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Abstract: Natural evolution must explore a vast landscape of possible sequences for desirable 

yet rare mutations, suggesting that learning from natural evolutionary strategies could accelerate 

artificial evolution. Here, we report that deep learning algorithms known as protein language 

models can evolve human antibodies with high efficiency, despite providing the models with no 

information about the target antigen, binding specificity, or protein structure, and also requiring 

no additional task-specific finetuning or supervision. We performed language-model-guided 

affinity maturation of seven diverse antibodies, screening 20 or fewer variants of each antibody 

across only two rounds of evolution. Our evolutionary campaigns improved the binding affinities 

of four clinically relevant antibodies up to 7-fold and three unmatured antibodies up to 160-fold 

across diverse viral antigens, with many designs also demonstrating improved thermostability 

and viral neutralization activity. Notably, our algorithm requires only a single wildtype sequence 

and computes recommended amino acid changes in less than a second. Moreover, the same 

models that improve antibody binding also guide efficient evolution across diverse protein 
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families and selection pressures, indicating that these results generalize to many natural settings. 

Contrary to prevailing notions of evolution as difficult and resource-intensive, our results suggest 

that when constrained to a narrow manifold of evolutionary plausibility, evolution can become 

much easier, which we refer to as the “efficient manifold hypothesis.”  
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Introduction 1 

 An apparent paradox in evolutionary biology is how a random process can reliably 2 

generate new functions in short timescales across settings as diverse as antibody affinity 3 

maturation, viral immune escape, or tumor evolution [1]–[6]. The paradox arises from the 4 

difficulty of the task (exploring an immense space of possible sequences for rare mutations that 5 

improve fitness) contrasted with a seemingly simple set of tools (random mutation and 6 

recombination). Current approaches for directed evolution of proteins in the laboratory [7] 7 

illustrate this contrast, as high-throughput evolutionary screens that rely on random guessing or 8 

brute-force search often devote substantial effort to interrogating weakly active or nonfunctional 9 

proteins. 10 

One approach to improve the efficiency of artificial evolution is to learn the rules of 11 

evolutionary plausibility (for example, sequences that result in a valid antibody) to help bias 12 

evolution away from invalid regimes (for example, mutations that cause an antibody to misfold) 13 

[8]. However, even if a search space were restricted to a set of evolutionarily plausible 14 

antibodies, the subset of those antibodies with improved binding affinity to a specific target 15 

might still be rare beyond practical utility (Figure 1A). More broadly, a major open question [9] 16 

is whether learning general evolutionary rules, or “intrinsic fitness,” is sufficient to enable 17 

efficient evolution under specific definitions of “extrinsic fitness” (for example, high binding 18 

affinity). 19 

 Here we show that evolutionary information alone can lead to improved fitness under 20 

specific selection pressures with high efficiency (Figure 1B). For our main experimental test 21 

case, we focus on affinity maturation of human antibodies in which high fitness is defined as 22 

stronger binding affinity to a particular antigen. In vivo, a process known as somatic 23 
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hypermutation evolves or “matures” an antibody lineage to have higher affinity for an antigen 24 

via repeated mutagenesis [4], [10], [11]. Ex vivo, affinity maturation is a major application of 25 

directed evolution due to the therapeutic potential of antibodies with high affinity for disease 26 

targets [12]. 27 

To model evolutionary plausibility, we use algorithms known as neural language models 28 

(Figure 1C), which are trained on large datasets of sequences to learn patterns that are likely to 29 

occur in natural proteins [13]–[21]. Importantly, we use general language models [17], [18] 30 

trained on sequence datasets that are meant to represent variation across all observed natural 31 

proteins [22], rather than a language model that is restricted to variation among antibodies [23]–32 

[26]. Given a single starting sequence, we use these language models to recommend plausible 33 

amino acid substitutions that we then experimentally screen for improved fitness. We design our 34 

approach to be highly general: the algorithm requires only a single wildtype sequence, without 35 

any initial binding affinity data, knowledge of the antigen, task-specific supervision, 36 

evolutionary homologs, or protein structure information, and can recommend changes to the 37 

wildtype sequence in seconds. 38 

With this approach, we evolve seven human immunoglobulin G (IgG) antibodies that 39 

bind to antigens from coronavirus, ebolavirus, and influenza A virus. We focus on viral antigens 40 

given the importance of antibody therapeutics for epidemic and pandemic viral diseases [27]–41 

[30]. When evolving clinically relevant antibodies, which are already highly mature, our best 42 

design achieves a 7-fold improvement in binding affinity from wildtype; for unmatured 43 

antibodies, our best design achieves a 160-fold improvement. Many of the designs also preserve 44 

or improve thermostability and pseudovirus neutralization activity, including a significant 45 

improvement in the neutralization potency of a clinically approved therapeutic antibody for 46 
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ebolavirus disease (Ebola). We measure 20 or fewer new variants of each antibody across just 47 

two rounds of evolution, which, to our knowledge, represents unprecedented efficiency for 48 

machine learning-guided directed evolution [31], [32] and which supports the practical utility of 49 

our approach. This performance is especially striking given that the underlying language models 50 

are completely unsupervised and have no initial task-specific training data. Also notable is that 51 

around half of the amino acid substitutions that improve affinity are located in antibody 52 

framework regions, which are much less mutated during natural affinity maturation [11] and are 53 

thus often excluded from artificial evolution [33], [34]. 54 

 Beyond antibodies, we show that this efficiency applies generally across other protein 55 

families as well. In particular, we demonstrate that the same general protein language models 56 

that we used to affinity-mature antibodies can also predict antibiotic resistance, enzyme activity, 57 

or viral replication fitness. Our results suggest that evolution guided by language models offers a 58 

compelling alternative to brute-force search, random guessing, or even rational design as a 59 

strategy for evolving proteins in the laboratory. Moreover, we discuss how the success of our 60 

approach challenges existing notions of evolutionary difficulty by suggesting that natural 61 

evolutionary manifolds (that is, the set of intrinsically plausible sequences) are efficiently primed 62 

for fitness-enhancing mutations under extrinsic selection pressures.  63 
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Results 64 

Efficient affinity maturation with general protein language models 65 

Recent work has demonstrated that language models can predict natural evolution despite 66 

having no knowledge of specific selection pressures [9]. However, this prior work only predicted 67 

the direction of evolution retrospectively when given full knowledge of the evolutionary 68 

trajectory. We therefore sought to investigate if the same language models could predict 69 

unobserved evolution to prospectively design new proteins. 70 

 In particular, we hypothesized that the predictive capabilities of protein language models 71 

might enable a researcher to provide only a single, wildtype antibody sequence to the algorithm 72 

and receive a small, manageable set (~101) of high-likelihood variants to experimentally measure 73 

for desirable properties. This is a very general setting that does not assume knowledge of protein 74 

structure or task-specific training data, thereby avoiding the resource-intensive processes 75 

associated with structure determination [34] or high-throughput screens [33]. A major question, 76 

however, is if higher evolutionary likelihood would efficiently translate to higher fitness. 77 

  We tested our hypothesis by conducting separate directed evolution campaigns, guided 78 

by language-model likelihood, to affinity-mature seven antibodies representing diverse antigens 79 

and degrees of maturity (Supplementary Table 1). These antibodies are: 80 

• MEDI8852: A broadly neutralizing antibody (bnAb) that binds influenza A hemagglutinin 81 

(HA) across variants of both major phylogenetic groups (Group 1 and Group 2) and that 82 

reached Phase-II clinical trials; this antibody is highly matured, with its parent being isolated 83 

from a human followed by substantial artificial evolution [27]. 84 

• MEDI8852 unmutated common ancestor (UCA): The unmatured, inferred germline sequence 85 

of MEDI8852, which only neutralizes viruses with Group 1 HAs [27]. 86 
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• mAb114: A patient-derived antibody that neutralizes ebolavirus by binding to its 87 

glycoprotein (GP) [28] and has been approved for clinical use by the United States Food and 88 

Drug Administration (FDA). 89 

• mAb114 UCA: The unmatured, inferred germline sequence of mAb114 with weak binding to 90 

ebolavirus GP [28]. 91 

• S309: A patient-derived antibody that cross-neutralizes the sarbecoviruses SARS-CoV-1 92 

(severe acute respiratory syndrome coronavirus 1) and SARS-CoV-2 by binding to the spike 93 

glycoprotein (Spike) [29] and is the parent antibody of sotrovimab [35], which currently has 94 

FDA emergency-use authorization (EUA) for treatment of COVID-19 (coronavirus disease 95 

2019). 96 

• REGN10987: A patient-derived antibody that binds early variants of SARS-CoV-2 Spike 97 

[30] and that had an FDA EUA for use against these variants. 98 

• C143: An unmatured, patient-derived antibody that binds the SARS-CoV-2 Wuhan-Hu-1 99 

Spike but was isolated prior to extensive in-vivo somatic hypermutation [36], [37]. 100 

We performed evolution with the ESM-1b language model and the ESM-1v ensemble of 101 

five language models (six language models in total) [17], [18]. ESM-1b and ESM-1v were 102 

trained on UniRef50 and UniRef90, respectively, which are protein sequence datasets that 103 

represent variation across all observed natural proteins and include only a limited number of 104 

antibody sequences (UniRef90 contains ~800 immunoglobulin variable regions out of ~98 105 

million total sequences) [22]. These datasets are also constructed such that no two sequences 106 

have more than 50% (UniRef50) or 90% (UniRef90) sequence similarity with each other, and 107 

immunoglobulin sequences are further curated to avoid biological redundancy. Additionally, 108 

because both datasets precede the COVID-19 pandemic, any SARS-CoV-2-related antibody 109 
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sequence variation would not be included. Therefore, to evolve these antibodies, the language 110 

models cannot leverage antigen- or disease-specific biases in the training data and must instead 111 

learn more intrinsic evolutionary patterns. 112 

We used these language models to compute likelihoods of all single-residue substitutions 113 

to the antibody variable regions of either the heavy chain (VH) or the light chain (VL). We 114 

selected substitutions with higher evolutionary likelihood than wildtype across a consensus of six 115 

language models; additional details are provided in Methods. In the first round of evolution, we 116 

measured the antigen-binding affinity by biolayer interferometry (BLI) of variants that only 117 

contain a single-residue substitution from wildtype. In the second round, we measured variants 118 

containing combinations of substitutions, where we selected substitutions that corresponded to 119 

preserved or improved binding based on the results of the first round. We performed these two 120 

rounds for all seven antibodies, measuring 8 to 14 variants per antibody in round one and 1 to 11 121 

variants per antibody in round two (Figure 2, Supplementary Table 1). Variants of the 122 

clinically relevant antibodies, which have very low or undetectable dissociation as IgGs, were 123 

screened by measuring the dissociation constant (Kd) of the monovalent fragment antigen-124 

binding (Fab) region; variants of the unmatured antibodies were screened by measuring the 125 

apparent Kd of the bivalent IgG, followed by also measuring the Kd values of the Fab fragments 126 

of the highest-avidity variants (Methods). 127 

 We could successfully express all but one of 122 new variants across our seven 128 

evolutionary trajectories, indicating that language-model likelihood is a good approximation of 129 

evolutionary plausibility (Figure 1C). Across all seven antibodies, we found that 71% to 100% 130 

of the first-round Fab variants (containing a single-residue substitution) retained sub-micromolar 131 

binding to the antigen, and 15% to 71% percent of first-round variants led to improved binding 132 
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affinity (defined as a 1.1-fold or higher improvement in Kd compared to wildtype) 133 

(Supplementary Table 1). Most of the second-round variants (containing a combination of 134 

substitutions) also have improved binding, with some combinations demonstrating additive or 135 

synergistic effects (Supplementary Tables 1-9). 36 out of all 76 language-model-recommended, 136 

single-residue substitutions (and 18 out of 32 substitutions that lead to improved affinity) occur 137 

in framework regions (Supplementary Tables 2-9), which are generally much less mutated 138 

during conventional affinity maturation compared to the complementarity-determining regions 139 

(CDRs) [11]. 140 

 We were able to improve the binding affinities for all clinically relevant antibodies tested, 141 

despite these antibodies being already highly evolved (starting at low nanomolar or picomolar 142 

affinity). MEDI8852 is a potent binder with a sub-picomolar Fab Kd across many HAs and 143 

picomolar or nanomolar binding to HAs from subtypes H4 and H7. While we explicitly screened 144 

variants using an HA H4 antigen, the best design also improves binding across a broad set of 145 

HAs (Supplementary Tables 2 and 3), including a 7-fold improvement (from 0.21 nM to 0.03 146 

nM) for HA H7 HK17 (A/Hong Kong/125/2017(H7N9)). The best variant of mAb114, a 147 

clinically approved drug, achieves a 3.4-fold improvement in Fab Kd for ebolavirus GP 148 

(Supplementary Table 5). For REGN10987, the highest-affinity variant has a 1.3-fold 149 

improvement against Beta-variant Spike with six stabilizing proline substitutions (S-6P) [38] (the 150 

antigen used in screening), while another of our designs has a 5.1-fold improvement for the 151 

Omicron-variant receptor binding domain (RBD) (Supplementary Table 8). For S309, we 152 

compared our designs to wildtype and to a variant with the N55Q substitution in the VH 153 

introduced after a small-scale, rational evolutionary screen [35]; the S309 Fab with the VH 154 

N55Q substitution forms the Fab of the therapeutic antibody, sotrovimab. Interestingly, our best 155 
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variant of S309 has higher affinity than sotrovimab, including a 1.3-fold improvement in Fab Kd 156 

compared to wildtype S309 (versus 1.1-fold for sotrovimab) for SARS-CoV-2 Wuhan-Hu-1 S-157 

6P (the antigen used in screening), a 1.7-fold improvement (versus 1.3-fold for sotrovimab) for 158 

Beta S-6P, and a 0.93-fold change (versus 0.82-fold for sotrovimab) for Omicron RBD 159 

(Supplementary Table 7).  160 

 We were also able to improve affinities for all three unmatured antibodies, often 161 

involving much higher fold changes than when evolving the matured antibodies, indicating 162 

easier evolvability with respect to affinity. For MEDI8852 UCA, the best Fab design achieves a 163 

2.6-fold improvement in Kd against HA H1 Solomon (A/Solomon Islands/3/2006(H1N1)), the 164 

antigen used in screening. Our best designs also acquire breadth of binding to some Group 2 165 

HAs, including a 23-fold improvement for HA H4 Hubei (A/swine/Hubei/06/2009(H4N1)) and a 166 

5.4-fold improvement for HA H7 HK17 (Supplementary Table 4). For mAb114 UCA, our best 167 

Fab design achieves a 160-fold improvement in Kd for ebolavirus GP (Supplementary Table 6). 168 

Strikingly, despite having no knowledge about the matured form, the algorithm recommends 169 

amino acid substitutions to both of these UCA antibodies that are also observed in the matured 170 

antibody. Interestingly, other affinity-enhancing substitutions to the UCA antibodies are not 171 

found in the matured versions: excluding any substitutions or modified sites found in the matured 172 

antibody, our UCA variants achieve up to a 7-fold improvement for HA H4 Hubei (variant VH 173 

P75R / VL G95P; Supplementary Table 4) and a 33-fold improvement for ebolavirus GP 174 

(variant VH G88E / VL V43A; Supplementary Table 6), demonstrating that our algorithm 175 

successfully explores alternative evolutionary routes. For C143, a patient-derived antibody 176 

isolated prior to extensive affinity maturation [37], our best design achieves a 13-fold 177 

improvement for Beta S-6P and a 3.8-fold improvement for Omicron RBD (Supplementary 178 
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Table 9). Results from our directed evolution campaigns are further summarized in Figure 2, 179 

Supplementary Tables 2-9, and Supplementary Data 1. In total, across antibodies representing 180 

diverse antigens and degrees of maturity, our approach consistently and efficiently produces 181 

higher-affinity variants. 182 

Improved thermostability and neutralization of evolved antibodies 183 

 Although we explicitly selected for variants with improved binding to specific antigens, 184 

we also sought to establish if these variants have improved stability (Methods). We found that 185 

Fabs for 21 out of the 31 language-model-recommended, affinity-enhancing variants that we 186 

tested had a higher melting temperature (Tm) than wildtype, and all variants maintained 187 

thermostability (Tm > 70°C). When evolving S309 to have higher affinity, our best design has a 188 

Tm of 72.8°C compared to 72.5°C for wildtype, whereas the VH N55Q substitution introduced in 189 

sotrovimab decreases the Tm to 69.6°C (Figure 2). Our evolved variants for mAb114, mAb114 190 

UCA, REGN10987, and C143 also preserve or improve Tm; the highest change we observed was 191 

an increase from 74.5°C to 82.5°C when evolving mAb114 UCA. Improved thermostability does 192 

not completely explain our affinity maturation results, however, as we observe somewhat 193 

decreased Tm for our affinity-matured variants of MEDI8852 and its UCA, though these Fabs are 194 

still thermostable (Figure 2). 195 

 We also wanted to determine if our affinity-matured variants have better viral 196 

neutralization activity. We tested affinity-enhancing variants of four antibodies using 197 

pseudovirus neutralization assays (Methods) and in all cases observed variants with half-198 

maximal inhibitory concentration (IC50) values that are significantly improved (Bonferroni-199 

corrected, one-sided t-test P < 0.05), including a 1.5-fold improvement for the best mAb114 200 

variant against Ebola pseudovirus, a 2-fold improvement for the best REGN10987 variant 201 
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against SARS-CoV-2 Beta pseudovirus, and a 32-fold improvement for the best C143 variant 202 

against Beta pseudovirus (Figure 3A and Supplementary Fig. 1; Supplementary Tables 5, 8, 203 

and 9). Additionally, while the IC50 values of variants of mAb114 UCA are greater than the 204 

highest tested concentration, the affinity-matured variants demonstrate detectable neutralization 205 

at a >100-fold lower concentration compared to wildtype (Supplementary Fig. 1). In general, 206 

change in binding affinity corelates well with change in neutralization (Spearman r = 0.82, two-207 

sided t-distribution P = 1.9 × 10-4) (Figure 3B). Given the limited number of variants tested, we 208 

also note that alternative versions of our directed evolution campaigns could have instead 209 

explicitly screened variants for neutralization activity. 210 

Originality of affinity-enhancing substitutions 211 

While the ability to find any improvement in affinity is itself useful for engineering 212 

applications, we were also interested in whether some of the changes recommended by our 213 

algorithm demonstrate “originality.” We quantified originality by computing the frequency that a 214 

given residue is observed in nature (Methods), where a change to a rarely observed residue 215 

indicates that the model learns patterns that go beyond its literal training dataset. While many 216 

affinity-enhancing substitutions are indeed observed at high frequency in both the model’s 217 

training data [22] and in a database of antibody sequences [39], other substitutions demonstrate 218 

greater originality. For example, in the MEDI8852 UCA trajectory, the VL G95P framework 219 

substitution (Figure 2; Supplementary Table 4) involves changing a glycine observed in 99% 220 

of natural antibody sequences to a proline observed in <1% of natural sequences. Overall, five 221 

out of 32 affinity-enhancing substitutions (~16%) involve changing the wildtype residue to a rare 222 

or uncommon residue (Supplementary Table 10). These results indicate that the language 223 

models learn both the “easy” evolutionary rules involving high-frequency residues and more 224 
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complex rules that are not captured by a multiple sequence alignment or conventional antibody 225 

evolution. Conceptually, these low-frequency, affinity-enhancing substitutions are analogous to 226 

examples in other disciplines where an artificial-intelligence program occasionally makes 227 

unusual but advantageous choices (for example, unintuitive game-playing decisions [40]), and 228 

likewise may be worth further study. 229 

Generality across diverse protein families 230 

 Given the success of general protein language models at guiding antibody evolution, we 231 

also tested how well the same models could acquire high-fitness variants across a range of 232 

protein families. Previous work has demonstrated that the likelihoods from general protein 233 

language models have good correlation with experimental phenotypes from high-throughput 234 

assays over ~103 to 104 variants [9], [18]. Previous computational simulations have also 235 

indicated that these models can help bias multi-round evolution away from large regions of a 236 

sequence landscape with zero or very low fitness [8]. 237 

Here, we observe that the same models we used to affinity-mature antibodies can also 238 

guide efficient evolution when measuring only a small number (~101) of variants according to 239 

diverse definitions of extrinsic fitness including antibiotic resistance, cancer drug resistance, 240 

enzyme activity, or viral replication fitness [41]. More specifically, we used the same algorithm 241 

and language models in our affinity-maturation experiments to instead suggest changes to 242 

wildtype sequences from human, bacterial, or viral organisms representing eight diverse protein 243 

families. We then used fitness measurements from high-throughput scanning mutagenesis 244 

experiments [41], [42] to validate the language-model-recommended predictions (notably, these 245 

measurements were not provided to the model). 246 
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Across diverse proteins, language-model-recommended variants are significantly 247 

enriched (hypergeometric P < 0.05) for high fitness values, and high-fitness variants make up a 248 

much larger portion of language-model-recommended variants compared to random guessing in 249 

nearly all cases (Figure 4A, Supplementary Fig. 2, and Supplementary Table 11). For 250 

example, while ampicillin resistance is observed for just 7% of all single-residue substitutions to 251 

β-lactamase, it is observed for 40% of language-model-recommended substitutions, and the same 252 

set of language models can also help prioritize single-residue substitutions to HA that result in 253 

high viral infectivity (from 7% to 31%) and substitutions to PafA that improve enzyme kinetics 254 

(from 3% to 20%). Additionally, across all proteins, even the first round of a small-scale 255 

evolutionary campaign guided by language models would yield variants that are near the local 256 

fitness peak (Supplementary Fig. 2). In total, these results suggest that the evolutionary 257 

efficiency that we observed for affinity-maturation of human IgGs also generalizes to diverse 258 

natural settings.  259 
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Discussion 260 

 We show that general protein language models can guide highly efficient affinity 261 

maturation based on the wildtype antibody sequence alone. We improved binding affinities of a 262 

highly evolved influenza A broadly neutralizing antibody (bnAb), MEDI8852, by up to 7-fold 263 

and a clinically approved ebolavirus antibody, mAb114, by 3.4-fold. We also evolve S309, a 264 

sarbecovirus bnAb, to have higher affinity and thermostability than a rationally designed and 265 

clinically available variant, sotrovimab. We improved binding affinities of unmatured antibodies 266 

from 13- to 160-fold across diverse antigens, which is within the 3.8- to 580-fold improvement 267 

range previously achieved by a state-of-the-art, in-vitro evolutionary system applied to 268 

unmatured, anti-RBD nanobodies (in which the computational portion of our approach, which 269 

takes seconds, is replaced with rounds of cell culture and sorting, which takes weeks) [12]. We 270 

also note that in-vitro, cell-surface-display methods encounter physical limits that make it 271 

challenging to distinguish better binders when the wildtype binder already has high affinity (<1 272 

nM) [43], which is not a limitation of our approach. Moreover, our algorithm is based on language 273 

models (trained on general protein sequence variation) that can also predict high-fitness variants 274 

across diverse protein families and engineering applications. We envision our approach as useful 275 

within preclinical development as a rapid way to identify improved variants of an existing 276 

protein of interest (for example, an antibody isolated from a patient or from a naïve library). We 277 

also anticipate that language models will become a key part of the antibody engineer’s toolkit. 278 

Interestingly, about half of the language-model-recommended substitutions (and about 279 

half of the affinity-enhancing substitutions) fall in framework regions, which are typically not 280 

proximal to the binding interface and are therefore sometimes excluded from directed evolution 281 

[33]. While some of these framework changes may improve affinity via protein stabilization, 282 

others do not appear to increase thermostability and may instead be causing larger-scale 283 
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rearrangements that improve affinity via structural reorientation, which has been observed in 284 

natural affinity maturation [44]–[46]. Our algorithm also recommends a number of affinity-285 

enhancing substitutions with low observed frequency in nature. An interesting area for future 286 

work is to characterize additional biochemical or structural features of these unconventional 287 

changes.  288 

 The broader relevance of our results, beyond affinity maturation of human antibodies, 289 

arises from asking why this method works. Fundamentally, our results are surprising in that 290 

modifying amino acid residues simply based on evolutionary plausibility, or “intrinsic fitness,” 291 

sufficiently enriches for changes that improve fitness under specific, natural selection pressures, 292 

or “extrinsic fitness” (Figure 1B). These results challenge a prevailing notion that evolution is 293 

difficult because it is random. Instead, we hypothesize that, in many settings, as long as 294 

evolution remains on a naturally plausible manifold, a substantial portion (greater than 10%) of 295 

mutations are bound to improve extrinsic fitness, which we call the “efficient manifold 296 

hypothesis” (Figure 4B). Our findings for both antibodies and other natural proteins provide 297 

direct support for this hypothesis. The efficient manifold hypothesis is also supported by the 298 

recent successes of completely unsupervised models in predicting evolution under a variety of 299 

specific selection pressures, from clinical variant risk to viral fitness and immune escape 300 

potential [15], [47]–[49]. 301 

 The efficient manifold hypothesis has direct, practical applications for those trying to 302 

evolve proteins in the laboratory. Evolution guided by a language model can be used as a drop-in 303 

replacement for current evolutionary tools based on randomization; for example, combinatorial 304 

libraries [50], [51] can recombine language-model-guided mutations alongside or instead of 305 

rationally chosen mutations [33]. By leveraging increasingly efficient technologies for nucleic 306 
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acid printing [42], language-model-guided evolution could also directly replace mutagenesis 307 

strategies based on, for example, an error-prone polymerase. 308 

The efficient manifold hypothesis also challenges the notion that explicitly modeling 309 

extrinsic fitness with a supervised model should be the best or the default approach to machine-310 

learning-guided directed evolution [32]. To the end user, guiding evolution via pretrained, 311 

unsupervised models is less resource-intensive than collecting enough task-specific data to train 312 

a supervised model [33]. Our techniques can also be used in conjunction with supervised 313 

approaches [8], [31]–[34], [52]–[55], and supervising a model over multiple experimental rounds 314 

might ultimately lead to higher fitness. However, in many practical settings (for example, the 315 

rapid development of sotrovimab in response to the COVID-19 pandemic [35]), the efficiency of 316 

an unsupervised, single-round approach is preferable to a protracted, multi-round (machine-317 

learning-guided) directed evolution campaign. 318 

We note that taking advantage of the efficient manifold hypothesis to improve extrinsic 319 

fitness may be more difficult when the selection pressure is unnatural or if the wildtype sequence 320 

is already at a fitness peak. Relatedly, a potential limitation of our specific algorithm is that we 321 

use language models that are trained only on natural sequences and might therefore be less 322 

applicable to unnatural proteins generated via de-novo design [56], [57]. However, in many 323 

practical design tasks, natural sequences and selection pressures are already preferrable; for 324 

example, therapeutic development often prefers human antibodies due to considerations of 325 

immunogenicity and toxicity. 326 

 Beyond protein engineering applications, the efficient manifold hypothesis may also 327 

provide new insight into natural evolution. Our results suggest that many natural evolutionary 328 

processes occur on efficient manifolds, which may explain how some proteins are able to quickly 329 
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and consistently acquire new functions; for example, human immunodeficiency virus relies on 330 

rapid and substantial intra-host evolution (on the scale of hours to days) to accomplish both 331 

infection and transmission [3]. Nature could support efficient manifolds via a number of 332 

mechanisms: for example, a recent analysis of Arabidopsis thaliana evolution suggests that 333 

epigenomic features enable mutations to be intrinsically biased away from implausible choices 334 

[42]. If epigenomic or other mechanisms predispose mutations to have high intrinsic fitness, then 335 

natural evolution on an efficient manifold would also become easy.336 
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Figure 1: Guiding evolution with protein language models. 

(A, B) Two possible models for relating the space of mutations with high evolutionary 

plausibility, or intrinsic fitness (for example, the set of valid antibodies), to the space with high 

fitness under specific selection pressures, or extrinsic fitness (for example, the set of antibodies 

with high binding affinity to a specific antigen). Both models assume that mutations with high 

extrinsic fitness make up a rare subset of the full mutational space. Under the first model (A), 

mutations with high extrinsic fitness are also rare within the subset of mutations with high 

intrinsic fitness. Under the second model (B), when restricted to the regime of high intrinsic 

fitness, mutations with high extrinsic fitness become much more common. (C) Protein language 

models, trained on millions of natural protein sequences, learn amino-acid patterns that are likely 

to occur in nature. We thus hypothesize that language-model likelihood approximates intrinsic 

fitness. Assuming that this is a good approximation, and if the second model (B) better describes 

nature, then a language model with no information about specific selection pressures can still 

efficiently guide evolution.   
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Figure 2: Language-model-guided affinity maturation of seven human antibodies. 

(A) Strip plots visualizing the two rounds of directed evolution conducted for each antibody. 

Each point represents an IgG or Fab variant plotted according to the fold-change in Kd from 

wildtype on the y-axis and jitter on the x-axis; a gray, dashed line is drawn at a fold change of 1 

and the wildtype point is colored gray. MEDI8852 variants were screened against HA H4 Hubei, 

MEDI8852 UCA variants against HA H1 Solomon, mAb114 and mAb114 UCA variants against 

ebolavirus GP, S309 variants against Wuhan-Hu-1 S-6P, and REGN10987 and C143 variants 

against Beta S-6P. (B) Phylogenetic trees illustrating the evolutionary trajectories from wildtype 

to the highest-affinity variant(s) of each antibody. Nodes are annotated with the Kd values for 

different antigens and the Tm of the Fab; all Kd values are for the monovalent Fab versions except 

those of C143, which are apparent Kd values for the bivalent IgGs. Bolded Kd values indicate a 

1.1-fold or higher improvement from wildtype. ML variant: machine-learning-guided variant; H1 

Solo.: H1 Solomon; W1: Wuhan-Hu-1; B: Beta, O: Omicron. (C) We obtained avidity and 

affinity measurements via biolayer interferometry (BLI) of IgGs and Fabs at the indicated 

concentrations binding to the indicated antigen. Selected BLI traces of the highest-affinity 

variants for the respective antigens are plotted alongside those of the wildtype variants. 
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Figure 3: Affinity-matured variants improve pseudovirus neutralization. 

(A) Variants of the antibody, C143, obtained from our language-model-guided affinity 

maturation campaign demonstrate improved neutralization activity in a pseudovirus assay. For 

Beta pseudovirus, out of the three higher-affinity variants that we also screened for neutralization 

activity, the best improvement is the 32-fold improvement of VL G53V; for D614G pseudovirus, 

the best improvement is the 19-fold improvement of VL T33N-G53V (Supplementary Table 

9). Also see Supplementary Fig. 1. Points indicate the mean; error bars indicate the standard 

deviation. (B) Fold-change in Kd correlates well with fold-change in IC50 (Spearman r = 0.82) 

across all designs tested, consistent with higher binding affinity contributing to improved viral 

neutralization activity. 
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Figure 4: The efficient manifold hypothesis. 

(A) The same strategy and language models that we use to affinity-mature antibodies can also 

recommend high-fitness changes across a diversity of protein families selection pressures, as 

identified experimentally using high-throughput scanning mutagenesis assays [41], [42] 

(described in Supplementary Table 11). “Fraction positive” indicates the percentage of high-

fitness amino acid substitutions within either the set of substitutions recommended by the 

language model (LM guided) or the set of all single-residue substitutions (Background). A 

substantial portion (12% to 40%) of language-model-guided substitutions have high extrinsic 

fitness, which in many cases is significantly enriched compared to the background percentage; 

also see Supplementary Fig. 2 and Supplementary Table 11. ADRB2: adrenoreceptor beta 2; 

β-la.: β-lactamase; Env: envelope glycoprotein; infA: translation initiation factor 1; MAPK1: 

mitogen-activated protein kinase 1; PafA: phosphate-irrepressible alkaline phosphatase. (B) 

Conceptually, intrinsic fitness forms a manifold that is represented in this cartoon by the rainbow 

road, where ascending corresponds to improving extrinsic fitness and descending corresponds to 

lowering extrinsic fitness. Under the efficient manifold hypothesis, this manifold of intrinsic 

fitness is narrow, therefore moving in any direction (for example, via random or brute-force 

mutagenesis) would most likely decrease extrinsic fitness or fall off the manifold entirely 
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(represented by the green ball). However, if movement is constrained to the narrow manifold of 

intrinsic fitness (for example, when guided by a language model), then the chance of improving 

extrinsic fitness increases substantially (represented by the red ball). 
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Methods 

Acquiring amino acid substitutions via language model consensus 

 We aim to acquire variants for experimental measurement with high predicted 

evolutionary plausibility and therefore select amino acid substitutions recommended by a 

consensus of language models. We take as input a single wildtype sequence 𝐱 = (𝑥1, … , 𝑥𝑁) ∈

𝒳𝑁, where 𝒳 is the set of amino acids and 𝑁 is the sequence length. We also require a set of 

masked language models, which are pretrained to produce conditional likelihoods 𝑝(𝑥𝑖
′|𝐱). To 

guide evolution based on a certain language model, we first compute the set substitutions with 

higher language-model likelihood than the wildtype, i.e., we compute the set 

ℳ(𝑝𝑗) ≝ {𝑖 ∈ [𝑁], 𝑥𝑖
′ ∈ 𝒳 ∶

𝑝𝑗(𝑥𝑖
′|𝐱)

𝑝𝑗(𝑥𝑖|𝐱)
> 𝛼}, 

where 𝑝𝑗 denotes the language model, 𝑥𝑖 denotes the wildtype residue, and 𝛼 = 1. To further 

filter substitutions to only those with the highest likelihood, we choose substitutions based on a 

consensus scheme, where, for a new amino acid 𝑥𝑖
′, we compute 

𝑓(𝑥𝑖
′) ≝ ∑ 𝟙{(𝑖, 𝑥𝑖

′) is in ℳ(𝑝𝑗)}

𝑗∈[𝑀]

 

where 𝟙{∙} denotes the indicator function and there are 𝑀 language models. We then acquire the 

set of substitutions with higher likelihood than wildtype across multiple language models, i.e., 

we acquire 

𝒜 ≝ {𝑖 ∈ [𝑁], 𝑥𝑖
′ ∈ 𝒳 ∶ 𝑓(𝑥𝑖

′) ≥ 𝑘} 

where 𝑘 is a user-supplied cutoff that controls the number of corresponding variants to measure. 

While we focus on values of k that result in small values of |𝒜| (around 10) that can be screened 

via low-throughput assays, the number of substitutions can be increased by reducing the value of 

k or by lowering the cutoff stringency 𝛼. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2022. ; https://doi.org/10.1101/2022.04.10.487811doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.10.487811
http://creativecommons.org/licenses/by-nc/4.0/


26 

 

We used six large-scale masked language models, namely, the ESM-1b model [17] and 

the five models that are ensembled together to form ESM-1v [18], both obtained from 

https://github.com/facebookresearch/esm. ESM-1b was trained on the March 2018 release of 

UniRef50 [22] consisting of ~27 million sequences, and the five models in ESM-1v were each 

trained on the March 2020 release of UniRef90 [22] consisting of ~98 million sequences. 

Antibody sequence analysis and evolution 

  For antibodies, we performed the above steps for the VH and VL sequences separately, 

obtaining respective sets 𝒜VH and 𝒜VL. For round 1 of evolution, we set 𝛼 = 1 and chose 

values of 𝑘 such that |𝒜VH ∪ 𝐴VL| is approximately 10, which is meant to be a reasonable 

number of antibody variants for one person to express and purify in parallel. We used 𝑘 = 2 for 

MEDI8852 VH and VL, 𝑘 = 2 for MEDI8852 UCA VH and VL, 𝑘 = 4 for mAb114 VH and 

VL, 𝑘 = 2 for mAb114 UCA VH and VL, 𝑘 = 2 for S309 VH, 𝑘 = 1 for S309 VL, 𝑘 = 2 for 

REGN10987 VH and VL, and 𝑘 = 2 for C143 VH and VL. We further reduced the size of 

|𝒜VH ∪ 𝐴VL| by requiring the substitution to have the highest likelihood at its respective site for 

at least one language model. For round 2 of evolution, variants were first measured for binding 

affinity to a given antigen via BLI (more details below) and those that preserved or enhanced 

affinity were recombined such that the second-round variants have two or more substitutions 

from wildtype. For MEDI8852 and MEDI8852 UCA, we tested all possible combinations; for 

the other antibodies, where the number of possible combinations far exceeds ~10 variants, we 

manually selected a set of combinations meant to prioritize inclusion of substitutions that 

resulted in the largest improvements in affinity during the first round.  

We used the wildtype sequences provided by the original study authors describing the 

respective antibodies [27]–[30], [36]. Wildtype VH and VL sequences are provided in 
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Supplementary Information. We used the Kabat region definition provided by the abYsis 

webtool version 3.4.1 (http://www.abysis.org/abysis/index.html) [39] to annotate the framework 

regions and CDRs within the VH and VL sequences. 

Antibody cloning 

 We cloned the antibody sequences into the CMV/R plasmid backbone for expression 

under a CMV promoter. The heavy chain or light chain sequence was cloned between the CMV 

promoter and the bGH poly(A) signal sequence of the CMV/R plasmid to facilitate improved 

protein expression. Variable regions were cloned into the human IgG1 backbone; REGN10987 

and C143 variants were cloned with a lambda light chain, while variants of all other antibodies 

were cloned with a kappa light chain. The vector for both heavy and light chain sequences also 

contained the HVM06_Mouse (P01750) Ig heavy chain V region 102 signal peptide 

(MGWSCIILFLVATATGVHS) to allow for protein secretion and purification from the 

supernatant. VH and VL segments were ordered as gene blocks from Integrated DNA 

Technologies and were cloned into linearized CMV/R backbones with 5X In-Fusion HD enzyme 

premix (Takara Bio). 

Antigen cloning 

HA, GP, Spike, and RBD sequences were cloned into a pADD2 vector between the 

rBeta-globin intron and β-globin poly(A). HA constructs contain a Foldon trimerization domain. 

GP and Spike constructs contain a GCN4 trimerization domain. All HAs, GP, Wuhan-Hu-1 S-

6P, and Omicron RBD constructs contain an AviTag. All constructs contain a C-terminal 6xHis 

tag. We used HA sequences from the following strains: A/New Caledonia/20/1999(H1N1) (H1 

Caledonia), A/Solomon Islands/3/2006(H1N1) (H1 Solomon), A/Japan/305/1957(H2N2) (H2 

Japan), A/Panama/2007/1999(H3N2) (H3 Panama), A/Victoria/3/1975(H3N2) (H3 Victoria), 
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A/swine/Hubei/06/2009(H4N1) (H4 Hubei), A/Vietnam/1203/2004(H5N1) (H5 Vietnam), 

A/Hong Kong/61/2016(H7N9) (H7 HK16), and A/Hong Kong/125/2017(H7N9) (H7 HK17). We 

used Ebola GP ectodomain (Mayinga, Zaire, 1976, GenBank: AAG40168.1) with the mucin-like 

domain deleted (∆309-489). Spike or RBD sequences were based off wildtype Wuhan-Hu-1 

(GenBank: BCN86353.1), Beta (GenBank: QUT64557.1), or Omicron (GenBank: UFO69279.1). 

DNA preparation 

Plasmids were transformed into Stellar competent cells (Takara Bio), and transformed 

cells were grown at 37°C. Colonies were sequence confirmed and then maxi-prepped per the 

manufacturer’s recommendations (NucleoBond Xtra Maxi; Macherey-Nagel). Plasmids were 

sterile filtered using a 0.22-μm syringe filter and stored at 4°C. 

Protein expression 

 All proteins were expressed in Expi293F cells. For proteins containing a biotinylation tag 

(AviTag), Expi293F cells containing a stable BirA enzyme insertion were used, resulting in 

spontaneous biotinylation during protein expression. Expi293F cells were cultured in media 

containing 66% Freestyle/33% Expi media (ThermoFisher) and grown in TriForest 

polycarbonate shaking flasks at 37°C in 8% carbon dioxide (CO2). The day before transfection 

cells were spun down and resuspended to a density of 3 × 106 cells/mL in fresh media. The 

following day, cells were diluted and transfected at a density of approximately 3-4 × 106 

cells/mL. Transfection mixtures were made by adding the following components: maxi-prepped 

DNA, culture media, and FectoPro (Polyplus) would be added to cells to a ratio of 

0.5μg:100μL:1.3μL:900μL. For example, for a 100 mL transfection, 50 μg of DNA would be 

added to 10 mL of culture media, followed by the addition of 130 μL of FectoPro. For 

antibodies, we divided the transfection DNA equally among heavy- and light-chains; in the 
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previous example, 25 μg of heavy-chain DNA and 25 μg of light-chain DNA would be added to 

10 mL of culture media. Following mixing and a 10-minute incubation, the example transfection 

cocktail would be added to 90 mL of cells. The cells were harvested 3-5 days post-transfection 

by spinning the cultures at >7,000X g for 15 minutes. Supernatants were filtered using a 0.45-μm 

filter.  

Antibody purification 

 We purified antibodies using a 5 mL MAb Select Sure PRISM™ column on the ÄKTA 

pure fast protein liquid chromatography (FPLC) instrument (Cytiva). The ÄKTA system was 

equilibrated with line A1 in 1X phosphate-buffered saline (PBS), line A2 in 100 mM glycine pH 

2.8, line B1 in 0.5 M sodium hydroxide, Buffer line in 1X PBS, and Sample lines in water. The 

protocol washes the column with A1, followed by loading of the sample in the Sample line until 

air is detected in the air sensor of the sample pumps, followed by 5 column-volume washes with 

A1, elution of the sample by flowing of 20 mL of A2 directly into a 50 mL conical containing 2 

mL of 1 M tris(hydroxymethyl)aminomethane (Tris) pH 8.0, followed by 5 column volumes of 

A1, B1, and A1. We concentrated the eluted samples using 50 or 100 kDa cutoff centrifugal 

concentrators followed by buffer exchange using a PD-10 column (SEPHADEX) that had been 

preequilibrated into 1X PBS. Purified antibodies were stored at -20°C. 

Antigen purification 

 All antigens were His-tagged and purified using HisPur™ Ni-NTA resin (ThermoFisher). 

Cell supernatants were diluted with 1/3rd volume wash buffer [20 mM imidazole, 20 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) pH 7.4, 150 mM sodium chloride 

(NaCl) or 20 mM imidazole, 1X PBS] and the Ni-NTA resin was added to diluted cell 

supernatants. For all antigens except SARS-CoV-2 Spike, the samples were then incubated at 
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4°C while stirring overnight. SARS-CoV-2 Spike antigens were incubated at room temperature. 

Resin/supernatant mixtures were added to chromatography columns for gravity-flow 

purification. The resin in the column was washed with wash buffer (20 mM imidazole, 20 mM 

HEPES pH 7.4, 150 mM NaCl or 20 mM imidazole, 1X PBS) and the proteins were eluted with 

either 250 mM imidazole, 20 mM HEPES pH 7.4, 105mM NaCl or 20 mM imidazole, 1X PBS. 

Column elutions were concentrated using centrifugal concentrators at 10, 50, or 100 kDa cutoffs, 

followed by size-exclusion chromatography on an ÄKTA Pure system (Cytiva). ÄKTA pure 

FPLC with a Superdex 6 Increase (S6) or Superdex 200 Increase (S200) gel filtration column 

was used for purification. 1 mL of sample was injected using a 2 mL loop and run over the S6 or 

S200 which had been preequilibrated in degassed 20 mM HEPES, 150 mM NaCl or 1X PBS 

prior to use and stored at -20°C. 

Fab production and purification  

1/10 volume of 1 M Tris, pH 8 was added to IgGs at ~2 mg/mL in 1X PBS. 2 μL of a 1 

mg/mL stock of Lys-C (stock stored at -20°C) was added for each mg of human IgG1 and 

digested for 1 hour at 37°C with moderate rotation. Digested Fabs were purified using a 5 mL 

HiTrap SP HP cation exchange chromatography column on an ÄKTA system using 50 mM 

sodium acetate (NaOAc) pH 5.0 with gradient NaCl elution (using 50 mM NaOAc + 1M NaCl, 

pH 5.0). Fab fractions were pooled and dialyzed against 1X PBS and concentrated using 30 kDa 

concentrators. Purified Fabs were stored at -20°C.  

Biolayer interferometry (BLI) binding experiments 

 All reactions were run on an Octet Red 96 at 30°C and samples were run in 1X PBS with 

0.1% BSA and 0.05% Tween 20 (octet buffer). IgGs and Fabs were assessed for binding to 

biotinylated antigens using streptavidin (SA) biosensors (Sartorius/ForteBio) or to 
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unbiotinylated, His-tagged antigens using Anti-Penta-HIS biosensors (Sartorius/ForteBio). 

Antigen was loaded to a threshold of 1 nm shift. Tips were then washed and baselined in wells 

containing only octet buffer. Samples were then associated in wells containing IgG or Fab at 100 

nM concentration unless otherwise stated (other concentrations are given in Supplementary 

Data 1). A control well with loaded antigen but that was associated in a well containing only 200 

μL octet buffer was used as a baseline subtraction for data analysis. Association and dissociation 

binding curves were fit in Octet System Data Analysis Software version 9.0.0.15 using a 1:2 

bivalent model for IgGs to determine apparent Kd and a 1:1 model for Fabs to determine Kd. 

Averages of fitted Kd values from at least two independent experiments are reported to two 

significant figures. Wildtype and the highest-affinity variants were also tested at multiple 

concentrations and Kd values were averaged across all replicates and concentrations 

(Supplementary Data 1). To estimate measurement error, we compute the coefficient of 

variation (CV; the ratio of the standard deviation to the mean across replicates) for each 

antibody-antigen Kd pair and report the mean CV for each antigen in Supplementary Tables 2 

and 4-9. 

Thermal melts 

 We measured thermal melting profiles of proteins by differential scanning fluorimetry on 

a Prometheus NT.48 instrument. Protein samples (0.1 mg/mL) were loaded into glass capillaries 

and then subject to a temperature gradient from 20 to 95°C at a heating rate of 1°C per minute. 

Intrinsic fluorescence (350 nm and 330 nm) was recorded as a function of temperature using 

PR.ThermControl version 2.3.1 software. Thermal melting curves were plotted using the first 

derivative of the ratio (350 nm/330 nm). Melting temperatures were calculated automatically by 

the instrument and represented peaks in the thermal melting curves.    
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Lentivirus production 

We produced SARS-CoV-2 Spike (D614G and Beta variants) pseudotyped lentiviral 

particles. Viral transfections were done in HEK293T cells using calcium phosphate transfection 

reagent. Six million cells were seeded in D10 media [Dulbecco’s Modified Eagle Medium 

(DMEM) + additives: 10% fetal bovine serum (FBS), L-glutamate, penicillin, streptomycin, and 

10 mM HEPES] in 10 cm plates one day prior to transfection. A five-plasmid system was used 

for viral production, as previously described [58]. The Spike vector contained the 21 amino acid 

truncated form of the SARS-CoV-2 Spike sequence from the Wuhan-Hu-1 strain of SARS-CoV-

2 (GenBank: BCN86353.1) or the Beta variant-of-concern (GenBank: QUT64557.1). The other 

viral plasmids, used as previously described [58], are pHAGE-Luc2-IRS-ZsGreen (NR-52516), 

HDM-Hgpm2 (NR-52517), pRC-CMV-Rev1b (NR-52519), and HDM-tat1b (NR-52518). These 

plasmids were added to D10 medium in the following ratios: 10 μg pHAGE-Luc2-IRS-ZsGreen, 

3.4 μg FL Spike, 2.2 μg HDM-Hgpm2, 2.2 μg HDM-Tat1b, 2.2 μg pRC-CMV-Rev1b in a final 

volume of 1000 μL. 

Ebola GP-pseudotyped lentiviruses were produced using the same packaging (pHAGE-

Luc2-IRS-ZsGreen) and helper plasmids (HDM-Hgpm2, HDM-Tat1b, pRC-CMV-Rev1b) but 

with the plasmid encoding full-length Ebola GP (GenBank: AAG40168.1).  

After adding plasmids to medium, we added 30 μL BioT (BioLand) to form transfection 

complexes. Transfection reactions were incubated for 10 minutes at room temperature, and then 

9 mL of medium was added slowly. The resultant 10 mL was added to plated HEK cells from 

which the medium had been removed. Culture medium was removed 24 hours post-transfection 

and replaced with fresh D10 medium. Viral supernatants were harvested 72 hours post-
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transfection by spinning at 300X g for five minutes followed by filtering through a 0.45-μm 

filter. Viral stocks were aliquoted and stored at -80ºC until further use. 

Pseudovirus neutralization 

The target cells used for infection in SARS-CoV-2 pseudovirus neutralization assays are 

from a HeLa cell line stably overexpressing human angiotensin-converting enzyme 2 (ACE2), as 

well as the protease known to process SARS-CoV-2, transmembrane serine protease 2 

(TMPRSS2). Production of this cell line is described in detail previously [59], with the addition 

of stable TMPRSS2 incorporation. ACE2/TMPRSS2/HeLa cells were plated one day prior to 

infection at 8,000 cells per well. For Ebola-pseudovirus neutralization assays, HEK-293T cells 

were seeded in 96-well plates one day prior to infection at 20,000 cells per well. 96-well, white-

walled, white-bottom plates were used for neutralization assays (Thermo Fisher Scientific). 

On the day of the assay, purified IgGs in 1X PBS were sterile filtered using a 0.22-μm 

filter. Dilutions of this filtered stock were made into sterile 1X Dulbecco’s PBS (DPBS) 

(Thermo Fisher Scientific) which was 5% by volume D10 medium. Samples were run in 

technical quadruplicate in each experiment. A virus mixture was made containing the virus of 

interest (for example SARS-CoV-2) and D10 media (DMEM + additives: 10% FBS, L-

glutamate, penicillin, streptomycin, and 10 mM HEPES). Virus dilutions into media were 

selected such that a suitable signal would be obtained in the virus-only wells. A suitable signal 

was selected such that the virus only wells would achieve a luminescence of at least >5,000,000 

relative light units (RLU). 60 μL of this virus mixture was added to each of the antibody 

dilutions to make a final volume of 120 μL in each well. Virus-only wells were made which 

contained 60 μL 1X DPBS and 60 μL virus mixture. Cells-only wells were made which 

contained 120 μL D10 media. 
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The antibody/virus mixture was left to incubate for 1 hour at 37°C. Following incubation, 

the medium was removed from the cells on the plates made 1 day prior. This was replaced with 

100 μL of antibody/virus dilutions and incubated at 37°C for approximately 24 hours. Infectivity 

readout was performed by measuring luciferase levels. SARS-CoV-2 and Ebola pseudovirus 

neutralization assays were read out 48- and 72-hour post-infection, respectively. Medium was 

removed from all wells and cells were lysed by the addition of 100 μL BriteLite™ assay readout 

solution (Perkin Elmer) into each well. Luminescence values were measured using an Infinite® 

200 PRO Microplate Reader (Tecan) using i-control version 2.0 software (Tecan). Each plate 

was normalized by averaging the cells-only (0% infection) and virus-only (100% infection) 

wells. We used the neutcurve Python package version 0.5.7 to fit the normalized datapoints and 

to compute the IC50 values, which we report to two significant digits. To estimate measurement 

error, we compute the CV for each antibody-virus IC50 pair and report the mean CV for each 

virus in Supplementary Tables 5, 8, and 9. 

Computing frequency of changes to antibody protein sequences 

 We computed the frequency of residues involved in affinity-enhancing substitutions by 

aligning the wildtype VH and VL sequences of our antibodies to databases of protein sequences. 

The first database we considered is UniRef90, where we use the same database release used to 

train ESM-1v. For each antibody protein sequence, we obtained the set of 2,000 sequences in the 

database that are closest to the antibody by sequence similarity based on Levenshtein distance 

(with the farthest sequences having between 24% to 49% sequence similarity); we compute 

sequence similarity using the fuzzywuzzy Python package version 0.18.0. We then use mafft 

version 7.475 to perform multiple sequence alignment among the set of sequences. We used the 

alignment to compute amino acid frequencies at each site in the VH or VL sequence. The second 
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database we considered is provided by the abYsis webtool. We aligned VH and VL protein 

sequences using the default settings provided in the “Annotate” tool, using the database of “All” 

sequences as of March 1, 2022. While our frequency estimation procedure is based on the entire 

UniRef90 dataset, we also sought to count the number of annotated immunoglobulin variable 

regions in UniRef90; to do so, we used the UniRef query tool (https://www.uniprot.org/uniref/) 

with the queries “name:"immunoglobulin heavy variable" AND identity:0.9”, 

“name:"immunoglobulin kappa variable" AND identity:0.9”, and “name:"immunoglobulin 

lambda variable" AND identity:0.9”. 

Natural protein evaluation based on scanning mutagenesis data 

 We evaluated the ability for the language models and algorithms used in our study to 

guide efficient evolution in other settings beyond antibodies. We leveraged deep mutational 

scanning (DMS) datasets to validate that our approach would enable a researcher to acquire high-

fitness variants. We used all DMS datasets from the benchmarking study by Livesey and Marsh 

[41] with 90% or higher coverage of all single-residue substitutions; variants that were not 

measured were treated as having low fitness. We also used a scanning mutagenesis dataset 

generated by Markin et al. that measured Michaelis-Menten kinetics of all single-site glycine or 

valine substitutions to the bacterial enzyme PafA; for this dataset, any language-model-

recommended substitutions that did not involve glycine or valine substitutions were excluded 

from the analysis. We applied a cutoff for each dataset to binarize sequences as high- or low-

fitness variants (cutoffs are provided in Supplementary Table 11); we then compared 

enrichment of high-fitness variants among the language-model-recommended variants to the 

background frequency of high-fitness variants among all single-residue substitutions. For these 

proteins, as with our antibody experiments, we chose values of 𝑘 that result in a small number 
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(~101) of acquired substitutions: we used 𝛼 = 1 and 𝑘 = 2 for all proteins except those where 

this resulted in |𝒜| < 5, in which case we set 𝑘 = 1. 

To quantify the statistical significance of an enrichment, we assumed that the null 

distribution of the number of high-fitness, language-model-recommended variants was given by 

a hypergeometric distribution parameterized by the number of language-model-recommended 

variants |𝒜|, the number of high-fitness variants among the all single-residue substitutions, and 

the total number of single-residue substitutions considered, which we used to compute a one-

sided P value. We used the hypergeometric calculator at https://stattrek.com/online-

calculator/hypergeometric.aspx. 

To test the relationship between likelihood stringency and the fraction of high-fitness 

substitutions, we also performed a small-scale parameter sweep varying the cutoff values 𝛼 and 

𝑘 and computing: (1) the percentage fraction of high-fitness substitutions in 𝒜, (2) the maximum 

fitness value of a variant in 𝒜 divided by the maximum fitness value of a variant across the full 

mutational scan, and (3) the maximum fitness value of a variant in 𝒜 divided by the 99th 

percentile of the fitness values across the full mutational scan; prior to this normalization, the 

raw fitness values are also linearly scaled to take values between 0 and 1, inclusive. Normalized 

values, the number of acquired variants |𝒜|, and the parameter combinations are plotted in 

Supplementary Fig. 2. 

Data availability 

 Raw data for this study has been deposited to Zenodo at DOI:10.5281/zenodo.6415457. 

Kd, IC50, and Tm values across replicate experiments are available as Supplementary Data 1.  

Code availability 
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 Code and scripts used in this study are available at https://github.com/brianhie/efficient-

evolution.  
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Supplementary Table 1: Summary of antibodies considered in this study. 

Information on the antibodies considered in each of our directed evolution campaigns. Matured indicates extensive somatic 

hypermutation from germline (and, in the case of MEDI8852, additional in-vitro affinity maturation). Source indicates how the 

antibody sequence was obtained; germline-inferred sequences were obtained from the original publications. Improved binding is 

Antibody Matured? Source Virus 
Screened 

antigen 

Round-1 variants 

with improved 

binding 

Round-1 variants 

with preserved 

binding 

Best affinity 

improvement 

(antigen) 

Best neutralization 

improvement 

(virus) 

MEDI8852 [27] 

Yes (in 

vivo + in 

vitro) 

Patient-

derived + 

in vitro 

evolution 

Influenza A HA H4 Hubei 2 / 13 = 15% 13 / 14 = 93% 
7-fold  

(HA H7 HK17) 
ND 

MEDI8852 

UCA [27] 
No 

Germline-

inferred 
Influenza A 

HA H1 

Solomon 
3 / 8 = 38% 8 / 8 = 100% 

23-fold  

(HA H4 Hubei) 
ND 

mAb114 [28] Yes 
Patient-

derived 
Ebolavirus GP 7 / 13 = 54% 13 / 13 = 100% 3.4-fold (GP) 

1.5-fold (GP 

pseudotyped 

lentivirus) 

mAb114 UCA  

[27] 
No 

Germline-

inferred 
Ebolavirus GP 6 / 9 = 67% 7 / 9 = 78% 160-fold (GP) 

>100-fold (GP 

pseudotyped 

lentivirus) 

S309 [29] Yes 
Patient-

derived 
Sarbecovirus 

Wuhan-Hu-1 

S-6P 
2 / 10 = 20% 9 / 10 = 90% 

1.7-fold  

(Beta S-6P) 
ND 

REGN10987 

[30] 
Yes 

Patient-

derived 
SARS-CoV-2 Beta S-6P 2 / 8 = 25% 8 / 8 = 100% 

1.3-fold  

(Beta S-6P) 

2-fold (Beta 

pseudotyped 

lentivirus) 

C143 [36] No 
Patient-

derived 
SARS-CoV-2 Beta S-6P 10 / 14 = 71% 10 / 14 = 71% 

13-fold  

(Beta S-6P) 

31-fold (Beta 

pseudotyped 

lentivirus) 
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defined as a 1.1-fold improvement or higher from wildtype. Preserved binding is defined as a sub-micromolar Kd for the screened 

antigen. ND: not determined.
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Round Design Region 
H4 Hubei 

Fab Kd (nM) 

H7 HK16  

Fab Kd (nM) 

H7 HK17 

Fab Kd (nM) 

 MEDI8825 

WT 
 0.56 6.2 0.21 

 

VH D27F HFR1 0.90 9.0 ND 

VH V35Y CDR-H1 0.87 8.6 ND 

VH S44G HFR2 0.60 7.0 ND 

VH T53I CDR-H2 0.75 10 ND 

VH W59S CDR-H2 0.78 7.1 ND 

VH E65P CDR-H2 0.36 2.7 0.10 

VH N74S HFR3 0.53 6.0 ND 

VH M117Y CDR-H3 0.36 4.1 ND 

VL T25A CDR-L1 1.4 17 ND 

VL L29V CDR-L1 4.2 80 ND 

VL T33L CDR-L1 3.2 41 ND 

VL G55A CDR-L2 0.51 5.1 ND 

VL R92D CDR-L3 NB 26 ND 

VL G95P LFR4 0.80 5.3 ND 

Round 2 
VH E65P-

M117Y 
Multi 0.31 2.5 0.030 

Error (mean CV): ± 12% ± 14% ± 34% 

Supplementary Table 2: MEDI8852 variants.  

Variants tested across two rounds of directed evolution, the corresponding Kabat-annotated 

regions, and Kd values for three HA antigens. The wildtype row is highlighted in gray; variants 

with improved affinity are highlighted in blue. NB: no binding; ND: not determined; CV: 

coefficient of variation.  
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Antigen 

(Group) 
Antibody Fab Kd (nM) 

H1 Caledonia 

(Group 1) 

MEDI8852 <0.001 

VH E65P <0.001 

VH E65P-M117Y <0.001 

H1 Solomon 

(Group 1) 

MEDI8852 <0.001 

VH E65P <0.001 

VH E65P-M117Y <0.001 

H2 Japan 

(Group 1) 

MEDI8852 <0.001 

VH E65P <0.001 

VH E65P-M117Y <0.001 

H3 Panama 

(Group 2) 

MEDI8852 <0.001 

VH E65P <0.001 

VH E65P-M117Y <0.001 

H3 Victoria 

(Group 2) 

MEDI8852 <0.001 

VH E65P <0.001 

VH E65P-M117Y <0.001 

H4 Hubei 

(Group 2) 

MEDI8852 0.56 

VH E65P 0.36 

VH E65P-M117Y 0.31 

H5 Vietnam 

(Group 1) 

MEDI8852 <0.001 

VH E65P <0.001 

VH E65P-M117Y <0.001 

H7 HK16 

(Group 2) 

MEDI8852 6.2 

VH E65P 2.7 

VH E65P-M117Y 2.5 

H7 HK17 

(Group 2) 

MEDI8852 0.21 

VH E65P 0.10 

VH E65P-M117Y 0.030 

Supplementary Table 3: Binding to Group 1 and Group 2 HAs. 
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Binding affinity between MEDI8852 WT Fab and three variant Fabs against a panel of nine 

HAs. A Kd of <0.001 indicates an interaction with no observed dissociation when measured via 

BLI.  
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Supplementary Table 4: MEDI8852 UCA variants. 

Variants tested across two rounds of directed evolution, the corresponding Kabat-annotated 

regions, and Kd values for three HA antigens. In Round 2, all possible combinations involving 

K58S, V65P, P75R in the VH and G95P in the VL were made. The wildtype row is highlighted 

Round Design Region 

H1 

Solomon 

IgG Kd 

app. (nM) 

H1 

Solomon 

Fab Kd 

(nM) 

H4 Hubei 

IgG Kd 

app. (nM) 

H4 Hubei 

Fab Kd 

(µM) 

H7 HK17 

Kd (nM) 

 MEDI8852 UCA WT  2.0 140 740 29 

IgG app. Kd: 

17 

Fab Kd: 

4400  

Round 1 

VH S44G HFR2 2.1 ND ND ND ND 

VH T53I CDR-H2 2.1 ND ND ND ND 

VH K58S CDR-H2 1.5 110 ND 2.5 ND 

VH V65P CDR-H2 1.7 ND ND ND ND 

VH N74S HFR3 2.6 ND ND ND ND 

VH P75R HFR3 2.0 ND ND ND ND 

VL N34A CDR-L1 8.2 ND ND ND ND 

VL G95P LFR4 1.3 65 ND 17 ND 

Round 2 

VH K58S-V65P CDR-H2 1.3 ND 80 ND ND 

VH K58S-P75R Multi 1.2 ND 47 ND ND 

VH V65P-P75R Multi 1.5 ND 570 ND ND 

VH K58S-V65P-P75R Multi 1.2 ND 72 ND ND 

VH K58S / VL G95P Multi 0.96 56 36 3.1 ND 

VH V65P / VL G95P Multi 0.93 ND 100 ND ND 

VH P75R / VL G95P Multi 0.95 ND 110 ND ND 

VH K58S-V65P / VL 

G95P 
Multi 0.78 50 30 1.3 

IgG app. Kd: 

5.6 

Fab Kd: 

810 

VH K58S-P75R / VL 

G95P 
Multi 0.88 ND 45 ND ND 

VH V65P-P75R / VL 

G95P 
Multi 0.87 ND 110 ND ND 

VH K58S-V65P-P75R 

/ VL G95P 
Multi 0.79 55 42 1.5 ND 

Error (mean CV): ± 11% ± 8.6% ± 10% ± 16% ± 13% 
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in gray; variants with improved affinity are highlighted in blue. Kd app.: Kd apparent; ND: not 

determined; CV: coefficient of variation.  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2022. ; https://doi.org/10.1101/2022.04.10.487811doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.10.487811
http://creativecommons.org/licenses/by-nc/4.0/


57 

 

 

Supplementary Table 5: mAb114 variants. 

Variants tested across two rounds of directed evolution, the corresponding Kabat-annotated 

regions, and Kd values for ebolavirus GP. Neutralization IC50 values were also determined for 

mAb114 WT and all Round-2 variant IgGs against GP-pseudotyped lentivirus. The wildtype row 

Round Design Region 
GP 

Fab Kd (nM) 

Ebola GP 

pseudotyped 

lentivirus 

IC50 (nM) 

 mAb114 WT  0.21 1.4 

Round 1 

VH M31S CDR-H1 0.13 ND 

VH I41P HFR2 0.33 ND 

VH D42G HFR2 0.18 ND 

VH A68T HFR3 0.10 ND 

VH E72D HFR3 0.13 ND 

VH S79Y HFR3 0.12 ND 

VH I113T HFR4 0.071 ND 

VL I19V LFR1 0.23 ND 

VL F29I CDR-L1 0.46 ND 

VL V43A LFR2 0.068 ND 

VL S49Y LFR2 0.58 ND 

VL H70D LFR3 0.27 ND 

VL N90Q CDR-L3 4.0 ND 

Round 2 

VH D42G-A68T-S79Y Multi 0.19 1.2 

VH I41P-D42G-A68T-

S79Y-I113T 
Multi 0.19 1.2 

VH A68T-I113T / 

VL V43A 
Multi 0.17 1.1 

VH A68T-E72D-S79Y-

I113T / 

VL V43A 

Multi 0.076 1.2 

VH D42G-A68T-S79Y / 

VL V43A 
Multi 0.061 0.96 

VH I41P-D42G-A68T-

S79Y-I113T / 

VL V43A 

Multi 0.069 1.0 

Error (mean CV): ± 41% ± 18% 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2022. ; https://doi.org/10.1101/2022.04.10.487811doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.10.487811
http://creativecommons.org/licenses/by-nc/4.0/


58 

 

is highlighted in gray; variants with improved affinity are highlighted in blue. ND: not 

determined; CV: coefficient of variation.  
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Round Design Region 
GP 

IgG Kd app. (nM) 

GP 

Fab Kd (µM) 

 mAb114 UCA WT  400 75 

Round 1 

VH T41P HFR2 140 ND 

VH A54G CDR-H2 79000 ND 

VH P60A CDR-H2 38000 ND 

VH G61D CDR-H2 150 ND 

VH E72D HFR3 180 ND 

VH G88E HFR3 150 ND 

VH V96A HFR3 110 ND 

VL V43A LFR2 59 ND 

VL K90Q CDR-L3 620 ND 

Round 2 

VH P60A-G61D CDR-H2 120 ND 

VH T41P-P60A-G61D-

E72D-G88E-V96A 
Multi 33 ND 

VH G88E / VL V43A Multi 13 ND 

VH V96A / VL V43A Multi 22 ND 

VH P60A-G61D / 

VL V43A 
Multi 4.9 0.48 

VH P60A-G61D-G88E-

V96A / 

VL V43A 

Multi 13 ND 

VH T41P-P60A-G61D-

E72D-G88E-V96A /VL 

V43A 

Multi 15 ND 

Error (mean CV): ± 42% ± 3.0% 

Supplementary Table 6: mAb114 UCA variants. 

Variants tested across two rounds of directed evolution, the corresponding Kabat-annotated 

regions, and Kd values (for both IgG and Fab versions) for ebolavirus GP. The wildtype row is 

highlighted in gray; variants with improved affinity are highlighted in blue. Kd app.: Kd apparent; 

ND: not determined; CV: coefficient of variation.  
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Supplementary Table 7: S309 variants. 

Variants tested across two rounds of directed evolution, the corresponding Kabat-annotated 

regions, and Kd values for antigens from three SARS-CoV-2 variants. The wildtype row is 

highlighted in gray; variants with improved affinity are highlighted in blue. W1: Wuhan-Hu-1; 

NE: no expression; ND: not determined; CV: coefficient of variation.  

Round Design Region 

W1 

S-6P Fab 

Kd (nM) 

Beta S-6P 

Fab Kd 

(nM) 

Omicron 

RBD Fab 

Kd (nM) 

 S309 WT  2.5 2.4 14 

 Sotrovimab 

(VH N55Q) 
CDR-H2 2.4 2.0 17 

Round 1 

VH P28T HFR1 4.3 ND ND 

VH T77N HFR3 2.8 ND ND 

VH G79A HFR3 2.8 ND ND 

VH R84S HFR3 2.7 ND ND 

VH R85S HFR3 3.1 ND ND 

VH R87T HFR3 2.1 ND ND 

VL T28S CDR-L1 2.1 ND ND 

VL T32N CDR-L1 2.7 ND ND 

VL S95V CDR-L3 NE ND ND 

VL L96P CDR-L3 2.7 ND ND 

Round 2 

VH T77N-G79A-R84S HFR3 3.2 ND ND 

VH T77N-G79A-

R84S-R85S 
HFR3 3.1 ND ND 

VL T28S-T32N CDR-L1 3.0 ND ND 

VH G79A / 

VL T28S 
Multi 2.0 1.4 15 

VH R84S / VL T28S Multi 2.5 ND ND 

VH R87T / VL T28S Multi 2.5 ND ND 

VH T77N-G79A-R84S 

/ VL T28S 
Multi 3.3 ND ND 

VH T77N-G79A-R84S 

/ VL T28S-T32N 
Multi 3.5 ND ND 

VH T77N-G79A-

R84S-R85S / 

VL T28S-T32N 

Multi 4.3 ND ND 

Error (mean CV): ± 19% ± 14% ± 16% 
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Supplementary Table 8: REGN10987 variants. 

Variants tested across two rounds of directed evolution, the corresponding Kabat-annotated 

regions, and Kd values for antigens from two SARS-CoV-2 variants. Round-1 variants were pre-

screened as IgGs with a single replicate before testing the highest-avidity variants as Fabs and 

with multiple replicates. Neutralization IC50 values were also determined for REGN10987 WT 

and selected affinity-enhancing variant IgGs against D614G- and Beta-pseudotyped lentivirus. 

The wildtype row is highlighted in gray; variants with improved affinity are highlighted in blue. 

Kd app.: Kd apparent; NA: not applicable; ND: not determined; CV: coefficient of variation.  

Round Design Region 

Beta S-6P 

IgG Kd 

app. (nM) 

Beta S-6P 

Fab Kd 

(nM) 

Omicron 

RBD IgG 

Kd app.  

(µM) 

D614G- 

pseudotyped 

lentivirus IC50 

(ng/mL) 

Beta- 

pseudotyped 

lentivirus IC50 

(ng/mL) 

 REGN10987 WT  0.091 13 

0.70 

(Fab Kd: 

23) 

1.1 1.4 

Round 1 

VH R16G HFR1 0.073 10 0.51 0.83 0.73 

VH S98R HFR3 0.41 ND ND ND ND 

VH V108D CDR-H3 0.076 26 ND ND ND 

VL S82A LFR3 0.063 14 ND ND ND 

VL N91C CDR-L3 0.053 12 ND ND ND 

VL N91S CDR-L3 0.066 22 ND ND ND 

VL L93Y CDR-L3 0.30 ND ND ND ND 

VL I96S CDR-L3 0.072 15 ND ND ND 

Round 2 

VH R16G-V108D Multi ND 30 2.2 ND ND 

VL S82A-N91C-I96S Multi ND 12 0.48 1.0 0.87 

VH R16G / 

VL S82A 
Multi ND 12 0.88 1.0 0.78 

VH R16G / 

VL N91C 
Multi ND 30 

0.42  

(Fab Kd: 

4.5) 

ND ND 

VH R16G / VL I96S Multi ND 12 1.2 1.2  0.79 

VH R16G-V108D / 

VL S82A-N91C-I96S 
Multi ND 40 2.5 ND ND 

Error (mean CV): NA ± 30% ± 19% ± 30% ± 15% 
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Supplementary Table 9: C143 variants. 

Variants tested across two rounds of directed evolution, the corresponding Kabat-annotated 

regions, and Kd values for antigens from three SARS-CoV-2 variants. Neutralization IC50 values 

were also determined for C143 WT and selected affinity-enhancing variant IgGs against D614G- 

Round Design Region 

Beta S-6P 

IgG Kd 

app. (nM) 

W1 S-6P 

IgG Kd 

app. (nM) 

Omicron 

IgG Kd 

app. (µM) 

D614G 

pseudotyped 

lentivirus 

IC50 (ng/mL) 

Beta 

pseudotyped 

lentivirus IC50 

(ng/mL) 

 C143 WT  450 39 610 1400 5800 

Round 1 

VH V29F HFR1 140 ND ND ND ND 

VH K32Y CDR-H1 32000 ND ND ND ND 

VH L51Y CDR-H2 180 ND ND ND ND 

VH D57T CDR-H2 NB* ND ND ND ND 

VH A77T HFR3 170 ND ND ND ND 

VH G91A HFR3 170 ND ND ND ND 

VL N27S CDR-L1 130 ND ND ND ND 

VL T33N CDR-L1 37 ND ND 200 870 

VL L34Y CDR-L1 200 ND ND ND ND 

VL Y41H LFR2 110 ND ND ND ND 

VL G53V CDR-L2 29 ND ND 110 180 

VL S57P CDR-L2 NB* ND ND ND ND 

VL G82A LFR3 NB* ND ND ND ND 

VL A96S CDR-L3 250 ND ND ND ND 

Round 2 

VH L51Y-A77T-

G91A 
Multi NB* ND ND ND ND 

VL T33N-G53V Multi 34 30 160 74 290 

VL N27S-T33N-

L34Y-G53V 
Multi 520 ND ND ND ND 

VL N27S-T33N-

L34Y-Y41H-G53V-

S57P-G82A 

Multi 800 ND ND ND ND 

VH L51Y-A77T-

G91A / VL T33N 
Multi NB* ND ND ND ND 

VH L51Y-A77T-

G91A / VL N27S-

T33N-L34Y-G53V 

Multi 320 ND ND ND ND 

Error (mean CV): ± 48% ± 26% ± 24% ± 21% ± 36% 
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and Beta-pseudotyped lentivirus. The wildtype row is highlighted in gray; variants with 

improved affinity are highlighted in blue. An asterisk (*) indicates examples where binding was 

observed but BLI data were not suitable for fitting. W1: Wuhan-Hu-1; Kd app.: Kd apparent; NB: 

no binding; ND: not determined; CV: coefficient of variation.  
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Antibody 

Affinity-

enhancing 

substitution 

UniRef90 (training dataset)  abYsis 

Wildtype 

residue 

frequency 

Mutant 

residue 

frequency 

Top 

residue 

Top 

residue 

frequency 
Notes 

Wildtype 

residue 

frequency 

Mutant 

residue 

frequency 

Top 

residue 

Top 

residue 

frequency 

MEDI8852 
VH E65P 6% 32% D 35%  14% 22% D 32% 

VH M117Y <1% 59% - -  <1% 49% - - 

MEDI8852 

UCA 

VH K58S 8% 3% T 67% 
Uncommon 

to rare 
2% 30% G 35% 

VH V65P 1% 32% D 36%  2% 22% D 32% 

VL G95P 44% 2% G 44% 
Common to 

rare 
99% <1% G 99% 

mAb114 

VH M31S <1% 45% - -  <1% 48% - - 

VH D42G 1% 88% - -  <1% 91% - - 

VH A68T 1% 88% - -  1% 85% - - 

VH E72D 4% 91% - -  2% 93% - - 

VH S79Y 8% 74% - -  16% 67% - - 

VH I113T 2% 69% - -  2% 89% - - 

VL V43A 4% 50% - -  2% 57% - - 

mAb114 

UCA 

VH T41P 1% 94% - -  1% 92% - - 

VH G61D 2% 57% - -  1% 32% - - 

VH E72D 4% 92% - -  2% 93% - - 

VH G88E 1% 85% - -  2% 67% - - 

VH V96A 6% 77% - -  5% 85% - - 

VL V43A 4% 50% - -  2% 57% - - 

S309 
VH R87T 37% 30% R 37%  39% 41% - - 

VL T28S 1% 54% - -  2% 77% - - 

REGN10987 
VH R16G 5% 68% - -  6% 31% - - 

VL N91C 2% 2% Q 39% Rare to rare 1% 4% Q 52% 

C143 

VH V29F 3% 78% - -  4% 69% - - 

VH L51Y 4% 18% - -  1% <1% I 85% 

VH A77T 1% 56% - -  <1% 62% - - 

VH G91A 4% 95% - -  2% 97% - - 

VL N27S 11% 53% - -  3% 77% - - 

VL T33N 2% 44% - -  2% 36% - - 
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VL L34Y 4% 34% - -  2% 59% - - 

VL Y41H <1% 6% K 59% 
Rare to 

uncommon 
<1% 5% K 67% 

VL G53V 2% 10% A 30% 
Rare to 

uncommon 
4% 12% A 40% 

VL A96S 2% 57% - -  2% 36% - - 

Supplementary Table 10: Originality of affinity-enhancing substitutions. 

Each row corresponds to an amino acid substitution that enhances the binding affinity of its 

corresponding variant antibody, and some of which also enhance affinity in combination with 

other substitutions. We computed frequencies of amino acid substitutions among natural 

sequences using two datasets, UniRef90 and abYsis (Methods); UniRef90 was the sequence 

database used to train the language models in our algorithm and abYsis is a separate, curated 

database of natural antibody sequences. The “wildtype residue frequency” indicates the 

percentage of sequences in a multiple sequence alignment with the same residue as wildtype at 

the given position; the “mutant residue frequency” is the same statistic except for the mutant 

residue. The “top residue” indicates the amino acid with the highest frequency observed at the 

given site, the “top residue frequency” indicates the percentage of sequences that contain the top 

residue at the given site, and dashes indicate settings in which the mutant residue is also the top 

residue. Substitutions with frequencies up to 5% are considered “rare,” those with frequencies 

above 5% and up to 10% are considered “uncommon,” and those above 10% are considered 

“common.” Blue shading indicates substitutions to rare or uncommon residues according to 

frequency information from either UniRef90 or abYsis.
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Supplementary Table 11: Enrichment of high-fitness variants based on language-model-recommended substitutions. 

Each row corresponds to a protein tested via a high-throughput scanning mutagenesis assay that measures various notions of protein 

fitness, which are summarized in the “Fitness setting” column. All assays involve deep mutational scans that profile variants that 

Protein Reference Organism 
Fitness 

setting 
Experiment Cutoff 

Sample 

successes 

Sample 

size 

Population 

successes 

Population 

size 

Hit 

rate 

(%) 

Background 

(%) 

Hypergeometric 

P 

ADRB2 [60] Human 

Signal 

transduction 

+ pathway 

reporter 

Deep 

mutational 

scan 
> 2.8 2 9 915 7847 22.2 11.7 0.28 

β-

lactamase 
[61] Bacteria 

Antibiotic 

resistance 

(ampicillin, 

2500 ug/mL) 

Deep 

mutational 

scan 
> 0.01 4 10 394 5434 40.0 7.2 0.0040 

Env [62] Virus 
Viral 

replication 

fitness 

Deep 

mutational 

scan 
> 0.1 7 37 749 16359 18.9 4.6 0.0013 

HA H1 [63] Virus 
Viral 

replication 

fitness 

Deep 

mutational 

scan 
> 0.1 5 32 646 10736 15.6 6.0 0.041 

HA H3 [64] Virus 
Viral 

replication 

fitness 

Deep 

mutational 

scan 
> 0.1 5 16 715 10754 31.3 6.6 0.0030 

infA [65] Bacteria 
Competitive 

growth 

Deep 

mutational 

scan 
> 0.98 4 10 306 1369 40.0 22.4 0.17 

MAPK1 [66] Human 
Competitive 

growth 

(SCH772984) 

Deep 

mutational 

scan 
> 2.5 1 13 77 6810 7.7 1.1 0.14 

P53 [67] Human 
Competitive 

growth 

(etoposide) 

Deep 

mutational 

scan 
> 1 2 17 906 7467 11.8 12.1 0.63 

PafA [42] Bacteria Kcat/KM 
Scanning 

mutagenesis 

P < 0.01, 

faster than 

WT 
2 10 35 1041 20.0 3.4 0.042 
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represent 90% or more coverage of all single-residue substitutions except for that of PafA, which changes every residue to either a 

glycine or a valine. The cutoff indicates the study-specific criterion for determining a high-fitness variant. The “Sample size” indicates 

the number of acquired variants (|𝒜|) and “Sample successes” indicates the number of those variants with high fitness according to 

the cutoff. The “Population size” indicates the number of variants profiled in the scanning mutagenesis assay, where “Population 

successes” indicates the number of those variants with high fitness according to the cutoff. “Hit rate” indicates the percentage fraction 

of high-fitness variants among the language-model-recommended variants (sample successes divided by sample size) whereas 

“Background” indicates the percentage fraction of high-fitness variants among all single-residue variants (population successes 

divided by population size). The hypergeometric P value computes enrichment of high-fitness variants among the acquired variants by 

assuming that the number of sample successes has a hypergeometric null distribution with parameters given by the other values 

(sample size, population successes, and population size); blue shading indicates a one-sided, hypergeometric P-value of less than 0.05.
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Supplementary Fig. 1: Pseudovirus neutralization of affinity-matured variants. 

Neutralization curves for wildtype antibodies (gray) and variants obtained by our language-

model-guided affinity maturation campaigns. Also see Supplementary Tables 5, 8, and 9 for 

corresponding IC50 values. Points indicate the mean; error bars indicate the standard deviation. 
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Supplementary Fig. 2: Relationship between likelihood stringency and extrinsic fitness 

efficiency. 
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To obtain the set 𝒜 of language-model-recommended variants, we varied two parameters 

controlling the stringency of acquired variants (where more stringent corresponds to fewer 

variants): 𝛼 is a cutoff controlling the likelihood ratio of the mutant probability to the wildtype 

probability, and 𝑘 is a cutoff controlling the number of consensus language models (Methods). 

(A) At varying cutoffs, we computed the percentage fraction of variants in 𝒜 that correspond to 

high-fitness variants, using scanning mutagenesis data for validation. When 𝛼 = 0 and 𝑘 = 1, 

this value is equivalent to the percentage of high-fitness variants in the full scanning mutagenesis 

dataset (a black dashed line is also drawn at this value for each protein). In all cases except for 

P53, we observe that increasing the likelihood stringency generally improves the efficiency at 

which high-fitness variants are acquired. In Figure 4, we report values for 𝛼 = 1, 𝑘 = 2, except 

for when these cutoffs result in |𝒜| < 5 (infA, MAPK1, and PafA), in which case we report 𝛼 =

1, 𝑘 = 1. (B, C) Given a set of acquired variants 𝒜 at varying cutoffs, we also computed how 

much the maximum fitness represented in 𝒜 compares either to the maximum possible fitness 

value obtained across the full mutational scan (B) or to the 99th percentile of fitness values across 

the full mutational scan (C). To compare across proteins, we plotted the maximum acquired 

fitness value normalized by the maximum possible fitness (B) or by the 99th percentile with a 

threshold at 1 (C). At even at the most stringent cutoffs, the best acquired variant of most 

proteins has at least 50% of the fitness value of the maximum fitness peak. Additionally, at the 

most stringent cutoffs, the best acquired variant of all proteins is above or close to the 99th 

percentile of fitness values. (D) We plotted the number of acquired variants |𝒜|, which is the 

denominator of the values plotted in (A). A gray horizontal dashed line is also plotted at 100. 
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Supplementary Information 

Antibody sequences 

Below are the antibody protein sequences defined as wildtype in this study: 

• MEDI8852 VH: 

QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSYNAVWNWIRQSPSRGLEWLGRTY

YRSGWYNDYAESVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCARSGHITVFG

VNVDAFDMWGQGTMVTVSS 

• MEDI8852 VL: 

DIQMTQSPSSLSASVGDRVTITCRTSQSLSSYTHWYQQKPGKAPKLLIYAASSRGS

GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSRTFGQGTKVEIK 

• MEDI8852 UCA VH: 

QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIRQSPSRGLEWLGRTY

YRSKWYNDYAVSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCARGGHITIFG

VNIDAFDIWGQGTMVTVSS 

• MEDI8852 UCA VL: 

DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS

GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSRTFGQGTKVEIK 

• mAb114 VH: 

EVQLVESGGGLIQPGGSLRLSCAASGFALRMYDMHWVRQTIDKRLEWVSAVGP

SGDTYYADSVKGRFAVSRENAKNSLSLQMNSLTAGDTAIYYCVRSDRGVAGLF

DSWGQGILVTVSS 
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• mAb114 VL: 

DIQMTQSPSSLSASVGDRITITCRASQAFDNYVAWYQQRPGKVPKLLISAASALH

AGVPSRFSGSGSGTHFTLTISSLQPEDVATYYCQNYNSAPLTFGGGTKVEIK 

• mAb114 UCA VH: 

EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYDMHWVRQATGKGLEWVSAIGT

AGDTYYPGSVKGRFTISRENAKNSLYLQMNSLRAGDTAVYYCVRSDRGVAGLF

DSWGQGTLVTVSS 

• mAb114 UCA VL: 

DIQMTQSPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLIYAASTLQ

SGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQKYNSAPLTFGGGTKVEIK 

• S309 VH: 

QVQLVQSGAEVKKPGASVKVSCKASGYPFTSYGISWVRQAPGQGLEWMGWIST

YNGNTNYAQKFQGRVTMTTDTSTTTGYMELRRLRSDDTAVYYCARDYTRGAW

FGESLIGGFDNWGQGTLVTVSS 

• S309 VL: 

EIVLTQSPGTLSLSPGERATLSCRASQTVSSTSLAWYQQKPGQAPRLLIYGASSRA

TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQHDTSLTFGGGTKVEIK 

• REGN10987 VH: 

QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYAMYWVRQAPGKGLEWVAVISY

DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRTEDTAVYYCASGSDYGDYL

LVYWGQGTLVTVSS 
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• REGN10987 VL: 

QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSK

RPSGVSNRFSGSKSGNTASLTISGLQSEDEADYYCNSLTSISTWVFGGGTKLTVL 

• C143 VH: 

EVQLVESGGGLVQPGGSLRLSCAASGFSVSTKYMTWVRQAPGKGLEWVSVLYS

GGSDYYADSVKGRFTISRDNSKNALYLQMNSLRVEDTGVYYCARDSSEVRDHP

GHPGRSVGAFDIWGQGTMVTVSS 

• C143 VL: 

QSALTQPASVSGSPGQSITISCTGTSNDVGSYTLVSWYQQYPGKAPKLLIFEGTKR

SSGISNRFSGSKSGNTASLTISGLQGEDEADYYCCSYAGASTFVFGGGTKLTVL 
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