjects (female = 546) between the 7 

ages of 22-35, including data from twins and non-twin siblings (for more details on the 8 

demographic breakdown of this sample, the reader is referred to Van Essen et al., 2013). 9 

Exclusion criteria for the HCP 1200-subject release included removing subjects who did not 10 

complete the study, and subjects who did not have at least 45 minutes of high-quality resting-11 

state data after motion censoring (single subject measurements of network variants achieve good 12 

reliability with more than 45 min. of low motion data; (Kraus et al., 2021)). This resulted in a 13 

subsample of 752 participants (female = 423; see Seitzman et al., 2019 for more details). If more 14 

than one member of a given sibship met the previous criteria, the subject with the most data was 15 

selected and the rest were excluded from most analyses, resulting in the subsample of 384 16 

unrelated subjects (female = 210). Note that, in order to increase the number of left-handed 17 

individuals, for the left- vs. right-hander comparisons, we used the full subsample of 752 18 

subjects from the HCP 1200 release. These subjects were categorized into three groups based on 19 

their Edinburgh Handedness Inventory (EHI) scores (Oldfield, 1971), resulting in 40 left handers 20 

(scores between -100 and -41), 670 right handers (scores between 41 and 100), and 42 21 

ambidexters (scores between -40 and 40). 22 

 23 

The MSC was used as a replication dataset to confirm the findings of the HCP in a highly 24 

sampled precision-fMRI dataset. The MSC includes five hours of resting-state BOLD data from 25 

10 unrelated subjects collected across ten sessions. Due to high motion and drowsiness, one 26 

subject was excluded from analyses (Gordon, Laumann, Gilmore, et al., 2017; Laumann et al., 27 

2015). Thus, data from 9 subjects (female = 4, ages 24-34, all right handers) were used to 28 

replicate comparisons of spatial distribution of variants.  29 

An additional dataset of 120 neurotypical young adults, the WashU 120 dataset (female = 60, 30 

mean age 24.7 ± 2.4 years; (Power et al., 2013)), was used as the group average from which 31 

canonical network templates were derived and to which individual-specific seed maps were 32 

compared to define network variants. 33 

MRI acquisition parameters 34 

The HCP dataset was collected on a Siemens 3T Skyra with a 32-channel head coil. T1-weighted 35 

(256 sagittal slices, TR = 2400 ms, TE = 2.14ms, 3D MPRAGE sequence) and T2-weighted (256 36 

sagittal slices, TR =3200ms, TE = 565ms, Siemens SPACE sequence) images were collected for 37 

each subject using isotropic 0.7mm voxels (Glasser et al., 2013). High-resolution eyes-open 38 

resting-state fMRI data were collected using 2mm isotropic voxels (72 sagittal slices, TR = 39 

720ms, TE = 33ms, multi-band accelerated pulse sequence with multiband factor = 8) (Glasser et 40 

al., 2013, 2016). See (Glasser et al., 2013, 2016) for additional detailed information on 41 

acquisition in the HCP dataset. 42 
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The MSC dataset was collected on a Siemens 3T Trio with a 12-channel head coil. The dataset 1 

includes several types of structural data, including four high-resolution T1w images (0.8mm 2 

isotropic voxels, 224 sagittal slices, TE = 3.74ms, TR = 2400ms) and four high-resolution T2w 3 

images (0.8mm isotropic voxels, 224 sagittal slices, TE = 479ms, TR = 3200ms). Eyes-open 4 

resting-state fMRI data were collected using a gradient-echo EPI sequence with 4mm isotropic 5 

voxels (36 slices, TE = 27ms, TR = 2200ms) (Gordon, Laumann, Gilmore, et al., 2017).  6 

The WashU 120 dataset was collected on a Siemens 3T Trio with a 12-channel coil and includes 7 

a high-resolution T1-weighted image (176 slices, isotropic 1mm voxels, TE = 3.06ms, TR = 8 

2400ms) and eyes-open resting-state BOLD data (TR = 2500ms, TE = 27ms, gradient-echo EPI 9 

sequence, 4mm isotropic voxels) (Power et al., 2013). 10 

Preprocessing and functional connectivity processing of functional data 11 

Data were preprocessed identically as in (Seitzman et al., 2019). Briefly, HCP volumetric 12 

resting-state time series from each participant were  preprocessed as recommended by the 13 

minimal preprocessing pipelines (Glasser et al., 2013). Then, the data underwent field map 14 

distortion correction, mode-1000 normalization, motion correction via a rigid body 15 

transformation within each run, and affine registration of BOLD images to a T1-weighted image 16 

and affine alignment into MNI space. The MSC dataset was preprocessed similarly with the 17 

following exceptions: this data also underwent slice timing correction and affine alignment was 18 

mapped onto Talaraich rather than MNI space.  19 

Resting-state data were further denoised using regression of white matter, cerebrospinal fluid, the 20 

global signal, six rigid-body parameters and their derivatives and expansion terms (Friston et al., 21 

1996). High-motion frames were identified using frame-by-frame displacement and censored to 22 

remove bias in functional connectivity (Power et al., 2012). Frames with FD > 0.2 for MSC data 23 

(Gordon, Laumann, Gilmore, et al., 2017) and filtered FD > 0.1 for the HCP data (Fair et al., 24 

2020) were flagged as being contaminated by motion and removed from analyses. Note that for 25 

two MSC subjects (MSC03 and MSC10) the filtered FD (motion parameters low-pass filtered < 26 

0.1 Hz) measure was also used to identify to-be-censored frames in order to address respiratory 27 

related artifacts in their FD parameter (Gordon, Laumann, Gilmore, et al., 2017; Gratton et al., 28 

2020). 29 

For both datasets, the first 5 frames of each functional run were dropped, and the frames that 30 

were flagged as motion-contaminated were removed and interpolated using a power-spectral 31 

matched interpolation (Power et al., 2014) and a temporal bandpass filter was applied from 0.009 32 

to 0.08 Hz. Volumetric BOLD data was then mapped to each subject’s midthickness left- and 33 

right-hemisphere cortical surfaces generated by FreeSurfer from the atlas-registered T1 (Dale et 34 

al., 1999). The native surfaces were then aligned to the fsaverage surface in 32k fs_LR space and 35 

the two hemispheres were registered to each other using a landmark-based algorithm (Anticevic 36 

et al., 2012), such that they would be in geographic correspondence with each other to allow for 37 

point-to-point comparisons between each individual and across hemispheres (Glasser et al., 38 

2013).  Lastly, surface resting-state timeseries were spatially smoothed with a geodesic 39 

smoothing kernel (σ = 2.55, FWHM = 6mm). Functional connectivity was then calculated via 40 
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temporal correlation between each vertex (a point on the cortical surface) timeseries with every 1 

other vertex timeseries. 2 

Mapping locations of individual differences in brain networks  3 

Locations of strong individual differences in functional network organization were identified 4 

using the “network variant” method as in (Seitzman et al., 2019). Figure 1 shows a schematic 5 

representation of the full variant identification and functional network assignment procedure. 6 

To begin, a cortical vertex-to-vertex connectivity map was created for each subject based on 7 

their BOLD time series, concatenated across runs. Individual-to-group similarity maps were then 8 

obtained for each subject by comparing a given individual’s connectivity pattern at each vertex 9 

to the group average (WashU 120) connectivity pattern at that vertex using spatial correlation. 10 

Each subject’s similarity map was then thresholded to the lowest decile to identify the 10% of 11 

vertices that were most different between the individual and the group average. These vertices 12 

with the lowest correlation values were then binarized and small clusters (<50 vertices) were 13 

removed. Susceptibility areas (primarily along the inferior temporal cortex) with mean BOLD 14 

signal under 750 in the group average were set to 0 and excluded from analyses for all 15 

individual-specific connectivity maps due to poor signal quality.  16 

In order to account for nearby, but distinct, network variant regions, these initial network 17 

variants were further refined into separable units as in (Dworetsky, Seitzman, Adeyemo, Smith, 18 

et al., 2021). This procedure takes into account the homogeneity of functional connectivity 19 

within a contiguous region, as well as the proportion of the variants’ territory that was dominated 20 

by a single network. Homogeneity was assessed using principal component analysis of a 21 

variant’s vertices’ seed maps, then calculating the variance explained by the first principal 22 

component of the variant (Dworetsky, Seitzman, Adeyemo, Smith, et al., 2021; Gordon et al., 23 

2016). Network dominance was assessed via a vertex-wise template matching technique that 24 

assigned each vertex to the canonical network that was most similar to the vertex’s seed map 25 

based on Dice coefficient (see (Dworetsky, Seitzman, Adeyemo, Smith, et al., 2021)). Variants 26 

that did not meet the threshold of 66.7% homogeneity and 75% network dominance in the 27 

individual network map were split along the network boundaries of a vertex-wise network map, 28 

producing the final analyzed network variants. Any resulting clusters smaller than 30 contiguous 29 

vertices were removed due to their small size. Previous analyses have shown that these 30 

parameters can identify large clusters that may consist of separate but adjacent network variants 31 

(Dworetsky, Seitzman, Adeyemo, Smith, et al., 2021).  32 

By definition, network variants are associated with different connectivity patterns than what 33 

would normally be found at that location. In order to assess which large-scale network a variant 34 

was associated with, the resulting variants were matched to the best-fitting functional network 35 

using network templates from 14 canonical networks: default mode network (DMN), visual 36 

network, frontoparietal network (FPN), dorsal attention network (DAN), language network, 37 

salience network, cinguloopercular network (CON), somatomotor dorsal (SMd) and lateral (SMl) 38 

networks, auditory network, temporal pole network (T-pole), medial temporal lobe network 39 

(MTL), parietal memory network (PMN), and parietal occipital network (PON). Templates (or 40 

average connectivity maps) for each network were generated using data from the WashU 120 41 
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dataset (Gordon, Laumann, Gilmore, et al., 2017; Seitzman et al., 2019). For each network 1 

variant, the average seed map for all vertices within the variant was computed and compared in 2 

similarity to each of the network template connectivity patterns via Dice coefficient (as in 3 

Dworetsky et al., 2021). The variant was then assigned to the network to which it was most 4 

similar. Network variants were removed if they did not match to any functional network (Dice ≤ 5 

0) or if more than 50% of their territory overlapped with the territory of its assigned network in 6 

the group average. Note that, while here we use the label “language network” to refer to the 7 

network located on the superior temporal gyrus and a portion of the inferior frontal gyrus, this 8 

network has also been referred to as the “ventral attention network” (VAN) in previous reports. 9 

However, recent reports suggest that this network is more accurately described as a language 10 

network due to its correspondence with the expected distribution of language regions (Braga et 11 

al., 2020; Lipkin et al., 2022).  12 
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  1 

Figure 1 - Procedure for identifying “network variants”, locations of strong individual differences in functional 2 

brain networks. Network variant regions are identified by comparing the functional connectivity of an individual to 3 

that of a group average derived from data from 120 young adults (WashU 120; see Methods). (A) First, a vertex-4 

wise comparison of an individual-specific functional connectivity map and the group average (shown for a seed 5 

located near temporoparietal junction) is calculated using spatial correlation, resulting in an individual-to-group 6 

similarity map containing a continuous similarity value at each vertex. (B) The individual-to-group similarity map is 7 

then binarized to the lowest 10% of correlations to identify regions where the individual is most different from the 8 

group; small regions or regions with low BOLD signal are excluded. (C) These initial contiguous regions are then 9 

split into separable homogenous clusters as in (Dworetsky, Seitzman, Adeyemo, Smith, et al., 2021) (see Methods) 10 

and small clusters (<30 vertices) removed. Shown are average seed maps for two separable clusters that were split 11 

during the refinement process. (D) Lastly, each resulting variant region is assigned to the canonical network to 12 

which its average seed map is most similar, judged via Dice coefficient. 13 

 14 

 is 
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Comparisons of network variants between the left and right hemispheres 1 

The left and right hemispheres exhibit marked asymmetries at every scale of organization, thus, 2 

we asked if the properties of individual differences observed in functional connectivity patterns 3 

also vary across the two hemispheres. 4 

General Size and Number of Variants Across Hemispheres  5 

We first examined whether general properties of size and number of network variants differ 6 

across the two hemispheres. To this end, we compared the total number of variants and average 7 

variant size between the left and right hemisphere. Variant size was calculated by converting 8 

variant vertices to surface area using the wb_command function -surface-vertex-areas on the 9 

Conte69 group average midthickness cortical surface (Glasser & Van Essen, 2011). These were 10 

then compared between the left and right hemispheres. We also calculated a “magnitude” of 11 

asymmetry defined as the difference in the measurements of the two hemispheres divided by the 12 

greater value. This resulted in a percentage that indicates how much greater one hemisphere was 13 

compared to the other. 14 

Significance was assessed using permutation testing for each of these properties. First, the true 15 

difference between the number of variants in the left and right hemispheres was calculated; this 16 

value was averaged across participants. Then, for 1000 permutations, left and right hemisphere 17 

labels were permuted by subject (randomly assigned a value of 1 to one half of subjects, and 0 to 18 

the remaining half; if 1, their hemispheres would be flipped). For each permutation, we averaged 19 

the differences across subjects’ permuted hemispheres. We repeated this procedure 1000 times to 20 

create a null distribution against which the true difference score was compared. The significance 21 

threshold was set at p < 0.025 for two-tailed tests. We used false discovery rate (FDR) correction 22 

for multiple comparisons across two tests: number of variants and average variant size. 23 

Spatial Distribution of Variants Across Hemispheres 24 

Since some large-scale networks are associated with relatively lateralized functions, we 25 

hypothesized that network variants might exhibit different spatial distributions across the 26 

hemispheres. We first conducted an omnibus test of the similarity in variant distributions 27 

between the left and right hemisphere. Variant maps were overlapped across subjects to quantify 28 

the frequency of variants at each vertex. The resulting overlap maps contained a value at each 29 

vertex for the proportion of participants who have a variant at that location. The variant 30 

frequency maps of the left and right hemispheres were then compared to each other by aligning 31 

each homotopic pair and then using spatial correlation to assess the overall (true) similarity of 32 

their spatial distribution of variants. Given that the two hemispheres were registered to each 33 

other, we define the homotopic pair of a given vertex as the vertex with the same index in the 34 

contralateral hemisphere. The significance of their similarity was assessed using a permutation 35 

approach, where the true similarity was compared with a permuted null distribution. As in 36 

previous examples, in each of 1000 permutations the left and right hemispheres labels were 37 

permuted by subject (randomly assigned a value of 0 or 1; if 1, their hemispheres would be 38 

flipped). Then, a permuted variant overlap map was created by summing the number of variants 39 

present at each vertex across participants. Using this permuted overlap map, a correlation value 40 
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was again obtained to quantify the overall similarity in variant frequency between the permuted 1 

left and right hemispheres. Because we hypothesized that the left and right hemisphere would be 2 

significantly different in variant distribution, we then calculated how many of the correlation 3 

values from the 1000 permutations fell below the true correlation value to obtain a significance 4 

score. Thus, this was a one-tailed test, and the significant threshold was set at p ≤ 0.05. This 5 

analysis was replicated in nine MSC subjects.  6 

We conducted an additional post-hoc test to identify the locations that were most different across 7 

the two hemispheres. For this test, a difference map was created by subtracting the frequency of 8 

variants at each vertex in the right hemisphere from its homotopic pair in the left hemisphere. 9 

Significant locations in this difference map were identified through a permutation-based 10 

approach with cluster correction to correct for multiple comparisons. Specifically, across 1000 11 

iterations, the left and right hemisphere labels were permuted by subject and used to create a 12 

variant overlap map. For each permutation, a vertex-by-vertex difference map between the 13 

permuted left and right hemispheres was created. We then thresholded each map at 5% 14 

difference (~19 subjects in the HCP subsample of 384 subjects) and calculated the size of any 15 

clusters of variants that exceeded this threshold, creating a distribution of cluster sizes. Clusters 16 

in the true difference map were then compared to this permuted distribution of cluster sizes; 17 

clusters larger than 95% of the clusters obtained through permutation were interpreted as 18 

significant. Additional cluster thresholds (3% and 10% difference) were tested and included in 19 

Appendix B to show the robustness of results to this selection choice.  20 

Networks Asymmetries Across Hemispheres 21 

We then examined if specific networks showed asymmetries in the number of idiosyncratic 22 

regions across the two hemispheres. To accomplish this, we counted the number of variants that 23 

were assigned to each network, for each hemisphere and each subject separately. We then 24 

calculated a difference score (by network) for each subject, where the number of variants 25 

assigned to a network in the right hemisphere was subtracted from the number of variants that 26 

were assigned to the network in the left hemisphere. The difference scores for all participants 27 

were then averaged to obtain a mean difference score for each network. To test for significance, 28 

we again used a permutation approach, where we randomly flipped the left and right hemisphere 29 

labels for variants on a subject-level and recalculated average difference scores for each network. 30 

This was repeated 1000 times to generate a full null distribution. We compared the true 31 

difference scores to these null distributions to assess significance. The significance threshold was 32 

set at p ≤ 0.025 for a two-tailed test. We again used FDR correction for multiple comparisons 33 

across 14 comparisons for each network.  34 

To contextualize asymmetries in network assignment of variant regions, we examined the 35 

symmetry of each network in the reference group used in these analyses (WashU 120; see 36 

Appendix C for results of this comparisons in two additional group averages: Midnight Scan 37 

Club and subsample of 384 HCP subjects). To do this, we first identified the vertices belonging 38 

to each network, and calculated the sum of their surface area using the wb_command function -39 

surface-vertex-areas on the Conte69 group average midthickness cortical surface (Glasser & 40 

Van Essen, 2011). Then, this sum was divided by the total surface area of the corresponding 41 

hemisphere to account for slight differences in hemisphere size. Lastly, we calculated the 42 
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difference between the proportion of surface area that each network accounts for across the two 1 

hemispheres. 2 

Analysis of by dominant handedness 3 

We next investigated the potential relationship between hemispheric asymmetries in individual 4 

differences and dominant handedness, which is itself lateralized in most individuals and has been 5 

linked to other relatively lateralized functions such as language production (Knecht et al., n.d.; 6 

Perlaki, 2013). We repeated the described analyses for left- and right-handers separately. HCP 7 

subjects in a sample of 752 individuals were divided into handedness groups according to their 8 

Edinburgh Handedness Inventory laterality coefficient (LQ; Oldfield, 1971). Left-handers and 9 

right-handers were determined to be so if their LQ was between -100 and -41 and 41 and 100, 10 

respectively. For each handedness group, we repeated the process of obtaining hemispheric 11 

difference scores for average variant size and number of variants. The hemispheric differences 12 

(left – right hemisphere) for all members of each handedness group were then averaged and 13 

compared between left and right handers. We assessed significance of the handedness effect 14 

using permutation testing. This time, we permuted the handedness group labels. Handedness 15 

labels for all participants were shuffled, retaining the size of each handedness group (i.e., 40 16 

random participants were labeled left handers and 670 participants were labeled right handers). 17 

For each shuffled iteration, we compared the hemispheric differences between the permuted left 18 

and right handers. This process was then repeated 1000 times to obtain a distribution of 19 

comparisons between groups. The true difference score was then compared to that null 20 

distribution to assess whether left and right handers differed from each other in the different 21 

variant properties described here. This process was also employed to compare left and right 22 

handers in the network assignment and spatial distribution of variants.  23 

 24 

Results: 25 

Lateralization of structure, function and behavior are thought to occur as a consequence of 26 

multiple factors, including evolutionary, developmental, experiential, and pathological variables 27 

(see Toga & Thompson, 2003 for review). Hemispheric asymmetries exist at all levels of brain 28 

organization, including large-scale brain systems. Here, we examined whether hemispheric 29 

asymmetries are present for network variants: focal regions of high dissimilarity between an 30 

individual’s functional network pattern and that of a group average. Asymmetries in these 31 

idiosyncratic network variants could provide insight into the nature of individual differences in 32 

brain organization and how they arise. Thus, here we compare the properties of network variants 33 

between the two hemispheres.  34 

The publicly available Human Connectome Project dataset was used for primary analyses in this 35 

manuscript. This dataset contains relatively high amounts of resting-state data for a large sample 36 

(N = 384) of young adults. The Midnight Scan Club, a smaller but highly sampled dataset (N = 9 37 

individuals with 10 sessions each), was used to replicate findings of asymmetries in spatial 38 

distribution. We examined four properties of network variants. (1) First, we assessed 39 

asymmetries in the average size and number of variants. (2) Next, we compared the spatial 40 

distribution of network variants across hemispheres. (3) Then, the frequency with which variants 41 
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are associated with canonical networks was also compared across hemispheres. (4) Lastly, we 1 

provide a deeper examination of the relationship between network variant asymmetries and 2 

handedness, a prominent behavioral asymmetry. 3 

Average frequency and size of network variants differ significantly across hemispheres 4 

To better understand the nature of hemispheric asymmetries in individual differences in brain 5 

organization, we examined whether variants tend to be bigger or appear more frequently in one 6 

hemisphere over the other. On average, network variants were significantly bigger on the right 7 

hemisphere compared to the left (p < 0.001 based on permutation testing; Fig. 2A; left 8 

hemisphere = 236.1 mm2, right hemisphere = 285.3 mm2). There was also a small but significant 9 

difference in the number of variants in each hemisphere, with the left hemisphere showing 10 

slightly more variants than the right (p = 0.002, Fig. 2B; left hemisphere = 11.16 variants, right 11 

hemisphere =10.64 variants). The higher average variant size in the right hemisphere and higher 12 

average number of variant clusters in the left hemisphere do not trade off, however, as there are 13 

overall significantly more variant vertices in the right hemisphere (p < 0.001; left hemisphere = 14 

1255 vertices, right hemisphere = 1420 vertices; Fig. 2C). These results indicate that network 15 

variants exhibit different properties across the two hemispheres, such that the right hemisphere 16 

has bigger variants and more overall variant territory, while variants in the left hemisphere are 17 

smaller but slightly more numerous. 18 

 19 

Figure 2 – Comparison of the average number of separable variant regions and variant vertices, and 20 

average variant size across hemispheres. 21 

The violin plots show the distribution of measures of (A) average variant surface area (in mm2), (B) average 22 

number of network variant regions, and (C) average number of variant vertices in the left hemisphere (left side 23 

of violin plot, blue) and the right hemisphere (right side of violin plot, red). An asterisk indicates the mean and a 24 

line indicates the median of each distribution. The right hemisphere had larger, but slightly fewer unique variant 25 

units, than the left hemisphere. Overall variant vertices are significantly more frequent in the right hemisphere, 26 

suggesting that size was the dominant difference factor. Thus, the right hemisphere is associated with more total 27 

variant territory. 28 

 29 

Average Variant SizeA B CNumber of Variant Regions Number of Variant Vertices

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2022. ; https://doi.org/10.1101/2022.04.08.487658doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.08.487658
http://creativecommons.org/licenses/by-nc-nd/4.0/


Spatial distribution of variants differs significantly across hemispheres 1 

A relative lateralization can be observed in visualizations of the spatial distribution of network 2 

variants from past work (see Fig. 3 in Seitzman et al., Fig. 3A here). This difference is most 3 

apparent in the lateral frontal cortex and near the temporo-parietal junction. Here, we tested 4 

whether this observed difference is significant by quantifying the similarity of variant spatial 5 

distributions between the left and right hemisphere.  6 

 7 

Overlap maps of network variants were created for each hemisphere across subjects in the HCP 8 

dataset (Fig. 3A). The similarity in spatial distribution of network variants was compared 9 

between the two hemispheres using spatial correlation. This true similarity was then compared to 10 

those obtained between permuted comparisons (see Methods). The results of this analysis 11 

indicate that the spatial distribution of network variants differs significantly across the two 12 

hemispheres (Fig. 3B; p<0.001, true similarity between the left and right hemisphere: r = 0.74, 13 

mean permuted similarity: r = 0.99). This finding was replicated using the MSC dataset 14 

(Appendix A; p<0.001, true similarity: r = 0.39, mean permuted similarity: r = 0.52; note that 15 

here, correlations between all spatial distributions are substantially lower, likely due to the 16 

smaller sample size of the MSC dataset). 17 

 18 

To examine the specific locations where left and right hemispheres differ, we then did a second-19 

level test where we subtracted the frequency of variants at each vertex in the right hemisphere 20 

from its homotopic vertex in the left hemisphere. A permutation-based cluster correction was 21 

conducted to identify locations of significant difference between the hemispheres (see Methods). 22 

This analysis shows that variants appear more frequently in the frontal operculum, angular gyrus, 23 

and superior medial frontal cortex in the right hemisphere and in the supramarginal gyrus, 24 

superior anterior frontal gyrus, and anterior portions of the medial temporal gyrus in the left 25 

hemisphere (Fig. 3B). This result was replicated using a smaller sample with high amounts of 26 

data per subject (MSC). The results of this replication analysis show a similar spatial distribution 27 

and regions of difference, though due to the small sample size, clusters were sparser (Appendix 28 

A).  29 

 30 

 31 
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 1 

 2 
Figure 3 - Hemispheric Asymmetries in the Spatial Distribution of Network Variants 3 

(A) Frequency of network variants across 384 unrelated subjects from the Human Connectome Project. Network 4 

variants have a high frequency in regions of association cortex. (B) Permutation test examining the correlation 5 

between variant overlap maps of left and right hemisphere. Permuted correlation values indicate correlations 6 

between overlap maps obtained by randomly flipping the left and right hemispheres of subjects (see Methods); red 7 

dot indicates the true correlation. The two hemispheres have significantly lower similarity than expected by chance. 8 

(C) A difference map (projected on the left hemisphere for visualization) shows the regions in which the two 9 

hemispheres differ in the proportion of variant frequency, p<0.05 cluster-corrected at a frequency difference 10 

threshold of 5% (see Appendix B for other thresholds). Warm colors indicate higher variant frequency in left 11 

hemisphere, while cool colors indicate higher variant frequency in right hemisphere. The spatial distribution of 12 

network variants differs significantly across the two hemispheres, with the biggest differences observed in the 13 

inferior frontal gyrus, near the temporal parietal junction, and other localized areas of the frontal cortex. 14 

 15 

Hemispheric asymmetries in the network assignment of variants 16 

Network variants, by definition, are deviations from the canonical organization of a given 17 

functional network; next, we explored how variants associated with specific networks differed 18 

between the hemispheres. First, each variant was matched to one of 14 canonical networks using 19 

a template-matching procedure based on its seed map correlation pattern (Fig. 1D; see Methods). 20 

We then contrasted the number of variants associated with each network in the left and right 21 

hemisphere. We found significant differences for 7 of these networks (after FDR correction for 22 

g 
. 
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multiple comparisons across 14 networks): default mode (DMN), visual, language, cingulo-1 

opercular (CO), somatomotor lateral (SMl), medial temporal lobe (MTL), and parietal medial 2 

(PMN) networks. Variants were more commonly found in the right hemisphere for DMN 3 

(p<0.001), CO (p<0.01), and PMN (p<0.02), while variants of the visual (p<0.001), language 4 

(p<0.001), SMl (p<0.001) and MTL (p<0.01) networks were more commonly found in the left 5 

hemisphere (Fig. 4). Thus, hemispheric asymmetries exist in the network assignment of variants, 6 

but the direction of this asymmetry depends on the specific network. Namely, some networks are 7 

more likely to exhibit idiosyncratic regions in the left hemisphere, such as the language and 8 

sensory/motor networks, while others are more likely to show idiosyncratic regions in the right 9 

hemisphere, like the default mode and cingulo-opercular networks. Yet other networks show a 10 

more even distribution of variants, like the frontoparietal and dorsal attention networks. 11 

 12 

Figure 4 - Hemispheric Differences in Network Assignment of Variants.  13 

A comparison of the number of variants associated with each network in left and right hemispheres (color = 14 

network). Permutation testing shows that the visual, language, somatomotor lateral, and medial temporal lobe 15 

networks have significantly more variants in the left hemisphere, while the default mode, cingulo-opercular, and 16 

parietal memory networks have significantly more variants in the right hemisphere than would be expected by 17 

chance.  18 

Some of the networks that exhibit significant asymmetries in variants have been linked to 19 

functions or behaviors proposed to be differentially associated with the two hemispheres. For 20 

example, the language network has been shown to be left-hemisphere dominant in most 21 

individuals studied using precision approaches (Braga et al., 2020). Similarly, the DMN has been 22 

linked to episodic memory retrieval (Andrews-Hanna et al., 2010, 2014), a function that is 23 

hypothesized to be relatively right-lateralized (Desgranges et al., 1998; Tulving et al., 1994). 24 

 25 

Here, we looked in more detail at the spatial distributions of network variants for those that 26 

showed the most prominent asymmetries (Fig. 5). Note that these maps are not cluster corrected 27 

for significance, but are instead used as an exploratory visualization of where the differences in 28 

spatial distribution of variants assigned to these networks are more apparent.  29 

The language network was associated with more idiosyncratic variants in the left hemisphere 30 

especially on the supramarginal gyrus and pars opercularis, adjacent to group-average language 31 

, 
re 

en 
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network regions. The cinguloopercular network was associated with more variants in the right 1 

hemisphere, especially in a superior frontal area anterior to the precentral gyrus, further from its 2 

typical distribution. The default network had more variants in the right hemisphere, especially in 3 

regions adjacent to typical default locations along the superior frontal sulcus, and in some 4 

regions along the operculum and caudal pre-frontal cortex. The visual network showed more left 5 

hemisphere variants on the intraparietal sulcus and superior temporal sulci, and along the 6 

parietal-occipital sulcus. The somatomotor-lateral network showed highest differences in a 7 

region on the inferior precentral gyrus, where variant frequency was significantly higher in the 8 

left hemisphere.   9 

 10 

Figure 5 – Areas of asymmetry in networks that showed significant hemispheric differences in their number 11 

of network variants. We examined the networks that showed significant hemispheric asymmetries in variant 12 
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frequency in more depth to observe the regions where they differ the most across the two hemispheres. The 1 

language, visual, somatomotor lateral, and medial temporal lobe networks have overall higher variant frequency in 2 

the left hemisphere, while the cinguloopercular, default mode, and parietal memory networks have higher numbers 3 

of variants in the right hemisphere. The lateral segments show variant frequency maps, where the color reflects the 4 

proportion of participants that have a variant for each network at that location. Note that the scale is different for 5 

each network to maximize visibility. The medial columns show difference maps where the right hemisphere 6 

frequency map was subtracted from the left hemisphere frequency map to show regions where the two hemispheres 7 

differ the most. Warm colors reflect higher variant frequency in the left hemisphere and cool colors indicate higher 8 

variant frequency in the right hemisphere. In each map, the colored outlines show the borders of the canonical 9 

network. Variant frequency and difference maps have not been cluster corrected and are presented primarily for 10 

qualitative comparisons.  11 

Relationship between asymmetries in network variants and network size 12 

To contextualize the asymmetries in network assignment of functional connectivity variants, we 13 

asked whether there are asymmetries in the size of the networks found in the group average 14 

network map (Fig. 6 inset). We show that, even in the group-average, functional networks vary 15 

in the degree to which they show asymmetries (Fig. 6A). The default mode and language 16 

networks were larger in the left hemisphere by 10%, equivalent to 1100 mm2, and 9%, equivalent 17 

to 349 mm2, respectively. The frontoparietal (yellow dot in Fig. 6A) and cingulo-opercular 18 

networks (purple dot in Fig. 6A) were larger in the right hemisphere by 14%, or 686 mm2, and 19 

8%, or 606 mm2, respectively. Similar results were seen in group average networks from other 20 

datasets (Appendix C, e.g., note that across group averages the DMN consistently shows the 21 

same pattern of large difference, with more surface area in the left hemisphere). 22 

These group-average network asymmetries can then be contrasted with the hemispheric 23 

differences of variants reported above (Fig. 6B). For example, if a network is relatively 24 

symmetric in the group average, but it exhibits a high number of variants in one hemisphere 25 

compared to the other, this may suggest that individual differences in that network lead it to be 26 

more asymmetric within many people. This appears to be the case for the visual network. 27 

Alternatively, if a network shows hemispheric differences in size in the group average, a higher 28 

frequency of variants in one hemisphere could either magnify that asymmetry (if variants are 29 

ipsilateral to the group-average asymmetry), or it could counter it (if variants are instead more 30 

common in the contralateral hemisphere of the group-average asymmetry). We see apparent 31 

examples of both cases: for instance, cingulo-opercular and language variants occur primarily 32 

ipsilateral as their group-average asymmetries, whereas default mode variants appear primarily 33 

contralateral (Fig. 6C).    34 
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 1 

Figure 6 – Asymmetries in group average network size and number of variants.  2 

(A) A comparison of group average network surface areas in left (x-axis) and right (y-axis) hemispheres (color = 3 

network, area expressed as a percent of total surface area). These group-average networks are largely symmetrical, 4 

with some small-scale differences. (B) Network variants associated with specific networks for the left (x-axis) and 5 

right (y-axis) hemispheres (error bars = SEM). (C) The magnitude of hemispheric asymmetries in size of group-6 

average networks and average number of variants per network were quantified. Network variants differ in number 7 

between the two hemispheres, sometimes in the same and sometimes in opposing directions from the asymmetries 8 

seen in the group-average maps. 9 

Relationship between handedness and hemispheric asymmetries 10 

Handedness is a prominent behavioral trait that shows natural variance in the direction and 11 

degree of asymmetry throughout the population. Handedness has been shown to be related to 12 
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other lateralized functions such as language. Because of this, we looked into asymmetries in 1 

network variants as a function of handedness in 40 left-handers and 670 right-handers from the 2 

HCP dataset (see Methods for handedness definition). The number, size, and spatial distribution 3 

of variants, as a whole, showed no significant differences between the two handedness groups. 4 

Interestingly, however, the two groups differed significantly in the specific networks that show 5 

asymmetries in their variants. Namely, we found significant interactions of handedness by 6 

hemisphere for two networks—the cinguloopercular (p = 0.004 based on permutation testing, 7 

FDR corrected for multiple comparisons) and frontoparietal network (p = 0.006, Fig. 7A)—two 8 

important networks for cognitive control. These interactions reveal that while right-handers do 9 

not differ significantly in their number of frontoparietal variants across hemispheres, left-handers 10 

show an increased number of frontoparietal variants in their left hemisphere (p = 0.006, Fig. 7B). 11 

In contrast, while right-handers have significantly more cinguloopercular variants in their right 12 

hemisphere (p < 0.001, Fig. 7C), left-handers do not show a significant difference. These 13 

findings add to the evidence suggesting that network variants are linked to behavior, and in 14 

particular, that asymmetries in network variants are related to asymmetrical functions and 15 

behaviors. 16 
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 1 

 2 
Figure 7 — Difference in network assignment of variants across handedness groups. 3 

Comparison in the number of variants associated with each network across left and right hemispheres in (A) left-4 

handers and (B) right-handers. Left-handed individuals showed significant differences in visual, frontoparietal, 5 

somatomotor lateral, and medial temporal lobe networks, with more variants in the left hemisphere. Right-handed 6 

subjects have significantly more right hemisphere variants associated with default mode, cinguloopercular and 7 

parietal memory networks, and more left hemisphere variants linked to visual, language, somatomotor lateral, and 8 

medial temporal lobe networks. (C) The bar graph shows the average difference across subjects in the number of 9 

variants associated with each functional network in their left minus their right hemisphere. Interactions between 10 
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handedness and hemisphere were found for FP (p = 0.006) and CO (p = 0.002) network variants. These comparisons 1 

remained significant after FDR correction across all network comparisons. Error bars indicate SEM. 2 

Discussion: 3 

The results described in this paper indicate that the properties of network variants differ across 4 

the two cerebral hemispheres. Generally, these idiosyncratic regions occur with slightly higher 5 

frequency on the left hemisphere in the HCP dataset, but the right hemisphere shows 6 

substantially larger network variants, and overall, significantly more variant territory. These 7 

findings suggest that, while the two hemispheres vary in different ways, the right hemisphere 8 

exhibits a higher degree of variability in functional organization than the left. 9 

A deeper examination of where specifically the two cerebral halves differ showed that the left 10 

hemisphere exhibits higher variant frequency on the supramarginal gyrus, superior anterior 11 

frontal gyrus, and anterior portions of the medial temporal gyrus, while the right hemisphere 12 

appears to have more variants on the orbital and triangular parts of the inferior frontal gyrus, 13 

angular gyrus, and superior medial frontal cortex. These asymmetries also varied by network, 14 

with some networks exhibiting more variants in the left hemisphere, while others are more likely 15 

to have variants in the right hemisphere, and other networks showing a more even distribution of 16 

variants. Similarly, some networks showed asymmetries in individual differences that built on 17 

the asymmetries seen in the group average, and others show asymmetries in opposing directions. 18 

Finally, asymmetries in some networks (cinguloopercular, frontoparietal) varied between left and 19 

right handers, suggesting a link to functional traits. Jointly, these findings provide evidence that 20 

idiosyncratic network variants exhibit hemispheric constraints in their development. These 21 

constraints may be linked to differences in associated cognitive/behavioral functions. 22 

Individual differences in brain networks add to or counter asymmetries seen in group 23 

averages 24 

The frequency with which network variants were associated with seven functional networks 25 

differed across hemispheres, suggesting that these networks show increased variability in one 26 

hemisphere compared to the other. Specifically, the default mode, cinguloopercular and parietal 27 

memory networks showed higher numbers of variants in the right hemisphere, and the language, 28 

visual, somatomotor-lateral and medial temporal lobe networks exhibited higher frequency of 29 

variants in the left hemisphere. 30 

Our analyses of network symmetry in the group average showed that cortical networks, on 31 

average, show slight differences in the cortical territory that they cover across the two 32 

hemispheres. Thus, a hemispheric asymmetry in variants associated with a network may either 33 

magnify or counteract the typical ‘group-average’ pattern. For example, the language and 34 

cingulo-opercular networks both have increased frequency of variants in the ipsilateral 35 

hemisphere as their group-average asymmetry, suggesting that variants of these networks tend to 36 

manifest as a greater degree of lateralization in some individuals (this was also true to some 37 

degree for the somatomotor lateral and medial temporal lobe networks, though because these last 38 

two systems are relatively small, the hemispheric differences in surface area in the group average 39 

were also small). In contrast, some networks exhibit a higher frequency of variants in the 40 

contralateral hemisphere relative to where they exhibit increased surface area in the group 41 
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average such that the initial asymmetry in surface area may be regressed in some individuals. 1 

This appears to apply to the default mode and visual networks.  2 

As mentioned above, one network that showed a large number of left-hemisphere variants was 3 

the language network. Figure 6 shows that the language network appears to be slightly larger on 4 

the left hemisphere in group-averages. The relatively large number of language network variants 5 

in the left hemisphere points to two important aspects of this network: 1) it is consistent with 6 

prior observations that this network tends to be relatively left-lateralized in most individuals 7 

(Braga et al., 2020), and 2) that key regions of this network are highly variable across people 8 

(Fedorenko, 2012; Fedorenko & Blank, 2020). That group average representations do not 9 

strongly reflect the leftward lateralization of the language network indicates that the group 10 

average language network may be failing to capture important areas that exhibit a higher degree 11 

of variability across individuals (Dworetsky, Seitzman, Adeyemo, Neta, et al., 2021). These 12 

highly variable regions that are not reflected in the group average would then necessarily be 13 

labeled network variants, explaining the large number of language network variants found in our 14 

analyses.  15 

In contrast, core regions of the default mode network exhibit high concordance across 16 

individuals (Dworetsky, Seitzman, Adeyemo, Neta, et al., 2021). This network also shows a 17 

relationship with putatively asymmetrical functions, such as episodic memory and retrieval 18 

(Desgranges et al., 1998; Tulving et al., 1994). As we show here, the default mode network is 19 

associated with increased surface area in the left relative to the right hemisphere in group 20 

averages. However, within single individuals this network showed a significantly higher number 21 

of variants in the right hemisphere compared to the left. In contrast to the lateralization of the 22 

language network, the higher number of DMN variants in the right hemisphere may indicate a 23 

“re-normalization” of this network in some individuals. This network has been associated with a 24 

range of introspective functions including episodic retrieval, future planning, and social tasks 25 

like mentalizing, likely fractionating into separable sub-components (Andrews-Hanna et al., 26 

2014; Buckner & DiNicola, 2019; DiNicola et al., 2020; Mars et al., 2012; Saxe & Kanwisher, 27 

2003). The region where we observed a higher frequency of variants on the right hemisphere, 28 

around the angular gyrus, in particular has previously been implicated in theory of mind 29 

(Andrews-Hanna et al., 2014). Further research is necessary to confirm the implications of 30 

variant asymmetries for these different functions associated with the default mode network. 31 

It is worth noting that, while the frontoparietal network shows strong hemispheric specialization 32 

(Wang et al., 2014) and is asymmetrically organized (Habas et al., 2009), our analyses only 33 

revealed an asymmetry of variants associated with this network in left-handers. The 34 

frontoparietal network is an important cognitive control network that is highly integrated with 35 

other large-scale systems and provides rapid and flexible modulation of other networks (Marek 36 

& Dosenbach, 2018). This network tends to sub-divide into left and right subnetworks in group 37 

maps, with the left hemisphere network showing early responses and the right-hemisphere 38 

network showing late onsets with prolonged responses (Gratton et al., 2017). Each sub-network 39 

also flexibly couples with either the default mode or dorsal attention networks (Spreng et al., 40 

2010, 2012). Thus, it has been hypothesized that the left and right frontoparietal sub-networks 41 

contribute to different sets of functions through their interactions with distinct networks. The 42 

frontoparietal network is also linked to a high number of variants relative to sensorimotor 43 
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systems (Seitzman et al., 2019). Despite the known asymmetries in function of the frontoparietal 1 

network and the relatively high number of variants associated with this network, we did not find 2 

significant asymmetries of its variants in our overall sample, suggesting that the qualitative 3 

differences in processing of the left and right subnetworks do not result in differences in their 4 

number of individual difference locations across hemispheres. However, the finding that left-5 

handers, unlike right-handers, show a significant asymmetry in this network, suggests that the 6 

frontoparietal network exhibits systematic differences across handedness groups that may be 7 

averaged out due to left-handers being a minority (and often excluded) from most samples.  8 

Variant asymmetries inform us of developmental constraints on individual brain networks  9 

What factors may give rise to asymmetries in idiosyncratic network variants? The cortical 10 

organization of the brain exhibits variation across individuals in the size, shape and spatial 11 

topography of functional networks. While size and spatial topography of networks has been 12 

shown to be moderately heritable (Anderson et al., 2021), variability in cortical regions may also 13 

arise due to developmental events that affect the way that functional systems are organized on 14 

the cortex. For example, signaling cascades direct the graded expression of transcription factors 15 

that regulate patterning of the cortex (O’Leary et al., 2007; Sur & Rubenstein, 2005) and 16 

alterations in their pattern of expression can result in alterations to the size and position of 17 

cortical areas (Fukuchi-Shimogori & Grove, 2001; Garel et al., 2003). Additionally, experiential 18 

factors have been shown to influence cortical organization. In cases of congenital blindness and 19 

deafness, the change in relative patterns of sensory-driven stimulation can lead to alterations in 20 

sensory domain allocation, cortical field size, and cortical and subcortical connectivity (Hunt et 21 

al., 2006; Kahn & Krubitzer, 2002). In normative development, experience guides the 22 

development of face- and scene-responsive areas in the central and peripheral portions of the 23 

retinotopic map, respectively (Arcaro & Livingstone, 2017; Downing et al., 2001; Kanwisher et 24 

al., 1997; Srihasam et al., 2014). Interestingly, hemispheric dominance for certain functions is 25 

thought to arise as a result of competition for representational space. Due to proximity to 26 

language areas, the ventral occipito-temporal cortex in the left hemisphere is ideally situated for 27 

orthographic processing and as such becomes specialized for word perception, which may lead to 28 

a rightward asymmetry for face perception given lower competition in that hemisphere 29 

(Behrmann & Plaut, 2013; Dundas et al., 2015). Thus, the organization of brain regions and 30 

networks can be shaped by biological, environmental, and developmental factors.  31 

A recent compelling hypothesis describes a potential mechanism that guides the development of 32 

functional networks at the individual level. The Expansion-Fractionation-Specialization 33 

hypothesis (DiNicola & Buckner, 2021) proposes that the disproportionate expansion of 34 

association areas in the human brain has provided large zones of cortex that share a distributed 35 

anatomical-connectivity motif, where frontal, temporal, and parietal areas are highly 36 

interconnected. Early in development, association cortex may exhibit a proto-organization 37 

characterized by a coarse network with poorly differentiated anatomical connectivity that, as 38 

developmental events occur and experience accumulates, fractionates into multiple networks that 39 

specialize in different functions (DiNicola & Buckner, 2021). Which function each network is 40 

associated with is determined through competitive activity-dependent processes but may be 41 

biased by differences in anatomical connectivity to regions that are relevant to its function 42 

(Braga & Buckner, 2017; Buckner & DiNicola, 2019). For example, language production regions 43 
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may be “anchored” by orofacial motor regions important for speech due to their functional 1 

relationship and may therefore frequently develop adjacent to each other (Braga et al., 2020; 2 

Krubitzer, 2007). The result of this fractionation and specialization process are multiple fine-3 

grained networks, with networks important for flexible cognitive functions being farthest from 4 

unimodal regions (Buckner & Krienen, 2013; Margulies et al., 2016).  5 

Hemispheric asymmetries may reflect another form of specialization within this process. 6 

Transmodal functional systems that support flexible cognitive functions require integration 7 

between areas that are far apart (Mesulam, 1998), but inter-hemispheric connections incur extra 8 

processing costs. A hypothesis for the evolutionary advantage of lateralization in the central 9 

nervous system proposes that this motif arose to facilitate performing tasks in parallel, as well as 10 

fast processing for important functions such as language, which requires rapid sequential 11 

processing, and visuospatial processing, which requires rapid identification of objects and their 12 

relations (Güntürkün, 2017). This is supported by studies showing that both animals (Güntürkün 13 

et al., 2000; Rogers et al., 2004) and humans (Chiarello et al., 2009; Everts et al., 2009) perform 14 

better at doing tasks in parallel if they show increased lateralization of relevant functions. Thus, 15 

lateralization of networks may arise in order to decrease redundancy of processing (Levy, 1977; 16 

Vallortigara, 2006). This may be especially important for functions that require fast and serial 17 

processing, such as language. Therefore, the advantage of lateralization likely depends on the 18 

network and the processes that it supports.  19 

 20 

Lateralization of functional networks may be biased by qualitative differences in the architecture 21 

of the hemispheres, such as differences in cortical microcircuitry. For example, pyramidal cell 22 

dendrites in the right hemisphere form on average more long-range connections compared to the 23 

left-hemisphere (Hutsler & Galuske, 2003). Indeed, the wiring patterns of the left hemisphere 24 

seem to be more suitable for specific, core linguistic processing than those observed in the right 25 

hemisphere, which in general is more interconnected (see Box 1 in (Jung-Beeman, 2005)). If a 26 

function or system becomes lateralized throughout development, a unique combination of 27 

genetic influences, developmental events, and idiosyncratic experiences will likely give rise to 28 

differences in the spatial topology of the network as it fractionates and specializes in the 29 

dominant hemisphere, giving rise to network variants that are more prominent in that 30 

hemisphere. Interestingly, association areas that show disproportionate expansion during 31 

evolution, and from infancy to adulthood (Hill et al., 2010), overlap significantly with areas of 32 

asymmetry in the degree of within-hemispheric functional connectivity (hemispheric 33 

specialization) (Wang et al., 2014). Thus, asymmetries in network variants may reflect a form of 34 

specialization of these functional systems that may arise as a consequence of qualitative 35 

differences in the way that the two hemispheres process information.  36 

Asymmetries in individual differences may be markers for healthy and pathological 37 

differences in brain function 38 

Previous research suggests that variability of cortical regions (e.g. (Schwarzkopf, 2011; 39 

Verghese et al., 2014)) and spatial topography of networks (Bijsterbosch et al., 2018; R. Kong et 40 

al., 2019) may have implications for behavior and cognition. Here, we found that asymmetries in 41 

two networks important for cognitive control, the cinguloopercular and frontoparietal networks, 42 

differed between left- and right-handers. Interestingly, the cinguloopercular network has been 43 
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implicated in motor control in recent reports where it showed altered functional connectivity in 1 

response to disuse of motor circuits related to subjects’ dominant hand (Newbold et al., 2021). 2 

Thus, understanding the properties of network variants may help elucidate brain-behavior 3 

relationships. An important reason for understanding brain-behavior relationships in normative 4 

samples is to also understand how alterations may lead to different forms of pathology. The trait-5 

like characteristics of variants and relationship to behavioral measures suggests their potential 6 

utility as biomarkers for atypical brain function associated with altered cognitive function.  7 

Our findings demonstrate the existence of asymmetries in the properties of network variants in a 8 

sample of healthy young adults. However, some pathological conditions exhibit atypical 9 

asymmetries in brain function that could potentially alter the pattern of asymmetries observed in 10 

our sample. For example, autism spectrum disorder has been associated with decreased 11 

lateralization of language (Escalante-Mead et al., 2003; Floris et al., 2021; Jouravlev et al., 2020) 12 

as well as handedness and cortical structure in previous reports (Lindell & Hudry, 2013). This 13 

atypical language lateralization in autism has been shown to be largely independent of other 14 

asymmetries, as other large-scale systems (namely the default mode network and ‘multiple 15 

demand’ or frontoparietal networks) were not found to exhibit atypical asymmetries (Nielsen et 16 

al., 2014). Similarly, schizophrenia has been linked to differences in asymmetries of language 17 

and handedness (Artiges et al., 2000; Crow et al., 1996), as well as reduced anatomical 18 

asymmetries (Sommer et al., 2001). Thus, one theory for the cause of the disorder is delayed 19 

cerebral lateralization (Crow et al., 1996). This suggests that alterations in brain asymmetries 20 

may contribute to pathological conditions that may interfere with cognitive function. While the 21 

properties of network variants in clinical populations remain to be uncovered, investigating 22 

whether the pattern of asymmetry associated with individual differences described here would be 23 

altered in cases of atypical lateralization associated with the aforementioned conditions could 24 

potentially lead to identification of characteristics by which clinical populations can be stratified 25 

according to neurobiological profiles.  26 

Hemispheric asymmetries may be altered by non-pathological factors as well, such as normative 27 

aging (Bäckman et al., 1997; Cabeza, 2002; Cabeza et al., 1997; Szaflarski et al., 2006). This 28 

decrease in hemispheric asymmetries may arise as a compensatory mechanism (Cabeza et al., 29 

1997) or dedifferentiation processes (Li & Lindenberger, 1999). In addition to studying network 30 

variants and their asymmetries in clinical populations, it would be interesting to track their 31 

asymmetries throughout the lifespan. Changes in the asymmetries of network variants would 32 

suggest that their presence is under the influence of activity-dependent processes. Furthermore, 33 

understanding age-related changes to the properties of network variants could yield a better 34 

understanding of their potential application for therapeutic approaches and their relationship with 35 

lateralized functions and disorders. If network variants are trait-like features of brain 36 

organization that reflect cognitive differences across individuals, measuring their asymmetries 37 

and how they change as a function of pathological conditions and age, may serve to track disease 38 

processes and age-related cognitive decline and dementias.  39 

Limitations and future directions 40 

This work led to an increased understanding of how individual differences in functional 41 

connectivity compare across the two hemispheres. However, we note some limitations and 42 
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opportunities for future investigations. First, the analyses described in this report found 1 

asymmetries in the frequency of variants in perisylvian regions. These regions have previously 2 

been found to be highly anatomically variable across individuals, though asymmetries tend to be 3 

small in magnitude (Van Essen, Glasser, et al., 2012). While we did not examine the relationship 4 

between anatomical variability and location of network variants in this study, previous reports 5 

have shown that the locations of network variants do not correlate with measures of anatomical 6 

deformations, suggesting that network variants don’t systematically arise due to anatomical 7 

variability (Seitzman et al., 2019), and that individual-specific features of functional organization 8 

persist even after controlling for accuracy of anatomical registration (Gordon, Laumann, 9 

Adeyemo, et al., 2017). Future work will be needed to determine if finer scale anatomical 10 

features, or more specialized anatomical-functional relationships, relate to asymmetries in 11 

network variants.  12 

Second, the networks used for these analyses are an estimation based on the functional 13 

connectivity at rest of a group average. Their correspondence with task-evoked activations has 14 

not been verified at the individual level in this work, though previous evidence indicates 15 

correspondence between resting-state functional networks and task activation maps (Andrews-16 

Hanna et al., 2014; Braga et al., 2020; Gordon, Laumann, Gilmore, et al., 2017; Smith et al., 17 

2009; Tavor et al., 2016). It is unclear how our method for matching variants with networks 18 

would perform for an individual who diverges extremely from the group average spatial pattern 19 

(e.g., an individual with a rightward asymmetry for language). Thus, the network labels assigned 20 

to variants here should be taken cautiously and verified functionally in the future.  21 

Lastly, our analyses on the relationship between variant asymmetries and handedness uncovered 22 

hemispheric differences in the variants of two functional networks that are implicated in 23 

cognitive control, but the two handedness groups did not differ in other properties of variant 24 

regions. While we relaxed our inclusion criteria (by including sets of related subjects) in order to 25 

increase our number of left-handers, our left-handed sample was only of 40 individuals, and the 26 

disparity in size between the left- and right-handed samples was substantial. Thus, the possibility 27 

remains that handedness may be related to hemispheric differences in other network variant 28 

properties that are more subtle and may require a larger sample of left-handed individuals to 29 

uncover.  30 

This work provides a reference point for looking at potential altered asymmetries in network 31 

variants across various conditions. Future directions might include examining the patterns of 32 

network variants in individuals suffering with disorders that exhibit altered asymmetries in the 33 

brain and older adults, where the asymmetries observed in this report may show an atypical 34 

pattern due to pathological factors, experience accumulation, or dedifferentiation of functional 35 

systems. Lastly, network variants have not been examined in the cerebellum, but asymmetries of 36 

within-hemispheric connectivity show a mirrored pattern relative to that seen in the cerebrum 37 

(Wang et al., 2014). Thus, it would be interesting to examine if this mirrored pattern holds for 38 

asymmetries seen in cerebellar network variants.  39 

 40 

 41 

 42 
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Conclusion: 1 

We examined hemispheric asymmetries in the properties of network variants, or regions in which 2 

patterns of functional connectivity differ strongly between an individual and a group-average 3 

representation. We found that, in general, the right hemisphere has more “variant territory”, 4 

which is linked to larger variant regions. Significant asymmetries were also found in the spatial 5 

distribution of network variants, which were more prominent around the inferior frontal gyrus 6 

and the inferior parietal lobule. These asymmetries varied by network, with some networks 7 

showing asymmetries in the same direction as asymmetries in group-average network patterns 8 

and others in the opposite direction. Finally, we found significant differences between left- and 9 

right-handed subjects in the asymmetries observed for variants of the cinguloopercular and 10 

frontoparietal networks, suggesting a relationship between network variant asymmetries and 11 

differences in behavioral traits. Jointly, these findings demonstrate that variant regions in large-12 

scale functional networks differ systematically across the two hemispheres, indicating that they 13 

may be constrained by developmental differences and/or processes that result in functional 14 

hemispheric asymmetries. Furthermore, these findings in a sample of healthy young adults may 15 

serve as a benchmark to which we can compare future studies investigating asymmetries in 16 

network variants in conditions that have been shown to be associated with altered functional 17 

lateralization in the brain, such as aging, schizophrenia, and autism spectrum disorder.  18 

 19 

Data Availability Statement: 20 

The data used for these analyses is publicly available and may be accessed at 21 

http://www.humanconnectomeproject.org/data/ and at https://openneuro.org/datasets/ds000224. 22 

The code used to analyze the data may be accessed at 23 

https://github.com/dianaperez25/PerezEtAl_HemAsymmetries. 24 
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from women and other minority scholars are under-cited relative to the number of such papers in 38 
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woman(first)/woman(last), 11.89% man/woman, 22.62% woman/man, and 55.02% man/man. 45 
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This method is limited in that a) names, pronouns, and social media profiles used to construct the 1 

databases may not, in every case, be indicative of gender identity and b) it cannot account for 2 

intersex, non-binary, or transgender people. Second, we obtained predicted racial/ethnic category 3 

of the first and last author of each reference by databases that store the probability of a first and 4 

last name being carried by an author of color (Ambekar et al., 2009; Sood & Laohaprapanon, 5 

2018). By this measure (and excluding self-citations), our references contain 9.01% author of 6 

color (first)/author of color(last), 14.09% white author/author of color, 20.07% author of 7 

color/white author, and 56.83% white author/white author. This method is limited in that a) 8 

names and Florida Voter Data to make the predictions may not be indicative of racial/ethnic 9 

identity, and b) it cannot account for Indigenous and mixed-race authors, or those who may face 10 

differential biases due to the ambiguous racialization or ethnicization of their names.  We look 11 

forward to future work that could help us to better understand how to support equitable practices 12 

in science. 13 

 14 

 15 

 16 

  17 
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