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ABSTRACT 46 

The human genome contains regulatory elements, such as enhancers, that are often rewired by 47 

cancer cells for the activation of genes that promote tumorigenesis and resistance to therapy. 48 

This is especially true for cancers that have little or no known driver mutations within protein 49 

coding genes, such as ovarian cancer. Herein, we have utilized an integrated set of genomic and 50 

epigenomic datasets to identify clinically relevant super-enhancers that are preferentially 51 

amplified in ovarian cancer patients. We have systematically probed the top 86 super-enhancers, 52 

using CRISPR-interference and CRISPR-deletion assays coupled to RNA-sequencing, to 53 

nominate two salient super-enhancers that drive proliferation and migration of cancer cells. 54 

Utilizing Hi-C, we constructed chromatin interaction maps that enabled the annotation of direct 55 

target genes for these super-enhancers and later confirmed their activity specifically within the 56 

cancer cell compartment of human tumors using single-cell genomics data. Together, our multi-57 

omic approach has examined a number of fundamental questions about how regulatory 58 

information encoded into super-enhancers drives gene expression networks that underlie the 59 

biology of ovarian cancer. 60 

 61 
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INTRODUCTION 72 

Ovarian cancer is one of the deadliest cancers among women worldwide and is the leading 73 

cause of gynecologic-related cancer deaths in the U.S.4. High grade serous ovarian cancer 74 

(HGSOC) is the most common subtype (approximately 80% of all ovarian cancer) and is 75 

characterized by a high number of copy number alterations and few driver mutations, which is 76 

thought to account for the clinical aggressiveness of this disease as well as the eventual 77 

development of chemoresistance5,6. The most commonly seen mutation in HGSOC is p53 (>90% 78 

of cases) followed by low prevalence but statistically significant recurrent somatic mutations in 79 

NF-1, BRCA1/2, and CDK2, which often lead to genomic instability7-9. Due to this genomic 80 

instability, ovarian cancer has a high rate of copy number abnormalities and recent studies have 81 

shown that these alterations can be used to stratify HGSOC5. However, the paucity of known 82 

driver mutations for ovarian cancer has made it difficult to develop effective targeted therapies. 83 

Consequently, the standard of care remains cytoreductive surgery followed by carboplatin/taxane 84 

chemotherapy, with approximately 75% patients experiencing a recurrence110. Thus, additional 85 

analysis of the non-coding regions of the genome, that extends beyond gene profiling, is 86 

desperately needed.  87 

Mounting evidence suggests that regulatory elements, such as transcriptional enhancers, 88 

can be rewired or hijacked by cancer cells for the activation of genes that promote tumor 89 

formation, metastasis, and resistance to therapy1-3. This is especially true for cancers that have 90 

little or no known driver mutations within protein coding genes, such as ovarian cancer11. 91 

Enhancers are non-coding DNA elements that contain information for the binding of transcription 92 

factors and interact spatially with their target genes to orchestrate spatiotemporal patterns of gene 93 

expression12,13. It is estimated that there are hundreds of thousands of enhancers found 94 

throughout our genome and these can act independent of orientation and linear distance from 95 

their target genes, forming high order chromatin loops with their target genes. Of note, the activity 96 

of enhancers is often restricted to a particular cell type or specific physiological or pathological 97 
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conditions, enabling their genomic function to determine precisely when, where, and at what level 98 

each of our genes is expressed14-16. Large clusters of neighboring enhancers that have unusually 99 

high occupancy of interacting factors are typically called super-enhancers (SEs)17. These super-100 

enhancers are known to regulate key cell identity genes, and in cancer are known to drive 101 

oncogene expression18.  102 

The high transcriptional output of cancer cells is thought to be sustained by the activity of 103 

super-enhancers, suggesting cancer cells can become addicted to super-enhancer driven 104 

regulatory networks19. Furthermore, recent studies in ovarian cancer have demonstrated the 105 

capacity of super-enhancers and their associated networks of transcription factors to directly 106 

influence chemoresistance20,21. The molecular characteristics and high activity of super-107 

enhancers make them exquisitely sensitive to epigenetic drugs, more so than typical enhancers22. 108 

Thus, there is a growing belief that exploiting transcriptional dependence by targeting oncogenic 109 

super-enhancers may be a valid therapeutic avenue22. For example, the Bromodomain 110 

Containing Protein 4 (BRD4) is a druggable transcription factor that recognizes acetylated histone 111 

proteins and is found in large quantities at super-enhancers23,24. Small molecule inhibition of 112 

BRD4 (such as JQ1 and BET inhibitors) has been shown to reduce cell proliferation and survival 113 

in vivo as well as increase therapeutic sensitivity of several cancer types, leading to the 114 

development of several clinical trials21,24,25. However, despite their effectiveness in inhibiting 115 

oncogenic processes in ovarian cancer cells, anti-BRD4 agonists remain a poor therapeutic 116 

option due to their overall toxicity and delivery constraints26. Nevertheless, the study of BRD4 117 

associated super-enhancers in ovarian cancer may lead to the identification of biomarkers, 118 

downstream druggable targets, and a better understanding of the regulatory processes that drive 119 

this disease. 120 

To this end, the studies described herein have examined several fundamental questions 121 

about how regulatory information is encoded into super-enhancers, how they are preferentially 122 

amplified in ovarian cancer cells, and how they drive gene expression networks that underlie the 123 
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biology of ovarian cancer cells. We used an integrated genomic and computational framework to 124 

(1) identify BRD4-enriched and copy number amplified super-enhancers in ovarian cancer 125 

patients, (2) systematically probe the functions of the top 86 ovarian cancer specific super-126 

enhancers using CRISPR interference assays (CRISPRi) (dCas9-KRAB) coupled to RNA-seq, 127 

(3) validate their roles in driving the proliferation and migration of cancer cells via CRISPR-128 

knockouts, (4) annotate direct target genes using chromatin looping information via Hi-C, and (5) 129 

confirm their activity specifically within the cancer cell compartment of human tumors using single 130 

cell genomics data.  131 

 132 

RESULTS  133 

Identification of BRD4-Enriched Super-Enhancers in Ovarian Cancer  134 

Super-enhancers are one of the most salient regulatory elements in the genome and are 135 

known to be repurposed by cancer cells to drive the expression of oncogenes17,27. Due to the 136 

unusually high levels of interacting transcription factors and the prominence of their target genes, 137 

super-enhancers contain untapped potential that can lead to a new set of markers with diagnostic 138 

and prognostic potential, or even serve as tractable targets for therapeutic intervention22,28. To 139 

identify enhancers likely to be associated with oncogenic gene expression programs, we 140 

leveraged both ovarian cancer cell line epigenetic data and patient tumor RNA-seq and Copy 141 

Number data from The Cancer Genome Atlas (TCGA) (Figure 1A).  142 

First, we used existing ChIP-seq data in the well vetted high-grade serous ovarian cancer cell 143 

line OVCAR3 to identify active enhancers by searching for co-localization of the histone 144 

modification histone H3 lysine 27 acetylation (H3K27ac) and BRD4 (Figure 1F)29-31. BRD4 145 

enrichment was considered a critical component for the detection of potentially oncogenic 146 

enhancers due to key observations previously shown in ovarian cancer patients24. Namely, across 147 

the entirety of the TCGA Pan Cancer dataset, ovarian cancer patients have the highest rate of 148 

genetic alterations at the BRD4 locus, with ~11% of patients having an amplification of this region 149 
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(Figure 1B)1,8,9. Moreover, ovarian cancer has the highest overall expression of BRD4 across all 150 

TCGA cancer types and patients with increased expression of BRD4 experienced significantly 151 

reduced survival times as determined through Kaplan-Meier analysis (Figure 1C and D)9,32,33. 152 

Therefore, we defined active enhancers as intergenic regions that contained at least a 1-base 153 

pair overlap between statistically significant BRD4 peaks and H3K27ac peaks called by the 154 

MACS2 peak calling algorithm (Figure 1E)34. To focus on distal enhancer elements, any peaks 155 

that overlapped with annotated genes or promoter regions were removed. This pipeline identified 156 

12,339 BRD4-enriched active enhancer elements in ovarian cancer cells. To determine if these 157 

enhancers are lineage specific or extensible to other cancer types, we investigated the overlap 158 

with existing enhancer annotations across normal tissues (defined by the ENCODE consortium) 159 

and across existing annotations in other cancer types (Supplemental Figure 1B and C)17,35. We 160 

found that 44.1% of the 12,339 BRD4-enriched enhancers had at least 1-base pair overlap with 161 

active enhancers in normal tissues and this number increases to 73.6% when comparing to active 162 

enhancers across several cancer types (Supplemental Figure 1B). The aforementioned 163 

importance of BRD4 and the high degree of overlap between these enhancers with cancer-164 

specific enhancers gave us confidence for using these data for calling super-enhancers.  165 

From our pool of 12,339 constituent enhancers, we identified 126 super-enhancer regions 166 

using the Rank Ordering of Super-Enhancers (ROSE) algorithm (Figure 1G and H, Supplemental 167 

Data 1, 2, 3, and 4)36,37. To determine if these BRD4-enriched super-enhancers are relevant to 168 

ovarian cancer patients, we leveraged single-cell assay for transposase-accessible chromatin 169 

sequencing (ATAC-seq) data generated from HGSOC patients to measure the activity of the 170 

super-enhancers within these tumors38. We detected the activity (defined by chromatin 171 

accessibility) of 121 out of 126 (96%) super-enhancers in the cancer cell fraction of HGSOC 172 

patients (Supplemental Figure 1A). Taken together, these data suggest that the super-enhancers 173 

identified using our pipeline are not cell line specific and may be relevant to both ovarian cancer 174 
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and other cancer types. To further investigate the clinical utility of these SEs, we next looked for 175 

evidence in patient tumors using both TCGA RNA-seq and Copy Number Variation data. 176 

 177 
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Figure 1. Identification of BRD4-Enriched Super-Enhancers in Ovarian Cancer 178 
a. Flowchart of the analysis strategy used to identify clinically relevant BRD4-enriched SEs in 179 

ovarian cancer.  180 
b. Bar chart depicting the alteration frequency of the BRD4 locus across the TGCA Pan Cancer 181 

patient cohort (ovarian cancer = OV). 182 
c. Box plots showing normalized BRD4 expression across the top 16 highest expressing cancer 183 

types in the TCGA Pan Cancer patient cohort (ovarian cancer = OV).  184 
d. Kaplan-Meier plots showing the relationship between BRD4 expression and progression free 185 

survival in ovarian cancer patients with high grade serous (n = 1232) or endometrioid histology (n 186 
= 62). Patients are split by median expression of BRD4 and the red line represents patients in the 187 
high expression cohort and the black the line low expression cohort. 188 

e. Cartoon depicting the analysis strategy for integrating H3K27ac and BRD4 ChIP-seq data and 189 
selecting overlapping peaks to call super-enhancers. BRD4 is shown in green and H3K27ac in 190 
blue. 191 

f. Top: Meta-ChIP plot of the signal across shared peaks showing overlap of H3K27ac and BRD4 192 
signal. Bottom: Heatmap of ChIP signal across all 12,339 called shared peaks. The samples are 193 
scaled relative to the background for that signal group independent of the other signal (BRD4 to 194 
BRD4 background; H3K27ac to H3K27ac background). 195 

g. BRD4 signal versus enhancer rank plot showing the identification of 126 super-enhancers as 196 
defined by the ROSE software.   197 

h. Tabulation of the total number of enhancers/peaks identified.  198 
 199 

Copy Number Variation and Expression Quantitative Trait Loci (CNVeQTL) Analysis 200 

Nominate Putative Oncogenic Super-Enhancers  201 

Given that copy number variation has been previously identified as an important hallmark 202 

of ovarian cancer, we sought to investigate whether these BRD4-enriched super-enhancers were 203 

preferentially amplified in ovarian cancer patients5. To this end, we performed a computational 204 

experiment making use of publicly available copy number variation data across nearly 600 ovarian 205 

cancer patients11 to compare the copy number amplification values overlapping our SE regions 206 

to the amplification across the ovarian cancer genome as a whole, by both random-draw (pseudo-207 

bootstrap) and direct comparison analyses (Figure 2A). Copy number variation (CNV) values 208 

across ~600 ovarian cancer patients were quantified by dividing the genome into uniform 15kb 209 

sliding windows and assigning CNV segment values within each window (Figure 2B). We then 210 

compared the amplification of the SE overlapping windows against an equivalent number of 211 

randomly drawn windows across the ovarian cancer genome (inclusive of our SE regions). The 212 

random drawing of windows was iterated 10,000 times and, in each comparison, there was 213 

significant enrichment in amplification of the SE overlapping windows compared to the random 214 
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groups (Figures 2D and E). This observation was reinforced by comparing SE CNV to the CNV 215 

across the ovarian cancer genome as a whole (Figure 2F). Remarkably, amplification of the 216 

super-enhancers themselves was prognostic of clinical outcome39. In many cases, as seen for 217 

the super-enhancer on chromosome 20 (chr20:55890001-55905000), patients with increased 218 

copy number had significantly increased hazard ratio and reduced survival times, suggesting that 219 

super-enhancer copy number may be of prognostic value (Figure 2C). Taken together, these data 220 

suggest that the SEs we identified in OVCAR3 cells are preferentially amplified in ovarian cancer 221 

patients and that some SE amplifications are associated with reduced survival.  222 

 223 

Figure 2. BRD4 Bound Super-Enhancers are Enriched for Copy Number Alterations in Ovarian 224 
Cancer Patients 225 

a. Flowchart of the analysis strategy used to quantify the relationship between SEs defined in 226 
OVCAR3 cells and copy number alterations in high grade serous ovarian cancer patients.  227 

b. Cartoon showing the computational approach used to divide the genome into 15kb windows and 228 
assign patient-specific copy number values to each window by overlap analysis. 229 

c. Copy number Kaplan Meier plot for a 15kb window that overlaps an OVCAR3 defined SE at 230 
Chr20 55890001:55905000. The red line represents HGSOC patients with copy number 231 
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amplification of this region above the median, the black line represents patients with copy number 232 
below the median. 233 

d. Boxplots showing the comparison of HGSOC patient copy number across SE overlapping 234 
windows (n = 336) versus randomly drawn genomic windows of the same size (n = 336). 235 
Asterisks represent significant differences as determined by a t-test. 236 

e. Summary plot showing the results of 10,000 comparisons between the copy number 237 
amplifications at SE overlapping windows versus 10,000 randomly drawn subsets of the genomic 238 
background. Asterisks represent significant differences as determined by a t-test. 239 

f. Boxplot showing the comparison of copy number amplification across the SE overlapping 240 
windows (n=336) versus all 15kb windows across the ovarian cancer genome (n=~192,000).  241 
Asterisks represent significant differences as determined by a t-test. 242 

 243 

To better understand how amplification of these SEs is associated with oncogenic gene 244 

expression networks, we leveraged the RNA-seq data generated from a subset of the same 245 

ovarian cancer patients (~300) to link the SEs to gene expression. We took inspiration from a 246 

commonly used approach in complex genetics which associates nucleotide variants to changes 247 

in gene expression called eQTL analysis40,41. However, unlike eQTL analysis which focuses on 248 

point mutations, the comparison in this case focuses on changes in copy number across SE loci 249 

to changes in gene expression within each patient (copy number variation expression quantitative 250 

trait loci (CNVeQTL)) (Supplemental Figure 2A). The assumption is that amplification or deletion 251 

of SE regions should affect their target genes, therefore, looking across hundreds of patients for 252 

shared patterns of variation will identify putative target genes of each SE. However, since we 253 

altered the input data of the eQTL detection software to utilize two quantitative variables (copy 254 

number and gene expression), we needed to determine a robust indication of our null condition 255 

for statistical analysis.  256 

To generate the null dataset, we broke the linkage of RNA to copy number by randomly 257 

permuting the columns of the RNA data matrix and then running Matrix eQTL41 on this permutated 258 

dataset, repeating this process 100k times, and using the median distribution from all 100k trials 259 

to inform our experimental analysis. Importantly, all 100k runs using the permutated null data 260 

showed a relatively uniform distribution of p-values across the null condition, suggesting no 261 

meaningful relationship between copy number and gene expression, and had a similar count of 262 

total significant CNVeQTLs (the median number of CNVeQTLs across all 100k was 11,632) 263 
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(Supplemental Figure 2B). In contrast, the results from the true data show a much sharper peak 264 

around p-value = 0 and returned a much larger number of significant CNVeQTLs (n=126,438) 265 

(Supplemental Figure 2C, Supplemental Data 5). We used the results of the 100k null 266 

experiments to determine an empirical false discovery rate of about 0.09242. This data also 267 

allowed us to investigate some higher order questions, such as whether the number of CNVeQTL 268 

detected was strictly a function of size. While there was a modest linear relationship between 269 

these features, this analysis suggested something other than genomic size influenced the number 270 

of CNVeQTL (Supplemental Figure 2D). Taken collectively, these data suggest that amplification 271 

of the super-enhancer regions are associated with pervasive gene expression changes in human 272 

tumors, reinforcing the idea they are not merely cell-line specific, and they may be preferentially 273 

amplified for a biologically meaningful reason.  274 

We recognize that the identification of 126,438 CNVeQTL linkages across 126 super-275 

enhancers seems high, despite the null distributions tested, and that the vast majority of copy 276 

number amplifications will have very strong effects in cis (and most will have effects in trans) 277 

irrespective of their designation as a super-enhancer. Therefore, to functionally validate and 278 

assess the full scope of this data, we chose the top 86 super-enhancers ranked by BRD4 279 

enrichment and H3K27ac signal (which were located both above and below the CNVeQTL 280 

prediction line) to perturb using a high throughput CRISPRi screen (Supplemental Figure 2D).  281 

 282 

High Throughput CRISPR-Interference Screen Highlights Super-Enhancer Target Gene 283 

Relationships 284 

 To systematically probe the functions of each SE and determine the consequences on 285 

gene expression, we used high-throughput CRISPR-interference assays coupled to RNA-seq. 286 

For this experiment, we engineered OVCAR3 cells to stably express nuclease deficient Cas9 287 

fused to the KRAB effector domain (dCas9-KRAB). The KRAB effector domain induces local 288 

chromatin repression via methylation of histone 3 lysine 9 (H3K9me3) and, when fused to dCas9, 289 
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allows us to use the programmable properties of CRISPR to target and inhibit any genomic loci 290 

of interest (Figure 3A)43-46. For this experiment, each well received a different set of custom 291 

designed guide RNAs (sgRNAs) to specifically inhibit one SE per well (i.e. arrayed CRISPRi 292 

screen) (Figure 3B, Supplemental Data 1). A total of 86 super-enhancers were tested plus 10 293 

control wells. Two different sgRNAs, targeting the two highest BRD4 peak summits within each 294 

super-enhancer, were designed for each SE (see Methods)47. For negative controls, we used a 295 

non-targeting scrambled sgRNA in addition to an sgRNA designed to target a dormant region of 296 

the genome (Supplemental Data 1). Each sgRNA was cloned into the pX-sgRNA-eGFP-MI 297 

plasmid and transfected into its corresponding wells. After 72 hours of epigenetic silencing, RNA 298 

was purified from each well and barcoded to specifically track which super-enhancer was probed 299 

per well (96 total barcodes). The RNA was prepped and sequenced on an Illumina platform to 300 

measure changes in gene expression as a consequence of super-enhancer inhibition (Figure 3B).  301 

 Given our intent to survey as many super-enhancers as possible and to have a better 302 

opportunity to find those that exhibited the most profound effects on gene expression, we decided 303 

to probe each SE once within the 96-well setup, prioritizing breadth over the inclusion of replicates 304 

(Figure 3B). Therefore, a traditional differential gene expression analysis pipeline (requiring the 305 

use of replicates) had to be eschewed in favor of something better able to handle our experimental 306 

setup. We took inspiration from previous analyses performed on large-scale perturbation 307 

databases, such as Connectivity Map project (CMap),48 and chose to focus on relative changes 308 

in rank for each gene (uprank or downrank) rather than traditional differential gene expression 309 

analysis or absolute expression counts. The resulting changes in rank could then be investigated 310 

across the entire dataset by iterating through a series of rank change cutoffs, identifying super-311 

enhancers that affected significantly more genes at a particular cutoff as compared to the negative 312 

control wells (based on an empirical false discovery rate of 0.1) (see Methods). Any genes 313 

detected at these thresholds could then be tentatively assigned as target genes to each SE 314 

(Figure 3, Supplemental Data 6). To investigate whether a traditional relative expression approach 315 
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would have identified similar target genes, we determined the log2 fold change of every gene for 316 

each SE relative to the controls. We then assess the relationship between gene expression 317 

determined by relative change in rank and relative expression for each SE. In every case, the 318 

correlation between log2 fold change (LFC) and rank change (RC) was highest when comparing 319 

each SE to itself, as opposed to all other SEs in the screen, suggesting that differential gene 320 

expression calculated in both ways gave similar results (Supplemental Figure 3A). Notably, some 321 

of the correlations were much stronger than others, leading us to focus on SEs with a LFC vs RC 322 

correlation value above the mean. Of particular interest was super-enhancer 14 (SE14) which 323 

exhibited a LFC vs RC correlation value of 0.95 (the highest in the entire dataset), suggesting 324 

particularly robust results for this SE (Supplemental Figure 3B). Confident that our rank change 325 

approach was adequately supported by this comparison we proceeded to look for SEs that 326 

exhibited the most profound effects on gene expression.  327 

First, we focused on a number of summary analyses from the CRISPRi screen. The 328 

median number of genes downregulated by each SE was 4 and there were a few salient SEs that 329 

affected a much larger number of genes (Figure 3C). Interestingly, there was only a weak 330 

correlation between the number of differentially regulated genes and SE size (Figure 3E) or 331 

enrichment of H3K27ac (Figure 3F), suggesting that the effects on gene expression are not 332 

merely a function of size. Of note, super-enhancer 60 (SE60) was in the bottom half in terms of 333 

size, but it affected the greatest number of genes. Therefore, we felt it prudent to understand 334 

specificity of our CRISPRi targeting process and empirically determine the extent of spreading of 335 

the repressive H3K9me3 mark upon dCas9-KRAB binding. To this end, we performed H3K9me3 336 

ChIP-seq in ovarian cancer cells transfected with SE60 targeting sgRNAs versus non-targeting 337 

sgRNAs. Differential binding analysis revealed that only our region of interest (SE60) was 338 

significantly enriched for H3K9me3 signal upon transfection of the targeting sgRNAs but not the 339 

scrambled non-targeting sgRNA (Supplemental Figure 4C and D). Additionally, there was an 340 

increase in H3K9me3 signal at each of our two SE60 sgRNA locations, suggesting both guides 341 
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successfully delivered dCas9-KRAB to the SE (Supplemental Figure 4A and B). We found that 342 

the region with increased H3K9me3 was about 20kb, spreading ~10kb from each sgRNA target 343 

site, enough to cover the entire SE. There also did not appear to be an increase in signal at the 344 

computationally predicted off-target sites, suggesting the guides for SE60 were highly specific 345 

(Supplemental Figure 4E and F). Taken together, these results validate our method of designing 346 

sgRNAs and the results we detected from the screen (specifically for SE60) were not due to off-347 

target effects (Supplemental Figure 4).  348 

Having supported the validity of our CRISPRi assay, we next wanted to examine the 349 

patterns of gene expression that resulted from the screen. To accomplish this, we utilized two 350 

clustering methods, K-Means clustering for the target genes and unsupervised-hierarchical 351 

clustering for the SEs. We found that the differentially regulated genes could be divided into 3 352 

optimal clusters that represent distinct gene expression pathways in cancer cells (Figure 3D and 353 

G). Conversely, the SEs can be divided into 10 distinct clusters with shared patterns of gene 354 

expression (Supplemental Table 1). More specifically, CRISPRi targeting of the SEs in clusters 355 

2-4 (containing SE14 and SE60) caused decreases in the expression of genes enriched for 356 

pathways such as KRAS Signaling, Estrogen Response (both early and late), and Epithelial to 357 

Mesenchymal Transition (EMT). In contrast, SEs in clusters 5-10 maintain some similarities 358 

(KRAS and Early Estrogen Response) but also have a unique role in the regulation of the JAK-359 

STAT pathway and immune related pathways (Figure 3G). Taken together, the CRISPRi screen 360 

in conjunction with our CNV analyses have allowed us to comprehensively determine which SEs 361 

have the most profound effects on gene expression and inform us of the enhancers that likely 362 

regulate key gene pathways in ovarian cancer. Based on these results, two salient SEs, SE60 363 

and SE14, were selected for follow up experiments. 364 
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 365 

Figure 3. Systematic Epigenetic Silencing of Ovarian Cancer Specific Super-Enhancers using 366 
CRISPRi (dCas9-KRAB) Coupled to Multiplexed RNA-seq 367 
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a. Cartoon showing sgRNA guided dCas9-KRAB epigenetic silencing of a SE via enrichment of the 368 
repressive histone modification H3K9me3. 369 

b. Experimental setup for the CRISPRi screen in a 96-well plate (left). Western blot showing 370 
OVCAR3 cells engineered to stably express dCas9-KRAB (right). dCas9-KRAB expressing 371 
OVCAR3 cells were plated in each well. One SE was targeted per well (86 SEs plus 10 control 372 
wells). After 72 hours of enhancer silencing, changes in gene expression were measured using 373 
barcoded RNA-seq. Two sgRNAs were custom designed for each SE and transfected into each 374 
corresponding well.  375 

c. Horizontal bar chart showing the number of downregulated genes for each SE. SE60 and SE14 376 
were selected for further analysis as described in the text and are indicated by arrows. 377 

d. K means clustering elbow plot used to determine the optimal number of gene clusters across 378 
significant DEGs for all SEs pulled from the screen analysis. The “elbow” determines the ideal 379 
cluster number which was chosen as 3.    380 

e. Scatterplot comparing SE size versus number of downregulated genes. There is no correlation 381 
between SE size and the number of target genes. SE60 and SE14 were selected for further 382 
analysis as described in the text and are indicated by arrows. 383 

f. Scatterplot comparing H3K27ac enrichment versus number of downregulated genes. There is not 384 
a strong correlation between H3K27ac enrichment and number of target genes.   385 

g. Heatmap representing the unsupervised hierarchical clustering of all SEs (clusters 1-10 under the 386 
dendrogram) and controls in the screen across all screen DEGs (left). The boxes on the right 387 
denote the three K-means clusters. MSigDB pathway analysis describes the functions the genes 388 
in these clusters are involved in (right). SE60, SE14, and the two negative controls are denoted at 389 
the bottom of the plot. 390 

 391 

Deletion of SE60 and SE14 Causes Dysregulation of Oncogenic Gene Expression 392 

Pathways Leading to Reduced Proliferation and Migration of Cancer Cells 393 

 Perturbation of SE60 affected the greatest number genes in the CRISPRi screen. In 394 

addition, amplification of this SE in ovarian cancer patients is prognostic of worse patient outcome, 395 

nominating it as a bona fide oncogenic super-enhancer (Figure 4A and B). Therefore, we wanted 396 

to experimentally determine whether SE60 was truly oncogenic and understand its role in ovarian 397 

cancer. To that end, we designed sgRNAs flanking the BRD4 peak summit of the largest 398 

constituent enhancer within SE60 and generated three independent CRISPR-Knockout (KO) 399 

clones resulting from ~1700-1800bp deletions (Figure 4C).  400 

Global changes in gene expression resulting from each SE60 KO clone were measured 401 

using RNA-seq. Differential expression analysis using DESeq249 revealed pervasive changes in 402 

gene expression with 660 genes being detected as significantly downregulated and 1090 genes 403 

being upregulated at a strict confidence threshold (adjusted p-value of 0.0005) (Figure 4D and E, 404 

Supplemental Data 7). Pathway analysis of the top 100 significantly downregulated genes 405 
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(determined by p-value) identified significant enrichment in Cell Cycle Progression, Quiescence, 406 

Metastasis, Differentiation, and KRAS-Signaling (Figure 4F), further suggesting SE60 plays an 407 

important role in oncogenesis50. This observation was supported upon clinical analysis of these 408 

predicted target genes, where increased expression of the top 100 SE60 target genes is 409 

associated with worse clinical outcomes in HGSOC patients (Figure 4I). The notion that SE60 410 

plays a key role in ovarian cancer oncogenic processes was further validated by the profound 411 

effects that deletion of this SE had on cancer cell proliferation and migration (Figure 4G and H).  412 
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 413 

Figure 4. CRISPR-Knockout of Super-Enhancer 60 Leads to Profound Changes in Gene 414 
Expression and Reduced Proliferation of Cancer Cells 415 
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a. Genome browser view of SE60 (dashed red box) and the surrounding regions showing 416 
enrichment of BRD4, H3K27ac, and ENCODE H3K27ac signal.  417 

b. Copy number amplification of SE60 is prognostic of clinical outcome in HGSOC patients. Kaplan 418 
Meier plots of copy number amplification over each SE60 overlapping 15kb windows versus 419 
disease specific survival in TCGA HGSOC patients. Significance was assessed using a log-rank 420 
test and cox proportional hazards model. 421 

c. Top: Cartoon showing CRISPR-based deletion of SE60. Bottom: Genotyping PCR agarose gel 422 
electrophoresis showing successful heterozygous knockouts of SE60. Homozygous deletions 423 
were lethal to the cells and heterozygotes were severely impaired (see proliferation assays in 424 
panel g and invasion assays in panel h).  425 

d. Left: Unsupervised hierarchical clustering heatmap of all 1750 significant DEGs (adjusted p-value 426 
> 0.0005 at any fold change) between wild-type and SE60 KO cells measured by RNA-seq.  427 

e. PCA plot showing the variance landscape of all 3 WT and all 4 KO samples. 428 
f. Pathway analysis using CancerSEA and MSigDB of the 100 most significant DEGs detected in 429 

the analysis; the red line denotes the metric for a p-value of 0.05 (significance) converted into the 430 
-log10 scale, indicating significant terms. 431 

g. Proliferation assays of three independent KO clones (represented in the RNA-Seq data) of SE60 432 
versus wild-type OVCAR3 cells. The statistically significant differences (as determined by a 433 
Welch’s t-test) are provided in red text. 434 

h. Cell Migration assays of three independent KO clones of SE60 (represented in the RNA-Seq 435 
data) versus wild-type OVCAR3 cells. Microscope brightfield images of the growth after 24 hours 436 
(left). Bar chart representation of cell count after 24 hours, statistically significant differences (as 437 
determined by a Welch’s t-test) are provided in red text (right). 438 

i. Kaplan Meier plot showing the clinical significance of the top 100 downregulated genes (as a 439 
gene set signature) after SE60 KO, the red line denotes patients with high expression of this gene 440 
signature. Significance was assessed using a log-rank test, significant p-values are denoted in 441 
red text. 442 

 443 

To substantiate our approach for identifying clinically relevant oncogenic super-444 

enhancers, we selected an additional candidate from the CRISPRi screen for validation. SE14 445 

showed the highest correlation between LFC and RC differential gene expression analysis from 446 

the CRISPRi screen, it is in the top 4 SEs that affected the greatest number of genes, and its 447 

amplification portends a worse clinical outcome in ovarian cancer patients (Figure 5A and B). To 448 

investigate the functional role of SE14, we designed sgRNAs flanking the BRD4 peak summit of 449 

the largest constituent enhancer within the super-enhancer and generated three independent 450 

CRISPR-KO clones resulting from ~2500-2800bp deletions (Figure 5C). Global changes in gene 451 

expression resulting from each knockout clone were measured using RNA-seq. Differential 452 

expression analysis identified 860 genes as significantly downregulated, and 629 genes 453 

upregulated at our confidence threshold (adjusted p-value of 0.0005) (Figure 5D and E, 454 

Supplemental Data 7). Pathway analysis of the top 100 most significant downregulated genes 455 
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identified significant enrichment in Cell Cycle Progression, Quiescence, Metastasis, 456 

Differentiation, and EMT (Figure 5F), further suggesting SE14 plays an important role in 457 

oncogenesis50. Kaplan-Meier analysis of the top 100 most significant downregulated genes after 458 

SE14 KO revealed a significant association with worse clinical outcomes in HGSOC patients 459 

(Figure 5I). Similar to the results obtained with SE60, the biological assays on all three SE14 KO 460 

cell lines exhibited a significant decrease in proliferation and migration compared to wild type cells 461 

(Figure 5G and H).  462 

We had an interest in determining how similar the results of CRISPRi-based perturbation 463 

of SE60 and SE14 are to the gene expression changes caused by CRISPR-KO. Therefore, we 464 

performed additional dCas9-KRAB experiments coupled to RNA-seq (in replicate) for both SE60 465 

and SE14. Differential gene expression analysis for both the CRISPRi and CRISPR-KO was 466 

performed with DESeq2 to facilitate the comparisons of the resulting changes in gene expression 467 

(Supplemental Figure 5, Supplemental Figure 6, and Supplemental Data 7). For SE60, 169 genes 468 

were detected as differentially expressed by both CRISPRi and CRISPR-KO and 11 of these 469 

genes were downregulated, suggesting that these are true target genes of SE60 (Supplemental 470 

Figure 5C and D). Further analysis of the 11 downregulated genes detected by both CRISPRi 471 

and CRISPR-KO found this gene set to be enriched for Metastasis, Cell Cycle Progression, and 472 

Inflammation pathways, as well as being associated with reduced survivorship in HGSOC patients 473 

(Supplemental Figure 5F and 5G). The analysis of SE14 revealed 731 differentially expressed 474 

genes by both CRISPRi and CRISPR-KO and 169 of these genes being downregulated 475 

(Supplemental Figure 6C and D). Analysis of the 169 shared downregulated genes detected by 476 

both CRISPRi and CRISPR-KO found this gene set to be enriched for Quiescence, Cell Cycle 477 

Progression, Differentiation, Inflammation, Stemness, and Estrogen Response pathways as well 478 

as being associated with reduced survivorship in HGSOC patients, further reinforcing the role of 479 

SE14 in oncogenesis (Supplemental Figure 6F and 6G). Taken together, these results validate 480 

our oncogenic SE identification approach and highlight the importance of these two SEs in ovarian 481 
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cancer. Next, we investigated whether the mechanistic roles of SE60 and SE14 on cell 482 

proliferation and migration were due to direct or indirect target gene regulation.  483 

 484 
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Figure 5. CRISPR-KO of Super-Enhancer 14 Leads to Important Gene Expression Changes and 485 
Reduced Growth of Cancer Cells 486 

a. Genome browser view of SE14 (dashed red box) and the surrounding regions showing 487 
enrichment of BRD4, H3K27ac, and ENCODE H3K27ac signal.  488 

b. Copy number amplification of SE14 is prognostic of clinical outcome in HGSOC patients. Kaplan 489 
Meier plots of copy number amplification over each SE14 overlapping 15kb windows versus 490 
disease specific survival in TCGA HGSOC patients. Significance was assessed using a log-rank 491 
test and cox proportional hazards model. 492 

c. Top: Cartoon showing CRISPR-based deletion of SE14. Bottom: Genotyping PCR agarose gel 493 
electrophoresis showing successful heterozygous knockouts of SE14. Homozygous deletions 494 
were lethal to the cells and heterozygotes were severely impaired (see proliferation assays in 495 
panel g and invasion assays in panel h).  496 

d. Left: Unsupervised hierarchical clustering heatmap of all 1750 significant DEGs (adjusted p-value 497 
> 0.0005 at any fold change) between wild-type and SE14 KO cells measured by RNA-seq.  498 

e. PCA plot showing the variance landscape of all 3 WT and all 4 KO samples. 499 
f. Pathway analysis using CancerSEA and MSigDB of the 100 most significant DEGs detected in 500 

the analysis; the red line denotes the metric for a p-value of 0.05 (significance) converted into the 501 
-log10 scale, indicating significant terms. 502 

g. Proliferation assays of three independent KO clones (represented in the RNA-Seq data) of SE14 503 
versus wild-type OVCAR3 cells. The statistically significant differences (as determined by a 504 
Welch’s t-test) are provided in red text. 505 

h. Cell Migration assays of three independent KO clones of SE14 (represented in the RNA-Seq 506 
data) versus wild-type OVCAR3 cells. Microscope brightfield images of the growth after 24 hours 507 
(left). Bar chart representation of cell count after 24 hours, statistically significant differences (as 508 
determined by a Welch’s t-test) are provided in red text (right). 509 

i. Kaplan Meier plot showing the clinical significance (hazard) of the top 100 downregulated genes 510 
(as a gene set signature) after SE60 KO, the red line denotes patients with high expression of this 511 
gene signature, significant p-values are denoted in red text. 512 

 513 

3D-Chromatin Interactions Defined by Hi-C Sequencing of Ovarian Cancer Cells Establish 514 

Direct Target Genes for SE60 and SE14. 515 

The profound effects on proliferation and migration caused by CRISPR-based deletion of 516 

SE60 and SE14 led us to investigate if these biological phenotypes were caused by direct or 517 

indirect regulation of target genes. We reasoned that direct target genes would exhibit increased 518 

chromatin looping interactions with the SE, whereas indirect target genes would be downstream 519 

of an effector gene that was directly regulated by the SE. To enable unbiased measurement of 520 

interaction frequencies between each super-enhancer and its target genes, we performed Hi-C 521 

sequencing in OVCAR3 cells to comprehensively annotate chromatin interactions across the 522 

ovarian cancer genome51. In order to maximize the breadth of this analysis, we focused on the 523 

target gene set detected from the CRISPR-KO experiments that represented the most statistically 524 

robust gene set for each SE, resulting from 4 replicates of RNA-seq across three independent 525 
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knockout clones for each SE. Moreover, the constitutive perturbation of each SE, caused by 526 

CRISPR-based deletion, gave rise to consistent gene expression patterns that resulted in marked 527 

biological phenotypes, thus facilitating integration with the Hi-C data.  528 

Since Hi-C is highly dependent on distance, we limited our search space to genes located 529 

on the same chromosome as the super-enhancers (cis genes) in order to get an accurate metric 530 

of interaction frequency52,53. To perform this analysis, we compared interaction frequency 531 

between the SE and target gene pairs to a null distribution consisting of 100 permutations of 532 

distance-matched region-gene pairs that exhibited no significant changes in gene expression 533 

changes in gene expression upon SE deletion (see Methods). This enabled us to compare 534 

distributions of interaction frequency measurements between each SE and a random set of genes 535 

based entirely on genomic distance. Direct targets were defined as SE-gene pairs with an 536 

observed/expected contact frequency greater than the 75th percentile of the control/background 537 

distribution. Overall, we observed that the target genes for each SE had higher interaction 538 

frequency with their cognate SE as compared to an equivalent number of distance-matched 539 

genes found on the same chromosome (Figure 6A and F). 540 

We identified one cis direct target gene and four cis indirect target genes for SE60 (Figure 541 

6B). Of note, the cis direct target gene for SE60, RAE1, has previously been associated with 542 

Invasion in ovarian cancer and has been shown to promote EMT in breast cancer54. In addition, 543 

increased expression of this gene portends a worse outcome in HGSOC patients (Figure 6C and 544 

D). Notably, RAE1 was also predicted as a target of SE60 by the CNVeQTL analysis 545 

(Supplemental Figure 8A and B, Supplemental Data 8). When looking at Hi-C contact frequency 546 

across chromosome 20, we notice a marked increase in contact between the RAE1 locus and the 547 

SE60 locus as compared to the background (Figure 6E). This suggests that the decrease in 548 

migration detected upon SE60 deletion is due, in part, to its direct regulation of RAE1. We suspect 549 

that there may exist more direct target genes for SE60 located on other chromosomes whose 550 

interaction frequencies are technically more challenging to detect via Hi-C.  551 
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Interestingly, we identified a much greater number of cis direct target genes (28 genes) 552 

and cis indirect targets (62 genes) for SE14 (Figure 6G, Supplemental Data 8). Likewise, 8 of 553 

these cis direct targets had been predicted from our CNVeQTL analysis reinforcing the utility of 554 

CNVeQTLs to predict cis-direct targets (Supplemental Figure 8C and D). Pathway analysis of the 555 

cis direct targets revealed key roles in Cell Cycle Progression, Quiescence, Invasion, 556 

Differentiation, Metastasis, and Stemness (Figure 6H). Kaplan-Meier analysis of this gene 557 

signature highlighted a statistically significant decrease in survival for patients that had high 558 

expression of these genes (Figure 6I). Through our analysis of these of cis direct targets, we 559 

identified examples of both close-range (EPHA2) and distant (MAB21L3) connections to SE14 560 

(Figure 6J and Supplemental Figure 7). Interestingly, there were genes within very close proximity 561 

to SE14 (such as ARHGEF19) that showed no evidence of interaction or differential gene 562 

expression, highlighting the ability of our approach to delineate true targets when accounting for 563 

distance. These data strongly implicate SE14 as being directly involved in both proliferation and 564 

migration as well as other key oncogenic processes in ovarian cancer. 565 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.08.487699doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.08.487699
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kelly et. al. (Franco)  April 8, 2022 

 

___________________________________________________________________________ 25 

 566 

Figure 6. Hi-C Analysis Detects Direct Targets of SE60 and SE14 Supporting Direct Roles in 567 
Invasion, Differentiation, and Metastasis  568 
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a. Distribution of all Hi-C counts (contact frequency) between cis-gene SE60 downregulated DEGs 569 
and the SE60 locus (left), points/genes in blue are called as direct targets. Distribution of Hi-C 570 
counts (contact frequency) between SE60 and a background set comprised of 100 distance 571 
permuted control gene sets (right). The dashed line (3rd quantile of the background data) denotes 572 
the cutoff for direct target genes in the experimental sample.  573 

b. Table displaying the number of direct and indirect cis-target genes of SE60 determined from the 574 
Hi-C analysis. 575 

c. CancerSEA gene pathway analysis of the direct target genes detected in the analysis; the red line 576 
denotes the metric for a p-value of 0.05 (significance) converted into the -log10 scale, anything 577 
past the line is a significant term. 578 

d. Kaplan Meier plot showing the clinical significance (hazard) of the top direct target genes (as a 579 
gene set signature) after SE60 KO, the red line denotes patients with high expression of this gene 580 
signature, significant p-values are denoted in red text. 581 

e. Hi-C contact heatmap showing the interaction between RAE1, the direct target gene of SE60, and 582 
the SE locus itself (red square).  583 

f. Distribution of all Hi-C counts (contact frequency) between cis-gene SE14 downregulated DEGs 584 
and the SE14 locus (left), points/genes in blue are called as direct targets. Distribution of Hi-C 585 
counts (contact frequency) between SE14 and a background set comprised of 100 distance 586 
permuted control gene sets (right); the dashed line (3rd quantile of the background data) denotes 587 
the cutoff for direct target genes in the experimental sample.  588 

g. Table displaying the number of direct and indirect cis-target genes of SE14 determined from the 589 
Hi-C analysis 590 

h. CancerSEA gene pathway analysis of the direct target genes detected in the analysis; the red line 591 
denotes the metric for a p-value of 0.05 (significance) converted into the -log10 scale, anything 592 
past the line is a significant term. 593 

i. Kaplan Meier plot showing the clinical significance (hazard) of the top direct target genes (as a 594 
gene set signature) after SE14 KO, the red line denotes patients with high expression of this gene 595 
signature, significant p-values are denoted in red text. 596 

j. Hi-C contact heatmap showing the interaction between EPHA2, a direct target gene of SE14, and 597 
the SE locus itself (red arrow).  598 

 599 

SE60 and SE14 are Specifically Active Within the Epithelial Cancer Cell Fraction of Human 600 

HGSOC Tumors as Revealed by Single Cell Genomics 601 

 Our previous experiments had demonstrated that these SEs are preferentially amplified in 602 

ovarian cancer patients and that they regulate gene expression pathways that govern the 603 

proliferation of cancer cells. As a final validation experiment, we wanted to determine if SE60 and 604 

SE14 were specifically active within the cancer cell compartment of human HGSOC tumors and 605 

if their target genes are also active within the same cell type. To test this, we analyzed matched 606 

single-cell RNA-seq and single-cell ATAC-seq data from two HGSOC patients previously 607 

generated in our lab (Supplemental Figure 9)38. We annotated seven distinct cell types present in 608 

these tumors by both single-cell RNA-seq and single-cell ATAC-seq and identified the cancer cell 609 

population using the FDA approved biomarker CA125 (also known as MUC16) (Figure 7A and 610 
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B)55. We found significant enrichment of RAE1, a SE60 cis direct target, and EPHA2, a SE14 cis 611 

direct target, within the cancer cell fraction as compared to the normal cell fraction (Wilcoxon 612 

Rank Sum tests, Bonferroni-corrected p-values < 2.2e-308 & average logFC >= 0.1) (Figure 7B).  613 

 In order to assess whether SE60 and SE14 are uniquely active in ovarian cancer, we next 614 

leveraged the scATAC-seq data. These data showed significantly increased chromatin 615 

accessibility at three constituent enhancers of both SE60 and SE14, specifically within the cancer 616 

epithelial cell fraction as compared to the stromal compartments of these tumors (Wilcoxon Rank 617 

Sum tests, Benjamini-Hochberg FDR <= 0.10 & Log2FC >= 0.25). Additionally, both HGSOC 618 

patients showed this pattern, suggesting that activation of these SEs is a common feature of 619 

HGSOC biology. While there is previous evidence from ENCODE that these regions contain 620 

regulatory elements in normal ovarian tissue, it appears that there is significantly more 621 

accessibility of these super-enhancers in cancer cells (Figure 7C).  622 

In order to investigate what transcription factors might be involved with these super-623 

enhancers, we performed motif enrichment analysis using FIMO sequence analysis56. To provide 624 

confidence to the TF motif calls, we investigated the gene expression of the TFs within the cancer 625 

epithelial cells. Transcription factors such as SOX4, ATF4 and YY1 were significantly enriched in 626 

the cancer-enriched constituent enhancers of SE60. Of note, YY1 is known as an integral 627 

component of enhancer-promoter loop interactions and is a hallmark active enhancer57. Similarly, 628 

in SE14 we detected significant enrichment of ELF3, KLF, and JUN family member binding sites 629 

in the cancer-enriched constituent enhancers. ELF3 has previously been previously associated 630 

with vascular inflammation, tumorigeneses, epithelial differentiation, and the ERRB3 pathway 631 

providing additional evidence to the robustness of our analysis (Figure 7D and E)58,59. Taken 632 

together, these data suggest that these SEs and their target genes are cancer cell specific and 633 

validate our computational pipeline for identification of clinically relevant oncogenic super-634 

enhancers.  635 
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 636 

Figure 7. Super-Enhancer 60, 14, and Their Direct Target Genes are Enriched in Malignant Cells of 637 
HGSOC Patient Tumors as Determined by Single Cell RNA-seq and Matched Single Cell ATAC-seq 638 
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a. UMAP plot of 13,646 scRNA-seq cells colored by cell type from two HGSOC patient tumors (left). 639 
UMAP plot of 17,694 scATAC-seq cells from the same two HGSOC patient tumors colored by cell 640 
type (right). Cluster numbers in each UMAP plot denote cell type clusters. Only cell type clusters 641 
with at least 30 cells in scATAC-seq were used in downstream analyses and are labeled on the 642 
scATAC-seq UMAP plot (right). 643 

b. Violin plots showing the distribution of gene expression values measured by scRNA-seq in each 644 
cell type cluster. Each row shows the distributions of expression values for a single gene (CA125, 645 
RAE1, and EPHA2). Each column represents a cell type cluster denoted by a cluster number and 646 
a general cell type label (bottom). Each gene has a statistically significant difference in 647 
expression between the cancer and non-cancer cell type clusters (Wilcoxon Rank Sum tests, 648 
Bonferroni-corrected p-values < 2.2e-308 & average logFC >= 0.1). 649 

c. scATAC-seq browser track showing the chromatin accessibility profile at the SE60 locus for each 650 
cell type cluster in scATAC-seq (left). scATAC-seq browser track showing the chromatin 651 
accessibility profile at the SE14 locus for each cell type cluster in scATAC-seq (right). Light blue 652 
shadows denote cancer enriched constituent enhancer elements. Each light blue region has a 653 
statistically significant difference in accessibility between the cancer and non-cancer cell type 654 
clusters (Wilcoxon Rank Sum tests, Benjamini-Hochberg FDR <= 0.10 & Log2FC >= 0.25). 655 
Cancer status is denoted in each browser track row label where the cell type cluster is orange if 656 
the cells are from the cancer fraction of patients. Patient composition is denoted by the square to 657 
the right of the label, it is solid if it contains cells only from one patient or split colored if otherwise 658 
(far right). The dbSNP, Epithelium DNase, and ENCODE ccREs tracks denote the location of 659 
annotated SNPs, ENCODE DNase hypersensitivity sites in normal epithelium tissue samples, 660 
and ENCODE annotated regulatory elements, respectively (bottom). 661 

d. Summary of FIMO TF motif occurrences within SE60 cancer enriched enhancers 1-3. Matching 662 
scRNA-seq TF expression in the cancer epithelial fraction is shown in the violin plot for each 663 
predicted motif. Statistically significant motif matches identified by the FIMO software were 664 
defined as a Benjamini-Hochberg corrected p-value (i.e., q value) < 0.10. 665 

e. Summary of FIMO TF motif occurrences within SE14 cancer enriched enhancers 1-3. Matching 666 
scRNA-seq TF expression in the cancer epithelial fraction is shown in the violin plot for each 667 
predicted motif. Statistically significant motif matches identified by the FIMO software were 668 
defined as a Benjamini-Hochberg corrected p-value (i.e., q value) < 0.10. 669 

 670 

DISCUSSION 671 

Every year, an estimated 22,000 new cases of ovarian cancer will be diagnosed and 672 

around 14,000 women will die as a result of this disease4. The paucity of known drivers for ovarian 673 

cancer makes identifying at-risk individuals very difficult and has led to a lack of effective targeted 674 

therapies. Thus, platinum-based chemotherapy coupled with surgery remains the standard of 675 

care10. Given their critical functions in controlling gene regulation, enhancers are often required 676 

to achieve the levels of transcriptional activity needed to sustain cancer cells and have been 677 

shown to play an integral part in cancer development and patient survival. Additionally, super-678 

enhancers have demonstrated the capacity to regulate many critical pathways for the 679 

development and maintenance of the cancer cell state as well as influence therapeutic 680 

resistance18-21.  681 
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 With the advent of therapeutics designed to inhibit various epigenetic factors that convey 682 

functionality to enhancers, it is now possible to exploit the dependency of cancer cells on 683 

transcription as an effective strategy for treating therapeutically recalcitrant cancers such as 684 

ovarian cancer28,60. For example, the Bromodomain and Extra-Terminal motif inhibitors (BET 685 

inhibitors; such as JQ1) designed to interfere with the functions of bromodomain-containing 686 

proteins like BRD4 have shown promise in several pre-clinical models of cancer, although their 687 

efficacy in a clinical setting is still unknown26,61. Nonetheless, investigating enhancers with high 688 

BRD4 enrichment can lead to the identification of biomarkers, druggable targets, and an improved 689 

understanding of ovarian cancer. Notably, the expression of BRD4 is highest in ovarian cancer 690 

as compared to every other cancer type represented in The Cancer Genome Atlas and high 691 

expression portends a worse outcome in ovarian cancer patients (Figure 1). Thus, we reasoned 692 

that co-enrichment of BRD4 and H3K27ac can be used as a surrogate to find SEs driving 693 

oncogenic processes in ovarian cancer. This was substantiated by the observation that the SEs 694 

identified in our study were preferentially copy number amplified in ovarian cancer patients and 695 

that some amplification events were themselves predictive of worse clinical outcome (Figure 2). 696 

Additionally, our CNVeQTL analyses across HGSOC patients demonstrate that the activity of 697 

these super-enhancers is pervasive. This is perhaps not surprising since genomic instability is a 698 

hallmark of ovarian cancer and several studies have demonstrated that somatic mutations at 699 

specific regulatory elements in the ovarian cancer genome play a pivotal role in subtype 700 

determination and overall progression5,62. Furthermore, the dysregulation of genomic architecture 701 

in ovarian cancer may allow for cancer cells to hijack existing enhancers for oncogenic purposes. 702 

In fact, several examples of enhancer hijacking exist in other types of cancer such as in Burkett’s 703 

Lymphoma, B-Cell Lymphoma, and Glioblastoma3,63,64. Overall, these findings suggested that a 704 

number of our identified SEs were amplified for biologically meaningful reasons. 705 

 Rather than limiting our study to the standard taxonomic listing of super-enhancers, we 706 

used three orthogonal approaches to define the regulatory logic of SEs in ovarian cancer - 707 
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CRISPRi, CRISPR-KO, and Hi-C. The CRISPRi screen allowed us to systematically determine 708 

the target genes for each of the top 86 most active SEs (Figure 3). While most CRISPR screens 709 

involve a pool of sgRNAs and rely on a cellular endpoint such as proliferation to be able to capture 710 

the relative abundances of remaining sgRNAs, our screen was customized to provide a readout 711 

of gene expression for each super-enhancer. We knew, a priori, which sgRNAs were used and 712 

which SEs were affected in each well. On average, we found that each SE perturbation resulted 713 

in downregulation of about 4 genes and the total number of genes regulated by each SE was not 714 

a function of size or enrichment of H3K27ac or BRD4. In fact, SE60 was in the bottom quartile of 715 

super-enhancers in terms of size and H3K27ac enrichment, but it had the most profound effects 716 

on gene expression. Therefore, we reasoned that SE60 harbored the most potential for further 717 

study due to its likely role in regulating genes that contribute to the pathology of ovarian cancer. 718 

While the goal of the CRISPRi screen was to broadly investigate the effects on gene expression 719 

across a large cohort of super-enhancers, we recognize that the CRISPRi screen was 720 

underpowered to definitively establish target genes for each SE. Thus, we elected to perform 721 

CRISPR-KOs of SE60 and SE14 to enable robust target gene detection. 722 

CRISPR-KO of SE60 and SE14 had dramatic effects on gene expression programs 723 

involved in Quiescence, Metastasis, and Invasion, among other important pathways. Moreover, 724 

the genes sets for both SEs were associated with poor outcomes in HGSOC patients. This was 725 

supported by both proliferation and migration defects in the SE60 and SE14 knockout cells (Figure 726 

4 and Figure 5). We note that there were hundreds of genes differentially regulated upon deletion 727 

of these two SEs, and that it was important to determine which genes were direct targets. The 728 

field has wrestled with the best way to assign target genes to enhancers, especially considering 729 

the genomic rearrangements observed in cancer cells. We reasoned that direct chromatin 730 

interactions, measured via Hi-C, between the SEs and their target genes would give confidence 731 

to the annotation of target genes (Figure 6). 732 
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Overall, the downregulated genes upon SE deletion showed higher interaction, both 733 

nearby and across long distances, with the SE as compared to the distance-matched control gene 734 

set. Importantly, several cis direct target genes are involved in oncogenic pathways and perhaps 735 

could serve as prognostic indicators or biomarkers in the future (Figure 6, Supplemental Figure 736 

7, and Supplemental Figure 8). We do note that there may exist more direct target genes for each 737 

SE located on other chromosomes, however, due to the dependence of Hi-C on distance, these 738 

interaction frequencies are more technically challenging to quantify. In lieu of Hi-C data for 739 

determining direct target genes, we posit that evidence from two orthogonal experiments (such 740 

as CRISPRi and CRISPR-KO or inclusion of reporter-based enhancer assays) would yield high 741 

confidence results since genes detected by multiple assays are agnostic to the technical nuances 742 

of each. In fact, a logical framework to describe the level of support needed to definitively annotate 743 

an enhancer and its bona fide target genes has been recently proposed 65, and its implementation 744 

would yield a catalogue of enhancers with confidently linked target genes.  745 

Finally, both SE60 and SE14 were found to have a statistically significant increase in 746 

chromatin accessibility within the cancer cell fraction of human HGSOC tumors at single cell 747 

resolution (Figure 7), further suggesting that the SEs that we identified are not merely cell-line 748 

specific. This validates our enhancer identification pipeline and reveals that certain oncogenic 749 

super-enhancers are preferentially enriched and amplified in cancer cells. In addition, we found 750 

that cis direct target genes annotated for each SE (such as RAE1 and EPHA2) were more highly 751 

expressed in the cancer cells compared to the stromal/non-malignant cells within HGSOC tumors. 752 

Collectively, these results expound the concept that super-enhancers themselves and the genes 753 

they regulate represent viable therapeutic avenues and may aid in biomarker identification. More 754 

broadly, our study described a genomic and computational approach for identifying clinically 755 

relevant enhancers and their bona fide target genes which should be applicable to a wide variety 756 

of biological systems.  757 

 758 
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METHODS 759 

Cell Culture: OVCAR3 and HEK-293T cell lines were obtained from ATCC. OVCAR3 cells were 760 

grown in RPMI media (Gibco, 11875-093) supplemented with 10% FBS (Sigma) and 1% 761 

penicillin/streptomycin (Corning, MT30002CI). HEK-293T cells were grown in Dulbecco’s 762 

Modified Eagle’s Medium (DMEM) (Gibco, 11995065) supplemented with 10% FBS and 1% 763 

penicillin/streptomycin. OVCAR3-dCas9-KRAB-blast (OVCAR-KRAB) cells were grown in RPMI 764 

media supplemented with 10% FBS, 1% penicillin/streptomycin and 1 µg/mL blasticidin (Corning, 765 

30100RB) after selection. All cell cultures were incubated at 37 °C in 5% CO2. Before use, 766 

OVCAR3 cells were authenticated with Short Tandem Repeat profiling through ATCC. All cell 767 

lines were tested for mycoplasma.  768 

 769 

Engineering dCas9-KRAB expressing OVCAR3 cells: Lentivirus containing the Lenti-dCas9-770 

KRAB-blast vector (Addgene plasmid #89567) was packaged in HEK-293T cells. HEK-293T cells 771 

were seeded in a T75 flask and transfected with the following plasmids: 6.67 µg Lenti-dCas9-772 

KRAB-blast, 5 µg psPAX2 (Addgene, 12260), and 3.33 µg PMD2G (Addgene, 12259) using 773 

Fugene 6 (Promega, E2691) following the manufacturer’s protocol. The lentivirus containing 774 

supernatant was harvested 48-72 hours after transfection and lentivirus was concentrated using 775 

Lenti-X Concentrator (Takara, 631231) following the manufacturer’s protocol. OVCAR3 cells were 776 

seeded in a six-well plate at 50,000 cells/well and transduced with the harvested lentivirus in 777 

RPMI media with 10% FBS and 10 µg/mL polybrene (Millipore, TR1003G). Transduced cells were 778 

incubated with lentivirus for 72 hours, then placed in RPMI selection media with 3 µg/mL 779 

blasticidin for 7 days. Batch selected OVCAR3-KRAB cells were validated by western blot. For 780 

western blot analysis, cells were lysed using the following lysis buffer: 50 mM Tris HCl (pH 8), 0.5 781 

M NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS and 1x protease inhibitor. The primary 782 

antibodies used for Western blotting were as follows: β-tubulin (Abcam, ab6046), Cas9 (7A9-3A3) 783 

(Santa Cruz, sc-517386). The β-tubulin antibody was used at a 1:1500 dilution in 5% BSA in 784 
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TBST with overnight incubation at 4C. The Cas9 antibody was used at a 1:1500 dilution in 5% 785 

BSA in TBST with overnight incubation at 4C. The secondary antibodies used for Western 786 

blotting were as follows: Donkey anti-rabbit IgG HRP-linked (GE, NA934) and Donkey anti-mouse 787 

IgG HRP-linked (Invitrogen, PA1-28748). Secondary antibodies were used at a 1:5000 dilution in 788 

5% BSA in TBST.  789 

 790 

CRISPRi Screen sgRNA Design: For sgRNAs targeting super-enhancers, target regions were 791 

chosen by selecting two regions within the super-enhancer with the highest BRD4 enrichment 792 

and clear H3K27ac signal. For each super-enhancer region, sgRNAs were designed using the 793 

CRISPOR web tool47 taking into account the specificity and off-target scores. If all suggested 794 

sgRNA sequences to a region had low specificity scores, a second sgRNA was instead designed 795 

to target the third highest BRD4 peak. Two sgRNAs were designed per super-enhancer to be 796 

transfected together. Genomic coordinates for all super-enhancers and their sgRNA sequences 797 

are found in Supplemental Data 1. sgRNA oligos were ordered from Integrated DNA 798 

Technologies. The negative control sgRNAs (Scramble1 and Scramble2) were previously 799 

published66.  800 

 801 

sgRNA Vector Cloning: The sgRNA cloning vector pX-sgRNA-eGFP-MI is a modified version of 802 

pSpCas9(BB)-2A-Puro (pX459) v2.0 (Addgene plasmid #62988). Cas9 was removed from pX459 803 

and replaced with eGFP to allow for visualization of sgRNA expression. To improve sgRNA 804 

stability and optimize for assembly with dCas9, the sgRNA stem-loop was extended and modified 805 

with an A-U base pair flip67. sgRNA vector cloning was done following the protocol from Feng 806 

Zheng’s group68. Briefly, sgRNA oligonucleotides were ordered from Integrated DNA 807 

Technologies (IDT). Oligos were duplexed with the following reaction: 10 µM sgRNA forward 808 

oligo, 10 µM sgRNA reverse oligo, 10 U T4 polynucleotide kinase (NEB, M0201L), and 1x T4 809 
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ligation buffer under the following conditions: 37C for 30 minutes, 95C for 5 minutes, then ramp 810 

down to 25C at 5C/minute. Duplexed sgRNAs were diluted 1:100, then 2 µL of this dilution was 811 

used in a ligation reaction with 100 ng pX-sgRNA-eGFP-MI linearized with BbsI-HF (NEB, 812 

R3539S). Each completed sgRNA vector was verified by Sanger sequencing using the human 813 

U6 promoter sequencing primer (GGC-CTA-TTT-CCC-ATG-ATT-CC). 814 

 815 

CRISPRi Screen: OVCAR3-KRAB cells were plated at 50,000 cells per well in 24-well plates 816 

using antibiotic-free RPMI media supplemented with 10% FBS. After 24 hours, cells were 817 

transfected with a total of 300 ng sgRNA vectors using Fugene 6 following the manufacturer’s 818 

protocol. Two sgRNAs were designed to target the BRD4 peak summit for each super-enhancer. 819 

For negative control wells (empty vector, scramble1, scramble2, Dorm1) and the well targeting 820 

the TP53 gene a single sgRNA vector was transfected. For positive control wells (PLAG1 gene 821 

promoter, RNF4 gene promoter, FOXL2 gene promoter, RNF4 enhancer, FOXL2 enhancer) and 822 

wells targeting each super-enhancer, two sgRNA vectors were co-transfected in each well. 823 

Genomic coordinates for all super-enhancers and their sgRNA sequences are found in 824 

Supplemental Data 1. 72 hours after transfection of the sgRNAs, cells were visualized for GFP 825 

expression to ensure good transfection efficiency. After visualization, wells were washed with 1x 826 

PBS and RNA was extracted using the Zymo Quick-RNA Miniprep Kit (Zymo, R1055) with the on-827 

column DNAseI treatment step. RNA-seq libraries were prepared using the Lexogen Quantseq 3’ 828 

mRNA-seq FWD Library Prep Kit (Lexogen QuantSeq, 015.2x96) and the PCR Add-On Kit for 829 

Illumina (Lexogen QuantSeq, 020.96). 830 

 831 

CRISPRi for SE14 and SE60: OVCAR3-KRAB cells were seeded in 6-well plates at 200,000 832 

cells/well using antibiotic-free RPMI media supplemented with 10% FBS. After 24 hours, cells 833 

were transfected with a total of 1.5 µg sgRNA vector per well using Fugene 6 (Promega, E2691) 834 
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following the manufacturer’s protocol. For negative control wells (Scramble1), a single sgRNA 835 

vector was transfected. For wells targeting SE14 and SE60, two unique sgRNAs were co-836 

transfected in each well. 72 hours after transfection, cells were visualized for GFP expression to 837 

ensure good transfection efficiency. Cells were then washed with 1x PBS and RNA was extracted 838 

using the Zymo Quick-RNA Miniprep Kit (Zymo, R1055) with on-column DNaseI treatment. 839 

Experiments were conducted three to four times to ensure reproducibility. 840 

 841 

Super-Enhancer Knockout with CRISPR-Cas9: Targeted deletion of super-enhancers was 842 

performed using the CRISPR-cas9 system following published protocols68-70. Briefly, guide RNA 843 

target sites flanking the BRD4 peak summit for each super-enhancer were selected using the 844 

CRISPOR web tool 47. Genomic coordinates for all super-enhancers and their sgRNA sequences 845 

are found in Supplemental Table 1. Guide RNA oligos were ordered from Integrated DNA 846 

Technologies, annealed, and cloned into pSpCas9(BB)-2A-Puro (PX459) V2.0 (Addgene Plasmid 847 

#62988). Per super-enhancer targeted, four complete gRNA plasmids (two 5’ and two 3’ of the 848 

target site) were transfected into OVCAR3 cells using the Fugene 6 transfection reagent 849 

(Promega, E2691) following the manufacturer’s protocol. CRISPR-cas9 positive clones were 850 

identified through puromycin selection that began 3 days post-transfection and lasted a total of 7 851 

days. To confirm the deletion of super-enhancer targets, individual positive clones were picked 852 

into separate wells and genotyped via PCR using primers flanking the deletion site, along with 853 

internal primers used to identify wild type alleles (Supplemental Table 2). Successful SE14 854 

deletion resulted in a ~2500-2800bp deletion. Successful SE60 deletion resulted in a ~1700-855 

1800bp deletion. Correct super-enhancer knockout cell lines were further analyzed by Sanger 856 

DNA sequencing to determine the precise boundaries of the deletion.  857 

 858 

RNA-seq: For the CRISPRi screen, RNA-seq libraries were prepared using the Lexogen 859 

Quantseq 3’ mRNA-seq FWD Library Prep Kit (Lexogen QuantSeq, 015.2x96) and the PCR Add-860 
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On Kit for Illumina (Lexogen QuantSeq, 020.96). Libraries underwent 75bp single end sequencing 861 

on an Illumina NextSeq 500 instrument (at TGL).  862 

 863 

For RNA-seq of OVCAR3 WT, SE60KO1, SE60KO2, SE14KO1rep1, and SE14KO1rep2, libraries 864 

were prepared with the Illumina TruSeq Stranded mRNA Kit following the manufacturer’s protocol. 865 

Libraries underwent 75bp paired end sequencing on an Illumina NextSeq 500 instrument (at 866 

TGL). 867 

 868 

For SE60KO3, SE14KO2, SE14KO3, scramble1-KRAB, SE60-KRAB, libraries were created and 869 

sequenced by Novogene. These libraries underwent 150bp paired end sequencing on an Illumina 870 

NovaSeq 6000 instrument. 871 

ChIP-seq: OVCAR3-KRAB cells were transfected with sgRNAs targeting either scramble1 (non-872 

targeting) or SE60 (2 pooled sgRNAs) following the same protocol mentioned above for “CRISPRi 873 

for SE14 and SE60.” For each of the three replicates conducted, 1-2 million cells were used for 874 

fixation with 11% formaldehyde following Active Motif’s Epigenetic Services ChIP Fixation 875 

Protocol. ChIP-seq for H3K9me3 was performed by Active Motif using antibody antibody 39161 876 

with spike-in Drosophila normalization. ChIP-seq libraries underwent 75bp single end sequencing 877 

on an Illumina NextSeq 5000 instrument by Active Motif.  878 

Cell Proliferation Assay: Cell collections were performed at Days 0, 2, 4, and 6. Cells were fixed 879 

with 10% formaldehyde and stained with a 0.1% crystal violet solution. Incorporated crystal violet 880 

was extracted using 10% glacial acetic acid and the absorbance was read at 595 nm. This 881 

procedure was conducted four times to ensure reproducibility. Results are shown as the mean 882 

OD 595nm reading  SEM. Statistical analysis was conducted in R using a t-test. 883 

 884 
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Cell Migration Assay: OVCAR3 WT and SEKO cells in serum-free RPMI media were seeded to 885 

the upper chamber of a transwell insert at 60k cells per insert. The lower chamber contained 886 

RPMI with 10% FBS. Cells were incubated for 24 hours, then all non-migrated cells were removed 887 

from the upper membrane. Cells were fixed and stained using the Hema 3 Staining Kit (Fisher 888 

Scientific, 122-911). Ten brightfield images were taken per insert and images were analyzed 889 

using the CellProfiler 4.2.1 software to count the number of cells per transwell-insert. This 890 

procedure was conducted four times to ensure reproducibility. Results are shown as the mean 891 

cell count  SEM. Statistical analysis was conducted in R using a t-test.  892 

 893 

General Program Versions: Unless specified these are the versions used for scripting/analysis 894 

in R and Python throughout the project for the bulk data analysis of CRISPRi, CRISPR-KO, CNV, 895 

and H3K27ac/BRD4 ChIP-Seq data. Unless otherwise stated all “overlap” analysis visualization 896 

was performed using intervene 71.  897 

Python: 3.6.5 898 

R: 4.0.0 899 

Intervene: 0.6.5 900 

 901 

RNA Seq: CRISPRi Screen 902 

General Metrics: RNA-seq was performed following the pipeline put forth by LEXOGEN in the 3’ 903 

mRNA-Seq package; namely using STAR, HTSEQ, and DESEQ2. These processes will be 904 

explained in more detail below.  905 

QC: Quality control was performed using the FastQC tool and the results were analyzed 906 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). All of the metrics returned as 907 

acceptable with no clear failures. We thus proceeded with processing and analysis.  908 

Version: FastQC v0.11.7 909 
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Trimming: Trimming was performed using the bbmap function bbduk.sh with the following 910 

parameters (https://sourceforge.net/projects/bbmap/). 911 

Parameters: ktrim=r k=13 useshortkmers=t mink=5 qtrim=r trimq=10 minlength=20 ftm=5 912 

Version: Version 38.46 913 

Alignment: The trimmed and cleaned reads were then aligned to the HG38v12 human genome 914 

using STAR version 2.6.0a with the recommended parameter set and the following conditions 72. 915 

Parameters:  916 

--runMode alignReads  917 

 --genomeDir  918 

--outFilterType BySJout  919 

--outFilterMultimapNmax 20  920 

--alignSJoverhangMin 8  921 

--alignSJDBoverhangMin 1  922 

--outFilterMismatchNmax 999  923 

--outFilterMismatchNoverLmax 0.6  924 

--alignIntronMin 20  925 

--alignIntronMax 1000000  926 

--alignMatesGapMax 1000000  927 

--readFilesCommand gunzip -c  928 

--outSAMtype BAM SortedByCoordinate  929 

--outSAMattributes NH HI NM MD  930 

Version: 2.6.0a 931 

File Formatting: The bam files from STAR were then indexed and sorted using functions in the 932 

SAMTOOLS package, namely samtools sort and samtools index 73.  933 

Version: 1.9 934 
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Quantification: The sorted and indexed bam files were quantified using htseq and the gencode 935 

v29 primary assembly as a reference and with the following parameters 74.  936 

Parameters: 937 

-m intersection-nonempty  938 

-s yes 939 

 -f bam 940 

 -r pos  941 

Version: 0.11.2 942 

Read Distributions: The package RSeQC was used to assess the distribution of reads across 943 

the genome. Specifically, the python program read_distribution.py was used with default 944 

parameterizations to create a summary of this information 75.  945 

Version: 3.0.0 946 

Review QC: All of the alignment, counting, and cleaning program outputs were assessed with 947 

MultiQC for potential issues, of which none were determined 76. Default parameters were used.  948 

Version: 1.9 949 

Normalization: The count data was first normalized by removing all of the low count genes (genes 950 

with < 1 count in every samples); this data was then read into DESEQ2 49. Within DESEQ2 951 

normalized by scaling and size factors followed by a VST transformation. Batch affects were 952 

addressed by utilizing the SVT program (part of the DESEQ2 package) and variation from two 953 

surrogate variables was removed for the final analysis.  954 

Version(s): sva_3.38.0, DESeq2_1.30.1 955 

Script: Screen_Preprocessing.R 956 

Determination of DEGs: Differential gene expression was determined by utilizing a rank-based 957 

approach similar to the ranking method used by CMAP for their single replicate screens 48. Genes 958 

were ranked in order of expression (rank 1 being highest expressed, n being the lowest) within 959 

every sample, then all samples were aggregated and a global rank was assigned for every gene. 960 
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Next, the change in rank was determined between the within-sample rank and the global rank for 961 

every gene in every sample. These changes in rank were used to build a distribution of all rank 962 

changes for eFDR analysis. 963 

Script: OVCAR3_Screen_Analysis_with_Plotting_LFC_Comparison.ipynb 964 

Empirical False Discovery Rate Analysis: Empirical False Discovery Rate, an empirically 965 

derived variation of the False Discovery Rate, was determined by choosing a rank change 966 

threshold and assessing the median number of genes across controls beyond that threshold as 967 

compared to a given sample 42. For example, if there are a median of 4 genes in the controls and 968 

40 genes in Sample A; the eFDR for this comparison would be 4/40 or 10%.  969 

Script: OVCAR3_Screen_Analysis_with_Plotting_LFC_Comparison.ipynb 970 

Relative Expression Correlation Analysis: A log2 fold change was calculated between all 971 

genes in a sample and the median of the controls. All genes determined as significant by the rank-972 

based analysis (across all super-enhancers) were aggregated into one pool of genes. This pool 973 

of genes was then used to compare RC to LFC values within each super-enhancer to determine 974 

the correlation of these sets of values.  975 

Script: OVCAR3_Screen_Analysis_with_Plotting_LFC_Comparison.ipynb 976 

Clustering: KMeans clustering analysis was used to cluster the differentially ranked gene list. 977 

Three clusters were determined as optimal by analysis of the elbow plot and these clusters were 978 

then applied to the data. Unsupervised hierarchical clustering was then used to determine the 979 

super-enhancer relationships.  980 

Script: OVCAR3_Screen_Analysis_with_Plotting_LFC_Comparison.ipynb 981 

Pathway Analysis: Genes detected from the differential expression analysis were analyzed 982 

using CancerSEA and the molecular signatures database 50,77,78. This program performs pathway 983 

analysis using cell-type specific information relevant to cancer based on available single cell 984 

datasets. All of the genes in a given KMeans cluster were fed into this set of programs as a gene 985 

list and results were retrieved.  986 
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 987 

RNA Seq – CRISPR KO 988 

General Metrics: RNA-Seq was performed following a similar pipeline to that used in the screen 989 

analysis with parameters adjusted to account for differences in the data (paired-end with greater 990 

depth); namely using STAR, HTSEQ, and DESEQ2. This will be expounded in more detail below.  991 

QC: Quality control was performed using the FastQC tool 992 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). All of the metrics returned as clear 993 

or warnings with no failures. 994 

Version: FastQC v0.11.7 995 

Trimming: No trimming was needed or performed. 996 

Alignment: The reads were then aligned to the HG38v12 human genome using STAR version 997 

2.6.0a with the following parameter set 72.  998 

--runMode alignReads  999 

--outFilterType BySJout  1000 

--outFilterMultimapNmax 20  1001 

--alignSJoverhangMin 8  1002 

--alignSJDBoverhangMin 1  1003 

--outFilterMismatchNmax 999  1004 

--outFilterMismatchNoverLmax 0.6  1005 

--alignIntronMin 20  1006 

--alignIntronMax 1000000  1007 

--alignMatesGapMax 1000000  1008 

--readFilesCommand gunzip -c  1009 

--outSAMtype BAM SortedByCoordinate  1010 

--outSAMattributes NH HI NM MD  1011 
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File Formatting: The bam files from STAR were then indexed and sorted using functions in the 1012 

SAMTOOLS package, namely samtools sort and samtools index 73. 1013 

Version: 1.9 1014 

Quantification: The sorted and indexed bam files were quantified using htseq using the gencode 1015 

v29 primary assembly as a reference and with the following parameters 74. 1016 

-m union  1017 

-nonunique all  1018 

-s reverse  1019 

--type=gene  1020 

--additional-attr=gene_name  1021 

-f bam  1022 

-r pos  1023 

gencode.v29.annotation.gff3  1024 

Version: 0.11.2 1025 

Read Distributions: The package RSeQC was used to assess the distribution of reads across 1026 

the genome. Specifically, the python program read_distribution.py was used with default 1027 

parameterizations to create a summary of this information 75.  1028 

Version: 3.0.0 1029 

Review QC: All of the alignment, counting, and cleaning program outputs were assessed with 1030 

MultiQC for potential issues 76. Default parameters were used and all of the reports were good.  1031 

Version: 1.9 1032 

Normalization (Batch Effect Detection): The count data was first normalized by removing all of 1033 

the low count genes (genes with < 1 count in every samples); this data was then read into 1034 

DESEQ2 49. Within the DESEQ framework, the counts data was adjusted for scaling and size 1035 

factors followed by a VST transformation. Batch affects were addressed by utilizing the SVT 1036 

program and variation from one surrogate variable was accounted for in the DESEQ2 model.  1037 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.08.487699doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.08.487699
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kelly et. al. (Franco)  April 8, 2022 

 

___________________________________________________________________________ 44 

Version(s): sva_3.38.0, DESeq2_1.30.1 1038 

Script: DESEQ2_2021Reps_RNA_SVA_Plotting.Rmd 1039 

Normalization: The pre-VST data was used for standard in-program normalization by DESEQ2 1040 

during the differential expression analysis procedure.  1041 

Version(s): sva_3.38.0, DESeq2_1.30.1 1042 

Script: DESEQ2_2021Reps_RNA_SVA_Plotting.Rmd 1043 

Determination of DEGs: Differential gene expression was determined by utilizing DESEQ2 and 1044 

default parameters. Genes called as differentially expressed at an FDR adjusted p-value less than 1045 

0.0005 were identified and collected for analysis and figure making. 1046 

Script: DESEQ2_2021Reps_RNA_SVA_Plotting.Rmd 1047 

Pathway Analysis: Genes detected from the differential expression analysis were analyzed 1048 

using CancerSEA and the molecular signatures database 50,77,78. This program performs pathway 1049 

analysis using cell-type specific information relevant to cancer based on available single cell 1050 

datasets. The top 100 most significant downregulated genes from differential expression analysis 1051 

were fed into this program as a gene list and results relevant to ovarian cancer were retrieved.  1052 

Script: DESEQ2_2021Reps_RNA_SVA_Plotting.Rmd 1053 

Survival Analysis: To perform survival analyses we made use of the KM plotter tool 33. This tool 1054 

allows a user to look at the effect that expression of induvial genes or a gene set has on overall 1055 

survival across a number of cancer patients. We looked at the top 100 genes ordered by adjusted 1056 

P-value (the top 100 most significant genes) as a set (using the median expression of the whole 1057 

group); and/or looked at genes individually.  1058 

 1059 

CRISPRi RNA-Seq Analysis: 1060 

General Metrics: RNA-Seq was performed following a similar pipeline to that used in the screen 1061 

analysis with parameters adjusted to account for differences in the data (paired-end with greater 1062 

depth); namely using STAR, HTSEQ, and DESEQ2. This will be expounded in more detail below.  1063 
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QC: Quality control was performed using the FastQC tool 1064 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). All of the metrics returned as clear 1065 

or warnings with no failures. 1066 

Version: FastQC v0.11.7 1067 

Trimming: No trimming was needed or performed. 1068 

Alignment: The reads were then aligned to the HG38v12 human genome using STAR version 1069 

2.6.0a with the following parameter set 72.  1070 

--runMode alignReads  1071 

--outFilterType BySJout  1072 

--outFilterMultimapNmax 20  1073 

--alignSJoverhangMin 8  1074 

--alignSJDBoverhangMin 1  1075 

--outFilterMismatchNmax 999  1076 

--outFilterMismatchNoverLmax 0.6  1077 

--alignIntronMin 20  1078 

--alignIntronMax 1000000  1079 

--alignMatesGapMax 1000000  1080 

--readFilesCommand gunzip -c  1081 

--outSAMtype BAM SortedByCoordinate  1082 

--outSAMattributes NH HI NM MD  1083 

File Formatting: The bam files from STAR were then indexed and sorted using functions in the 1084 

SAMTOOLS package, namely samtools sort and samtools index 73. 1085 

Version: 1.9 1086 

Quantification: The sorted and indexed bam files were quantified using htseq using the gencode 1087 

v29 primary assembly as a reference and with the following parameters 74. 1088 

-m union  1089 
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-nonunique all  1090 

-s reverse  1091 

--type=gene  1092 

--additional-attr=gene_name  1093 

-f bam  1094 

-r pos  1095 

gencode.v29.annotation.gff3  1096 

Version: 0.11.2 1097 

Read Distributions: The package RSeQC was used to assess the distribution of reads across 1098 

the genome. Specifically, the python program read_distribution.py was used with default 1099 

parameterizations to create a summary of this information 75.  1100 

Version: 3.0.0 1101 

Review QC: All of the alignment, counting, and cleaning program outputs were assessed with 1102 

MultiQC for potential issues 76. Default parameters were used and all of the reports were good.  1103 

Version: 1.9 1104 

Normalization: The pre-VST data was used for standard in-program normalization by DESEQ2 1105 

during the differential expression analysis procedure.  1106 

Version(s): sva_3.38.0, DESeq2_1.30.1 1107 

Script: DESEQ2_RNA_Plotting_CRISPRi_Analysis_Revised.Rmd 1108 

Determination of DEGs: Differential gene expression was determined by utilizing DESEQ2 and 1109 

default parameters. Genes called as differentially expressed at a an FDR adjusted p-value less 1110 

than 0.0005 were identified and collected for analysis and figure making. 1111 

Script: DESEQ2_RNA_Plotting_CRISPRi_Analysis_Revised.Rmd  1112 

Pathway Analysis: Genes detected from the differential expression analysis were analyzed 1113 

using CancerSEA and the molecular signatures database 50,77,78.  1114 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.08.487699doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.08.487699
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kelly et. al. (Franco)  April 8, 2022 

 

___________________________________________________________________________ 47 

Survival Analysis: To perform survival analyses we made use of the KM plotter tool 33. This tool 1115 

allows a user to look at the effect that expression of induvial genes or a gene set has on overall 1116 

survival across a number of cancer patients. We looked at the top 100 genes ordered by adjusted 1117 

P-value (the top 100 most significant genes) as a set (using the median expression of the whole 1118 

group); and/or looked at genes individually.  1119 

 1120 

Copy Number Analysis 1121 

Gathering: The copy number and RNA-seq data for this analysis was downloaded from the 1122 

TCGA repository Firebrowse (http://firebrowse.org/) which contains the data used in the TCGA 1123 

analysis of ovarian cancer11. We used the TCGA patient barcodes to determine if a tumor was 1124 

from normal tissue or cancer patients. Samples were subset based on these barcodes to select 1125 

for tumors. Additionally, for the CNVeQTL analysis, samples unique to each dataset (RNA or 1126 

Copy Number) were removed. To perform this, we looked for matching patient identifiers between 1127 

RNA-seq and copy number data and kept any data with ID overlaps. 1128 

Windowing: The autosomal (Chr 1-22) genome (hg19) was divided into 15kb bins using python. 1129 

We decided to use a sliding window size of 15kb based on the overall size distribution of our 1130 

super-enhancers. Since the median size of our super-enhancers is 21kb, we wanted a window 1131 

size similar to the median size but smaller, as smaller windows allow for better resolution. We 1132 

settled on 15kb as being close to the median size and small enough to give us good resolution, 1133 

yet large enough to be computationally feasible (smaller window sizes create larger datasets and 1134 

increase the computational burden of assigning signal and analyzing the data). 1135 

Script: Split_Genome_into_windows.ipynb 1136 

Super Enhancer Overlap: Bedtools intersect (one bp overlap) was used to create a subset of 1137 

the whole genome 15kb sliding windows which overlapped the super-enhancer regions. This gave 1138 

us two data sets, one being whole genome sliding windows and the other being SE overlapping 1139 

sliding windows (a subset of the whole genome group). 1140 
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Copy Number Assignment - Whole Genome: Patient copy number was assigned to each 15kb 1141 

window for every chromosome individually using the script OVLP_CNV_Whole_Genome.py. If 1142 

the patient data overlapped a sliding window by at least one base pair signal from the patient was 1143 

assigned to this window. Once this was performed for every chromosome individually, the 1144 

chromosome data was aggregated using Combine_CNV_Chr_Files.ipynb.  1145 

Script: OVLP_CNV_Whole_Genome.py & Combine_CNV_Chr_Files.ipynb 1146 

Copy Number Assignment – Super-Enhancer Overlap: Patient copy number was assigned to 1147 

each 15kb bin for every chromosome individually using the script SEOVLP_CNV.py. If the patient 1148 

data overlapped a sliding window by at least one base pair signal from the patient was assigned 1149 

to this window. Chromosome data was aggregated using Combine_CNV_Chr_Files.ipynb.  1150 

Script: SEOVLP_CNV.py & Combine_CNV_Chr_Files.ipynb 1151 

CNVeQTL Analysis: Copy Number Expression QTL were identified using MatrixQTL where the 1152 

SE overlapping CNV windows were defined as the “SNPs” and the matching RNA-Seq data 1153 

served as the Expression dataset 41. Of note, genes with over 100 NA, missing, or 0 values were 1154 

removed from this dataset prior to analysis. The CNV and RNA data were also converted into 1155 

float values for ease of use in MatrixEQTL. CNVeQTL were identified using the linear MatrixEQTL 1156 

algorithm on the original data with a P-value threshold of 1e-3. In order to determine significance, 1157 

the null hypothesis was induced and used to determine an empirical FDR. The null hypothesis, in 1158 

which there is no association between specific copy number regions and gene expression, was 1159 

induced by randomly permuting the column assignments of the RNA-seq data, the CNV data was 1160 

left alone. This maintains the variance structure of the CNV data and merely changes which CNV 1161 

data column gets matched with a given RNA-Data column. For example, CNV columns 1,2,3, and 1162 

4 (corresponding to patients 1,2,3, and 4) might now be matched with RNA columns 30,75,6, and 1163 

210; this allows us to use the same overall data and investigate what happens where there is no 1164 

link between CNV and RNA values (as patient 1’s CNV values should be random in relation to 1165 

the gene expression of patient 30). MatrixEQTL was then run on using the original copy number 1166 
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data and the new column shuffled RNA-seq data; this shuffling and running of MatrixEQTL was 1167 

performed 100,000 times. The median number of significant eQTLs detected across all 100k null 1168 

conditions was used as the numerator for the empirical false discovery rate analysis, with the 1169 

experimental results being the denominator. There is some variability in eFDR, as no seed was 1170 

set and the permutations are random, but all repeats of 100k (3 repeats or 300k trials) returned 1171 

an eFDR less than 0.1 or 10%.  1172 

Script: CNV_eQTL.R 1173 

Determining Super Enhancer Amplification: In order to assess whether the super-enhancer 1174 

regions were amplified, we compared the distribution of CNV values in the super-enhancer 1175 

overlapping sliding windows with the whole genome by sub-setting and direct comparison. We 1176 

performed 10k random subset comparisons, and one direct comparison. In any given comparison, 1177 

we took the 336 super-enhancer overlapping windows and then randomly drew 336 windows from 1178 

the whole genome background; these two sets were then compared for significant differences 1179 

using a Welch’s one-sided t test. This analysis allowed us to determine if the super-enhancer 1180 

overlapping group was significantly amplified relative to the randomly drawn subset. For the direct 1181 

comparison, we took all 336 SE overlapping windows and directly compared the CNV values 1182 

across these windows to the ~192,000 total regions using the same t test metric. 1183 

Script: OVCAR_CNV_Comparison_Final.R 1184 

 1185 

Survival Analysis: 1186 

The effect of amplification of these regions on overall survival in patients was calculated using the 1187 

Kaplan-Meier Log Rank Change test and the Cox Proportional Hazards Model 32. The survival 1188 

data was downloaded from the TCGA and the patient ID was mapped back to the CNV values for 1189 

each patient 39. These datasets were then combined into a single set formatted as described in 1190 

CNV_KM_Plots.R. This combined survival and copy number dataset was then analyzed using the 1191 
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functions built in CNV_KM_Plots.R to provide a metric of significance for each 15kb copy number 1192 

region.  1193 

Script: CNV_KM_Plots.R 1194 

 1195 

ChIP Seq (OVCAR3 BRD4 and H3K27ac) 1196 

Data Acquisition: Publicly available ChIP-Seq data was downloaded from the SRA database 1197 

associated with GSE101408 (experimental OVCAR3 H3K27ac condition) using fastq dump 29. 1198 

This process was repeated to get BRD4 binding data for DMSO treated OVCAR3 cells as well as 1199 

the input control from GSE77568 30.  1200 

Processing: The following steps were used to process each file separately (H3K27ac, BRD4 1201 

ChIP, and BRD4 sample input). At the peak calling step, the BRD4 ChIP data was informed by 1202 

the processed input control. As there was no input provided for the H3K27ac data, no input was 1203 

processed or utilized for this sample.  1204 

Data Quality Check: The quality of the data was assessed using fastqc and reads were trimmed 1205 

using Trimmomatic (version 0.38) with the following parameters 79. 1206 

Leading: 30 1207 

Trailing: 30 1208 

Sliding Window: 4:30 1209 

MINLEN: 36 1210 

Phred33 1211 

Alignment: The fastq files were aligned to hg19 using Bowtie2 with default parameters 80. The 1212 

output sam files were then converted to bam files using samtools and sorted/indexed.  1213 

Processing Bam Files (Marking Duplicates): The aligned and sorted bam files were then 1214 

marked for duplicate reads using picard with the following parameters 81.  1215 

java -Xmx4G -jar $PICARD/picard.jar MarkDuplicates 1216 

VALIDATION_STRINGENCY=LENIENT  1217 
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ASSUME_SORTED=true 1218 

REMOVE_DUPLICATES=false 1219 

Processing Bam Files (Removing Duplicates): The duplicate reads marked by Picard were 1220 

then removed by samtools using the following command.  1221 

samtools view -F 1804 -b in.bam > clean.bam  1222 

Create tagAlign Files: A tagAlign file was generated using the following command.  1223 

bamToBed -i clean.bam | awk 'BEGIN{OFS="\t"}{$4="N";$5="1000";print $0}' | tee clean.tagAlign 1224 

| gzip -c > clean.tagAlign.gz 1225 

Peak Calling: Peaks were identified using MACS2 with the following parameterization 34. The 1226 

input sample was used as the control for the BRD4 ChIP data; the H3K27ac data was processed 1227 

without an input with MACS2 determining the control by default processes.  1228 

Version: 2.2.6 1229 

BRD4: 1230 

-g hs  1231 

-p 1e-2 1232 

--nomodel 1233 

--extsize 121 1234 

-B 1235 

H3K27ac: 1236 

-g hs  1237 

-p 1e-2 1238 

--nomodel 1239 

--extsize 218 1240 

-B 1241 

Determination of the Final Peak Set: The called peaks were then intersected with all genes in 1242 

the hg19 human genome, using bedtools intersect (1bp overlap) and overlapping regions were 1243 
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removed (https://bedtools.readthedocs.io/en/latest/). The remaining peaks from H3K27ac and 1244 

BRD4 that did not overlap genes were then intersected using bedtools (1bp overlap) and regions 1245 

with both an H3K27ac and BRD4 peak were kept (using the BRD4 coordinates).  1246 

Creating BigWigs: The fold enrichment of the bam files were calculated across these peaks for 1247 

both H3K27ac and BRD4 using macs2 bdgcmp and the -m ppois parameter. As the H3K27ac 1248 

had no input we felt that in order to allow for fair comparison both H3K27ac and BRD4 bedgraph 1249 

files should use the -m ppois parameter (we did also generate a fold enrichment aka FE bedgraph 1250 

for BRD4 to ensure it was comparable to the ppois version). These bedgraph files were then 1251 

converted to bigwigs using bedGraphToBigWig from UCSC. 1252 

Calling Super Enhancers: Super Enhancers were then identified using the ROSE 36 pipeline 1253 

with default parameters.  1254 

Version: 0.1 1255 

Python: 2.7 1256 

Meta-Analysis: Meta plots and heatmaps for these data were created using Deeptools. We 1257 

generated matrices using signal from the bigwig files and the overlapping 12,339 peaks as the 1258 

regions. These matrices were then used for plotting.  1259 

Version: 3.1.0 1260 

 1261 

ChIP-Seq (H3K9me3) 1262 

ChIP-Seq analysis for H3K9me3 was performed by ACTIVEMOTIF following their spike in 1263 

protocol, the following is a modified excerpt from the workflow provided to us.  1264 

Sequence Analysis: The 75-nt single-end (SE75) sequence reads generated by Illumina 1265 

sequencing (using NextSeq 500) were mapped to the genome using the BWA algorithm (“bwa 1266 

aln/samse” with default settings). Alignment information for each read is stored in the BAM format. 1267 

Only reads that pass Illumina’s purity filter, align with no more than 2 mismatches, and map 1268 
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uniquely to the genome were used in the subsequent analysis. In addition, duplicate reads (“PCR 1269 

duplicates”) were removed. 1270 

Determination of Fragment Density: Since the 5´-ends of the aligned reads (= “tags”) represent 1271 

the end of ChIP/IP-fragments, the tags were extended in silico (using Active Motif software) at 1272 

their 3´- ends to a length of 200 bp, which corresponds to the average fragment length in the size-1273 

selected library. To identify the density of fragments (extended tags) along the genome, the 1274 

genome was divided into 32-nt bins and the number of fragments in each bin is determined. This 1275 

information (“signal map”; histogram of fragment densities) is stored in a bigWig file. bigWig files 1276 

also provide the peak metrics in the Active Motif analysis program described below. 1277 

Peak Finding: The generic term “Interval” is used to describe genomic regions with local 1278 

enrichments in tag numbers. Intervals are defined by the chromosome number and a start and 1279 

end coordinate. The peak caller used at Active Motif for this project was SICER82. This method 1280 

was used to detect significant enrichments in the ChIP/IP data file when compared to the Input 1281 

data file or relative to neighboring background regions. 1282 

 Additional Analysis Steps: 1283 

a. Standard Normalization: In the default analysis, the tag number of all samples (within a 1284 

comparison group) is reduced by random sampling to the number of tags present in the smallest 1285 

sample.  1286 

b. Spike-in Adjustment: Spike-in of Drosophila chromatin was performed; the number of test 1287 

tags were adjusted (again by down-sampling) by a factor that would result in the same number of 1288 

spike-in Drosophila tags for each sample.  1289 

Merged Region Analysis: To compare peak metrics between 2 or more samples, overlapping 1290 

Intervals (orange bars in diagram below) were grouped into “Merged Regions” (green bars), which 1291 

are defined by the start coordinate of the most upstream Interval and the end coordinate of the 1292 

most downstream Interval (= union of overlapping Intervals; “merged peaks”). In locations where 1293 

only one sample has an Interval, this Interval defines the Merged Region. The use of Merged 1294 
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Regions was necessary because the locations and lengths of Intervals are rarely exactly the same 1295 

when comparing different samples. Furthermore, with this approach fragment density values 1296 

could be obtained even for samples for which no peak was called. 1297 

Annotations: After defining the Intervals and Merged Regions, their genomic locations along with 1298 

their proximities to gene annotations and other genomic features are determined. In addition, 1299 

average and peak (i.e. at “summit”) fragment densities within Intervals and Merged Regions were 1300 

compiled. 1301 

Differential Binding Analysis: DESeq2 was used to determine regions of differential binding. 1302 

 1303 

Hi-C 1304 

In Situ Hi-C : OVCAR3 cells were grown under recommended culture conditions in RPMI media 1305 

supplemented with 10% FBS and 1% penicillin/streptomycin. Four to five million cells were fixed 1306 

with 1% formaldehyde for 10 minutes. Pellets were flash frozen in liquid nitrogen and stored at -1307 

80°C. 1308 

In situ Hi-C was performed as previously described 83. Pellets were lysed in ice-cold Hi-C 1309 

lysis buffer (10mM Tris-HCl pH 8.0, 10mM NaCl, 0.2% IGEPAL CA630) with 50μL of protease 1310 

inhibitors for 15 min on ice. Cells were pelleted and washed once more using the same buffer. 1311 

Pellets were resuspended in 50μL of 0.5% SDS and incubated at 62°C for 7 min. Reactions were 1312 

quenched with 145μL water and 25μL 10% Triton X-100 at 37°C for 15 min. Chromatin was 1313 

digested overnight with 25μL of 10X NEBuffer2 and 100U of MboI at 37°C with rotation. 1314 

 Reactions were incubated at 62°C for 20 min to inactivate MboI, then cooled to RT. 1315 

Fragment overhangs were repaired by adding 37.5μL 0.4mM biotin-14-dATP; 1.5μL each 10mM 1316 

dCTP, dGTP, dTTP; 8μL 5U/μL DNA Polymerase I, Large (Klenow) Fragment and incubating at 1317 

37°C for 1.5 h with rotation. Ligation was performed by adding 673μL water, 120μL 10X NEB T4 1318 

DNA ligase buffer, 100μL 10% Triton X-100, 6μL 20mg/mL BSA, and 1μL 2000U/μL T4 DNA 1319 

ligase and incubating at RT for 4 h with slow rotation. Samples were pelleted at 2500g, 1320 
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resuspended in 432μL water, 18μL 20mg/mL proteinase K, 50μL 10% SDS, and 46μL 5M NaCl, 1321 

incubated at 55°C for 30 min, and then transferred to 68°C overnight. 1322 

 Samples were cooled to RT and 1.6x volumes of pure ethanol and 0.1x volumes of 3M 1323 

sodium acetate pH 5.2 were added to each sample, which were subsequently incubated at -80°C 1324 

for over 4-6 h. Samples were spun at max speed at 2°C for 15 min and washed twice with 70% 1325 

ethanol. The resulting pellet was dissolved in 130μL of 10mM Tris-HCl pH 8.0 and incubated at 1326 

37°C for 1-2 h. Samples were stored at 4°C overnight. 1327 

 DNA was sheared using the Covaris LE220 (Covaris, Woburn, MA) to a fragment size of 1328 

300-500bp in a Covaris microTUBE. DNA was transferred to a fresh tube and the Covaris 1329 

microTUBE was rinsed with 70μL of water and added to the sample. A 1:5 dilution of DNA was 1330 

run on a 2% agarose gel to verify successful shearing.  1331 

 Sheared DNA was size selected using AMPure XP beads. 0.55x volumes of 2X 1332 

concentrated AMPure XP beads were added to each reaction and incubated at RT for 5 min. 1333 

Beads were reclaimed on a magnet and the supernatant was transferred to a fresh tube. 30μL of 1334 

2X concentrated AMPure XP beads were added and incubated for 5 min at RT. Beads were 1335 

reclaimed on a magnet and washed with fresh 70% ethanol. Beads were dried for 5 min at RT 1336 

prior to DNA elution in 300μL of 10mM Tris-HCl pH 8. Undiluted DNA was run on a 2% agarose 1337 

gel to verify successful size selection between 300-500 bp. 1338 

 150μL of 10mg/mL Dynabeads MyOne Streptavidin T1 beads were washed with 400μL of 1339 

1X Tween washing buffer (TWB; 250μL Tris-HCl pH 7.5, 50μL 0.5M EDTA, 10mL 5M NaCl, 25μL 1340 

Tween 20, 39.675μL water). Beads were then resuspended in 300μL of 2X Binding Buffer (500μL 1341 

Tris-HCl (pH 7.5), 100μL 0.5M EDTA, 20mL 5M NaCl, 29.4mL water), added to the DNA sample, 1342 

and incubated at RT for 15 min with rotation. DNA-bound beads were then washed twice with 1343 

600μL of 1X TWB at 55°C for 2 min with shaking. Beads were resuspended in 100μL 1X NEBuffer 1344 

T4 DNA ligase buffer, transferred to a new tube, and reclaimed.  1345 
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Sheared ends were repaired by resuspending the beads in 88μL of 1X NEB T4 DNA 1346 

Ligase Buffer with 1mM ATP, 2μL of 25mM dNTP mix, 5μL of 10U/uL NEB T4 PNK, 4uL of 3U/uL 1347 

NEB T4 DNA polymerase I, and 1uL of 5U/uL NEB DNA polymerase 1, large (Klenow) fragment 1348 

and incubating at RT for 30 min. Beads were washed two more times with 1X TWB for 2 min at 1349 

55°C with shaking. Beads were washed once with 100uL of 1X NEBuffer 2, transferred to a new 1350 

tube, and resuspended in 90uL of 1X NEBuffer 2, 5uL of 10mM dATP, and 5uL of NEB Klenow 1351 

exo minus, and incubated at 37°C for 30 min. Beads were washed two more times with 1X TWB 1352 

for 2 min at 55°C with shaking. Beads were washed in 100uL 1X Quick Ligation Reaction Buffer, 1353 

transferred to a new tube, reclaimed, and resuspended in 50uL of 1X NEB Quick Ligation 1354 

Reaction Buffer. 2uL of NEB DNA Quick Ligase and 3uL of an appropriate Illumina indexed 1355 

adapter (TruSeq nano) were added to each sample before incubating at RT for 15 minutes. Beads 1356 

were reclaimed and washed twice with 1X TWB for 2 min at 55°C. Beads were washed in 100uL 1357 

10mM Tris-HCl pH 8, transferred to a new tube, reclaimed, and resuspended in 50uL of 10mM 1358 

Tris-HCl pH 8. 1359 

Hi-C libraries were amplified directly off T1 beads with 10 cycles in 5uL of PCR primer 1360 

cocktail, 20uL of Enhanced PCR mix, and 25uL of DNA on beads. The PCR settings were as 1361 

follows: 3 min at 95°C followed by 4-12 cycles of 20s 98°C, 15s at 60°C, and 30s at 72°C. Samples 1362 

were held at 72°C for 5 min before lowering for holding at 4°C. Amplified samples were transferred 1363 

to a new tube and brought to 250uL in 10mM Tris-HCl pH 8. 1364 

 Beads were reclaimed and the supernatant containing the amplified library was transferred 1365 

to a new tube. Beads were resuspended in 25uL of 10mM Tris-HCl pH 8 and stored at -20°C. 1366 

0.7x volumes of warmed AMPure XP beads were added to the supernatant sample and incubated 1367 

at RT for 5 min. Beads were reclaimed and washed once with 70% ethanol without mixing. Ethanol 1368 

was aspirated. Beads were resuspended in 100uL of 10mM Tris-HCl pH 8, 70uL of fresh AMPure 1369 

XP beads were added, and the solution was incubated for 5 min at RT. Beads were reclaimed 1370 

and washed twice with 70% ethanol without mixing. Beads were left to dry and DNA was eluted 1371 
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in 25uL of 10mM Tris-HCl pH 8. The resulting libraries were next quantified by Qubit and 1372 

Tapestation. A low depth sequence was performed first using the Miniseq sequencer system 1373 

(Illumina) and analyzed using the Juicer pipeline to assess quality. The resulting libraries 1374 

underwent paired-end 2x150bp sequencing on an Illumina NovaSeq sequencer. Each replicate 1375 

was sequenced to an approximate depth of 730 million reads. The full sequencing depth was 1376 

approximately 2.92 billion reads. 1377 

Hi-C Data Processing and Analysis: In situ Hi-C datasets were processed using a modified 1378 

version of the Juicer Hi-C pipeline (https://github.com/EricSDavis/dietJuicer) with default 1379 

parameters as previously described 84. MboI was used as the restriction enzyme, and reads were 1380 

aligned to the hg19 human reference genome with bwa (version 0.7.17). Four biological replicates 1381 

were aligned and merged for a total of 2,922,558,308 Hi-C read pairs in OVCAR3 cells yielding 1382 

2,598,024,810 valid Hi-C contacts (88.90%). For visualization, the resulting Hi-C contact matrix 1383 

was normalized with the “KR” matrix balancing algorithm as previously described to adjust for 1384 

regional background differences in chromatin accessibility85. 1385 

 1386 

Hi-C contact frequency was used to classify CRISPR-KO gene targets as direct or indirect. We 1387 

compared the fold-change in observed over expected contact frequency between SE14 or SE60 1388 

and their respective gene targets with 100 permutations of distance-matched region-gene pairs 1389 

as controls. Direct targets were defined as SE-gene pairs with an observed/expected contact 1390 

frequency greater than the 75th percentile of the control distribution. Since distance-matching is 1391 

only relevant for regions within a chromosome, we restricted our analysis to intra-chromosomal 1392 

pairs. We performed this analysis on 1) CRISPR-KO-validated target genes and 2) significantly 1393 

down-regulated (LFC < -0.5) CRISPR-KO-validated target genes. The analysis was conducted in 1394 

R (4.1.0) using the following R/Bioconductor packages: GenomicRanges (1.45.0), data.table 1395 

(1.14.2), Homo.sapiens  (1.3.1), InteractionSet (1.21.1), plyranges (1.13.1), ggplot2 (3.3.5), 1396 
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ggrepel  (0.9.1)86. Example regions were visualized with the plotgardener (1.0.3) Bioconductor 1397 

package. Scripts can be made available upon request87. 1398 

 1399 

Single-cell analysis  1400 

Data Acquisition: We obtained the single-cell RNA-seq and single-cell ATAC-seq data from the 1401 

GEO accession number GSE173682.  1402 

scRNA-seq Data Processing and Barcode Quality-Control (QC): For each patient tumor 1403 

sample, the filtered feature-barcode matrix was converted into a Seurat object using the Seurat 1404 

R package (Seurat version 3.2) 88. To enrich for high quality cells in each patient dataset, QC and 1405 

doublet removal were performed for each patient dataset individually. First, outlier cells were 1406 

defined in each of the following metrics: log(UMI counts) (>2 MADs, low end), log(number of 1407 

genes expressed) (>2 MADs, low end) and log(percent mitochondrial read count +1) (>2 MADs, 1408 

high end). Only cells meeting all three criteria were kept for doublet detection. To reduce the false 1409 

positive rate in doublet calling, only cells marked as doublets by both DoubletDecon 89(version 1410 

1.1.5 ) and DoubletFinder 90 (version 2.0.3) were removed from downstream analysis. After QC 1411 

and doublet removal for each patient dataset, the individual patient datasets were combined using 1412 

Seurat’s merge().  1413 

scRNA-seq Clustering and Cell Type Annotation: The merged gene expression matrix was 1414 

normalized using Seurat’s NormalizeData() with the normalization method set to “LogNormalize.” 1415 

Feature selection was performed with Seurat’s FindVariableFeatures() with the selection method 1416 

set to “vst” and the number of top variable features set to 2,000. Prior to principal component 1417 

analysis (PCA), we scaled the expression for all genes in the dataset using Seurat’s ScaleData(). 1418 

The top 2,000 most variable genes were summarized by PCA into 50 principal components (PCs) 1419 

and the cells were visualized in a two-dimensional UMAP embedding using Seurat’s RunUMAP() 1420 

with all 50 PCs, as suggested by the results of Seurat’s JackStraw() (data not shown). To identify 1421 

groups of transcriptionally distinct cells, graph-based Louvain clustering was performed using 1422 
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Seurat’s FindNeighbors() with all 50 PCs and Seurat’s FindClusters() with a resolution of 0.7. 1423 

scRNA-seq UMAP plots were generated in R using ggplot2. 1424 

Cell type annotation was performed using a combination of 1) reference-based annotation 1425 

with the R package SingleR 91 and 2) gene signature enrichment with Seurat’s AddModuleScore(). 1426 

After QC, doublet removal, and dimension reduction for each patient dataset, single cells were 1427 

annotated to known cell types using SingleR with a reference scRNA-seq dataset. Both scRNA-1428 

seq datasets were annotated based on a reference scRNA-seq dataset from a human ovarian 1429 

tumor (sample ID: HTAPP-624-SMP-3212) 92. The individual patient datasets were then combined 1430 

using Seurat’s merge() to form each patient cohort presented in this study and subsequently 1431 

reprocessed according to the normalization, feature selection and clustering methods described 1432 

previously. The resulting clusters in each patient cohort dataset were annotated based on the 1433 

majority cell type label within each cluster. Finally, SingleR cell type annotations were verified by 1434 

calculating single cell enrichment scores for cell type gene signatures from PanglaoDB 93 using 1435 

Seurat’s AddModuleScore(). The cell type annotations for each cluster were then modified to 1436 

include the cluster number identity hyphened with the cell type identity. These defined the final 1437 

cell type subcluster identities for scRNA-seq that were used in label transferring to the matching 1438 

scATAC-seq data.  1439 

scRNA-seq Differential Gene Expression Analysis: Differential gene expression was 1440 

computed using Seurat’s FindMarkers() with the “test.use” parameter set to “wilcox” for the 1441 

Wilcoxon Rank Sum test. Genes with a Bonferroni-corrected p-value <= 0.01 & average logFC 1442 

>= 0.1 were deemed upregulated in the cancer epithelial fraction relative to the remaining cell 1443 

type clusters.  1444 

scATAC-seq Data Processing and Barcode Quality-Control (QC): The scATAC-seq 1445 

fragments file for each patient tumor sample was read into the R package ArchR (version 0.9.3) 1446 

to perform quality control and doublet removal for each patient dataset individually 94. To enrich 1447 

for cellular barcodes, we took advantage of the bimodal distributions in log10(TSS 1448 
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enrichement+1) and in log10(number of unique fragments) characterizing two different 1449 

populations of barcodes (cellular and non-cellular). Barcode cutoff thresholds for log10(TSS 1450 

enrichement+1) and log10(number of unique fragments) were estimated using a Gaussian 1451 

Mixture Model (GMM) for each metric, as implemented in the R package mclust 95. Only barcodes 1452 

above these estimated thresholds in both metrics were kept as cellular barcodes for doublet 1453 

detection. Doublet enrichment scores were calculated for cellular barcodes using ArchR’s 1454 

addDoubletScores() with the knnMethod set to “UMAP.” Cellular barcodes with doublet 1455 

enrichment scores >1 were deemed as putative doublets and subsequently removed using 1456 

ArchR’s filterDoublets().  1457 

scRNA-seq Cell Type Label Transfer to scATAC-seq: Before transferring labels from scRNA-1458 

seq to scATAC-seq, gene activity scores were inferred in scATAC-seq using ArchR’s 1459 

addGeneScoreMatrix(). Briefly, this method uses the following features to estimate gene activity: 1460 

1) fragment counts mapping to the gene body, 2) an exponential weighting function to give higher 1461 

weights to fragment counts closer to the gene and lower weights to fragment counts father away 1462 

from the gene, and 3) gene boundaries to prevent the contribution of fragments from other genes.  1463 

Seurat’s CCA implementation in FindTransferAnchors() and TransferData() was used to assign 1464 

each of the scATAC-seq cells a cell type subcluster identity from the matching scRNA-seq data 1465 

and an associated label prediction score 88. This label transferring procedure was constrained to 1466 

only align cells of the same patient dataset (e.g. Patient 1 scATAC-seq cells were assigned only 1467 

to cell type subclusters represented by Patient 1 scRNA-seq cells). All scATAC-seq cells were 1468 

included in UMAP visualization, but only scATAC-seq cells with a label prediction score >0.5 were 1469 

included in downstream analyses. Also, only inferred cell type subclusters with >30 cells were 1470 

included in downstream analysis to ensure enough cells for downstream analysis.  1471 

scATAC-seq Peak Calling and Data Visualization: After scATAC-seq cells received a cell type 1472 

subcluster label, pseudo-bulk replicates were generated for each inferred cell type subcluster in 1473 

the R package ArchR and pseudo-bulk peak calling was performed within each inferred cell type 1474 
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subcluster using MACS2 34,94. ArchR’s default iterative overlap procedure was used to merge all 1475 

peak calls into a single peak by barcode matrix across all cellular barcodes in the merged 1476 

scATAC-seq dataset. Browser tracks visualizing the scATAC-seq coverage per inferred cell type 1477 

were generated using ArchR’s plotBrowserTrack function.  1478 

scATAC-seq Differential Peak Accessibility for Determining Cancer-Enriched Enhancers: 1479 

Differential peak accessibility was computed with ArchR’s getMarkerFeatures() with the bias 1480 

argument set to include both “TSSEnrichment” and “log10(number of fragments).” This procedure 1481 

identifies differentially accessibility peaks (DEPs) between two groups of cells using a Wilcoxon 1482 

Rank Sum test. DEPs were identified for each cell cluster by comparing the accessibility values 1483 

of peaks across all cells in a cluster (group 1) relative to the accessibility values for a group of 1484 

background cells matched for TSS enrichment and read depth (group 2). Peaks with Benjamini-1485 

Hochberg FDR <= 0.10 & Log2FC >= 0.25 were deemed cancer-enriched with statistically 1486 

significant increased accessibility in the cancer epithelial fraction relative to the remaining cell 1487 

type clusters.  1488 

Enhancer Motif Analysis in scATAC-seq: The sequences of the select cancer-enriched 1489 

enhancers were extracted with Bedtools getfasta() using the hg38 reference genome 96. The 1490 

enhancer sequences were inputted into FIMO motif scanning with default parameters using a 1491 

motif database supplied by JASPAR2020 56 97. The FIMO output listed matching motif 1492 

occurrences with p-value <1e-4. This list was further sorted by Benjamini-Hochberg corrected q-1493 

values and TF expression in the cancer fraction by summing the normalized TF counts across all 1494 

cells within the cancer epithelial clusters. TF expression violin plots were generated with Seurat’s 1495 

VlnPlot() function. 1496 

 1497 

DATA AVAILABILITY 1498 

Data generated in this study are publicly available in the Gene Expression Omnibus 1499 

(https://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE174259 (reviewer token 1500 
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sjelgugwrzghlor). The single cell genomics data were downloaded from GEO accession number 1501 

GSE173682. 1502 

 1503 

CODE AVAILABILITY 1504 

 Programs and Scripts for the bulk data analysis, mentioned in the methods, are located at the 1505 

Github repository: https://github.com/mkelly9513/OV-Project-One 1506 

Programs and scripts for the single cell data analysis are located at the Github repository: 1507 

https://github.com/RegnerM2015/scOVAR_SE_Screen 1508 

Programs and scripts for the Hi-C data analysis are available on request to 1509 

https://github.com/EricSDavis (no “original” scripts were used).   1510 
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