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ABSTRACT 19 

Cilia are conserved organelles found in many cell types in eukaryotes, and their 20 

dysfunction causes defects in environmental sensing and signaling transduction; such 21 

defects are termed ciliopathies. Distinct cilia have cell-specific morphologies and exert 22 

distinct functions. However, the underlying mechanisms of cell-specific ciliogenesis 23 

and regulation are unclear. Here we identified a WD40-repeat (WDR) protein, 24 

WDR47/NMTN-1, and show that it is specifically required for ciliogenesis of AWB 25 

chemosensory neurons in C. elegans. WDR47/NMTN-1 is expressed in the AWB 26 

chemosensory neuron pair, and is localized at the basal body (BB) of the AWB cilia. 27 

Knockout of wdr47/nmtn-1 causes abnormal AWB neuron cilia morphology, structural 28 

integrity, and induces aberrant AWB-mediated aversive behaviors. We further 29 

demonstrate that wdr47/nmtn-1 deletion affects movement of intraflagellar transport 30 

(IFT) particles and their cargo delivery in AWB neurons. Our results indicate that 31 

WDR47/NMTN-1 is essential for AWB neuron ciliary morphology and function, which 32 

reveal a novel mechanism for cell-specific ciliogenesis. Since WDR47/NMTN-1 is 33 

conserved in mammals, our findings may help understand the process of cell-specific 34 

ciliogenesis and provide insights for treating ciliopathies. 35 

 36 

KEYWORDS: cilia, chemosensory neuron, WD40-repeat protein, intraflagellar 37 

transport  38 
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INTRODUCTION 39 

Cilia are microtubule-based sensory organelles that are found throughout most 40 

eukaryotes (Pedersen, Schroder et al. 2012). They play essential roles in diverse 41 

physiological and developmental processes, including transduction of environmental 42 

signals, establishing cell polarity, modulation of cellular motility, and regulating fluid 43 

flow (Pan, Wang et al. 2005, Berbari, O'Connor et al. 2009, Bloodgood 2010, Goetz 44 

and Anderson 2010, Dasgupta and Amack 2016, Ringers, Olstad et al. 2020). 45 

Dysfunction of cilia underlies a wide range of human syndromes—termed 46 

ciliopathies—that feature diverse phenotypes, including brain malformation, infertility, 47 

renal cyst formation, retinal degeneration, and anosmia (loss of smell) (Sharma, 48 

Berbari et al. 2008, Jenkins, McEwen et al. 2009, Brown and Witman 2014, Reiter and 49 

Leroux 2017, Uytingco, Green et al. 2019).  50 

 51 

Cilia comprise three major compartments: the basal body (BB) with fibrous 52 

apparatuses transition fibers and basal feet, the transition zone (TZ), and the 53 

microtubule-based ciliary scaffold known as an “axoneme” (Kobayashi and Dynlacht 54 

2011, Reiter, Blacque et al. 2012, Wei, Ling et al. 2015). Cilia are nucleated by the BB 55 

(derived from the mother centriole) and eventually protrude from the cell surface 56 

(Ishikawa and Marshall 2011). Subsequently, the TZ is templated to gate ciliary protein 57 

trafficking (Williams, Li et al. 2011). Known ciliary cargos include cilia structural 58 

components, G-protein-coupled receptors, ion channels, and other signaling 59 

molecules (Inglis, Ou et al. 2007, Lechtreck 2015, Nachury 2018). Those cargos are 60 

transported bi-directionally along the axoneme via a process called intraflagellar 61 

transport (IFT) (Hao and Scholey 2009). IFT components are recruited to elongate the 62 

ciliary axoneme. The IFT machinery consists of kinesin-2 and IFT-dynein motors, 63 

together with IFT-A and the IFT-B cargo adaptor complexes, that mediate the 64 

bidirectional movement of IFT cargos along the axoneme (Hao and Scholey 2009, 65 

Jordan and Pigino 2021). The anterograde IFT motors of the kinesin-2 family transport 66 

IFT particles from the cilia base to the cilia tip for incorporation into ciliary structures, 67 

while the retrograde IFT motors of dynein recycle kinesin-2 and IFT particles back to 68 
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the cilia base (Hao and Scholey 2009, Prevo, Scholey et al. 2017). Besides, the Bardet 69 

Biedl syndrome (BBS) proteins are required to stabilize the association of IFT motors 70 

and IFT particles (Ou, Blacque et al. 2005, Uytingco, Williams et al. 2019). This 71 

bidirectional cargo transport is essential for ciliogenesis (Ishikawa and Marshall 2011). 72 

It has been reported that impairment of IFT leads to defects in cilia structure and 73 

function across different species. In C. elegans, mutations in IFT particle genes and 74 

motor genes have been shown to alter the cilia morphology of chemosensory neurons 75 

(Saikat Mukhopadhyay, Hongmin Qin et al. 2007). Inactivation of the IFT component 76 

IFT88 results in shortened cilia in a mouse model of polycystic kidney disease (Shao, 77 

El-Jouni et al. 2020). In addition, loss of BBS proteins leads to disorganization of the 78 

dendritic microtubule network of olfactory cilia, and causes anosmia in mice (Kulaga, 79 

Leitch et al. 2004).  80 

 81 

Although the basic assembly mechanisms and structures of cilia are highly conserved, 82 

it is clear that these structures exhibit distinct lengths and morphologies depending on 83 

the identity and condition of the cells they are generated within; it is also clear that 84 

specialized cilia exert unique functional roles (Silverman and Leroux 2009). For 85 

example, the multiciliated protist model Tetrahymena carries two types of cilia (oral 86 

and locomotory) that exhibit asymmetries in the anterior-posterior and left-right axes 87 

(Soares, Carmona et al. 2019). These two types of cilia have different mechanisms to 88 

control cilia oscillation and to sense viscosity (Jung, Powers et al. 2014). In mammals, 89 

cilia of mammalian olfactory sensory neurons are known to have different lengths in 90 

distinct regions of the olfactory epithelium (Challis, Tian et al. 2015). Olfactory sensory 91 

neurons situated in the anterior areas have longer cilia and are more sensitive to 92 

odorants than those in the posterior regions (Challis, Tian et al. 2015). These findings 93 

make it clear that cilia identity (including morphology and function) is under strict 94 

control. However, any mechanisms through which the unique genesis, structural 95 

maintenance, and/or function of such cell-specific cilia remain elusive.  96 

 97 

C. elegans has been repeatedly used as a model system to explore mechanisms 98 
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regulating cell-specific cilia morphology and function (Inglis, Ou et al. 2007, Ou, Koga 99 

et al. 2007, Barr 2011). C. elegans has exactly 60 ciliated cells, with variable 100 

morphology and function (Bargmann 2006). Among the ciliated neurons, AWA, AWB, 101 

AWC, ASH, and ADL neurons belong to chemosensory neurons, enabling worms to 102 

detect a wide variety of volatile (olfactory) and water-soluble (gustatory) cues 103 

associated with food and danger (Emily R. Troemel 1997, Bargmann 2006, Hart and 104 

Chao 2010, Yoshida, Hirotsu et al. 2012, Li and Liberles 2015). Regarding morphology, 105 

AWA, AWB, and AWC neurons have “wing” cilia with distinct wing-like morphologies, 106 

while the ASH and ADL neurons have “channel” cilia with rod-like shapes (Inglis, Ou 107 

et al. 2007). For odorant recognition, the AWA and AWC neuron pairs detect volatile 108 

attractants (Cornelia I. Bargmann 1993, Sengupta 2007), while ASH, ADL, and AWB 109 

neurons respond to volatile repellants (Chao, Komatsu et al. 2004, Sengupta 2007). 110 

Thus, the cilia of particular chemosensory neurons of C. elegans represent an 111 

excellent model system to explore the cell-specific regulation of cilia morphology and 112 

function. 113 



WD40-repeat (WDR) protein family is a large group of proteins containing the WDR 115 

motifs comprised of approximately 40 amino acids terminating in tryptophan (W) and 116 

aspartic acid (D) (Kim and Kim 2020). At least 17 different WDR proteins are 117 

associated with ciliopathies and majority of them have been identified as IFT 118 

components. One of the WDR proteins, WDR47 has been implicated in regulating 119 

formation of the central pair microtubules and ciliary beat in the motile cilia (Liu, Zheng 120 

et al. 2021). However, its function in the primary cilia, such as the chemosensory 121 

neurons remains unknow. Since WDR47 is highly conserved with NMTN-1 as the 122 

homolog in C. elegans, we intend to investigate if WDR47/NMTN-1 regulates the 123 

function of specific chemosensory neurons in C. elegans. 124 

 125 

Here we discover that WDR47/NMTN-1 is required for AWB-mediated avoidance 126 

behaviors. After showing that WDR47/NMTN-1 is expressed in the AWB neuron pair 127 

and is enriched at the BB of AWB cilia, we demonstrate that knockout of wdr47/nmtn-128 
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1 affects the cilia length and morphology of the AWB neurons as well as AWB-129 

mediated chemosensation. Explaining these mutant phenotypes, our data support that 130 

WDR47/NMTN-1 helps to maintain appropriate IFT motor movement and proper IFT 131 

cargo delivery. In all, our results indicate that WDR47/NMTN-1 participates in the 132 

ciliogenesis via IFT particle movement in a cell-specific manner. Since WDR47/NMTN-133 

1 is conserved in mammals, the mechanism we identified here may help us to better 134 

understand the process of cell-specific ciliogenesis and molecular mechanism for cilia 135 

identity. 136 

 137 

RESULTS 138 

WDR47/NMTN-1 is expressed in the AWB chemosensory neuron pair 139 

To examine the expression pattern of WDR47/NMTN-1 in C. elegans, we generated 140 

transgenic animals expressing GFP under the wdr47/nmtn-1 promoter. We detected 141 

the strong GFP signals in both the ciliated amphid and phasmid neurons (Fig. 1A). 142 

Next, we focused on the amphid chemosensory neurons and asked if WDR47/NMTN-143 

1 is expressed in specific chemosensory neurons. There are five pairs of 144 

chemosensory neurons (olfactory) that detect volatile odors (Hart and Chao 2010). 145 

AWA and AWC neurons respond to volatile attractants (Cornelia I. Bargmann 1993, 146 

Sengupta 2007), while ASH, ADL, and AWB neurons respond to volatile repellants 147 

(Chao, Komatsu et al. 2004, Sengupta 2007). We labeled the individual chemosensory 148 

neuron pairs by expressing mCherry under neuron-type specific promoters (odr-10 149 

promoter for AWA, str-1 promoter for AWB, str-2 promoter for AWC, and srb-6 promoter 150 

for ASH/ADL). We found strong GFP signals in the AWB neurons but not AWA or 151 

ASH/ADL neurons, and found a dim GFP signal in the AWC neurons (Fig. 1B-C). 152 

These data show that WDR47/NMTN-1 is expressed in the AWB chemosensory 153 

neuron pair known to function in chemosensation and aversion behaviors (Emily R. 154 

Troemel 1997). 155 

 156 

WDR47/NMTN-1 is localized at the basal body (BB) of cilia 157 

To study the subcellular localization of WDR47/NMTN-1 in AWB neurons, we 158 
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constructed a mNeonGreen-NMTN-1 (MNG::NMTN-1) fusion protein with expression 159 

under the wdr47/nmtn-1 promoter (Pnmtn-1). The mNeonGreen signals were enriched 160 

in the base of cilia and cell body of AWB neurons (Fig. 1D). We also constructed a C-161 

terminal tagged NMTN-1-mNeonGreen (NMTN-1::MNG) fusion protein (same 162 

promoter), and found a similar localization pattern as the N-terminal tagged 163 

MNG::NMTN-1 (Fig. 1E). We also investigated the expression pattern of NMTN-1 at 164 

different developmental stages using the Pnmtn-1::MNG::NMTN-1 fusion protein, and 165 

found that NMTN-1 was expressed in the cilia of the AWB neurons from egg to adult 166 

(day4) (Supplementary Fig. 1A-B). 167 

 168 

There are two substructures at the base of cilia known to affect ciliogenesis and control 169 

ciliary protein composition: the basal body (BB) and the transition zone (TZ) (Fig. 1H) 170 

(Reiter, Blacque et al. 2012). Cilia are nucleated by the BB, and beyond the BB lies 171 

the TZ that acts as a “gate” to regulate the IFT-dependent trafficking of ciliary proteins 172 

to and from cilia (Ishikawa and Marshall 2011). To detect if WDR47/NMTN-1 is 173 

expressed in the BB and/or TZ, we labeled these substructures with mCherry-tagged 174 

MKS-5 and DYF-19 (Wei, Xu et al. 2013, Nechipurenko, Olivier-Mason et al. 2016). 175 

WDR47/NMTN-1 was co-localized with DYF-19 (Supplementary Fig. 2A-B), 176 

suggesting that WDR47/NMTN-1 is localized at the BB of the cilia of AWB neurons. 177 

We also verified the colocalization of WDR47/NMTN-1 and DYF-19 driven by the str-178 

1 promoter in the AWB neurons (Fig. 1F-G). The localization of WDR47/NMTN-1 in 179 

the BB implies that WDR47/NMTN-1 may regulate the BB structure. To test this 180 

possibility, we examined the distribution of mCherry-tagged DYF-19 proteins in 181 

wdr47/nmtn-1 mutants. No abnormal localization of DYF-19 proteins was observed in 182 

wdr47/nmtn-1 mutants, indicating that loss of WDR47/NMTN-1 may not affect the 183 

localization of ciliary base proteins (Supplementary Fig. 3). 184 

 185 

Wdr47/nmtn-1 mutation causes morphology defects of AWB cilia 186 

Given that the BB is known to function as a nucleation site for cilia biogenesis (Marshall 187 

2008), we wondered whether WDR47/NMTN-1 might participate in the morphology of 188 
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the AWB wing cilia. We classified the AWB cilia phenotypes into 3 categories using a 189 

previously reported method of quantifying AWB cilia morphologies (Olivier-Mason, 190 

Wojtyniak et al. 2013). Briefly, category 1 cilia have characteristic Y-shaped 191 

morphology with 2 primary branches and no fans. Category 2 cilia have enlarged fans 192 

along the primary branches. Category 3 cilia have more than one secondary branch 193 

emanating from the primary branch (Fig. 2A). We quantified the percentage of 3 194 

categories in wild type and wdr47/nmtn-1 mutants, and found that the percentage of 195 

category 1 cilia is significantly increased in wdr47/nmtn-1 mutants, while the 196 

percentage of category 2 cilia is significantly decreased in these animals (Fig. 2B). We 197 

also measured the length of the AWB cilia: the typical AWB cilia contain 2 primary 198 

branches with unequal lengths, and we found that the lengths of both long and short 199 

branches in wdr47/nmtn-1 mutants were significantly shorter than in wild type (Fig. 200 

2C). These results collectively support that WDR47/NMTN-1 regulates cilia 201 

morphology of the AWB neurons. 202 

 203 

Recall our aforementioned observation of a dim WDR47/NMTN-1 signal in AWC 204 

neurons (Fig. 1B); we therefore examined AWC cilia morphology in wdr47/nmtn-1 205 

mutants. An abnormal morphology with discrete fan-shape cilia structure was 206 

occasionally observed in wdr47/nmtn-1 mutants (16% in wdr47/nmtn-1 mutants vs. 0% 207 

in wild type, Supplementary Fig. 4A-B). However, there were no significant differences 208 

in the AWC cilia area between wdr47/nmtn-1 mutants and wild type animals 209 

(Supplementary Fig. 4C). We also investigated whether WDR47/NMTN-1 is required 210 

to maintain cilia morphology in other cell types using OSM-6-GFP fusion proteins to 211 

label cilia in all amphid ciliated sensory neurons. We found no significant changes in 212 

overall cilia length in wdr47/nmtn-1 mutants in cells other than the AWB neurons 213 

(Supplementary Fig. 4D-E). 214 

 215 

Wdr47/nmtn-1 mutation causes structural integrity defects of AWB cilia 216 

We also performed a Dil dye-filling experiment—which is routinely used to validate the 217 

structural integrity of cilia (Tong and Burglin 2010)—to assess the specific impacts of 218 
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WDR47/NMTN-1 in maintaining the AWB cilia structural integrity. After 30 minutes of 219 

Dil exposure, we analyzed the fluorescence intensity of Dil in the cell body. The dye 220 

signal in the AWB neurons of wdr47/nmtn-1 mutants was significantly dimmer than in 221 

the wild type (Fig. 2D-E), suggesting apparent structural integrity defects in the mutant 222 

AWB cilia. In contrast, no Dil absorption defects were observed in other neurons (Fig. 223 

2F). Furthermore, the Dil dye absorption defects in the AWB neurons of wdr47/nmtn-224 

1 mutants were restored upon the specific expression of WDR47/NMTN-1 in the AWB 225 

neurons driven by the str-1 promoter (Fig. 2D-E). Those data suggest that 226 

WDR47/NMTN-1 functions to maintain the structural integrity of the AWB neuron cilia.  227 

 228 

WDR47/NMTN-1 is required for AWB-mediated aversion behaviors 229 

The abnormal cilia morphology we detected in the AWB neurons of wdr47/nmtn-1 230 

mutants prompted us to test if WDR47/NMTN-1 is required for the AWB-mediated 231 

chemosensation behaviors. The AWB neurons are known to mediate aversion 232 

behaviors in response to odorants such as 2-nonanone, and these responses require 233 

intact and functional cilia (Emily R. Troemel 1997, Hart and Chao 2010). We conducted 234 

a classic chemotaxis assay to examine aversion behavior to 2-nonanone (Fig. 3A). 235 

Briefly, 9 cm plates containing regular NGM media were spotted with control (Ethanol) 236 

or 2-nonanone on opposite sides, and the paralysis agent sodium azide was added 237 

immediately before the addition of worms in the center of the plates (Fig. 3A). In line 238 

with the previous report (Cornelia I. Bargmann 1993), we observed that wild type 239 

animals were repelled by 2-nonanone and thus had a negative chemotaxis index value. 240 

The chemotaxis index value was significantly increased in the wdr47/nmtn-1 mutants 241 

(Fig. 3B). Further, restoring WDR47/NMTN-1 expression either in the WDR47/NMTN-242 

1-expressing neurons (under the wdr47/nmtn-1 promoter) or in the AWB neurons 243 

(under the AWB-specific str-1 promoter) rescued the chemotaxis defects (Fig. 3B). We 244 

also observed an impaired aversion response to octanol in the wdr47/nmtn-1 mutants; 245 

octanol is known to act on a group of neurons including AWB (Fig. 3C) (Chao, Komatsu 246 

et al. 2004). No effects were observed when we investigated the attraction behaviors 247 

to different dilutions of diacetyl, mediated by the AWA neuron (Fig. 3D) (Cornelia I. 248 
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Bargmann 1993). We did observe an impaired AWC-mediated attraction response to 249 

isopentyl alcohol in wdr47/nmtn-1 mutants (Fig. 3E) (Cornelia I. Bargmann 1993), 250 

which may be due to the dim WDR47/NMTN-1 signal in the AWC neurons (Fig. 1B). 251 

Collectively, our data support the notion that WDR47/NMTN-1 functions in the AWB 252 

neurons to participate in the chemosensation behavior. 253 

 254 

The overall ultrastructure of AWB cilia is not affected by wdr47/nmtn-1 mutation  255 

To explore the mechanisms underlying WDR47/NMTN-1’s impacts on ciliogenesis, we 256 

probed the ultrastructure of amphid cilia using transmission electron microscopy (TEM) 257 

(Serwas and Dammermann 2015). Unlike the axonemes of channel cilia, the 258 

microtubules in the AWB cilia lack an obvious organization (David B Doroquez, Berciu 259 

et al. 2014). We did not detect any microtubules in the distal segments of the AWB 260 

cilia, yet we did note the presence of singlet microtubules in the middle segments. 261 

However, no obvious abnormalities of the axoneme structure in the middle segments 262 

were observed in the wdr47/nmtn-1 mutants (Supplementary Fig. 5), suggesting no 263 

disruption of the overall ultrastructure of AWB cilia. 264 

 265 

Wdr47/nmtn-1 mutation perturbs the velocity distributions of IFT components 266 

Ciliogenesis and cilia structure require the IFT-mediated bidirectional transport of 267 

particles along the microtubules (Hao and Scholey 2009), so we examined if deletion 268 

of wdr47/nmtn-1 influences IFT particle movement. In C. elegans, two members of the 269 

kinesin-2 family, heterotrimeric kinesin-II (including KAP-1 protein) and homodimeric 270 

OSM-3 cooperate to form two sequential anterograde IFT pathways that build distinct 271 

parts of cilia (Scholey 2008). IFT particles involve two sub-complexes: IFT-A and IFT-272 

B. IFT-A associates with kinesin-II, while IFT-B associates with OSM-3 during 273 

anterograde transport (Pedersen and Christensen 2012). To specifically examine IFT 274 

movement in the AWB neurons (Brust-Mascher, Ou et al. 2013), we expressed an 275 

MNG reporter fusion variant of KAP-1 and OSM-3 motor proteins, and the IFT-B 276 

complex subunit OSM-6 in the AWB neuron pair (under the AWB-specific str-1 277 

promoter) (Supplementary Fig. 6A). In the AWB cilia of wild type animals, the velocity 278 
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of OSM-3 (0.87 μm/s) was a bit faster than that of KAP-1 and OSM-6 (0.64 μm/s and 279 

0.63 μm/s) in the middle segments (Figure. 4A, Table 1). This is possibly due to the 280 

fact that some OSM-3 motors move alone in the middle segments, which is consistent 281 

with previous reports (Saikat Mukhopadhyay, Hongmin Qin et al. 2007). Interestingly, 282 

the velocity of OSM-3 (0.94 μm/s) was increased in the AWB cilia middle segments of 283 

wdr47/nmtn-1 mutants, while the velocity of OSM-6 (0.53 μm/s) was decreased in 284 

wdr47/nmtn-1 mutants (Fig. 4A, Table 1). We did not observe changes in the velocity 285 

of KAP-1. Those data indicate that loss of wdr47/nmtn-1 perturbs the velocity 286 

distributions of IFT components. As controls, we did not detect significant changes in 287 

IFT velocities in the ASH or ADL cilia (under the srb-6 promotor) (Table 1), further 288 

suggesting that WDR47/NMTN-1 is important for proper IFT movement in the AWB 289 

cilia. 290 

 291 

To examine whether WDR47/NMTN-1 is one of the IFT components or otherwise 292 

physically associates with the IFT machinery, we analyzed the mobility of 293 

WDR47/NMTN-1 by kymograph: neither anterograde nor retrograde movement was 294 

observed (Supplementary Fig. 6B), indicating that the observed regulatory impacts of 295 

WDR47/NMTN-1 knockout on IFT movement may result from indirect interactions with 296 

IFT machinery. 297 

 298 

Wdr47/nmtn-1 mutation alters IFT cargo localization 299 

Since WDR47/NMTN-1 is required for IFT particle movement, we next examined 300 

whether IFT cargo transport requires WDR47/NMTN-1. As one of the IFT cargo, TAX-301 

4 is the cyclic nucleotide-gated channel protein localized on the cilia membrane and 302 

participates in the olfactory signaling pathway (Bargmann 1996, Bargmann 2006). We 303 

studied the subciliary localization of TAX-4 in the wdr47/nmtn-1 mutants. We 304 

expressed TAX-4::sfGFP fusion protein in the AWB neurons (under the str-1 promoter) 305 

and found that TAX-4 was localized in the cilia in all of the wild type animals (Fig. 4B-306 

C). In contrast, TAX-4 was mislocalized to the base of cilia in 20%-30% of wdr47/nmtn-307 

1 mutants (Fig. 4B). We also found that TAX-4 was mislocalized to the TZ region above 308 
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the BB (Fig. 4C). These results further support the conclusion that WDR47/NMTN-1 is 309 

required for the IFT particle movement and cargo transportation, by which to support 310 

ciliogenesis and ciliary structure in the AWB neurons. 311 

 312 

DISCUSSION 313 

In this study, we revealed how WDR47/NMTN-1 supports AWB cell-specific 314 

ciliogenesis and chemosensation in C. elegans. We showed that WDR47/NMTN-1 is 315 

expressed in the AWB chemosensory neurons and is enriched in the BB of the AWB 316 

cilia. WDR47/NMTN-1 functions in the AWB neurons to maintain AWB cilia morphology, 317 

structural integrity and AWB-mediated aversion behaviors. We further demonstrated 318 

that WDR47/NMTN-1 ensures proper IFT particle movement and cargo delivery in the 319 

AWB neurons, promoting ciliogenesis.  320 

 321 

WDR47/NMTN-1 has been revealed as a microtubule-associated protein; it has been 322 

shown to interact with CAMSAP family proteins for microtubule-mediated processes 323 

(Chen, Zheng et al. 2020, Buijs, Hummel et al. 2021, Liu, Zheng et al. 2021). In non-324 

centrosomal microtubules, WDR47/NMTN-1 protects CAMSAP2 against katanin-325 

mediated severing and is required for axonal and dendritic development (Buijs, 326 

Hummel et al. 2021). In mammalian multicilia, WDR47/NMTN-1 co-operates with 327 

CAMSAP family proteins and MT-severing enzyme katanin to generate ciliary central 328 

microtubules (Liu, Zheng et al. 2021). WDR47/NMTN-1 also functions through 329 

CAMSAP3 to control neuronal migration and the early stages of neuronal polarization, 330 

which is important for neonatal mouse survival (Chen, Zheng et al. 2020). In addition, 331 

WDR47/NMTN-1 has been shown to interact with microtubule-associated protein 8 332 

(Wang, Lundin et al. 2012) and participates in several microtubule-mediated 333 

processes including neural stem cell proliferation, radial migration, and growth cone 334 

dynamics (Kannan, Efil Bayam et al. 2017). Thus, multiple studies have conceptually 335 

linked WDR47/NMTN-1 with the regulation of microtubule-associated processes in 336 

neuron axons, dendrites, and motile cilia. In the present study, we discovered an 337 

additional role of WDR47/NMTN-1 in IFT particle movement and cell-specific 338 
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ciliogenesis. It is likely that WDR47/NMTN-1 controls IFT particle movement via 339 

regulating ciliary microtubule networks. 340 

 341 

Our results illustrate a cell-specific function of WDR47/NMTN-1 in ciliogenesis. This 342 

cell-specific modulation may have evolved to accommodate different olfactory 343 

receptors, channels, and/or IFT machinery in other chemosensory neurons to support 344 

diversified functions (Saikat Mukhopadhyay, Hongmin Qin et al. 2007, Silverman and 345 

Leroux 2009, Wojtyniak, Brear et al. 2013, 2014). Note that previous studies have 346 

reported that IFT-A molecules differentially regulate sensory cilia structures. IFT-121 347 

and IFT-140 are required for all examined cilia in the amphid and phasmid neurons, 348 

whereas IFT-139 is required for ciliogenesis of AWC neuron-specific cilia (Scheidel 349 

and Blacque 2018). KLP-6, a conserved member of Kinesin-3 family, regulates IFT in 350 

the male-specific cilia (Morsci and Barr 2011). In addition, a few endocytic genes 351 

regulate ciliary and periciliary membrane compartment morphology in different cilia 352 

types, including the AWB cilia and 3 channel cilia (Kaplan, Doroquez et al. 2012). 353 

Similar to chemosensory neurons in C. elegans, mammalian olfactory sensory 354 

neurons are also divided into discrete subpopulations that contain distinct subfamilies 355 

of olfactory receptors in the cilia (Bear, Lassance et al. 2016). It will be quite interesting 356 

to explore the possibility that WDR47 orthologues may regulate the primary cilia of 357 

olfactory sensory neurons in mammals in a cell-specific manner.  358 

 359 

Many WDR proteins, such as CHE-2/IFT80, WDR35/IFT121, DAF-10/IFT122, CHE-360 

11/IFT140, and OSM-1/IFT172 are also required for ciliogenesis in analogy to 361 

WDR47/NMTN-1 (Manabi Fujiwara 1999, Qin, Rosenbaum et al. 2001, Quidwai, 362 

Wang et al. 2021). They are all mobile and act as IFT binding proteins. However, 363 

WDR47/NMTN-1 does not undergo IFT, so we speculate that WDR47/NMTN-1 may 364 

indirectly regulate IFT machinery. How does WDR47/NMTN-1 regulate the IFT 365 

velocities? Our observation that wdr47/nmtn-1 perturbs the velocity distributions of IFT 366 

components has also been reported in nphp-4 and arl-13 mutants (Jauregui, Nguyen 367 

et al. 2008, Cevik, Hori et al. 2010). The velocity of OSM-3 is increased, while the 368 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 5, 2022. ; https://doi.org/10.1101/2022.04.10.487758doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.10.487758
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 14 

velocity of OSM-6 is decreased in nphp-4 and arl-13 mutants. On the other hand, the 369 

velocity of KAP-1 is unchanged and decreased in nphp-4 and arl-13 mutants, 370 

respectively. They showed that OSM-6 is associated with kinesin-II other than OSM-3 371 

in the absence of nphp-4 (Jauregui, Nguyen et al. 2008), and OSM-3 is uncoupled 372 

from kinesin-II in arl-13 mutants (Cevik, Hori et al. 2010). In wild type animals, the 373 

kinesin-II and OSM-3 units are linked by the BBS proteins, among these BBS-7 and 374 

BBS-8 are required to stabilize kinesin-II and OSM-3 (Ou, Blacque et al. 2005, Pan, 375 

Ou et al. 2006). Two kinases, the cell cycle-related kinase DYF-18 and the ros-cross 376 

hybridizing kinase family member MAK DYF-5 are important for stabilizing the 377 

interaction between IFT particles and OSM-3 (Yi, Xie et al. 2018). BBS components 378 

are predominantly localized at the base of cilia, and DYF-5 protein is mainly expressed 379 

in dendrites and TZ, and weakly expressed in cilia (Blacque, Reardon et al. 2004, Yi, 380 

Xie et al. 2018). Based on the fact that WDR47/NMTN-1 is localized in the BB of cilia, 381 

we suspect that WDR47/NMTN-1 may interact with BBS-7/8 and/or DYF-5/18 to 382 

maintain the coupling of OSM-3 and kinesin-II, or to regulate the binding of IFT 383 

particles with motor proteins. The overall effects lead to reduction of cargos 384 

transported to the cilia. This hypothesis is consistent with the observation that IFT 385 

cargo TAX-4 was detained in the base of the AWB cilia in some wdr47/nmtn-1 mutants. 386 

 387 

MATERIALS AND METHODS 388 

Animals 389 

C. elegans were maintained under standard conditions at 20 °C on nematode growth 390 

medium (NGM) plates seeded with E. coli OP50. All C. elegans strains were derived 391 

from the wild type Bristol N2 (Caenorhabditis Genetics Center) strain. The 392 

wdr47/nmtn-1 mutant has a 483bp deletion in the second exon (chr1: 29916/29917-393 

30399/30400). Transgenic animals were prepared by microinjection, and integrated 394 

transgenes were isolated following UV irradiation. A complete list of strains is provided 395 

in Supplementary Table 1.  396 

 397 

Plasmids 398 
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All expression vectors used are pPD49.26 or pPD95.75. A 3 kb str-2 promoter was 399 

amplified from genomic DNA and cloned for expression in AWC chemosensory 400 

neurons. A 3 kb odr-10 promoter was amplified from genomic DNA and cloned for 401 

expression in AWA chemosensory neurons. A 3 kb str-1 promoter was amplified from 402 

genomic DNA and cloned for expression in AWB chemosensory neurons. A 3 kb srb-403 

6 promoter was amplified from genomic DNA and cloned for expression in ADF, ADL, 404 

and ASH chemosensory neurons. A complete list of primers used for cloning is 405 

provided in Supplementary Table 2. 406 

 407 

Live imaging and analysis 408 

All hermaphrodites imaged were young adult animals. Worms were anesthetized with 409 

30 µg/µl 2,3-butanedione monoxime (Sigma), mounted on the 2% agar pads. 410 

Fluorescent images were collected on a fluorescence microscope 100× (NA = 1.4) 411 

objective on an Olympus microscope (BX53) and a Nikon spinning disc confocal 412 

microscope (Yokogawa CSU-W1) equipped with a 60× oil objective. The images were 413 

further processed using ImageJ software. 414 

 415 

For the time-lapse imaging experiment, worms were anesthetized with 10 mM 416 

levamisole, mounted on 5% agar pads. The images were taken on a Nikon spinning 417 

disc confocal microscope (Yokogawa CSU-W1) with a 60× oil objective. The exposure 418 

time of the time-lapse images is 300 ms. We used ImageJ software to process images, 419 

generate kymographs, and quantify IFT velocity. To ensure the quality of images used 420 

for quantification, only movies with worms in stable focal planes were used to generate 421 

kymographs. The anterograde kymographs were generated with the Reslice function 422 

in ImageJ by manually drawing lines along the AWB cilia. 423 

 424 

Dye-filling assay 425 

Worms were washed with M9 buffer, and then incubated with the fluorescent lipophilic 426 

carbocyanine dye Dil in the dark for 30 min at room temperature. Dil was prepared as 427 

a 1 mg/ml stock solution in DMSO and diluted at 1:100 in M9 buffer. After incubation 428 
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with Dil, worms were washed with M9 buffer again and transferred to seeded NGM 429 

plates for one or two hours to remove autofluorescence from the gut. Worms were 430 

then anesthetized with 10% levamisole, mounted on the 2% agar pads and imaged 431 

using a Nikon spinning disc confocal microscope (Yokogawa CSU-W1) with a 60× oil 432 

objective. 433 

 434 

Chemotaxis assay 435 

The plates used for chemotaxis assay are 9 cm tissue culture dishes containing 10 ml 436 

of 1.6% agar, 5 mM potassium phosphate (pH 6.0), 1 mM CaCl2, and 1 mM MgSO4. 437 

The plates were autoclaved and stocked at 4°C. On the day of the experiments, the 438 

plates were taken out from 4°C to sit at room temperature until dry. The middle of the 439 

plates was marked on the back as the site for the initial location of the animals. In 440 

addition, two marks were labeled around 3 cm away from the middle of the plate. The 441 

two marks represent the sites for chemical and ethanol (control). 442 

 443 

Synchronized young adult animals were washed three times with 1 ml S Basal buffer 444 

[5.9 g NaCl, 50 ml 1 M potassium phosphate (pH 6.0), 1 ml cholesterol (5 mg/ml in 445 

ethanol) in 1 L ddH2O]. Then the worms were washed two times with 1 ml water to 446 

remove bacteria, and were centrifuged at 3,000 rpm for 2 mins. The supernatants were 447 

removed as much as possible. 5 µl solution containing the worms was pipetted in the 448 

center of the plates. 1 µl of 1 M sodium azide was added to freeze animals on the 449 

control and chemical side. Next, 1 µl ethanol was added on the control side, and 1 µl 450 

chemical was added on the chemical side. After two hours, the number of animals on 451 

both the control and chemical side were counted. Note that the worms within 1 cm 452 

from the center were excluded. The chemotaxis indexes were calculated by using this 453 

formula: (Number of animals on the chemical side – Number of animals on control side) 454 

/ (Number of animals on chemical side + Number of animals on the control side). The 455 

chemicals are provided in Supplementary Table 2. 456 

 457 

Transmission electron microscopy 458 
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We chose a type A carrier (100 µm + 200 µm, Leica, #16770181), dipped 200 µm 459 

surface with 1-hexadecene, and dried it with filter paper. The young adult 460 

hermaphrodites treated with 10 mM levamisole were transferred to M9 buffer 461 

containing 10% bovine serum albumin in the cavity of the carrier. The flat surface of 462 

the type B carrier (0 + 300 µm, Leica, #16770182) was placed on top to enclose the 463 

worms in the aluminum planchette’s cavity. The specimen–planchette sandwich was 464 

rapidly frozen using a Leica EM ICE high-pressure freezing system. Freeze-465 

substitution was performed at low temperature (−90°C) over three days in a solution 466 

containing 2% osmium tetroxide, 1% uranyl acetate in anhydrous acetone using a 467 

Leica EM AFS2 freeze-substitution system. The temperature progressively increased 468 

up to 4°C. Samples were washed four times with anhydrous acetone (10 min each), 469 

and then successively infiltrated with a mixture of acetone resin of 3:1; 1:1; 1:3, 470 

respectively. Then samples were infiltrated and embedded in resin at room 471 

temperature and polymerized in an oven at 60°C for three days. Resin blocks with 472 

specimens were trimmed so that the block face was perpendicular to the longitudinal 473 

axis of the worm nose for sections, while keeping a small amount of resin around the 474 

specimen. Ultrathin sections (70 nm thickness) were collected and post-stained with 475 

0.08 M lead citrate for 10 min. Sections were imaged on a 120 kV projection electron 476 

microscope (FEI, Talos L120C). 477 

 478 

Quantification and statistical analysis 479 

All plots were generated by GraphPad Prism (version 7.0a). All scatterplots were 480 

shown as mean ± SEM. We used a two-tailed Student’s t-test to determine statistical 481 

differences except for the Chi-square test in Fig. 2B. 482 

 483 
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 510 

FIGURE LEGENDS 511 

Figure 1. WDR47/NMTN-1 is expressed in the AWB chemosensory neuron pair 512 

and localized in the BB region. (A) WDR47/NMTN-1 is expressed in the amphids 513 

and phasmids of C. elegans. The left and right images are enlarged views of the 514 

phasmids and amphids, respectively. (B) Representative images of Pnmtn-1::GFP 515 

signals in five pairs of olfactory neurons. The AWA, AWB, and AWC neurons are 516 

marked by Podr-10::mCherry, Pstr-1::mCherry, and Pstr-2::mCherry. The ASH and 517 

ADL neurons are marked by Psrb-6::mCherry. (C) Quantification of Pnmtn-1::GFP 518 
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signals in five pairs of olfactory neurons. (D) Representative images showing Pnmtn-519 

1::MNG::NMTN-1 signals. The AWB neurons were visualized via expression of Pstr-520 

1::mCherry. White arrowhead, blue arrowhead, and white arrow indicate cilia, the cilia 521 

base, and dendrites, respectively. (E) Representative images showing Pnmtn-522 

1::NMTN-1::MNG signals. The AWB neurons were marked by expression of Pstr-523 

1::mCherry. White arrowhead, blue arrowhead, and white arrow indicate cilia, cilia 524 

base, and dendrites, respectively. (F) Colocalization of Pstr-1::MNG::NMTN-1 and the 525 

BB (Pstr-1::DYF-19::mCherry) marker. (G) Quantification of the fluorescence 526 

intensities of Pstr-1::MNG::NMTN-1 in BB and other parts of the cilia. Each cilium 527 

analyzed is represented by a dot. Data are presented as mean values ± SEM. **** P 528 

< 0.0001 by two-tailed Student’s t-test. (H) Schematic illustration of the AWB cilia and 529 

the location of transition zone (TZ) and basal body (BB). MKS-5 and DYF-19 are 530 

markers for the TZ and the BB, respectively. 531 

 532 

Figure 2. Wdr47/nmtn-1 mutants exhibit defects in the AWB cilia morphology. (A) 533 

Representative images of the AWB cilia in three categories according to cilia 534 

morphology. Cilia were visualized using the Pstr-1::GFP marker, and were classified 535 

into three categories according to the cilia morphology. (B) Quantification of the AWB 536 

cilia in three categories in wild type (WT) and wdr47/nmtn-1 mutants. (C) 537 

Quantification of the cilia length of the AWB neurons in WT and wdr47/nmtn-1 mutants. 538 

Each cilium analyzed is represented by a dot. Data are presented as mean values ± 539 

SEM. (D-F) The wdr47/nmtn-1 mutants exhibited cell-specific defects in uptake of the 540 

lipophilic dye Dil. Representative images of DiI uptake in amphid sensory neurons in 541 

WT and wdr47/nmtn-1 mutants are displayed. The dotted lines represent AWB 542 

neurons (D). The dye-filling defect in AWB neurons of wdr47/nmtn-1 animals was 543 

rescued by expression of Pstr-1::MNG::NMTN-1 (E). In contrast, the dye uptake in 544 

other neurons (random dye-filled non-AWB neurons) was normal in wdr47/nmtn-1 545 

mutants (F). Each neuron analyzed is represented by a dot. Data are presented as 546 

mean values ± SEM. In B, **** P < 0.0001 by Chi-square test. In C and E, * P < 0.05, 547 

*** P < 0.001, and **** P < 0.0001 by two-tailed Student’s t-test. In F, n.s. not significant 548 
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by two-tailed Student’s t-test. 549 

 550 

Figure 3. Wdr47/nmtn-1 mutants have defects in AWB-mediated aversion 551 

behaviors. (A) Schematic illustration of the chemotaxis assays. (B) Quantification of 552 

chemotaxis indexes for AWB-mediated aversion behaviors to 2-nonanone in wild type 553 

(WT) and wdr47/nmtn-1 mutants. The reduction in behavioral responses to 2-554 

nonanone in wdr47/nmtn-1 mutants can be rescued by expression of WDR47/NMTN-555 

1 under its endogenous promoter or the AWB-specific str-1 promoter. (C) 556 

Quantification of chemotaxis indexes for aversion behaviors to octanol mediated by 557 

the AWB, ASH, and ADL neurons in WT and wdr47/nmtn-1 mutants. (D) Quantification 558 

of chemotaxis indexes for AWA-mediated attraction behaviors to diacetyl at the 559 

indicated concentrations in WT and wdr47/nmtn-1 mutants. (E) Quantification of 560 

chemotaxis indexes for AWC-mediated attraction behaviors to isopentyl alcohol at the 561 

indicated concentrations in WT and wdr47/nmtn-1 mutants. Each dot represents a 562 

single population assay calculated as shown. Data are presented as mean values ± 563 

SEM. In B, * P < 0.05, ** P < 0.01 by two-tailed Student’s t-test. In C and E, * P < 0.05, 564 

by two-tailed Student’s t-test. In D and E, n.s. not significant by two-tailed Student’s t-565 

test. 566 

 567 

Figure 4. IFT velocities and localization of ciliary channel are altered in 568 

wdr47/nmtn-1 mutants. (A) Histograms and kymographs of KAP-1::MNG, OSM-569 

3::MNG, and OSM-6::MNG anterograde middle segment velocities in the AWB cilia of 570 

WT and wdr47/nmtn-1 mutants. KAP-1::MNG, OSM-3::MNG and OSM-6::MNG were 571 

expressed under the AWB-specific str-1 promoter. Average velocities are indicated at 572 

top right in each panel as mean values ± SEM. The scale bars represent 2 μm 573 

(horizontal) and 10 s (vertical). (B) Representative images of the Pstr-1::TAX-4::sfGFP 574 

fusion protein and the AWB cilia marked by Pstr-1::mCherry in WT and wdr47/nmtn-1 575 

mutants. TAX-4 is localized throughout cilia in all of WT animals, while TAX-4 is clearly 576 

detained the base of cilia in 30% of wdr47/nmtn-1 mutants. (C) Representative images 577 

of the Pstr-1::TAX-4::sfGFP fusion protein and the BB protein marked by Pstr-1::DYF-578 
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19::mCherry in WT and wdr47/nmtn-1 mutants. TAX-4 is localized throughout cilia in 579 

all of WT animals, while TAX-4 is clearly detained the base of cilia in 24% of 580 

wdr47/nmtn-1 mutants. However, the detained TAX-4 in the base of AWB cilia is not 581 

co-localized with DYF-19.  582 

 583 

Table 1. Transport velocities of MNG tagged IFT proteins in wild type (WT) and 584 

wdr47/nmtn-1 mutant animals. n, number of particles; N, number of measured 585 

animals. 586 

 587 

Supplementary Figure 1. The expression pattern of Pnmtn-1::MNG::NMTN-1 at 588 

different C. elegans developmental stages. (A) Representative images showing 589 

Pnmtn-1::MNG::NMTN-1 signals in the egg of C. elegans. The AWB neurons are 590 

marked by expression of Pstr-1::mCherry. (B) Representative images showing Pnmtn-591 

1::MNG::NMTN-1 signals in the L1, L2, L3, L4, day 1 adult, and day 4 adult of C. 592 

elegans. The AWB neurons were visualized by expression of Pstr-1::mCherry. The 593 

dotted lines represent the AWB neurons. White arrowhead, blue arrowhead, and white 594 

arrow indicate cilia, the cilia base, and dendrites, respectively. 595 

 596 

Supplementary Figure 2. Colocalization of Pstr-1::MNG::NMTN-1 with the TZ 597 

(MKS-5::mCherry) and BB (DYF-19::mCherry) markers. (A-B) The arrowheads 598 

represent the positions of MKS-5 and DYF-19 in the AWB neurons. The dashed lines 599 

represent the cilia location. Fluorescence intensities are shown below each 600 

representative images. The dashed boxes show the regions for quantification of 601 

fluorescence intensity (starting from the lower right). 602 

 603 

Supplementary Figure 3. Representative images of Pstr-1::DYF-19::mCherry 604 

localization in the AWB neurons of wild type (WT) and wdr47/nmtn-1 mutants. 605 

AWB neurons were visualized using Pstr-1::mCherry. 606 

 607 

Supplementary Figure 4. Wdr47/nmtn-1 mutants do not have defects in the 608 
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morphology of other olfactory neurons. (A) Representative images (top) and 609 

cartoons (bottom) of the normal and abnormal cilia of the AWC neurons. The AWC 610 

cilia were visualized by expression of Pstr-2::GFP. (B) The percentages of animals 611 

having the normal and abnormal cilia of the AWC neurons in wild type (WT) and 612 

wdr47/nmtn-1 mutants are shown. (C) Quantification of the AWC cilia area in WT and 613 

wdr47/nmtn-1 mutants. Each cilium analyzed is represented by a dot. Data are 614 

presented as mean values ± SEM. (D) Representative image of the OSM-6::GFP 615 

fusion protein. The line represents the length of cilia labeled by OSM-6::GFP. (E) 616 

Quantification of the cilia length labeled by OSM-6::GFP in WT and wdr47/nmtn-1 617 

mutants. Each cilium analyzed is represented by a dot. Data are presented as mean 618 

values ± SEM. In C and E, n.s. not significant by two-tailed Student’s t-test.  619 

 620 

Supplementary Figure 5. Ultrastructure of amphid cilia in wild type (WT) and 621 

wdr47/nmtn-1 mutants. Representative TEM images (cross-sections) of the amphid 622 

cilia distal and middle segment in WT and wdr47/nmtn-1 mutants. White arrowheads 623 

indicate the AWB cilia. 624 

 625 

Supplementary Figure 6. Representative images of IFT movement. (A) 626 

Representative images of Pstr-1::OSM-6::GFP, Pstr-1::OSM-3::GFP, Pstr-1::KAP-627 

1::GFP, and Psrb-6::OSM-6::GFP for analyses of IFT particle movement. (B) The 628 

kymograph image of WDR47/NMTN-1. The anterograde and retrograde kymograph 629 

images of Pnmtn-1::MNG::NMTN-1 fusion protein show that WDR47/NMTN-1 is not 630 

moving by itself. 631 

 632 

Supplementary Table 1. List of C. elegans strains used in this study. Summary of 633 

strain name, genotype, generating method, and resource of strains. 634 

 635 

Supplementary Table 2. List of chemicals, kits, and primers used for generating 636 

cell-specific promoters. 637 

 638 
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Figure 2
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Figure 3
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Figure 4
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IFT protein Middle segment

Mean velocity (μm/s) n/N t test

Distal segment

Mean velocity (μm/s) n/N t test

Strain

Pstr-1::KAP-1::MNG WT
nmtn-1

WT

WT

None
NonePstr-1::KAP-1::MNG

WT

Pstr-1::OSM-3::MNG
Pstr-1::OSM-3::MNG
Pstr-1::OSM-6::MNG
Pstr-1::OSM-6::MNG

Psrb-6::OSM-6::MNG
Psrb-6::OSM-6::MNG

0.64 ± 0.01
0.64 ± 0.01
0.87 ± 0.02
0.94 ± 0.01
0.63 ± 0.02
0.53 ± 0.01

0.81 ± 0.01
0.83 ± 0.01

81/5
153/7
104/7
160/4
70/5
80/7

180/8
175/6

1.14 ± 0.07
1.16 ± 0.07
1.11 ± 0.05
0.79 ± 0.05

1.39 ± 0.02
1.37 ± 0.01

30/4
27/5
15/3
15/3

180/8
175/6

0.78

＜0.001

＜0.001

0.17

0.87

0.38

＜0.001

Table 1.  Anterograde IFT velocities in wild type and wdr47/nmtn-1 mutants

nmtn-1

nmtn-1

nmtn-1

AWB

ASH/ADL
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