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Abstract
Biology has become a data-intensive science. Recent technological advances in single-

cell genomics have enabled the measurement of multiple facets of cellular state, producing

datasets with millions of single-cell observations. While these data hold great promise

for understanding molecular mechanisms in health and disease, analysis challenges arising

from sparsity, technical and biological variability, and high dimensionality of the data

hinder the derivation of such mechanistic insights. To promote the innovation of algorithms

for analysis of multimodal single-cell data, we organized a competition at NeurIPS 2021

applying the Common Task Framework to multimodal single-cell data integration. For

this competition we generated the first multimodal benchmarking dataset for single-cell

biology and defined three tasks in this domain: prediction of missing modalities, aligning

modalities, and learning a joint representation across modalities. We further specified

evaluation metrics and developed a cloud-based algorithm evaluation pipeline. Using this

setup, 280 competitors submitted over 2600 proposed solutions within a 3 month period,

showcasing substantial innovation especially in the modality alignment task. Here, we

present the results, describe trends of well performing approaches, and discuss challenges

associated with running the competition.

Keywords: benchmarking datasets, single-cell genomics, multiomics, multimodal, big data

integration, computational biology

1. Introduction

Human life is possible through the function and interplay of approximately 37 trillion cells
in the human body (Bianconi et al., 2013) organized into tissues, organs, and systems.
The function of these systems is mediated by individual cells, the processes that occur
inside them, and how they interact. As a human develops from a single fertilized egg
cell, all of our cells contain the same DNA that was copied trillions of times. Yet, cells
have different behaviors, functions, and proliferate at different rates. Understanding this
diversity of cellular states and how they occur is the key to gaining mechanistic insight into
how tissues function or malfunction in health and disease (Wagner et al., 2016).

Cellular heterogeneity can be characterized by the regulation of gene expression. Regions
of DNA called genes are transcribed into messenger RNA (mRNA) molecules and subse-
quently translated into proteins. Various regulatory mechanisms affect gene expression, and
DNA accessibility, protein abundance, and mRNA concentrations all provide complementary
information on cellular state.

In the past decade, the advent of single-cell genomics technologies has enabled the mea-
surement of these modalities in single cells (Stark et al., 2019). Single-cell RNA-sequencing
measures the expression of all protein coding genes (roughly 20,000 in humans) in up to
millions of cells in a single dataset (Cao et al., 2020). At a similar throughput, single-cell
ATAC-sequencing measures the accessibility of DNA regions in hundreds of thousands of
peaks as features (Buenrostro et al., 2015). These technologies have enabled the study of
biology at an unprecedented scale and resolution, leading to detailed maps of early hu-
man embryonic development (Cao et al., 2020; Domcke et al., 2020), the discovery of new
disease-associated cell types (Montoro et al., 2018), and cell-targeted therapeutic interven-
tions (Sachs et al., 2020). Moreover, with recent advances in experimental techniques it is
now possible to measure several of these modalities in the same cell (Efremova and Teich-
mann, 2020). While multimodal single-cell data is increasingly available, methods to analyse
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these data are still scarce. Due to the small volume of a single cell, measurements in any
modality are sparse and noisy. Differences in molecular sampling depths between cells (se-
quencing depth) (Vallejos et al., 2017), and technical effects from handling cells in batches
(batch effects) (Luecken et al., 2022) can often overwhelm biological differences. When
analysing multimodal data, one additionally has to account for different feature spaces, as
well as shared and unique variation between modalities and between batches (Argelaguet
et al., 2021).

These challenges are not unique to this data type. Indeed, domain adaptation (Csurka,
2017) and multi-view learning (Zhao et al., 2017) are known problems in machine learning
that are directly applicable to multimodal data integration. To promote cross-fertilization
of ideas between experts in machine learning and single-cell biology and encourage method
development, we organized the first competition on molecular data for NeurIPS 2021, called
Multimodal Single-cell Data Integration (openproblems.bio/neurips_2021). We generated
the largest, realistic benchmarking dataset currently available for multimodal single-cell
data, defined three tasks and metrics to evaluate them, and developed an infrastructure for
automated evaluation of user-submitted solutions (Luecken et al., 2021). Here, we briefly
outline the setup of the competition, summarize the outcomes, and detail our learnings along
the way.

2. Competition setup

We set up the Multimodal Single-cell Data Integration competition following the principles
of the Common Task Framework (CTF) (Donoho, 2017) as previously described (Luecken
et al., 2021). Briefly, this includes a realistic dataset that is divided into public training
data and held-out private test data, a public competition, and a scoring process.

2.1. Dataset

Substantial effort of setting up the competition was dedicated to the generation of a bench-
marking dataset that mirrors realistic challenges in multimodal single-cell data integration.
In a large collaborative effort we processed bone marrow samples from 12 donors via two
recent multiomic single cell technologies: CITE-seq (Stoeckius et al., 2017), which captures
single-cell RNA gene expression (GEX) and surface proteins levels (as Antibody Derived
Tags, ADT); and the 10x Multiome assay, which captures chromatin accessibility (based
on the Assay for Transposase-Accessible Chromatin, ATAC) and single nucleus RNA gene
expression (GEX) levels. After quality control, the CITE-seq and Multiome data included
90,000 and 70,000 cells, respectively. To ensure a realistic data integration problem, we
distributed the data generation across 4 sites, which led to a nested batch effect structure
of donor and site (Fig 4a,b). A detailed description of the data generation and analysis is
available in the NeurIPS publication of the competition (Luecken et al., 2021).

2.2. Tasks

The CTF requires mathematically precise definitions of tasks and metrics to drive algorithm
development. Here we motivate and formalize our three key multimodal tasks and related
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metrics. The full description of each task (Fig 4c-e) can be found in our previous work
(Luecken et al., 2021).

Task 1: Predicting one modality from another. In general, genetic information flows
from DNA to RNA to proteins. DNA must be accessible (ATAC data) to produce RNA
(GEX data), and RNA in turn is used as a template to produce proteins (ADT data).
The goal of this task is to accurately predict one modality from another with performance
measured using root mean squared error. Algorithms capable of performing well at this
task may learn rules governing the complex regulatory interactions between layers of genetic
information.

Task 2: Matching cells between modalities. Most existing single-cell datasets mea-
sure a single modality. Aligning modalities while preserving underlying biology will enable
leveraging complementary layers of information measured independently. The goal of this
task is to correctly match multimodal profiles measured from the same cell when the cor-
respondences are hidden. Performance is based on the weight put on the correct pairings,
capturing the probability that a cell is correctly matched. Understanding how feature selec-
tion influences matching accuracy may shed light on the significance of different regions of
DNA or transcripts of RNA in cell identity and regulation of downstream genetic processes.

Task 3: Jointly learning representations of cellular identity. Multimodal mea-
surements combine complementary layers of information. The goal of this tasks is to learn
highly resolved but lower-dimensional representations (5 100 dimensions) of the underlying
biological states of cells while removing batch effects across sites. Performance is measured
taking the average of 6 metrics assessing the degree of batch removal and conservation of
biological variation detailed in Luecken et al. (2021).

3. Competition results

Full details of all analyses and implementations of all methods described in the following
sections are organized within the Open Problems github organization https://github.
com/openproblems-bio/ in repositories neurIPS21_comp_paper_reproducibility (soon
to be published) and neurips2021_multimodal_topmethods. Here we summarize the main
features.

3.1. General trends and feedback

More than 280 participants comprising 172 teams submitted over 2600 models to our com-
petition. We later surveyed competitors (35 teams) to learn more about participant back-
ground, the diversity of methods, and the experience of the competition.

Toolkit breakdown Several toolkits exist for loading and processing single-cell data.
As depicted in Figure 5, the most popular toolkit among competitors was Scanpy (46 %).
Surprisingly, one third of responding teams did not use any toolkit. Among deep learn-
ing frameworks, PyTorch was twice as popular as TensorFlow despite Tensorflow hav-
ing approximately 3 times as many monthly downloads from PyPI compared to PyTorch
(https://pypistats.org). This matches the previously reported trend of increasing popularity
of PyTorch in research-oriented projects (He, 2019).
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General feedback To learn more about highlights and issues participants experienced
during the competition, we asked for their main positive and challenging aspects.

Due to supply chain issues and barriers in data generation, we had to change deadlines
and data delivery dates through the competition. This was the source of the main criticism
we received. As a lesson learned, especially for data of such kind, a large time buffer for the
data generation process is required. Changing dates and deadlines should be avoided.

The second most common issue raised by participants was related to the evaluation
infrastructure. The turnaround time to get the evaluation results frustrated competitors,
with some not knowing how final submissions performed until after the deadline. Therefore,
one should anticipate a surge in demand for evaluation resources during the final phase of a
competition and carefully assess the computational demands.

60 % of respondents planned to make further use of our benchmarking dataset, high-
lighting the value of a purpose-built benchmarking dataset. We also received feedback that
lack of availability of the full dataset at competition start frustrated attempts to participate.
However, the data provided as a cleaned up .h5ad file prepared by the censoring compo-
nents in our starter kits was often mentioned as a great way to get started with method
development quickly.

3.2. Task 1: Modality Prediction

3.2.1. Overview of the modality prediction competition

The modality prediction task was the most accessible to a non-biological audience, drawing
1,393 submissions. This was expected due to Task 1’s resemblance to a standard ma-
chine translation or prediction task. This popularity suggests the importance of including a
straightforward task setup when introducing ML practitioners to a new data domain.

Task 1 contained 5 subtasks: predicting one modality from the other in each direc-
tion for each technology (CITE-seq: ADT2GEX, GEX2ADT and Multiome: ATAC2GEX,
GEX2ATAC) and the best average performance. In general, most submitted solutions per-
formed similarly (Fig 1 a). While GEX2ATAC and ADT2GEX submissions showed little
improvement over baseline, some ATAC2GEX and GEX2ADT submissions outperformed
the baseline and most other submissions. In these subtasks, survey results showed that
most top ranked methods were deep learning models but no specific model architecture con-
sistently outperformed others (Fig 1 b). These models typically had a depth of 3-5 hidden
layers and in some cases 5-10, with several participants reporting a drop in performance with
additional layers. While shallow deep learning models appear well suited to ATAC2GEX
and GEX2ADT, the top GEX2ADT method used kernel ridge regression (see Section 3.2.2).

Further analysis of metric outputs showed that, especially in the GEX2ATAC, ADT2GEX
and Overall subtasks, similar RMSE scores achieved by most submissions led non-robust
rankings (Fig 1 c, left). Indeed, stochasticity in model training had a substantial effect on
ranks: rerunning the Overall subtask winner (DANCE) four times led to a shift in up to
8 ranks (Fig 1 c, right). Feedback from the community and further analysis revealed two
issues that likely contributed to overall similar and poor performance. First, with highly
sparse and binarized ATAC data, predicting mostly zeros is effective for RMSE (see high
performance of negative control in Fig 1 a. Up-weighting correctly predicted open chromatin
regions may result in a more meaningful assessment. Second, scales of gene expression data
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Figure 1: Modality prediction task results. (a) RMSE distribution of the evaluation
metrics for the different predictions and overall summary. (b) Team ranking
and method characteristics for ATAC2GEX and GEX2ADT. (c) Comparison of
all submissions with reruns of the wining method. (d) Person’s R and RMSE
evaluation of the top performing methods per task.

differed by site, as a direct consequence of our per-sample data processing strategy (see
Luecken et al. (2021) for details). This limited the generalizability of predictions to test
data from an unseen site. As a straightforward solution, one could fix a relative scale for
expression values. Alternatively, a correlation-based metric could be used, as suggested by
several participants. In pilot phase testing on a subset of the data, we found that RMSE
and correlation scores returned consistent method rankings and opted for RMSE as a more
straightforward cost function to optimize. Comparing RMSE and Pearson’s R values (Fig
1 d) shows that this is still true in several subtasks. However, especially for the ATAC2GEX
subtask, predicting the correct pattern may be more important than the exact value. In
future competitions, using a correlation-based metric may improve overall performance.

3.2.2. Selected winning methods

Here we briefly describe a subset of the winning methods that improved substantially upon
the baseline. For all full method descriptions, please refer to Appendix C.1.
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ATAC→GEX: Cajal Team Cajal used a deep neural network consisting of a dropout
layer, 4 hidden layers with ReLU activation, an output layer with no activation function
(linear regression) and a final Lambda layer that clipped output to biologically reasonable
values (the range present in the training data). Cell-type specific features were selected as
input based on differential accessibility (t-test on binarized data) on an annotated reference
dataset. Total counts, median total counts per batch, and standard deviation of total counts
per batch were also used as input features after being normalized. Implementation was with
TensorFlow (Abadi et al., 2015); KerasTuner (O’Malley et al., 2019) was used to optimize
hyperparameters (percentage dropout, number of hidden layers, number of nodes per layer).

GEX→ADT: Guanlab - dengkw Team Guanlab - dengkw used kernel ridge regression
(KRR) with RBF kernel k(xi, xj) = exp(� |xi�xj |2

2l2 ). Input data was processed by applying
truncated SVD to the concatenation of the training and test data from modality 1 followed
by row-wise z-score normalization on the reduced matrix. The KRR model was trained to
predict the truncated SVD of modality 2 from the normalized training matrix of modality 1.
Predictions on the normalized test matrix were re-mapped to the modality 2 feature space
via the right singular vectors. The final submission used a training strategy of random
sampling and assembling to overcome memory limitations. First, they shuffled the training
batches and trained two models on the first and second half of batches. They repeated
this step 5 times to fit 10 models, whose 10 outputs were averaged to generate the final
predictions. The number of component for modality 1 (300), modality 2 (70), length scale
l (10), and regularization strength ↵ (0.2) were optimized by cross-validation.

3.3. Task 2: Match Modality

3.3.1. Overview of the match modality competition

As in task 1, the match modality task asked participants to re-identify the correspondence
of cellular profiles across modalities in 5 subtasks: GEX2ATAC, ATAC2GEX, ADT2GEX,
GEX2ADT, and Overall. Unlike task 1, one method emerged as a clear winner across all
subtasks, with several others clearly distinguished from the pack (Fig 2 a). This was the
least popular task with 462 submissions. Survey results show that top-ranked teams had
previous experience with single-cell data analysis and used popular single-cell analysis tool
kits. Moreover, top performers applied shallow deep learning models (Fig 2 c).

We expected this to task to be especially difficult due to the biological limits of identifi-
ability. Indeed, cells of the same type are often treated as biological replicates for statistical
tests, with differences ascribed to stochastic variation. When assessing matching scores
based on the easier task of matching among 22 cell-type labels in the Multiome data, scores
are vastly improved (Fig 2 d), with drastic separation between competitors and a top score
around 0.90. In real scenarios with truly unpaired data, matching cell-type profiles with this
degree of accuracy would already be impactful. Comparing the performance of top methods
at the cell-type and cell level (Fig 2 c, d), we see that the top two methods have similar
performance to the next four at the cell-type level, but 2-5x higher performance at the cell
level. Excitingly, this suggests the top two methods are exploiting structure beyond known
cell-type annotations, with the top probability matching score in the ATAC2GEX subtask
(0.058 by CLUE) about 1000x higher than the expected score of a random matching of the
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20,009 cells. CLUE scored between 0.049 and 0.058 on all four subtasks, indicating that
the direction of matching did not significantly impact performance. However, since CITE
had lower scores and fewer cells (15,066), we conclude that matching was an easier task for
CLUE on Multiome than CITE. Remarkably, neither of the top two methods incorporated
any knowledge of the relationship between feature sets (e.g., the distance from peaks to
genes, or the correspondence of genes and proteins). This may be an avenue for further
improvement.
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Figure 2: Match modality task results. (a) RMSE distribution of the evaluation metrics
for the different predictions and overall summary. (b) Schematic representation
of CLUE, the winner method across all sub-tasks. (c) Team ranking vs scores and
model characteristics. (d) ATAC2GEX matching scores at the cell and cell-type
level by team.

3.3.2. The winning method

Winner in all categories: CLUE CLUE (Cross-Linked Universal Embedding) is a
method designed for semi-supervised modality matching of single-cell multiomics data. It
builds upon VAE (variational autoencoders) to learn joint cell embeddings from different
modalities. Given that cell type resolution often differs across modalities, indiscriminately
modeling all modalities using a single embedding space could cause information in higher-
resolution modalities to be contaminated by lower-resolution ones. To overcome this issue,
CLUE partitions the embedding space into modality-specific subspaces, each tasked to re-
construct one specific modality only. A matrix of encoders is then used to project each
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cell into all modality-specific subspaces, regardless of which modality the input cell origi-
nates from (Fig 2 b). The joint CLUE embedding is constructed by concatenating all the
modality-specific subspaces. Such a design enables CLUE to preserve both shared and
modality-specific information, significantly boosting the accuracy of modality matching.

3.4. Task 3: Joint Embedding

3.4.1. Overview of the joint embedding competition

Learning a low-dimensional representation of cells from single-cell data is a common step in
a typical analysis pipeline (Luecken and Theis, 2019). With the rise of multimodal data, the
ability to meaningfully embed these data will be crucial for analysis and visualization. This
motivation is reflected by the high number of submissions for this task (756 in total) and the
wide use of single-cell analysis tool kits among participating teams (8/10 survey responses).
We divided the task into pre-trained models and models that were trained online (using
only test data), in order to separately evaluate models that use additional information.
However, top performers scored similarly across training regimes. Interestingly, the MNN
baseline method (Haghverdi et al., 2018) also performed well, resulting in only 14 out of
25 teams outperforming the baseline (Fig 3 a). As in the previous tasks, higher performing
submissions tended to use shallow neural networks (Fig 3 b). Yet, the winning team of the
online CITE-seq integration used a simple linear-dimensionality reduction method without
explicit batch correction.

As explicit batch correction was also lacking in other winning methods, we re-evaluated
our batch removal metrics. We observed that the batchASW and graph connectivity metrics
applied in the challenge did not sufficiently discriminate between submissions (Fig 6). Due
to computational limitations, the metrics chosen in the competition represent only a subset
of batch removal metrics available (Luecken et al., 2022). Yet, the chosen metrics are
either easily fulfilled (graph connectivity) or do not sufficiently account for the nested batch
effect structure in the data (batchASW - based on average silhouette width). By design,
our dataset contains both within-site donor variation and between-site technical variation,
where the former is typically considerably smaller than the latter. However, the silhouette
score only considers the nearest class cluster, which can lead to between-site differences being
overlooked. As only data from a single site was available when the setup was evaluated, this
effect went unnoticed.

Extending our evaluation to different batch removal metrics that can specifically account
for the site batch effects, we find diverging batch removal assessments across the best-
performing submissions for the Multiome dataset (Fig 3 c-e). In particular, specifically
accounting for site batch effects in the batchASW metric (using site instead of sample as
batch covariate) leads to higher correlations with an orthogonal metric for batch removal
that accounts for all batches simultaneously, graph iLISI (integration Local Inverse Simpson’s
Index (Luecken et al., 2022; Korsunsky et al., 2019)). Indeed, visualizing the embeddings
of the highest-ranking submissions by each of the three batch removal metrics (Fig 3 d-f
and Fig 7) highlights that batchASW site and iLISI site better capture site batch effect
removal. Explicit evaluation of nested batch effects will need to be accounted for in future
competitions.
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Figure 3: Joint Embedding task results: (a) Mean metric distrubtions for all submis-
sions for the CITE-seq and Multiome tasks. (b) Team ranking vs method speci-
ficities. (c) Heatmap of Spearman rank coefficients between batch removal metric
scores across all top submissions per team that were better than the LMDS-based
baseline (online and pre-trained). (d) and (e) Scatterplots of the batchASW
sample metric scores vs metrics accounting for site-specific batch effects; baseline
models highlighted in blue, top ranking methods in red. (f) UMAP plots of em-
beddings from the top models by different batch removal metrics colored by cell
type and site.
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3.4.2. Selected winning method

Here we briefly describe one of the winning methods. For full method descriptions, please
refer to Appendix C.3.

Multiome, pre-trained and CITE, pre-trained: Amateur Team Amateur’s method
”joint embedding with a regularized autoencoder” (JAE) was inspired from previous work
on scDEC (Liu et al., 2021), which aims at simultaneous deep generative modeling and
clustering of single-cell data. Here, the scDEC model was simplified by removing the dis-
criminator networks and adding constraints to the encoder latent space so that JAE requires
latent features to recover more biological knowledge, including cell type, batch, and cell-cycle
phase.

In the JAE model, each modality (except ADT) is first SVD transformed (e.g. to 100
components) and concatenated. The information from cell annotations (e.g., cell label, cell
cycle score, and cell batch) is incorporated to constrain the structure of latent features. In
this manner some latent features should recover the cell type information and some should
recover the cell cycle score. Batch-related features should recover batch labels as randomly
as possible to potentially eliminate this effect. Some features in the latent space were left
without constraint to ensure the flexibility of network. JAE was pre-trained using the
provided annotated datasets in an end-to-end fashion where multiple loss functions were
used, including autoencoder reconstruction loss, cell type prediction cross entropy loss, cell
cycle phase score mean squared error (MSE) loss, and batch loss. These losses were balanced,
resulting in a total loss of 0.7AE + 0.2CT + 0.05CC + 0.05Batch.

4. Conclusion and outlook

For the first NeurIPS competition on molecular data, we generated a novel fit-for-purpose
benchmarking dataset, defined three tasks with metrics to evaluate performance, and devel-
oped infrastructure to facilitate method evaluation and re-use. The 280 participants, many
of whom did not have any single-cell expertise, submitted over 2600 solutions. The compe-
tition supported substantial innovation, especially on the task of matching cellular profiles
across modalities.

Evaluating participant feedback and submission trends, we find that neural networks are
most popular, and that top methods found relatively shallow architectures to be optimal
for single-cell multimodal data. We also identified areas for technical improvements on
performance metrics and task definitions. In particular, alternative metrics for modality
prediction and batch correction would have better directed method development.

The infrastructure we developed to support the competition enables solutions for mul-
timodal data integration tasks to be ported to a living benchmarking framework, which we
developed in the Open Problems for Single-Cell Analysis project (https://openproblems.
bio). In this context, we see the competition at NeurIPS 2021 as the start of a long-term
benchmarking effort for multimodal data integration methods. Here, suites of metrics may
be used to probe and rank methods, leveraging our dedicated effort to generate and share
benchmarking data. Through Open Problems and competitions that engage the wider com-
munity, we hope to plant seeds that lead to computational innovations driving discovery in
single-cell genomics.
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