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Abstract 17 

Island biota are in imminent threat from anthropogenic impacts. Of these impacts the negative effects 18 

of exotic species on the taxonomic and functional diversity of the local fauna are of particularly major 19 

concern. Aside from their impact on the diversity of native fauna, exotics may also have a detrimental 20 

effect on native interactions which, in turn, can destabilise ecological networks. Species co-occurrence 21 
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networks are used to predict ecological interaction networks and utilised as tools to assess 22 

environmental impacts on community structure. Here, we investigate the topological differences of the 23 

arthropod co-occurrence networks among native forest fragments from seven Azorean islands and 24 

reveal the influence of the abiotic environment and exotic species on these networks. We found that co-25 

occurrence networks were sensitive to environmental and community dissimilarities, showing a clear 26 

separation between islands and pinpointed differences between indigenous and exotic networks. Most 27 

exotics are little connected and exotic networks have a large proportion of unconnected species. The 28 

resulting decreased connectance and the increased modularity with the increase of the proportions of 29 

exotics in the networks suggests that most exotics have too low prevalence to show associations with 30 

other species, and only a few dominants drive co-occurrences. Moreover, the proportion of negative 31 

links, as indicators of competition, did not increase with the increase of exotics in the habitats, 32 

suggesting that exotics occupied empty niches when they colonised native forest remnants. However, 33 

when the theoretical networks consisting of only indigenous species were investigated both the number 34 

of negative associations and modularity increased with the increase of exotics, suggesting obscure 35 

competition and processes of network degradation. Since our study provides ample evidence for the 36 

usefulness of co-occurrence network analysis in studying island ecosystems, we recommend the use of 37 

this tool for ecosystem assessments, early warning systems and decision making in island biodiversity 38 

conservation. 39 

Significance statement 40 

Global anthropogenic biodiversity decline affects islands to a disproportionately greater extent than 41 

other ecosystems. One major cause of declining island biodiversity is the spread of exotic species which 42 

may overcompete and replace native biota. In this study, we show, by using arthropod species co-43 

occurrence networks from the Azorean archipelago, that species association patterns reflect both 44 
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abiotic and biotic impacts and that the increasing proportion of exotics in an ecosystem seemingly has 45 

little impact on association networks at large. However, when the effects on the association network of 46 

solely indigenous species were scrutinised, signs of network degradation were observed, suggesting an 47 

obscure, and most likely slow, negative impact of exotics on native arthropod assemblages. This 48 

disintegration of the co-occurrence networks can be the first sign of disappearing interaction links 49 

which, in turn, may jeopardise ecosystem function and can lead to regime shifts. In this work, we used a 50 

unique long-term dataset collected across the islands of the Azorean archipelago with standardised 51 

methodology. We built on the deep knowledge gathered over two decades on the ecology of species, as 52 

well as on the ongoing processes shaping the islands’ arthropod fauna, yet took a novel methodological 53 

approach and disentangled hidden ecological processes of great ecological and conservation concern.  54 

Keywords 55 

exotic species, network complexity, modularity, island introductions, native fauna 56 

  57 
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Introduction 58 

Plant and animal biodiversity are declining worldwide due to human-induced stresses and insects, as the 59 

most diverse animal taxon, are critically impacted (Seibold et al. 2019, Wagner 2020, Cardoso et al. 60 

2020, Hallmann et al. 2021). Current changes in insect species abundances with numerous extinctions 61 

are caused in different degree by habitat loss (including for agriculture), pollution (including pesticides), 62 

invasive species, climate change, direct exploitation and co-extinction of dependent species (Wagner 63 

2020, Cardoso et al. 2020). Due to their isolated nature and fragile ecosystems, with a high number of 64 

endemic species, islands are particularly threatened by these anthropogenic stressors and thus their 65 

native species decline at an unprecedented pace (Gillespie and Roderick 2002, Fernández-Palacios et al. 66 

2021). Whilst worldwide species declines can stem from a broad range of causes, the majority of threats 67 

to native flora and fauna on islands originates from two major sources: disappearing natural habitats 68 

due to changes in land use and the introduction of exotic species (Cardoso et al. 2010, Triantis et al. 69 

2010, Borges et al. 2019, Pyšek et al. 2020, Fernández-Palacios et al. 2021). Whereas habitat destruction 70 

most commonly results in direct loss of species, and is relatively easy to quantify and test its effects, the 71 

consequences of spreading exotics are more difficult to study as it requires data on species interactions 72 

(Sax et al. 2002, Borges et al. 2020). These processes are thus more complex to measure, and the subtle 73 

changes can often only be unveiled by detailed community analysis. One of the first signs of such 74 

community changes is the altered network structure of species associations and interactions (Delmas et 75 

al. 2019). Indeed, interactions between species tend to break up on environmental stress sooner than 76 

species get extinct or communities change substantially (Valiente-Banuet et al. 2015). Conventional 77 

species richness or diversity-based studies may therefore be less effective in detecting changes than 78 

those scrutinizing interspecific relationships, such as associations between species pairs (Kay et al. 79 

2018). 80 
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Undeniably, species do not live in isolation, they form ecological associations and from these 81 

associations ecological interactions emerge. These interactions underpin ecological functions, most of 82 

which are crucial in delivering the ecosystem services humans vitally depend on (e.g. Albrecht et al. 83 

2014, Hines et al. 2015). Since biodiversity decline and homogenisation unfolds in degrading interaction 84 

networks (Laliberté and Tylianakis 2010, Burkle et al. 2013), which, in turn, decreases the stability and 85 

resilience of ecosystems and results in loss of biodiversity function (Valiente-Banuet et al. 2015), the 86 

importance of the protection of healthy ecological networks has been increasingly recognised (Tylianakis 87 

et al. 2010, Heleno et al. 2020). Hence, there is an urgent need to understand how anthropogenic 88 

impacts drive changes in interaction networks in order to precisely assess the effect of these altered 89 

networks on ecosystem functions. However, despite the considerable amount of research to investigate 90 

the anthropogenic impact on island biodiversity (Fernández-Palacios et al. 2021), little is known how 91 

anthropogenic influence impacts the interactions of species within insular communities. Different 92 

examples on how introduced exotic species can encroach indigenous network and sometimes even 93 

replace native species have been documented (García et al. 2014) though. 94 

Since interaction networks are notoriously difficult to discover, a simple mapping of species associations 95 

based on their co-occurrence is often used as a proxy to predict interactions (e.g. Bohan et al. 2011, 96 

2017). Although links in association networks not necessarily reflect biotic interactions (Blanchet et al. 97 

2020), these networks nevertheless proved to be sensitive to environmental differences (Araújo et al. 98 

2011, Lima-Mendez et al. 2015, Pozsgai et al. 2016) and to reflect anthropogenic impacts (e.g. Veech 99 

2006, Kay et al. 2018, Elo et al. 2020). Thus, investigating relatively well-documented island faunas 100 

through co-occurrence networks offers an evident way to study how environmental factors shape local 101 

community assemblage structure and to predict the impact these factors can have on interaction 102 

networks. Analysing the structure (topology) of these co-occurrence networks can both facilitate the 103 

early detection of degrading effects and pinpointing the most vulnerable species and the most 104 
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threatening exotics which, in turn, has the potential to inform stakeholders and decision-makers to 105 

maximize the success of conservation management (Delmas et al. 2019).  106 

The Azores archipelago has been under intensive anthropogenic influence for nearly 600 years, with 107 

most of its native habitat areas being converted to agricultural landscapes (Triantis et al. 2010) and a 108 

high number of exotic species introduced (Borges et al. 2010). Taxonomic, functional and phylogenetic 109 

diversity patterns and community structures of Azorean arthropods have been widely studied (Borges et 110 

al. 2005, 2016, Rigal et al. 2018), but little attention focused on ecological networks of interspecific 111 

associations (Rego et al. 2019, Valido and Olesen 2022). Yet, the availability of this unique dataset on the 112 

arthropods of the Azores provides an opportunity to map detailed co-occurrence networks and compare 113 

them among islands and relate them to biotic and abiotic environmental factors.  114 

We hypothesize that although species pools among the Azorean islands are highly similar, due to the 115 

presence of single island endemics the co-occurrence networks differ between islands (H1). We predict 116 

that island association network structure will depends on the size of habitat remnants and their 117 

proportion in the landscape as well as on the size of the island (P1). Moreover, island association 118 

network topologies are also likely to be driven by abiotic factors, such as temperature, precipitation, or 119 

altitude range (P2). 120 

The other important factor potentially influencing the topology of co-occurrence networks is the 121 

number and the proportion of non-native species in the community. Exotics in the Azores spread rapidly 122 

(Borges et al. 2020) and although they have the potential to decrease the functional diversity of 123 

assemblages (Boyer and Jetz 2014), exotics were found to increase the functional space of native 124 

arthropod fauna in the Azorean ecosystems (Whittaker et al. 2014). The role they play in ecological 125 

networks, and how their ratio compared to native fauna influences network structure is yet to be 126 

determined. Thus, we hypothesized that association assembly between exotics and natives follows non-127 
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random organisation rules (H2) and that exotic species influence the structure of co-occurrence 128 

networks (H3). We predict that native and exotic species will not have the same role in the network, 129 

thus their node properties will differ, (P3) and that the topology of the theoretical networks consisting 130 

of exotic species only will have structural peculiarities (e.g. differing degree distribution) (P4).  131 

Biotic stress (i.e. increased competition) can cause species to become rare, which results in these 132 

species sharing fewer sites with others and thus having fewer co-occurrence links. Ultimately, these 133 

species will not reach the detection threshold in samples and will be exempted from the networks (Kay 134 

et al. 2018). This leads to a significant decline in the number of nodes but not so much in the number of 135 

edges because of the low number of links to other species of the exempted species. Furthermore, the 136 

introduction of exotics increases the number of species (nodes) but, since they are most commonly 137 

habitat generalists, they are likely to co-occur with many other species, thus increasing the number of 138 

interspecific associations (edges) at a greater pace than that of nodes (Fridley et al. 2007). Since both 139 

processes increase the realised associations to all potential associations ratio (connectance), we 140 

predicted that the connectance will increase, and the modularity decline, with the increasing number of 141 

exotics (P5). We also anticipated that, if competitive exclusion is a major factor driving associations, the 142 

proportion of negative edges among all edges will increase with the increasing number of exotics (P6). 143 

Materials and Methods 144 

Arthropod sampling followed the ‘Biodiversity of Arthropods from the Laurisilva of the Azores’ (BALA) 145 

protocol (Borges et al. 2005, 2006, 2016, Gaspar et al. 2008). Arthropods were collected in native 146 

Laurisilva forest remnants on seven islands of the Azores archipelago (Faial, Flores, Pico, Santa Maria, 147 

São Jorge, São Miguel, Terceira, Figure 1) from 1999 to 2002 (BALA I) (Borges et al. 2005) and in 2010 148 

and 2011 (BALA II) (Borges et al. 2016). Altogether unique 91 transects were sampled, at 116 sampling 149 

occasions, 81 in BALA I and 35 in BALA II. Twenty-five sites from BALA I were repeatedly sampled in 150 
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BALA II. In order to maximise the coverage of sampled diversity, two complementary methods were 151 

applied: pitfall trapping was used to sample ground-dwelling arthropods and vegetation beating was 152 

used to collect canopy-dwelling arthropods. In each forest patch, 30 pitfall traps were placed along a 153 

150-meter long transect. Of the 30 traps, 15 were filled with Turquin (a mixture of dark beer, chloral 154 

hydrate, formalin and glacial acetic acid) and the other 15 with ethylene-glycol. In each transect, ten 155 

beating samples were taken from the three most common native woody plant species. The most 156 

common trees and shrubs sampled were Juniperus brevifolia (Cupressaceae), Erica azorica (Ericaceae), 157 

Ilex azorica (Aquifoliaceae), Laurus azorica (Lauraceae) and Vaccinium cylindraceum (Ericaceae) (Ribeiro 158 

et al. 2005, Gaspar et al. 2008). 159 

Environmental variables 160 

The environmental variables were obtained from the CIELO model (Azevedo et al. 1999). This is a 161 

physical model based on the transformations experienced by an air mass crossing over a mountain, and 162 

simulates the evolution of an air parcel’s physical properties starting from the sea level up to the 163 

mountain. The model has been developed in order to produce high-resolution fields of the elemental 164 

climatic variables (pressure, temperature, rainfall, relative humidity, etc.) using a grid resolution of 100 165 

by 100 m cell size (for more detail see also Borges et al., 2006). 166 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487852doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.11.487852
http://creativecommons.org/licenses/by-nc-nd/4.0/


167 
Figure 1. Map of the Azorean archipelago and the basic characteristics of the island co-occurrence 168 
networks. Islands are colour coded and squares with borders of corresponding colours contain radar 169 
charts showing (clockwise from the top) 1) the percentage of island species richness to the species 170 
richness in the meta-network, 2) the percentage of exotic species to the island species richness, 3) the 171 
island modularity as a percentage of the maximum modularity of all islands, .4) the normalised 172 
closeness centrality of the island as a percentage of the maximum normalised closeness centrality of 173 
all islands, 5) the percentage of negative edges of all edges in an island, 6) connectance of a network. 174 
Island abbreviations: FAI – Faial, FLO – Flores, PIC – Pico, SJG – São Jorge, SMG – São Miguel, SMR – 175 
Santa Maria, TER – Terceira. 176 

 177 

Network estimation and statistical analysis 178 

A species-site matrix was used as a baseline dataset to generate a large meta-network, containing all 179 

species abundance data collected from all islands and sampling sites with the two sampling periods 180 

separated. When the ecological functions of adults and juvenile stages were substantially different, 181 

adults and juveniles of the same species were recorded separately (e.g. Lepidoptera). Based on Borges 182 
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et al (2016), each species was categorised as either endemic, non-endemic but native (termed as native 183 

henceforth), or exotic species, and higher taxonomic levels, such as family, order, and class, were also 184 

assigned to them. Natives and endemics were sometimes merged and referred together as ‘indigenous’ 185 

species. Species whose nativity status was unknown remained included in the overall species numbers 186 

but they were not categorised into either indigenous or exotics and thus they did not inflate the number 187 

of any of those groups. Species with less than ten individuals in overall abundance and those occurring 188 

at less than three sampling sites were removed and excluded from the further analysis.  189 

Due to methodological constrains, abundances were converted to binary (i.e. presence-absence) data 190 

and were used in the co-occurrence analysis. Two co-occurrence networks, one for the years of BALA I 191 

and one for those of BALA II, were generated using the cooccur package (Griffith et al. 2016) in an R 192 

programming environment (R Core Team 2012). The union of the two networks (i.e. merging all nodes 193 

and edges from both networks), a meta-network, consisting of species (represented as nodes) and their 194 

predicted associations (represented as links or edges) served as a base of our further analysis. 195 

The association detecting method provided by the R package uses a probabilistic model based on 196 

hypergeometric distribution to assess if species co-occur more or less frequently than expected by 197 

mathematical chance. If a species pair occurs more often than random choice would predict, the 198 

association between them is considered as positive. On contrary, if the observed co-occurrence 199 

frequencies are lower than expected from random associations, they are considered as negatively 200 

associated. A network of positive and negative links between species nodes is thus formed by iterating 201 

through all potential species combinations. The probability for the species pair occurring together, as 202 

well as the p-values for the association being negative or positive, are given. Species and corresponding 203 

species pairs, which were expected to have less than one co-occurrence were removed prior to analysis. 204 

Species pairs with completely random association (i.e. p-value > 0.05) and those with less than 25% 205 

probability of co-occurring were removed from the generated network.  206 
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A series of 999 Erdős-Rényi random graphs with the same node number as our meta-network were 207 

generated, their degree distributions were calculated and compared to the empirical degree distribution 208 

of our meta-network to estimate the probability that our co-occurrence network is a random graph. 209 

The meta-network was first split into seven subnetworks (henceforth island subnetworks). For each 210 

island, only species occurring on that particular island were selected to the subnetwork as nodes, and 211 

edges linking those species were retained from the meta-network. Subnetworks for each sampling site 212 

(termed as site subnetworks hereafter) were also generated, using the same method. These sub-213 

networks were used when island networks, indigenous and exotic networks, and the node properties of 214 

native and exotic species were compared (see below). 215 

Commonly used measures to characterise network topological properties, such as the number of nodes 216 

and edges, connectance, proportion of negative links, the proportion of isolated nodes, mean closeness 217 

and betweenness centralities, and modularity (based on the ‘fast and greedy’ community detection 218 

algorithm) were calculated. Similarly, node characteristics, such as the number of edges connecting 219 

other nodes (degree), the proportion of degree to the number of all nodes (relative degree); the number 220 

of negative edges (vulnerability) and the proportion of those to the relative degree (relative 221 

vulnerability); betweenness, closeness centralities were also computed, with the help of the igraph 222 

package (Csárdi and Nepusz 2006). Since most of these measures strongly depend on the number of 223 

nodes (i.e. show high correlation), a z-score normalised version of each centrality measure was also 224 

calculated. During the process of excluding highly correlating variables (Spearman’s p<0.05, Spearman’s 225 

Rho> 0.6 or Spearman’s Rho<-0.6) non-normalised versions of these variables were discarded and only 226 

normalised values were included in the analysis. The process of network generation and the description 227 

of all calculated network measures, the way how they were calculated, and their correlations are given 228 

in Supplementary Material 1. 229 
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All network properties were calculated for each subnetwork, and node properties were calculated in 230 

each subnetwork separately to all species, indigenous and introduced. 231 

Site networks were used to compare island networks and to investigate their relationship to the island 232 

area, the total native forest area, and the native forest to island area ratio, as well as to island-specific 233 

climatic variables and the number of exotics and their ratio to the total species richness on the islands. 234 

Significantly highly correlating environmental variables (Spearman’s p < 0.05, Spearman’s Rho > |0.6|) 235 

were removed prior to the analysis. Since there is no settled methodology to compare networks to each 236 

other, two different approaches were taken: 1) island networks were compared based on their 237 

associated species pairs, where distance matrices were calculated using the Jaccard distance on 238 

presence-absence matrices of species associations; and 2) based on the differences in their calculated 239 

network properties. In this latter case, similarity matrices were calculated using the Euclidean distances 240 

of z-score scaled network properties. Environmental variables were also z-score scaled and a stepwise 241 

redundancy analysis (dbRDA) process was conducted to find the optimal model. Whether or not island 242 

networks topologies were significantly different was tested using the corresponding distance matrices in 243 

an Analysis Of Similarities (ANOSIM) test with 10000 permutations, with the help of the anosim() 244 

function implemented in the vegan (Oksanen et al. 2010) R package. To controlling Type I Error arising 245 

from multiple comparisons, p-values in pairwise comparisons were adjusted using the false discovery 246 

rate (FDR) correction. 247 

To test if link formation between either combination of endemic, native, and introduced species 248 

occurred non-randomly, we generated 5000 networks in an iterative process with keeping the original 249 

network structure but randomly assigning the origin status to species. The proportion of each 250 

combination pair to the overall link number was calculated and one-sample t-tests were used to 251 

compute p-values to determine if association frequencies between categories of native status can be 252 

random. A similar permutational approach was used to test whether or not some combinations of 253 
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categories of native status are more or less likely to collect negative links than it would be expected 254 

from random processes. In this latter case though the ratio of the negative links to the number of links 255 

within each combination pair was calculated and compared to the randomised distribution, using one-256 

sample t-tests. To investigate if there are differences in the frequency of endemic, native, and 257 

introduced species having association links with each other we compared the number of links between 258 

each combination using Kruskal-Wallis tests, and pairwise Wilcox-tests with p-values adjusted according 259 

to the FDR method. 260 

The relationship between major network topology measures and the number and the proportion of 261 

exotics in the communities was investigated using linear mixed models with the island identity set as the 262 

random term using the lmer() function in the lme4 package (Bates et al. 2015 p. 4). All proportion 263 

variables were square-root transformed prior to regression to approximate normality. P-values were 264 

estimated according to Satterthwaite's method, as implemented in the lmerTest package (Kuznetsova et 265 

al. 2017) in R. Marginal and the conditional R2 values were extracted using the r.squaredGLMM() 266 

function in the MuMIn package (Barton 2020). Since indigenous and exotic species richness strongly 267 

correlated, to better disentangle the effects of exotics, similar models as above were fitted on networks 268 

consisting of native species only and residuals from these models were used to re-fit models between 269 

node properties and the number and proportion of exotics. 270 

Both network-related and node-related properties were compared between native and exotic species 271 

using Kruskal-Wallis tests and pairwise Wilcox tests with p-values adjusted for multiple testing according 272 

to the FDR method. Linear mixed-models as above were used to investigate the effect of exotics (both 273 

number and proportion in the whole community) on indigenous networks only.  274 
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Results 275 

Our initial meta-network consisted of 161 nodes (species) and 398 edges, giving a 0.031 edge density 276 

value. Of all species, 101 (52 endemics and 49 natives) were indigenous, 58 exotic, and 2 with an 277 

unknown origin. Positive associations overwhelmingly dominated the meta-network (345 and 53 278 

positive and negative links, respectively). The edge density and degree distribution of our meta-network 279 

were significantly different from those that could have arisen from random networks. The degree of 280 

nodes ranged from 1 to 44 with Argyresthia atlanticella Rebel, 1940, a moth species endemic to the 281 

Azores, having the highest degree. Lasius grandis Forel, 1909, a native ant, and Palliduphantes schmitzi 282 

(Kulczynski, 1899), an endemic spider, had the most negative link to other species (Figure 2, 283 

Supplementary material 2). 284 

Differences in island network topologies and driving factors 285 

Islands networks significantly differed based on their topology measures (ANOSIM p <0.001, R = 0.175). 286 

After correcting for multiple comparisons, several pairwise differences between islands still remained 287 

significant at the p < 0.05 significance threshold (Figure 3A-B). Although the number of nodes and the 288 

number of edges were significantly different between islands (Kruskal-Wallis test, p = 0.04 and p = 0.02, 289 

respectively), pairwise differences were not supported statistically. The connectance, the ratio of the 290 

isolated nodes to all nodes, the relative vulnerability, normalised closeness and betweenness 291 

centralities, and modularity, on the other hand, showed significant pairwise differences (Figure 1B, 292 

Supplementary material 3). The number and proportion of the exotics on the islands, modelled mean 293 

altitude, and the annual mean precipitation were the main factors driving these differences (dbRDA 294 

model was significant at the p=0.003 level and explained 15.9% of constrained inertia) (Figure 3C). When 295 

island networks were compared based on their association pairs, they differed significantly (ANOSIM p 296 

<0.001, R = 0.229) but differences between individual islands were different than those when island 297 
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networks were compared based on their topology measures (Figure 3D). The major factors driving these 298 

differences were the area of the native forest on an island, annual mean, and summer median 299 

temperatures, and summer precipitation and average relative humidity (dbRDA model was significant at 300 

the p<0.001 level and explained 19.7% of constrained inertia). 301 

302 
Figure 2. Meta-network coloured according to higher taxa and nativity classes (A), and the number of 303 
isolated species, grouped to endemics, natives, exotics, and unknown origins (B). Red links in the 304 
network represent positive, blue links negative associations. Outer arc shows arthropod orders, inner 305 
arc nativity classes. Arc segment length is proportional to the number of nodes the group has. 306 

 307 
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308 
Figure 3. The ordination and pairwise ANOSIM comparison of the island subnetworks based on their 309 
network properties (A, B, respectively) and their species pair community (C< D, respectively). 310 

 311 

Effects of exotics on network topology 312 

Simulations suggested that endemic to endemic, endemic to native, and native to native edges were less 313 

common in the meta-network than could have arisen in networks with randomly reshuffled nativity 314 

categories. At the same time, introduced species were more linked to the other groups than expected 315 

by chance, including themselves. Moreover, natives had a lower chance than expected to have negative 316 

links to both endemics and other natives. All other combination pairs showed a significantly greater 317 

chance than random to have a higher proportion of negative links with each other (Supplementary 318 

material 4). When linking frequencies were compared, endemic to endemic, native to native and 319 

endemic to native links occurred in greater proportions than exotic to exotic, and exotic to 320 

native/endemic (Figure 4A). In terms of the proportion of negative links, natives had negative 321 
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associations with themselves or with the other two categories in significantly higher proportions than 322 

any other combinations. Exotic to exotic negative links occurred in a significantly lower proportion than 323 

endemic to endemic ones (Figure 4B). 324 

 325 

326 
Figure 4. Preferential linking between endemic, native, and exotic species. The distribution of the 327 
proportion of both positive and negative links (A), and negative links only (C) to all links between 328 
nativity category pairs. Pairwise comparisons using pairwise Wilcox tests are shown on the right side 329 
(B, D, respectively). All p-values of pairwise Wilcox tests are adjusted according to the FDR method. 330 

 331 

Both the number of nodes and edges, as well as the ratio of negative edges showed significantly positive 332 

relationships with the number of exotics in the networks. On the contrary, the connectance, and the 333 

normalised closeness and betweenness centralities showed negative relationships (Table 1, 334 

Supplementary material 5).335 
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Table 1. R2, f, and p-values for each network parameter as a function of the number and proportion of exotics in the community. Models ran 336 

for all site subnetworks, site subnetworks consisting of indigenous species only, and for the residuals of the model fit on indigenous species 337 

against the number of exotics. 338 

 339 

  Number of 
nodes 

Number of 
edges 

Proportion 
of isolated 

nodes 

Proportion 
of 

negative 
edges 

Mean 
degree 

Connectan
ce 

Normalise
d 

closeness 
centrality 

Normalise
d 

betweenn
ess 

centrality 

Modularit
y 

Full network 
– 

exotic 
number 

R2 0.676 0.371 0.173 0.289 0.217 0.445 0.303 0.254 0.261 

F 159.371 29.589 3.814 12.493 2.417 63.17 38.641 4.093 1.392 

P 0 0 0.054 0.001 0.124 0 0 0.046 0.241 

Full network 
– 

exotic 
proportion 

R2 0.232 0.374 0.696 0.251 0.649 0.336 0.206 0.429 0.376 

F 14.333 42.992 149.246 0.029 136.697 24.694 8.537 25.487 19.625 

P 0 0 0 0.866 0 0 0.004 0 0 

Native 
network – 

exotic 
number 

R2 0.36 0.291 0.35 0.256 0.227 0.392 0.307 0.37 0.206 

F 41.103 15.74 5.89 0.058 2.807 45.073 30.493 4.241 4.446 

P 0 0 0.018 0.81 0.098 0 0 0.043 0.038 

Native 
network – 

exotic 
proportion 

R2 0.282 0.38 0.455 0.378 0.521 0.254 0.179 0.308 0.275 

F 26.842 42.484 26.001 20.954 70.384 8.471 8.905 1.123 19.351 

P 0 0 0 0 0 0.005 0.004 0.293 0 

Full network 
residuals – 

exotic 
number 

R2 0.597 0.063 0.199 0.034 0.233 0.197 0.106 0.065 0.128 

F 117.742 5.992 22.078 3.112 27.022 21.813 10.502 6.162 13.088 

P 0 0.016 0 0.081 0 0 0.002 0.015 0 

 340 
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However, when relationships between these measures and the proportion of exotic species in the 341 

community were tested, only the proportion of isolated nodes and modularity revealed significantly 342 

positive relationships but the number of nodes and edges, the mean degree, the ratio of negative edges, 343 

the normalised betweenness centrality, and the connectance showed significantly negative 344 

relationships. Relationships showed similar patterns when the proportions of exotics were fitted against 345 

the residuals of the model fitted on the proportions of exotics against the properties of indigenous-only 346 

networks (Table 1, Supplementary material 6).  347 

Differences between the node properties of indigenous and exotics 348 

The mean and the relative degree, the normalised closeness and betweenness centralities, as well as the 349 

number and ratio of positive links to other species, were greater for indigenous species in the meta-350 

network. However, indigenous and endemics only showed significant differences in their normalised 351 

closeness centrality once isolated nodes (degree=0) were removed (Supplementary material 7) 352 

Differences in native and exotic networks 353 

When island subnetworks were split into networks consisting of only indigenous or exotic species, 354 

differences emerged. Since there were more indigenous species than exotic, network topology 355 

measures highly correlated to node number (such as number of edges, number of positive links, mean 356 

degree etc.) were also significantly greater for native networks. Albeit they had no or little correlation to 357 

the number of nodes, the proportion of isolated nodes, the connectance, and the normalised closeness 358 

and betweenness centralities also showed differences (Figure 5). 359 

When we investigated the effects of exotics on indigenous networks only, we found that number of 360 

nodes (species number) and edges decreased with increasing exotic proportion. Exotics had a similarly 361 

negative relationship with the mean degree and the normalised betweenness centrality. A positive 362 
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relationship was visible between the proportion of exotics and the proportion of isolated nodes, the 363 

connectance, the normalised closeness centrality, and the modularity (Supplementary material 8). 364 

 365 

366 
Figure 5. Comparison of network properties between indigenous-only and exotic-only networks: 367 
number of nodes in the network (A), number of edges in the networks (B), the log-transformed value 368 
of connectance (C), the proportion of the isolated nodes (D), the proportion of negative edges (E), and 369 
the modularity based on the ‘fast and greedy’ community detection algorithm (F). Note that the 370 
subnetworks in the figures are ordered according to the mean value of the focal network measure. 371 

 372 

Discussion 373 

In this study, we analysed arthropod co-occurrence networks on seven Azorean islands and tested the 374 

hypotheses that these networks reflect biogeographical patterns, are sensitive to abiotic environmental 375 

differences, and that their topological features echo the imprint of exotic species in the community. 376 
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We found that co-occurrence networks of island arthropods showed non-random structuring patterns, 377 

and that biogeography (i.e. island identity) was reflected on the network structure both when species 378 

pairs, as network building blocks, and when network topological properties were compared (H1). Both 379 

of our first and second predictions (P1, P2) that natural habitat size and abiotic factors drive network 380 

structure in concert, were supported by the multivariate model. Thus, co-occurrence network analysis 381 

seems to be suitable to detect inter-island differences and the dependence of network topology on 382 

environmental factors is clear. Yet, although because island species richness strongly depends on the 383 

size of the island (Whittaker et al. 2017) and natural habitat remnants behave as islands themselves 384 

(Matthews 2021), we predicted natural habitat patch size will influence the structure of the association 385 

networks, our results showed that the size of natural habitat has lower importance in shaping co-386 

occurrence networks than they have in driving community differences in indigenous Macaronesian 387 

spiders (Cardoso et al. 2010). However, Cardoso et al. (2010) excluded exotic species from their analysis, 388 

and in our cases, the number of exotics dominated the model, thus the disagreement with their findings 389 

can be explained. Moreover, in our study, there was a moderately strong correlation between native 390 

forest patch size and the number of exotics, which may have further obscured the clear effect of forest 391 

patch size. Nevertheless, native habitat area and proportion showed a few, moderately strong, 392 

correlations with network properties (Supplementary material 9), suggesting a limited power of this 393 

variable to predict networks topologies. 394 

Both the number and the proportion of exotics in the community influenced the structure of co-395 

occurrence networks (H3). As suggested by the species-area relationship (Whittaker et al. 2017), the 396 

number of nodes showed a positive correlation with the island area, and so did the number of exotic 397 

nodes. This is in line with the findings of Whittaker et al. (2014), who reported an increasing number of 398 

exotics with increasing island area for both spiders and beetles in the Azores. The proportional increase 399 

of edges did not match the increase of exotic nodes though, mostly because the newly recruited exotics 400 
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in the communities have no or few links to other species (i.e. the proportion of isolated increased). This 401 

resulted in a general decline in the connectance, and, when the proportion of exotics to the entire 402 

community was investigated, an increase of modularity; the opposite way we predicted (P5). These 403 

trends are more pronounced when the effect of indigenous species is removed, suggesting that 404 

indigenous mitigate changes in association network structure. Moreover, the declining number of nodes 405 

as a function of the proportion of exotics in the community suggests uneven recruitment of new species 406 

into the communities: when species richness increases, newcomers are mostly exotics. The fact that the 407 

proportion of negative links did not show a significant relationship either as a function of the residuals 408 

after the effect of natives had been removed, or when the proportion of the exotics was investigated 409 

(i.e. P6 did not hold up), suggests that these species are rarely involved in direct competition with 410 

indigenous ones. This pattern, and the high proportion of unconnected exotic species, on one hand, 411 

suggest that the majority of the exotics do not occur in samples regularly enough to form detectable 412 

associations with other species; only a few, dominant, exotics contribute to shaping network topologies 413 

(Kay et al. 2018). This is in line with Florencio et al. (2015) who found that faunal homogenisation in the 414 

Azores was not apparent from incidence-based community nestedness investigations, and reasoned 415 

that although the prevalence of dominant exotic species was high, rare exotic species were replaced 416 

both in space and time. On the other hand, our results support the earlier findings (Whittaker et al. 417 

2014) that exotics, instead of competing with indigenous, occupied empty niches and increased the 418 

realised trait space of the community (Rigal et al. 2018). However, the increasing proportion of negative 419 

associations between indigenous species with the increasing proportion of exotics suggests an 420 

increasing indigenous to indigenous competition as the effect of exotics. 421 

We also showed a strong preferential linking in the community, and consequently, the assembly 422 

structure was not random (H2). Endemic and native species linked to each other more frequently than 423 

to exotics. This is somewhat controversial to what we expected, that since exotics are habitat generalists 424 
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and occur in many habitats, they will regularly co-occur with all species, and thus have a high number of 425 

links (including negative ones). Similarly to the previous section, the reason for this may be the relatively 426 

low number of exotic species being prevalent enough for association detection. Indeed, although native 427 

habitat fragments are relatively small, most many exotic species may not reach the locations toward the 428 

centre of patches where indigenous are frequent. Whether this happens through the resistance of local 429 

communities to exotics or other reasons is yet to be investigated. Moreover, the number of endemic to 430 

endemic links may have been inflated through species turnover within archipelago due to speciation. 431 

Preferential linking through negative links was not obvious either and the trend in the proportion of 432 

negative links in communities was also unclear (P6), suggesting little niche overlap and competition to 433 

indigenous species in the Azores (e.g. Heleno et al. 2013).  434 

Networks consisting of solely indigenous or exotic species also differed, as we predicted (P3). Exotic 435 

species had different node properties than indigenous, but they showed a generally lower number of 436 

links to other species and the proportion of negative links showed a significant relationship with the 437 

number, but not with the proportion of exotics in the community (Thus, P7 was only partially upheld.). 438 

This low degree resulted in lower connectance and centralities, and a greater proportion of isolated 439 

nodes in exotic-only networks, compared to native-only networks (P4). As a consequence, connectance, 440 

indeed, decreased and modularity increased with the increase of the number and proportion of exotic 441 

species in communities (P5). Although, as seen above, these can be the results of exotic species blending 442 

into indigenous communities without competing with indigenous species, from the high modularity of 443 

exotic networks we also may speculate to their lower stability. Indeed, as a number of systems show 444 

early signs of disintegration when stressed, particularly the weak links tend to break easily (Csermely 445 

2004), increasing modularity is anticipated. Alarmingly, in our native-only networks, the modularity also 446 

decreased with the increasing proportion of exotics in the community, as did the proportion of isolated 447 

nodes and negative links. These suggest an obscure process of disintegration of native association 448 
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networks, driven by the increasing proportion of exotics, which, eventually may grow into a regime shift 449 

(Rocha et al. 2015, Hui and Richardson 2018). This is in line with, Larson et al. (2016) and Hui (2021) who 450 

showed that plant-pollinator interactions and fruit-bird mutualistic networks (respectively) change in a 451 

similar manner when invaded by introduced species. Although co-occurrence networks cannot be 452 

translated to interactions (Blanchet et al. 2020), species pairs that do not co-occur cannot interact 453 

either, and hence these findings are highly concerning and in accordance with the recent observation 454 

that exotic species diversity is increasing in Azorean native forests (Borges et al. 2020). Moreover, the 455 

number of nodes was declining with the increasing proportion of exotics but the connectedness 456 

increased, indicating that less connected species disappeared first, reinforcing the estimations by 457 

Triantis et al. (2010) for a high level of extinction debt on the Azores.  458 

Nonetheless, since species occurrences may also correlate with latent environmental factors, for 459 

instance, the adjacent landscape of the natural forest patch, other drivers may also be in action. Thus, 460 

before drawing casual links between exotic species’ number and node properties and native species 461 

richness, the underlying causes should be thoroughly investigated.  462 

Our study provided ample evidence that island arthropod co-occurrence networks are sensitive to the 463 

presence of exotic species and that the networks of exotic species differ from those of natives. These 464 

structural sensitivities can make species co-occurrence networks ideal tools for providing early warning 465 

signals of community changes induced by exotics. These signalling systems in the Anthropocene are 466 

timely and essential to detect and mitigate deleterious effects of human-induced environmental change 467 

on native habitats (Derocles et al. 2018, Fath et al. 2019). On the other hand, in the last decades, the 468 

amount of biodiversity data multiplied, partly due to the advanced recording technology (e.g. 469 

metabarcoding, environmental DNA), but also due to citizen science efforts. These untapped data could 470 

be utilised for co-occurrence network analysis to understand large-scale ecological assembly rules and 471 

geographic patterns of communities (Lima-Mendez et al. 2015, Ma et al. 2016) as well as for early 472 
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warning systems in conservation. A cautious approach has to be taken though. In our case, for instance, 473 

negative links between species did not provide a useful measure for the effect of invasive species, most 474 

likely because, as we speculated, the exotic arthropods on the Azores naturalised relatively well and 475 

managed to exploit previously unoccupied niches causing little competition with natives, as it was 476 

reported in the case of disturbed landscape such as managed pastures (Rigal et al., 2018). Whether or 477 

not this process drives the patterns we found in native forests, can only be teased apart through 478 

targeted field experiments. 479 

Limitations 480 

One of the main limitations of this study is inevitably derived from limitations of the method used; 481 

although association networks are relatively easy to construct, they are not real-life interaction 482 

networks, merely the predictions of them (Blanchet et al. 2020, Strydom et al. 2021). This is particularly 483 

true because co-occurrence networks are scale dependent; although our sampling transects were 484 

relatively small (150m), less mobile or microhabitat restricted species are unlikely to interact even at 485 

that spatial scale. Therefore, a deeper insight is needed into the pairwise links and targeted tests or 486 

literature searches should prove or disprove the existence of predicted interactions. Although the 487 

dynamism of these networks is accounted for in our study (two separate networks were generated for 488 

the two sampling rounds), deep dynamical processes are not analysed. This limitation is the direct 489 

consequence of the lack of underpinning long-term datasets. This deficiency restricts our understanding 490 

of processes overarching several decades, such as climate change, the temporal patterns of exotic 491 

invasions, or continuous anthropogenic pressure, and likely prevents timely action to mitigate them 492 

(Poisot et al. 2015, Tulloch et al. 2016). Moreover, species co-occurrence networks may also depend on 493 

the seasonal dynamics of species of which we have little information. In this study, we did not focus on 494 

differences resulting from taxonomical or functional grouping but these, most likely, exist. Whereas this 495 
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approach would plausibly be a fruitful area of research, a complete dataset of traits is crucial and, 496 

besides taxonomy, a phylogenetic tree would also be desirable. 497 

Conclusions 498 

Here we show that changes in the topologies of arthropod co-occurrence networks in the Azores mirror 499 

variances both in biotic and abiotic environments and thus they can help to gain a deeper insight into 500 

natural and anthropogenic processes shaping island biogeography. Our findings demonstrate that 501 

although Azorean exotic species have little competition to indigenous, their presence affects species 502 

association networks and induce alarming reorganisations. Thus, developing standardised network 503 

assessment methods and utilizing network information may help in developing early warning systems 504 

for detecting the perilous impact of exotic species (Fath et al. 2019). Combining modern metabarcoding 505 

techniques and standardised statistical methods for association network-building with cutting-edge 506 

machine learning processes and literature-based trait data to routinely identify real-life interaction 507 

networks would substantially advance our understanding of ecological assembly rules and improve our 508 

predicting power to anticipate the future status of communities of high conservation interest (Evans et 509 

al. 2016). Fully exploiting this toolkit is vital for island biodiversity conservation. 510 

 511 
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