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ABSTRACT

Fungi and plants reveal widespread occurrences of metabolic enzymes co-located on the chromosome,
some already characterized as being biosynthetic pathways for specialized metabolites, such as ter-
penes synthesizing enzyme clusters in Lotus japonicus and Arabidopsis thaliana. These clusters dis-
play context-specific co-expression of clustered enzymes, indicating a shared transcriptional response
in a spatial and condition specific manner, and co-regulation due to promoter binding by shared tran-
scription factors may be one way to facilitate coordinated expression. To enhance our understanding
of context-specific transcriptional gene cluster regulation, we redefine and augment this probabilistic
framework, labelled METACLUSTERplus, integrating gene expression compendia, context-specific
annotations, biosynthetic gene cluster definitions, as well as gene regulatory network architectures.
Further, it provides a set of appealing and intuitive visualizations of inferred results for analysis and
publication. METACLUSTERplus is available at https://github.com/mbanf/MetaclusterPlus.

1. Introduction
Plants as well as microbial organims produce a variety

of compounds denoted as specialized metabolites to cope
with environmentsal challenges but the biosynthetic path-
ways for many of these compounds have not yet been elu-
cidated [15]. Recent studies in plants [6, 13, 10, 14, 16] re-
vealed a widespread occurrence of metabolic enzymes that
collocate in the chromosome. This offers an intriguing pos-
sibility for uncovering new biosynthetic pathways encoded
by these metabolic gene clusters. To this end, co-expression
analysis can provide valuable insights as characterized spe-
cialized metabolic pathways and clusters exhibit high de-
grees of co-expression among their enzymes [13, 10, 17].
Moreover, the expression patterns of experimentally char-
acterized gene clusters indicate spatial and condition speci-
ficity, such as enzymatic genes of clusters synthesizing ter-
penes in A. thaliana and L. japonicus [11, 7, 8, 17].

To facilitate a convenient and context-specific activity
analysis of metabolic gene clusters, we recently proposed
a probabilistic framework [1], denoted METACLUSTER,
which automatically identifies conditions and tissues asso-
ciated with inferred gene clusters within a given differen-
tial gene expression compendium. However, of equal impor-
tance, in particular with the emergence of large-scale tran-
scription factor binding data such as [2], is the elucidation
of metabolic gene cluster transcriptional regulation, since
it has been argued that one way to facilitate such coordi-
nated gene expression may be co-regulation due to promoter
binding by shared transcription factors [3]. Hence, to en-
hance our understanding of context-specific transcriptional
gene cluster regulation, we redefine and augment this proba-
bilistic framework, hence denoting it METACLUSTERplus,
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integrating gene expression compendia, context-specific an-
notations, biosynthetic gene cluster definitions, as well as
gene regulatory network architectures. Cluster regulation is
then inferred based on a series of statistical analyses, inte-
grated via Fisher’s method [12], including statistical signif-
icance scores of metabolic cluster activity in a specific con-
text, metabolic cluster enzyme co-regulation by a transcrip-
tion factor within that context, as well as optional cluster
evidence scores, such as enrichment of signature enzymes
per cluster (see figure 1). METACLUSTERplus may be ap-
plied to any organism, gene cluster descriptions, and differ-
ential gene expression datasets, thereby providing a valu-
able complementary framework to augment gene cluster in-
ference approaches, such as PlantClusterFinder [13], anti-
SMASH [5], plantiSMASH [10], and PhytoClust [14], with
additional layers of automated high-resolution functionality
and transcriptional regulation inference. Further, it provides
a set of appealing and intuitive visualizations of inferred re-
sults for eludication and publication.

2. Methods
2.1. Inference of context-specific transcriptional

activity and regulation
Schlapfer et al. [13] proposed a probabilistic ranking

framework based on co-expression to identify sets of high
confidence metabolic gene clusters and to prioritize clusters
for experimental validation. This framework had been ex-
tended in our previous work [1] in order to allow for the iden-
tification of context-specific gene expression of metabolic
gene clusters. For each gene cluster, a rank was introduced
based on combining multiple evidence scores regarding co-
expression among cluster genes and the cluster’s context spe-
cific transcriptional activity, all integrated using Fisher’smethod
[12]. While keeping the multiple evidence integration based
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Figure 1: Overview of the probabilistic gen cluster regulation
inference framework.

approach, METACLUSTERplus redefines the transcriptional
activity inference in order to compensate for a potential weak-
ness in the original framework. It further augments tran-
scriptional activity analysis by another layer, that is the si-
multaneous inference of context specific transcriptional reg-
ulation.

Initially, as in [1], a differential gene expression dataset
is constructed by retaining experimental treatments repre-
sented by gene expression profiles measuring gene expres-
sion responses of wild type to treatment and control condi-
tions and computing the log of fold change difference be-
tween the mean of the treatment and control sample repli-
cates. Two sample t-tests are performed per gene on each

of the experiments to evaluate the significance of a gene’s
differential expression between treatment and control, pro-
ducing a ternary matrixD over all genes. For each gene and
experimental treatment, an entry in D is assigned 1, -1 or 0
for statistically highly significant (p < 0.05) up-, down-, or
non-significant differential expression.

Given D, our novel framework first estimates the proba-
bilitiy pgc(e) of a gene cluster gc to be transcriptionally ac-
tive in an experiment e. Since each experimental treatment
e is annotated with a specific pair of condition c and tissue
t, e may be defined as e ∶= (c, t). We select experimen-
tal treatments in the differential expression matrix D that
were statistically enriched in gc based on hyper-geometric
test following a general hyper-geometric distribution

(Ggc
ggc,e

)

⋅
( G−Ggc
ge−ggc,e

)

∕
(G
ge

)

with G and Ggc denoting the total number of
genes in the genome and the number of gene cluster genes,
within experimental treatment e. ge and ggc,e represent the
number of genes being differentially expressed in experi-
mental treatment e and the subset of differentially expressed
cluster genes in e, respectively. Following this hyper-geometric
test, all experimental treatments with p ≤ 0.05 were se-
lected. Using our manually curated mapping of experimen-
tal treatments to conditions and tissues, we then established
a conditions vs tissue count matrix Cgc for further down-
stream context analysis (see figure 1). The context count
matrix uses the association of individual experimental treat-
ments e to the conditions c and tissues t, i.e. a pair of con-
dition and tissue is incremented, if the corresponding treat-
ment e for the cluster is significantly expressed (p ≤ 0.05).
We then performed hyper-geometric tests to identify enrich-
ment of gc for a specific context, i.e. a pair of (c, t), defined
as probability pgc(c, t) following the distribution

(Ngc,(c,t)
ngc,(c,t)

)

⋅
(N(c,t)−Ngc,(c,t)
n(c,t)−ngc,(c,t)

)

∕
(N(c,t)
n(c,t)

)

with N(c,t) and Ngc,(c,t) denoting the
total number of all context pairs (c, t) and the number of all
context pairs for a gene cluster gc. Accordingly, n(c,t) and
ngc,(c,t) denote the number of a specific context pairs as well
as the number of that context pair (c, t) for a specific gene
cluster gc. Defining context specific activity in this manner,
we also compensate for potential weakness in the original
framework [1] where a rather artificial disentanglement of
condition and tissue annotations was introduced due to the
sequential approach that separately analyzed enrichment of
conditions only first, thereby ignoring putatively conflicting
tissues, and subsequently trying to add tissues. Further, as a
beneficial side-effect, this further simplifies the whole pro-
cess of transcriptional activity analysis and allows for a more
unambiguous identification of specific cluster genes being as
being transcriptional active compared to [1].

Next, we estimate pgc(c, t, r), which represents the prob-
ability of cluster gc to be transcriptionally active in a spe-
cific context (c, t) with a putative regulator r for all regu-
lators active in (c, t) with a minimum of two putative tar-
get genes of gene cluster gc being analyzed. Enrichment
analysis is, again, based on a hyper-geometric distribution
( Ggc
ggc,(c,t)

)

⋅
( G−Ggc
g(c,t)−ggc,(c,t)

)

∕
( G
g(c,t)

)

withG andGgc , with tr,(c,t) and
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tgc,r,(c,t) representing the number of targets of regulator r in
general and the number of targets genes expressed in experi-
mental treatment (c, t), respectively. Next, we define context
count matrix Cgc,r per gene cluster gc and putative regula-
tor r. Again associated individual gene clusters and puta-
tive regulation to condition and tissue labels., we performed
hyper-geometric test

(Ngc,(c,t),r
ngc,(c,t)

)

⋅
(N(c,t)−Ngc,(c,t),r
n(c,t)−ngc,(c,t),r

)

∕
(N(c,t)
n(c,t)

)

, with
N(c,t) and Ngc,(c,t),r denoting the total number of contexts
(condition and tissue) pairs and the total number context pairs
for a gene cluster and associated regulator r, and a specific
context (c, t). Accordingly, n(c,t) and ngc,(c,t),r denote the
number of a specific context as well as the number of that
context (c, t) for a specific gene cluster gc and regulator r.

Our method further allows for the integration of addi-
tional evidences, here for example the enrichment pgc(sig)
of signature enzymes per cluster [13]. Integration of all in-
dividual evidence probability scores per gene cluster gc fol-
lows our previously proposed approach in [1] based on Fisher’s
method [12] to estimate a combined p-value pgc(r ∈ (c, t))
to define a final score of involvement of regulator rwith gene
cluster gc, given some condition c and tissue t.

2.2. Visualization of context-specific
transcriptional activity and regulation

Aside a textual representation of the inferred gene clus-
ter regulation (as illustrated in table 1), we equip our frame-
work with chord graph based visualization per gene cluster
that allows for i) transcription factor families vs conditions
and treatments on a gene cluster level (see figures 2 and 4),
as well as ii) transcription factor families vs conditions and
treatments vs individual cluster genes on a cluster specific
gene level (see figures 3 and 5). Numbers represent an ac-
tual count of associations between members of a transcrip-
tion factor family and the gene cluster or cluster genes, re-
spectively, given a specific condition and treatment.

3. Results and Discussion
To demonstrate the utility ofMETACLUSTERplus aswell

as its visualization capabilities, we run our pipeline formetabolic
gene cluster predictions in Arabidopsis thaliana, acquired
from [13]. Here, we highlight prediction and visualization
of transcriptional activity and regulation for two examples,
the experimentally characterized terpene biosynthetic clus-
ters inArabidopsis, i.e., the thalianol [7] and themarneral [8]
cluster. These were clusters C641 and C628 in [13]. We use
a recently compiled large-scale gene expression dataset by
He et al. [9] with 6057 expression profiles, covering 79.7%
of the A. thaliana ecotype Columbia genome. We retain
435 experimental treatments represented by 1825 expres-
sion profiles measuring gene expression responses of wild
type plants to treatment and control conditions. All 435 ex-
perimental treatments are assigned to 27 manually curated
conditions and 9 tissues (see [1], supplementary methods).
As for a gene regulatory network architecture, we harness
a recently released, large scale DNA affinity purification se-
quencing (DAP-seq) based dataset [2], providing a gene reg-

Figure 2: Gene cluster level visualization, i.e. transcription
factor families vs conditions and treatments, of transcriptional
activity and regulation of the marneral gene cluster.

Figure 3: Cluster gene level visualization, i.e. transcription
factor families (red) vs conditions and treatments (green) vs
cluster genes (blue), of transcriptional activity and regulation
of the marneral gene cluster.

ulatory network consists of 349 transcription factors, 26921
target genes and 1791998 connections.

Table 1 illustrates an excerpt of the textual representa-
tion of the predicted gene cluster regulations. Figures 2 and
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Table 1
Selected example results of transcriptional activity and regulation inference for the thalianol cluster

Transcription factor (family) Treatment Tissue Regulated Genes

AT3G22760 (Trihelix) salt leaf AT5G47950, AT5G48000, AT5G48010
AT4G00730 (C2C2-Dof) salt root AT5G47970, AT5G47990, AT5G48000, AT5G48010
AT3G61150 (WRKY) phosphate deprivation shoot AT5G47980, AT5G47990, AT5G48000, AT5G48010
AT1G76890 (LBD) phosphate deprivation shoot AT5G47980, AT5G47990, AT5G48000, AT5G48010
AT4G14770 (NAC) phosphate deprivation shoot AT5G47950, AT5G48000, AT5G48010
AT5G47370 (NAC) phosphate deprivation shoot AT5G48000, AT5G48010
AT2G22430 (AP2/ERF-ERF) phosphate deprivation shoot AT5G47980, AT5G47990, AT5G48000, AT5G48010
AT2G30590 (C2C2-Dof) pathogen seedling AT5G47950, AT5G47980
AT3G01970 (WRKY) pathogen seedling AT5G47950, AT5G47980, AT5G47990, AT5G48000
AT5G47370 (MADS-MIKC) pathogen seedling AT5G47950, AT5G47980, AT5G47990, AT5G48000
AT3G21890 (HB-HD-ZIP) auxin root AT5G47950, AT5G47980, AT5G47990, AT5G48000

AT5G48010

Figure 4: Gene cluster level visualization, i.e. transcription
factor families vs conditions and treatments, of transcriptional
activity and regulation of the thalianol gene cluster.

4 as well as figures 3 and 5 highlight the corresponding chord
graph based visualizations on a gene cluster as well as cluster
specific gene levels, respectively. In particular, these graph-
ical representations may serve to provide an immediate vi-
sual and high level summary of the given condition-specific
regulatory relationships for prioritization and further inves-
tigations. For instance, both clusters show an enrichment
for regulation by members of the APETALA2/Ethylene Re-
sponse Factor (AP2/ERF) family, or the WRKY transcrip-
tion factor family across a variety of stress conditions and
tissues, which is corroborated by research on these transcrip-
tion factor families’ influence on specializedmetabolism con-
trol in plants [20, 19, 18].

Given its utility, we anticipate METACLUSTERplus to
be a valuable tool for the efficient integration of heteroge-
neous datasets in order plan experiments and guide valida-
tion of context-specificmetabolic gene cluster transcriptional
regulation.

Figure 5: Cluster gene level visualization, i.e. transcription
factor families (red) vs conditions and treatments (green) vs
cluster genes (blue), of transcriptional activity and regulation
of the thalianol gene cluster.
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