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Abstract 

Most models of attention distinguish between voluntary and involuntary attention, the latter 

being driven in a bottom-up fashion by salient sensory signals.  Studies of voluntary visual-

spatial attention have used informational or instructional cues, such as arrows, to induce or 

instruct observers to direct selective attention to relevant locations in visual space in order to 

detect or discriminate subsequent target stimuli. In everyday vision, however, voluntary attention 

is influenced by a host of factors, most of which are quite different from the laboratory 

paradigms that utilize attention-directing cues. These factors include priming, experience, 

reward, meaning, motivations, and high-level behavioral goals. Attention that is endogenously 

directed in the absence of external cues has been referred to as self-initiated attention, or in our 

prior work as “willed attention”. Such studies typically replace attention-directing cues with a 

“prompt” that signals the subject when to choose where they will attend in preparation for the 

upcoming target stimulus. We used a novel paradigm that was designed to minimize external 

influences (i.e., cues or prompts) as to where, as well as when, spatial attention would be shifted 

and focused. Participants were asked to view bilateral dynamic dot motion displays, and to shift 

their covert spatial attention to either the left or right visual field patch at a time of their own 

choosing, thus allowing the participants to control both when and where they attended on each 

trial. The task was to discriminate and respond to a pattern in the attended dot motion patch. Our 

goal was to identify patterns of neural activity in the scalp-recorded EEG that revealed when and 

where attention was focused. Using machine learning methods to decode attention-related EEG 

alpha band activity, we were able to identify the onset of voluntary (willed) shifts of visual-

spatial attention, and to determine where attention was focused. This work contributes to our 

understanding of the neural antecedents of voluntary attention, opening the door for improved 
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models of attentional control, and providing steps toward development of brain-computer 

interfaces using non-invasive electrical recordings of brain activity. 

 

Introduction 

William James famously wrote, “Everyone knows what attention is. It is the taking 

possession by the mind, in clear, and vivid form, of one out of what seems several simultaneously 

possible objects or trains of thought” (James, 1890). Attention is the cognitive ability that allows 

humans to ignore irrelevant stimuli and hone in on the most relevant sensory inputs. Attention 

may be controlled by either top-down (goal directed or voluntary) or bottom-up (sensory or 

reflexive) influences (Bowling, Friston, & Hopfinger, 2020; Corbetta & Shulman, 2002; Jonides, 

1983; Posner, 1980). 

The ability to exert voluntary control over the focus of our attention is arguably a key 

component of the integrated sense of being that humans experience (Posner, 1994). For decades, 

voluntary attention has been effectively studied in humans in attention cuing paradigms using 

behavioral, electroencephalographic (EEG), and neuroimaging methods (Corbetta, Kincade, 

Ollinger, McAvoy, & Shulman, 2000; Harter, Anllovento, & Wood, 1989; Harter, Miller, Price, 

Lalonde, & Keyes, 1989; Hopfinger, Buonocore, & Mangun, 2000; Luck, Hillyard, Mouloua, & 

Hawkins, 1996; Mangun & Hillyard, 1991; Posner, Snyder, & Davidson, 1980). In such 

paradigms, the experimenter determines how the observer will allocate their attention by 

manipulating their expectancy about when, where or what an upcoming task-relevant target may 

be (e.g., Kingstone, 1992; H. J. Muller & Rabbitt, 1989; Posner et al., 1980), or instructing the 

observer how to focus attention on each trial (e.g., Hopf & Mangun, 2000; Hopfinger et al., 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487895doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.11.487895


 4 

2000; Mangun & Buck, 1998). Arguably, however, studying voluntary attention with cuing 

paradigms does not capture the full range of causal influences involved in attention behavior.  

In everyday vision, voluntary attention is biased by many factors, most of which are quite 

different from the highly-controlled paradigms (e.g., cuing paradigms) utilized in the laboratory. 

Factors biasing attention include priming (Li, Wolfe, & Chen, 2020), experience (Brockmole & 

Henderson, 2006; Goldfarb, Chun, & Phelps, 2016; Theeuwes, 2019; van Moorselaar, 

Daneshtalab, & Slagter, 2021), reward (Della Libera & Chelazzi, 2009; Failing & Theeuwes, 

2018; Hickey, Chelazzi, & Theeuwes, 2010; Meyer, Sheridan, & Hopfinger, 2020; Peck, 

Jangraw, Suzuki, Efem, & Gottlieb, 2009), object meaning (Gayet & Peelen, 2022; Hayes & 

Henderson, 2021; Peacock, Cronin, Hayes, & Henderson, 2021) and high-level behavioral goals 

and motivations (Banerjee, Frey, Molholm, & Foxe, 2015; Lepsien, Thornton, & Nobre, 2011; 

Luck, Gaspelin, Folk, Remington, & Theeuwes, 2021; McMains & Kastner, 2011; Serences et 

al., 2005). When attention is voluntarily directed in the absence of explicit external cues, this has 

been referred to as internally-driven (Taylor, Rushworth, & Nobre, 2008) or self-initiated 

(Hopfinger, Camblin, & Parks, 2010) attention, or in our work as “willed attention” (Bengson, 

Kelley, Zhang, Wang, & Mangun, 2014; Bengson, Kelley, & Mangun, 2015; Bengson, Liu, 

Khodayari, & Mangun, 2020; Liu et al., 2017; Rajan et al., 2018). The idea is that volition drives 

attention in manner analogous to the volitional motor actions in studies of movement intention 

(Haggard, 2008; Haynes et al., 2007; Libet, Wright, & Gleason, 1983; Soon, Brass, Heinze, & 

Haynes, 2008), but is, arguably, theoretically dissociable (Searle, 1980). Willed attention is of 

particular utility when behavioral goals are in conflict with bottom-up salience and other 

attention-biasing influences (Bacon & Egeth, 1994; Lavie, 2005; Mevorach, Hodsoll, Allen, 

Shalev, & Humphreys, 2010; Theeuwes, 2018).  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487895doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.11.487895


 5 

Although behaviorally, cued and willed attention can result in very similar patterns of 

reaction time and accuracy for cued/attended and uncued/ignored target stimuli (Bengson et al., 

2014), cognitive neuroscience measures have revealed distinct neural signatures that characterize 

cued and willed spatial attention both prior to the allocation of attention (Bengson et al., 2014), 

and after (Bengson et al., 2015; Bengson et al., 2020; Hopfinger et al., 2010; Liu et al., 2017; 

Rajan et al., 2018; Taylor et al., 2008). In these willed attention studies, which are derivative of 

traditional spatial cuing paradigms, willed attention is typically engaged by presenting a stimulus 

that serves as a “prompt” that signals the subject that they should voluntarily choose where to 

attend on that trial (Bengson et al., 2014; Hopfinger et al., 2010; Taylor et al., 2008). Looking 

prior to the prompt, Bengson and colleagues were able to reveal the patterns of spontaneous 

brain activity (EEG alpha power) immediately before (within 1000 msec) the subjects decision 

about where to attend that predicted those decisions (Bengson et al., 2014). Importantly, because 

the prompts were lower probability (33% of trials, the other 66% being spatial cue trials), and 

appeared following a 2 to 8 sec jittered inter-trial-interval, the patterns of brain activity observed 

could not be reflections of pre-planned decisions about where to attend on each trial. Here, we 

continue the investigation of the antecedent brain states to willed attention in order to determine 

whether such patterns of brain activity can reveal when as well as where subjects focus spatial 

attention. We do this using an experimental paradigm where no cue or prompt is present. 

In order to investigate the neural antecedents of willed attention, EEG was recorded from 

volunteers while they participated in a novel spatial attention paradigm. The participants viewed 

two uncued, lateralized dynamic random dot motion stimulus displays, and were instructed to 

choose whether and when to covertly attend the left or right display in order to discriminate 

features of the dynamic display, which required a button press. The goal of the study was to 
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eliminate any cue, even a temporal one, from the task, with the aim of using the EEG measures 

to identify both where and when the subjects allocated their spatial attention. Isolating the neural 

signature(s) of self-generated, decision-driven mechanisms of spatial attention would not only 

further our understanding of intention, but could yield a method to enable the brain’s attention-

related activity to be detected for the control of external devices, such as in brain-computer 

interface (BCI) applications, and therefore would be a significant contribution to both basic and 

applied cognitive neuroscience. 

Methods 

Participants 

EEG data was recorded from 28 undergraduate student volunteers (20 female, 8 male) at the 

University of California, Davis. All participants had normal or corrected-to-normal vision, gave 

informed consent, were screened for neuropsychiatric conditions, and were paid for their 

participation. One subject was removed for an inability to following the task instructions, another 

was removed for a technical issue with data collection, four subjects were removed for excessive 

EEG artifacts contaminating more than 25% of their data, and two subjects were removed as they 

had no trials remaining in at least one bin after artifact rejection when conducting the reaction 

time analyses. Thus, the final analysis was conducted on 20 right-handed subjects who met all 

inclusion criteria. 

Paradigm and Stimuli 

Each trial began with the presentation of a circular patch of 250 red and blue dots in each hemi-

field (Figure 1).  Each patch of dots had a radius of 5 degrees of visual angle, and each dot was 
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approximately 0.23 degrees of visual angle. Each patch was located on the horizontal meridian, 

approximately 4 degrees (to center) lateral to fixation. In order to enable the possible analysis of 

focused attention using the steady state visual evoked potential (SSVEP) method (M. M. Muller, 

Teder-Salejarvi, & Hillyard, 1998), in one hemi-field flickered continuously at 4 Hz, while those 

in the other flickered at 6 Hz . From trial-to-trial, on a random basis, the frequency of flicker in 

the left and right patches varied (one patch always 4 Hz and the other 6 Hz); the SSVEP data is 

not, however, considered in this report. The dots varied randomly in position by 0.08 degrees 

every one to three screen refreshes (16.67 ms), which induced the perception of continuous 

random motion. In addition, within each hemi-field the proportion of red to blue dots varied in a 

systematic and continuous fashion from a minimum of 20 red dots in the center with 230 blue 

dots surrounding, to a maximum of 230 red dots in the center and 20 red dots in the surround. 

With each screen refresh the number of red dots increased by 4 as a growing circle, and the 

number of the blue dots decreased by 4 as a decreasing annulus; this created the impression of an 

expanding circle of red dots within the field of blue dots in each circular patch. Once the red dot 

number reached the maximum of 230 red dots, the pattern changed directions so that red dots 

started to decline (being replaced by blue). The perception of dot patches is of a continuously 

expanding and contracting circle of red dots within each circle. Given a 16.67 ms refresh rate, 

the time from minimum to maximum in the number of red dots was approximately 1.0 sec, but, 

on average, each trial lasts approximately 4 seconds, because subjects could begin covert 

attention at varying intervals after the onset of the array. The expansion/contraction of the red 

dots in the left and right hemifields occurred asynchronously, so that it was not possible to 

predict what the pattern in one hemifield was doing given that in the other hemifield. After a 
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button press, the patches disappeared for 500 ms, and the next trial began when the patches 

reappeared. The fixation point remained on the screen for the duration of each block. 

 

 

Figure 1. Diagrammatic representation of the dynamic stimulus arrays. An illustration of the ongoing sequence of 

screen refreshes, each panel illustrating one refresh. When the sequence offsets, there was a constant 500 ms delay 

between the offset and onset of the next trial. 

 

Procedure 
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Participants were instructed to maintain ocular fixation on the center cross and to not deviate 

their eyes. They were asked to voluntarily select one side of the bilateral display to attend at any 

point within the trial period, and to covertly attend the dynamic dot patches in order to detect 

target stimulus (maximal expansion of the proportion of red dots in the patch). They were urged 

to deploy their attention whenever they wished, and to maintain covert attention until the trial 

was completed. Importantly, they were told not to use any explicit strategy or develop any 

pattern for choosing when or which side to deploy covert attention (such as alternating sides on 

each trial), and to not decide prior to trial onset which hemifield patch to attend. In other words, 

once the bilateral array appeared, the subjects were requested to make a spontaneous decision 

during each trial about which side to focus covert spatial attention. The participants were told to 

maintain their attention on the chosen hemi-field patch for at least one full expansion cycle 

(approximately one second) while trying to discriminate the maximum size of the expanding red 

dots in the chosen hemi-field. The participants were required to press a button (either the left 

arrow or right arrow on a keyboard) as quickly as possible when they perceived that the red dots 

were at their maximal expansion in the attended hemifield only, and were told to completely 

ignore the opposite hemifield patch.  

EEG Recording and Analysis 

The EEG was recorded from 64 tin electrodes (mounted in an elastic electrode cap; Electro-cap 

Int.) at the following scalp locations: Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, 

Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, PO9, O1, Oz, O2, PO10, AF7, AF3, AF4, 

AF8, F5, F1, F2, F6, FT9, FT7, FC3, FC4, FT8, FT10, C5, C1, C2, C6, TP7, CP3, CPz, CP4, 

TP8, P5, P1, P2, P6, PO7, PO3, POz, PO4 and PO8 (Oostenveld & Praamstra, 2001). These sites 

were referenced to FCZ during recording, but were re-referenced offline to the algebraic average 
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of TP9 and TP10 (adjacent to the left and right mastoids). The continuous EEG was recorded 

with a bandpass of DC-100 Hz and digitized at 1000 samples per second, and then downsampled 

offline to 250 samples per second. Before artifact rejection, a bandpass filter for 0.05 to 50 Hz 

was applied to the data. Eye-blinks were removed using independent component analysis (ICA) 

methods (Vigario, 1997). Residual artifacts were detected automatically, and trials with 

excessive artifacts were removed using ERPLAB’s moving window peak-to-peak artifact 

rejection (100 μV threshold), iterating through the data with a moving window of 100 ms in 50 

ms steps. An additional moving window approach was applied to channels FT9 and FT10 to 

ensure no trials with eye movements were left in the data. The parameters for this additional 

moving window approach marked all trials which exceeded 20 μV within a sliding 100 ms 

window, across 50 ms steps. Each epoch was also visually inspected to manually reject artifacts 

not picked up by the prior methods, as well as verify that the artifact rejection pipeline was 

functioning as intended. The data was then epoched in two separate time periods, -1000 ms to 

4000 ms relative to the onset of the sequence, as well as -4000 ms to 1400 ms relative to the 

button press. In the event-related potential analysis, a baseline from -500 ms to 0 ms relative to 

the onset of the flickering patches (trial onset). For the stimulus onset data, only trials where 

participants reported their shift of attention within 4,000 ms were retained. Three subjects did not 

have any data remaining within this range, so their data was excluded from further analysis. Pre-

processing was conducted using both the EEGLAB (Delorme & Makeig, 2004) and ERPLAB 

(Lopez-Calderon & Luck, 2014) plugins for MATLAB. 

In line with prior work on willed attention (Bengson et al., 2014), we focused our 

analyses on the alpha band of the EEG. To examine the onset and strength of the willed attention 

signal, we extracted the trial-by-trial alpha band signal relative to two distinct time points; (i) the 
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onset of the sequence and moving forward in time, as well as (ii) moving backwards in time from 

the onset of the button press, which logically followed willed shifts of covert attention. We then 

used the direction of the decision to attend as a grouping variable, labelling trials relative to 

whether the participant chose to attend to the left or right hemifield on a trial-by-trial basis. For 

these analyses, the time-frequency analysis was performed on each trial via a short sliding 

Hanning taper with an adaptive time window of three cycles at each frequency - conducted from 

9-11 Hz. The alpha frequency band analysis was placed at 9-11 Hz to minimize overlap with the 

4 Hz and 6 Hz background flickering of the stimulus arrays. The analysis was conducted using 

the fieldtrip toolbox plugin for MATLAB (Oostenveld, Fries, Maris, & Schoffelen, 2011).  

We implemented a support vector machine (SVM) decoding pipeline that was similar to 

that utilized by Bae and Luck (Bae & Luck, 2018). The fitcsvm() function in MATLAB was 

used to carry out this analysis. A 3-fold cross validated support vector machine was trained and 

tested separately over each individual time point (in 20 ms increments). The cross-validation that 

was implemented allowed the same data to act as both the training and testing sets. The data was 

split into three equal portions, where in the first iteration, two thirds are used for training, then 

one third is used for testing. On the next iteration, the training and testing sets are randomized, to 

test the classifier across varying subsets of the data. This process was repeated across ten 

iterations, then the accuracies obtained from the testing set were averaged across iterations for 

each time point. The data was averaged over trials, 19 relevant electrode channels were included 

(all parietal and occipital electrodes) and the data was fourier transformed (extracting alpha band 

signals at 9-11 Hz) before the training and testing of the SVM. The classification was a binary 

SVM, computing the classification accuracy of trials where subjects were deploying attention to 

the left versus the right. Given trial count (i.e., attending left vs. right) is potentially variable 
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given self-generated decisions about where to attend, each subject’s trial count per bin (left/right) 

was set to equal trial lengths by removing the last trials of the larger bin. We used a 

nonparametric cluster-based Monte Carlo simulation technique (similar to the commonly used 

cluster-based mass univariate approach). This method was chosen due to its correction for 

multiple comparisons and the fact that decoding accuracy may not be normally distributed. The 

decoding accuracy was extracted at each timepoint, then tested with a one-sample t-test (one 

sample, as below chance decoding is not relevant to our findings). We then searched for 

significant clusters where the t-tests were significant (p < 0.05) and the t scores were combined 

to create a cluster-level t score. Then we assessed whether the cluster t score was higher than the 

t score expected by chance (generated by the Monte Carlo simulation), which controls the type 1 

error rate at a cluster level. Then, each simulated trial was a randomly sampled number (whether 

one or two) to compute the chance level for each bin (left or right). The Monte Carlo technique 

had 10 iterations, with three validations, indicating this process was repeated 60 times (2 bins x 3 

cross validations x 10 iterations). This process was then repeated once for each time point (201 

time points for the sequence onset decoding; 176 for the button press decoding), to find an 

accurate decoding accuracy at each datapoint. The data was then smoothed over five timepoints 

for graphing purposes. This process was repeated for each of our subject’s data. 

 

Results 

Reaction Time 

The mean reaction time (RT)—as measured from trial onset—was 3,945 ms for trials 

where attention was deployed to the left, and 3,908 ms when to the right. The difference between 
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these reaction times was not statistically significant in a two-sample t-test (p = 0.6289). Given 

the task design (unattended-sided stimuli were to be completely ignored), there are no behavioral 

measures of selective spatial attention (i.e., attended vs. unattended RTs); however, see the alpha 

band topographic analysis below, which addresses the issue of whether subjects were focusing 

spatially selective attention in this task. In terms of how many times participants chose to attend 

to each side, participants reported (via their left or right button press) that they chose to covertly 

attend the left hemifield patch 4,924 times in total, while the right hemifield patch was attended 

4,653 times across all participants. To examine whether the previous trial influenced decision 

outcomes, a logistic regression generalized linear model was fit to the behavioral data, which 

solidified that the previous trial did not have an influence on the direction that attention was 

shifted on any given trial (p = 0.3375). 

Alpha-Band Oscillations 

We began by validating our task in order to ensure that subjects had allocated selective 

visual-spatial attention in our design. To do this we relied on the well-established EEG alpha 

correlates of focused visual spatial attention which show left versus right posterior scalp EEG 

alpha power asymmetries with spatial attention to lateral visual field locations (Bengson et al., 

2014; Liu, Bengson, Huang, Mangun, & Ding, 2016; Rihs, Michel, & Thut, 2007; Romei, Gross, 

& Thut, 2010; Worden, Foxe, Wang, & Simpson, 2000). We compared the distribution of alpha 

power across the left and right posterior scalp for the choose-left and choose-right trials (Fig. 3). 

We found significant  (two-sided t-test) left versus right alpha power asymmetries over posterior 

scalp in the 1000 ms prior to the button press (p < 0.01); this pattern was not significant in an 

earlier time window from -2000 to -1000 ms prior to the button press (p = 0.1116). This alpha 

power lateralization with spatial selective attention demonstrated that alpha-band oscillations 
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serve as a reliable index of the direction of covert spatial attention in our willed attention design. 

With this expected result firmly established, we turned to decoding the time course of the 

allocation of willed attention. 

 

Figure 2. Alpha-band (9-11Hz) difference plot (attend left - attend right) during two distinct time periods preceding 

the button press to mark the active focus of attention to the chosen hemifield. The left panel shows the time period 

from -2 sec to -1 second before the button press, while the right panel shows the time period directly preceding the 

report, from one second before the button press to the onset of the button press itself. The color scale is based on the 

absolute value relative to the highest/lowest difference in power across both plots. 
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Figure 3. This data is epoched relative to the sequence onset (represented at time 0 by a vertical line). Only short 

trials (between 500 ms and 4,000 ms) were included in the analyses, which is why we see a drop off around the three 

second mark. This analysis took place in 19 parietal/occipital electrodes. 

Decoding Results 

Figure 3 shows the decoding accuracy for attend-left versus attend-right during willed 

attention, collapsed across the 17 subjects in the study. These SVM classifier results are for the 

data epoched to the onset of the bilateral array (t=0 ms). Decoding accuracy starts at chance level  

(dashed line) and gains rising about chance over time. The decoding accuracy rose above chance 

starting at ~1,400 ms after the array onset and lasted until ~1,700 ms. Following a dip in 

decoding accuracy, a long-latency period also shows statistically significant decoding accuracy 

(~2,625-2,850 ms after array onset). This conceptually lines up with our expectations, as we have 

only included trials with short reaction times, where participants have reported their decision to 

attend within 4,000 ms after the onset of the array. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487895doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.11.487895


 16 

 

Figure 4. The support vector machine decoding accuracy at each time point, epoched relative to the button press 

signaling sustained attention to one hemifield. This analysis was done over 19 occipital electrodes. Black line 

denotes time zero, which is the recorded onset of the button press. 

The support vector machine classifier results for data epoched to the button press show 

significant decoding throughout the entire period from 1,900 ms before, spanning ~750 ms after 

the button press (fig. 4). There are also patches of significant decoding, as also similar to the 

results shown in the decoding period relative to the sequence onset (Fig. 3). We then see a 

gradual ramp down to chance as time progresses (~750 ms post-button press). These results 

accurately reflect the goal of the experimental design where participants have the freedom to 

choose how long they are attending to each side freely and serves as an example of the reliability 

of the alpha-band fluctuations present in fully volitional decisions to attend. With these results, 

we have demonstrated the capability to achieve significantly above average decoding of 
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sustained volitional attention in a setting with minimal external influence or cueing, as well as 

the ability to decode the average onset of a volitional shift in spatial attention. 

Discussion 

In this study, we investigated voluntary visual-spatial attention when guided internally by 

the subject’s choices about both when and where to focus attention (i.e., willed attention). Prior 

research on willed attention asked subject to choose where to attend, but always in response to a 

prompt that signaled the subjects when to voluntarily engage spatial attention (Bengson, Kelley, 

& Mangun, 2015; Bengson et al., 2014; Bengson et al., 2020; Hopfinger et al., 2010; Liu et al., 

2017; Rajan et al., 2018; Taylor et al., 2008). The act of deploying attention in the real world 

need not be cued externally; that is, not every shift of attention requires an explicit extrinsic 

temporal or spatial guiding signal (Bengson et al., 2014; Hopfinger et al., 2010; Taylor et al., 

2008). In the present work, we presented subjects with bilateral, dynamic dot motion displays, 

asking them to view the displays, and then to spontaneously focus spatial attention on either the 

left or right patch at a time of their choosing, thus eliminating any explicit external attentional 

cue or prompt.  

We focused our analyses on EEG alpha oscillations (9-11 Hz), which has been implicated 

in many forms of attention (for a review, see, Van Diepen, Foxe, & Mazaheri, 2019). It is well 

known that the selective deployment of spatial attention in the lateral visual fields in response to 

attention-directing cues is correlated with lateralized changes in EEG alpha power over the 

occipital scalp (Liu et al., 2016; Rihs et al., 2007; Thut, Nietzel, Brandt, & Pascual-Leone, 2006; 

Voytek et al., 2017; Worden et al., 2000).  In the present study, we used decoding of EEG alpha 

patterns to investigate the time course and locus of willed attention shifts within uncued, 
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dynamic visual displays. Decoding has proven useful for understanding the contributions of EEG 

alpha signals to spatial attention in prior research (Bae & Luck, 2018; Samaha, Sprague, & 

Postle, 2016). 

We found that volitional attention can be actively decoded from strictly EEG data in the 

alpha-band range (9-11Hz). By epoching our analyses relative to the onset of a trial, we have 

isolated the electrophysiological activity related to a self-generated shift in covert attention, thus 

building upon former studies on willed attention (Bengson et al., 2014). We also epoched our 

data relative to a button press, signaling covert attention has been shifted and active attention is 

deployed to a specific hemifield. This analysis has shown multiple significant bumps in decoding 

accuracy between 2-4 seconds before the button press, which is followed by a larger time span of 

significance related to the active deployment of sustained attention to one hemifield, remaining 

about 750 milliseconds after the button press before tapering back to chance-level decoding 

accuracy. The evidence provided here establishes the ability to pinpoint the average onset of a 

shift in volitional attention, as well as highlights the importance of the willed attention signal in 

exhibiting the volitional control of attention, even without the constraints of a typical cue-to-

target paradigm. 

Self-generated processes have primarily been studied in the context of motor intention 

and actions (for a review, see, Eagleman, 2004). In this area of scholarship, a distinction has 

been drawn between willed and automatic control of actions, with attention being a key 

distinguishing component of prominent models (Norman & Shallice, 1986; Shiffrin & Schneider, 

1977). A core concept is that intentions arise prior to actions, and that the antecedent neural 

activity could therefore provide information about the underlying neural mechanisms of 

intention. For example, Benjamin Libet’s work on motor intentions sought to reveal the neural 
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correlates of intentions to act (Frith & Haggard, 2018; Libet, Gleason, Wright, & Pearl, 1983; 

Libet, Wright, & Gleason, 1982) . His subjects were instructed to make a volitional muscle 

movement at a time of their choosing while watching a pseudo clock face on an oscilloscope 

screen on which a dot rapidly swept around the circular screen in clockwise fashion. They were 

told to report the “time” on the pseudo clock face at which they first were aware of their 

intention to act. Libet used the reported value as a time stamp that he compared to the backwards 

averaged event-related potentials (ERP) that were time-locked to the motor action (indicated by 

the onset of electromyographic activity of the relevant forearm muscle). He found that the 

antecedent ERP activity preceded the reported time of first intention by hundreds of 

milliseconds. Our present study applied a similar framework as this literature on self-generated 

motor actions, but instead probed willed attention by backward decoding the EEG from the 

button press response, allowing us to establish the onset of willed attention as the time period in 

which the decoding accuracy for left versus right choices rose above chance.  

Our findings have direct consequence for our understanding intention by moving beyond 

the oft-studied realm of intentions to make a movement, to the case of intention to attend, that is, 

willed attention. Importantly, it demonstrates that even in cases where the subject is not 

prompted to make a decision, fully self-paced decisions have decodable neural correlates. In our 

work, based on scalp-recoded EEG, we are unable to identify the underlying functional 

anatomical correlates of the decision about when and where to attend, but our approach may 

nonetheless provide directions for future research, for example, using magnetoencephalography 

(MEG) (Hardy, Jensen, Wheeldon, Mazaheri, & Segaert, 2022) or intracranial recording 

(Helfrich et al., 2018; Stolk et al., 2018) 
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This general approach may also be generally applicable in applied research, for example, 

in BCI applications, where brain activity related to intentions to attend could be tapped to control 

devices by inferring intentions directly. A BCI should be built around neural signals having 

reliable features for feature extraction (i.e., they should reflect the subjects’ intent), would 

benefit if based on a non-invasive technique (e.g., scalp-recorded EEG), and should also have 

optimal signal-to-noise (Choi & Kim, 2019; O'Sullivan et al., 2015; Shih, Krusienski, & 

Wolpaw, 2012). Alpha oscillations elicited by a decision to attend in a willed attention setting 

may be such a signal, being recordable non-invasively from the scalp (as well as intracranially), 

and having a relatively high signal-to-noise (i.e., alpha-to-ongoing EEG) ratio. Establishing the 

reliability of the alpha signal as a measure of intention without the constraint of external cuing or 

prompting, is a positive step forward in this regard. Previous research using EEG has established 

the ability to decode binary covert intention on a single-trial basis (Choi & Kim, 2019), and 

applying such methods to willed attention data such may provide the foundation for future BCI 

applications that tap intentions in cognitive acts. 
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