
Between-area communication through the lens of
within-area neuronal dynamics

Olivia Gozel1,2,* and Brent Doiron1,2,*

1Departments of Neurobiology and Statistics, University of Chicago, Chicago, IL 60637, USA
2Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL

60637, USA
*gozel@uchicago.edu bdoiron@uchicago.edu

Abstract

A core problem in systems neuroscience is deciphering the origin of shared fluctuations in neuronal
activity: does it emerge through local network interactions, or is it inherited from external sources?
We explore this issue with large-scale networks of spatially ordered spiking neuron models where a
downstream network receives input from an upstream sender network. We show that linear mea-
sures of communication between sender and receiver networks can discriminate between emergent
or inherited population dynamics. Faithful communication requires a match in the dimension-
ality of the sender and receiver population activities, along with an alignment of their shared
fluctuations. Nonetheless, even in scenarios with seemingly weak linear communication, the tim-
ing of spike responses in the receiver network remains sensitive to those in the sender network.
Our work exposes the benefits and limitations of linear measures when analyzing between-area
communication in circuits with diverse neuronal dynamics.

Introduction

The brain is composed of a multitude of distributed areas which interact to support the complex
computations needed for cognition. While past experimental investigations were typically limited
to single neuron recordings, recent technological advances allow for sampling from large popula-
tions of neurons simultaneously (Urai et al., 2022). This newfound ability was initially used to
characterize the local dynamics of a population of neurons from the same brain area (Churchland
et al., 2010; Schölvinck et al., 2015; Murray et al., 2017; Williamson et al., 2019; Jiang et al.,
2020). Presently, many studies measure distributed population activity, giving a more holistic
view of neuronal processing (Urai et al., 2022). However, despite these much broader datasets, the
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science of the mechanics by which different brain areas communicate with one another is still in
its infancy.

An often used measure of neuron-to-neuron interaction is the joint trial-to-trial covariability,
or noise correlation, of their spike train responses (Cohen and Kohn, 2011; Doiron et al., 2016).
The idea is that neuron pairs that have high correlations are likely members of the same putative
neuronal circuit (Abeles, 1991; Shadlen and Newsome, 1998; Ocker et al., 2017). While pairwise
correlations can be informative (Doiron et al., 2016), the large-scale nature of population recordings
presents a challenge when attempting to expose the salient aspects of population-wide interactions
simply from an analysis of neuron pairs. Dimensionality reduction techniques have been developed
to frame population activity within a space of the appropriate size: large enough to capture the
core shared variability across a population, yet small enough to be tractable (Cunningham and
Yu, 2014). Recently, a dimensionality reduction analysis method has been developed to assess
the quality of between-area communication by computing how well activity in an upstream area
can linearly predict activity in a downstream area (Semedo et al., 2019). It has been applied to
simultaneous recordings along the primate visual pathways, both during anesthesia and a cognitive
task, and suggests that areas interact through a communication subspace (Semedo et al., 2019;
Srinath et al., 2021). These novel analysis techniques organize and quantify the magnitude and
effective structure of between-area communication, offering important tools to help expose how
the circuit structure of cortical networks shape distributed processing. Yet these techniques do not
on their own provide insight into the circuit mechanisms that support or impede communication.

The propagation of brain activity has been the focus of extensive circuit modeling attempts.
Feedforward networks are the base structure of many contemporary models of object classification,
and have been used with great success to model the performance of visual system hierarchy (Yamins
and DiCarlo, 2016). However, networks of spiking neuron models with random, sparse feedforward
connectivity produce propagation that leads to excessive, often rhythmic, synchronization (Abeles,
1991; Diesmann et al., 1999; Reyes, 2003; Kumar et al., 2010; Rosenbaum et al., 2011). By con-
trast, a single population of spiking neuron models with sparse, yet strong, excitatory (E) and
inhibitory (I) recurrent connections can show temporally irregular, roughly asynchronous spiking
dynamics (Van Vreeswijk and Sompolinsky, 1998; Amit and Brunel, 1997; Renart et al., 2010;
Rosenbaum et al., 2017), mimicking what is often considered the default state of cortical net-
works (Shadlen and Newsome, 1998; Renart et al., 2010). However, neurophysiological recordings
over a range of sensory and cognitive states show a wide distribution of spike count correlations
whose average is low, but positive and significantly different from zero (Cohen and Kohn, 2011;
Doiron et al., 2016). Recent modeling work shows how population dynamics with stable firing rates
yet moderate population-wide noise correlations can be produced when structured synaptic wiring
is considered, such as discrete block structure (Darshan et al., 2018), low-rank recurrent compo-
nents (Landau and Sompolinsky, 2018; Mastrogiuseppe and Ostojic, 2018), or distance dependent
connection probability (Keane and Gong, 2015; Rosenbaum et al., 2017; Huang et al., 2019).
While these results provide new insights into how circuit structure determines shared variability,
they have been restricted to within-population dynamics. On the other hand, recent modeling
efforts have shed some light on the interaction between brain areas (Chaudhuri et al., 2015; Muller
et al., 2018; Hahn et al., 2019), yet often without a consideration of response fluctuations. Thus,
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there remains a gap in understanding how the circuit-based theories of shared variability within a
population extend to the distribution (or propagation) of variability between populations.

In this work, we investigate how complex within-area neuronal dynamics affect interactions
between distinct brain areas using a network of model spiking neurons with biologically plausible
synaptic dynamics, as well as spatially-dependent synaptic architecture. We determine conditions
when communication between an upstream sender network and a downstream receiver network,
as assessed by a linear measure, is disrupted. Indeed, the emergence of complex spatio-temporal
dynamics within-area may or may not lead to poor communication depending on its origin. Specif-
ically, a substantial decrease of dimensionality or a misalignment of shared fluctuations in the
receiver with respect to the sender disrupts communication. Interestingly, however, we show that
the receiver is nevertheless effectively driven by the sender using a perturbation experiment. These
results expose the limitations of linear measures when deciphering between-area communication
in the presence of complex spatio-temporal neuronal dynamics.

Results

Sender and receiver networks exhibit rich population-wide dynamics

To investigate if and how complex within-area neuronal dynamics affect communication with other
brain areas, we explore the responses of a three-layer network of spiking neuron models (Fig. 1a).
Neurons in the input layer are modeled as homogeneous Poisson processes with a uniform rate.
The sender (second layer) and receiver (third layer) populations each consist of excitatory (E)
and inhibitory (I) neurons which are spatially organized on a square grid. It is well known that
brain connectivity is spatially structured with connection probability falling off with the distance
between pre- and post-synaptic neurons (Holmgren et al., 2003; Levy and Reyes, 2012; Rossi et al.,
2020). Accordingly, following past work (Rosenbaum and Doiron, 2014; Rosenbaum et al., 2017;
Huang et al., 2019) we model within- and between-layer connectivity as obeying a two-dimensional
Gaussian (whose spatial widths are denoted by σ; see Methods), and we assume periodic boundary
conditions on our domain. In both sender and receiver layers, we set a larger width for the recurrent
than the feedforward connections (σrec > σffwd), because such networks exhibit correlated neuronal
spiking dynamics (Rosenbaum et al., 2017).

Unless otherwise specified, our network is set with the parameters reported in Table 1. We call
these the standard parameters because they yield stable spiking dynamics in both the sender and
receiver networks, as reflected by temporally irregular spiking activity (Fig. 1b) and an average
pairwise spike-count correlation over all spatial scales close to zero (Rosenbaum et al., 2017). It is
known from previous work that when the E/I balance is destabilized, spatio-temporal patterns of
spiking activity intrinsically emerge within the network (Rosenbaum et al., 2017; Huang et al., 2019;
Keane and Gong, 2015; Muller et al., 2018). The E/I balance can either be destabilized in space
by increasing the width of recurrent inhibition σI (Fig. 1c), or in time by increasing the inhibitory
neuron time constant τdecayI (Fig. 1d). The exact spatio-temporal characteristics of the emerging
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Figure 1: A spiking network with spatially-organized connectivity yields diverse neu-
ronal dynamics.
(a) The input layer produces homogeneous Poisson spike trains (black triangles) and connects to
the Sender layer (S), which itself connects to the Receiver layer (R). S and R consist of excitatory
(E, blue triangles) and inhibitory (I, red circles) conductance-based neurons which are recurrently
connected. All neurons are organized on two-dimensional [0, 1] × [0, 1] spatial grids. All connec-
tions are spatially-organized according to a wrapped Gaussian (periodic boundary conditions) with
widths σffwd, σE and σI for the feedforward and recurrent connections respectively (in all panels
σffwd = 0.05 and σE = 0.01). (b,c,d) Raster plot snapshots of the spiking activity in S over 2 ms
time-windows separated by 20 ms: (b) standard network in the stable regime where σI = 0.1 and

τdecayI = 8 ms, (c) S is destabilized with a spatial failure of I to balance E (σ
(S)
I = 0.3), and (d) S

is destabilized with a temporal failure of I to balance E (τ
decay (S)
I = 24 ms).
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patterns of activity are different. However, their global effect on within-area neuronal dynamics,
and therefore on the interactions between the sender and receiver populations, is expected to be
qualitatively similar. For simplicity, in the following sections we mainly report the results when
destabilizing the network spatially through an increase of σI . This modeling framework gives us
control of the emergence of complex spiking dynamics without the need for an external source of
noise.

The emergence of spatio-temporal patterns yields an increase in spike
count correlations

Spike count correlations are a common experimental measure of underlying neuronal dynamics (Co-
hen and Kohn, 2011; Ocker et al., 2017). Their distribution over all pairs shows high heterogeneity
with a positive mean close to – but significantly different from – zero (Shadlen and Newsome,
1998; Renart et al., 2010). Our model can readily capture those features (Fig. 2). With the
standard parameters the network produces spiking activity that is irregular (Fig. 2a, left), with
a near symmetric distribution of pairwise correlations having a mean close to zero (Fig. 2b, left).
Emergence of spatio-temporal patterns in the receiving area through a spatial destabilization of
the E/I balance (Fig. 2a, right) induces a broader distribution of spike count correlations with
a heavy positive tail (Fig. 2b, right). Yet the distribution of pairwise correlations between neu-
rons from the sending and receiving populations remains relatively narrow with a mean close to
zero (Fig. 2c).

By contrast, when the E/I balance is instead destabilized in the sender population, it yields
the emergence of spatio-temporal patterns (Fig. 2d, left), which are subsequently propagated to
the receiving population (Fig. 2d, right). Consequently the distribution of spike count correlations
is heavily-tailed in both the sender and receiver networks (Fig. 2e). Furthermore, we observe a
heavy tail in the distribution of between-area spike count correlations as well (Fig. 2f).

While pairwise correlations can be a signature of the dynamical regime of a network, we take
advantage of our access to large amounts of synthetic data to move beyond statistics on pairwise
neuronal activity. In the next section, we investigate the full structure of the shared neuronal
variability within each population.

Within-area shared fluctuations depend on the spatial arrangement of
sampled neurons

We randomly select 50 neurons from a local portion of the grid delineated by a disc (Fig. 3a, left).
By changing the radius of the disc we can explore how shared variability depends on the spatial
scale of the sampled population. We only select neurons whose average firing rate is sufficiently
responsive (above 2 Hz) and compute their full covariance matrix C. Through Factor Analysis
(FA) (Everitt, 1984; Yu et al., 2009), we separate C into a shared component, Cshared, and a private
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Figure 2: The emergence of spatio-temporal patterns yields an increase in spike count
correlations.
(a) Simultaneous rasters of activity in Sender (S, left) and Receiver (R, right) layers when the width
of recurrent inhibitory connections is larger in R than in S. (b) Corresponding distributions of the
pairwise spike count correlations for neuron pairs within-area S (left, mean of the distribution:
µ = 0.0045) and within-area R (right, µ = 0.0658). (c) Distribution of the pairwise spike count
correlations between a neuron in S and a neuron in R (µ = 0.0061). (d) Simultaneous rasters of
activity in Sender (S, left) and Receiver (R, right) layers when the width of recurrent inhibitory
connections is larger in S than in R. (e) Corresponding distributions of the pairwise spike count
correlations for neuron pairs within-area S (left, µ = 0.0839) and within-area R (right, µ = 0.0866).
(f) Distribution of the pairwise spike count correlations between a neuron in S and a neuron in R
(µ = 0.0846).
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Figure 3: The structure of within-area shared fluctuations is spatial-scale dependent.
(a) Fifty neurons, each with average firing rates larger than 2 Hz, are selected from the neu-
ronal grid by random sampling from discs with different radii. The shared covariance matrix,
Cshared, is obtained from the full covariance matrix, C, through Factor Analysis. The correspond-
ing shared eigenvectors and eigenvalues are then obtained through Singular Value Decomposition.
(b1) Shared variance explained by the first five eigenmodes within the sender network (S) and
the receiver network (R) when modifying σI in R. Neurons are randomly sampled from a small
disc (disc radius = 0.025). (b2) Projection of 10 s of the receiving population activity on the first
two shared eigenvectors to obtain the first two shared latent variables when neurons are sampled
from a small disc. The network is implemented with the standard parameters (σ

(S)
I = σ

(R)
I = 0.1).

(c1,c2) Same as (b1,b2), except that neurons are sampled from a large disc (disc radius = 0.2).
See Fig. S1 for the case when modifying σI in S.
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component, Cprivate (Fig. 3a, right). FA, in contrast to Probabilistic Principal Component Analysis
(PPCA), does not assume isotropic noise. Hence the elements of the diagonal matrix Cprivate are
not constrained to be identical. FA thus determines the directions of highest covariance, and
not largest individual variance as done in PPCA. Singular Value Decomposition is then applied
to Cshared to obtain the shared eigenvectors and associated eigenvalues which characterize the
structure of the shared fluctuations (Fig. 3a).

When neurons are sampled from a small disc, the first eigenmode explains most of the shared
variance, in both the sender and receiver areas (Fig. 3b1). It is reflected by a high variability of the
first latent variable, while the variability of the second latent variable is relatively small (Fig. 3b2).
A destabilization of the E/I balance in the receiving population does not change the amount of
shared variance explained by the first eigenmodes (Fig. 3b1, right). When neurons are sampled
from a large disc, however, the structure of shared variability is substantially different. Indeed,
the first eigenmode no longer explains an outsized amount of variance compared to the other
eigenmodes (Fig. 3c1), as reflected by similar variance of the first two latent variables (Fig. 3c2).
As the breadth of the inhibitory recurrent connections in the receiving population increases, the
percentage of shared variance explained by the first eigenmodes grows (Fig. 3c1, right). Similar
results were observed when the E/I balance was destabilized in the sending instead of the receiving
population (Fig. S1).

These results emphasize a spatial scale dependence of the structure of shared within-area fluctu-
ations in networks with a spatially-organized architecture. While current experimental recordings
are constrained to a fixed spatial scale, we take advantage of the flexibility of our model to get a
broad understanding of the effect of within-area neuronal dynamics on interaction between brain
regions using a wide range of spatial scales.

Spatio-temporal pattern formation generates low-dimensional shared
variability

To better quantify the structure of within-area shared variability we consider the distribution of
the eigenvalues {λi} of the shared covariance matrix Cshared. In particular, we measure the dimen-
sion of shared variability with the participation ratio of the eigenspectrum: PR = (

∑
λi)

2 /
∑

λ2
i

(Mazzucato et al., 2016; Litwin-Kumar et al., 2017). Contrary to other measures of dimensional-
ity (Mante et al., 2013; Kaufman et al., 2014; Williamson et al., 2016; Semedo et al., 2019), PR
does not require an arbitrary threshold to give an integer value of dimension. Rather, PR is the
squared first moment of the eigenspectrum {λi} normalized by the second moment. If the shared
fluctuations preferentially take place over a few dimensions, reflected by a few eigenvalues, λi,
which are much larger than the others, it yields a low PR (Fig. 4a, left). On the other hand, if the
shared fluctuations are broadly distributed over the whole eigenspace, as reflected by a uniform
distribution of the eigenvalues, the resulting PR is high (Fig. 4a, right).

Using within-area shared dimensionality we investigate how the emergence of spatio-temporal
patterns affects the structure of shared variability, both within the area and in connected areas.
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Figure 4: Spatio-temporal pattern formation generates low-dimensional shared vari-
ability.
(a) Shared dimensionality is measured by the participation ratio: PR = (

∑
λi)

2 /
∑

λ2
i , where {λi}

is the eigenspectrum of the shared covariance matrix. When the eigenvalues are heterogeneous in
magnitude, dimensionality is low (left). Whereas when eigenvalues are more uniform in magnitude,
dimensionality is high (right). (b,c) Shared PR as a function of the radius of the disc from which
neurons are sampled, either in the sender (S, left) or in the receiver (R, right) population. We
destabilize network activity by modifying σI in R (b) or in S (c).

When neurons are sampled from a larger disc the estimated shared PR increases (Fig. 4b, left). This
is expected given how the dominant eigenmode changes with disc radius (Fig. 3b1,c1). However,
when sampling neurons from the whole grid (disc radius = 0.5), the shared PR stays much lower
than the theoretical upper bound of 50 (Fig. 4b, left). Because PR depends strongly on the spatial
arrangement of the sampled neurons, we cannot simply associate a unique PR value to the network
dynamics as a whole. Instead, we will focus on how changes in network dynamics owing to E/I
destabilization are reflected in changes in PR.

As activity propagates from the sender to the receiver network we observe a decrease in PR
(at fixed disc radius), even in the stable network with standard parameters (Fig. 4b). The more
the E/I balance is destabilized in the receiving population, the larger the decrease in PR (Fig. 4b)
when compared to that of the sending population. Strikingly, shared dimensionality in the re-
ceiver network is similarly low irrespective if spatio-temporal patterns emerge locally or if they
are inherited from the sender network (compare Fig. 4b with Fig. 4c). This raises an important
dilemma for the interpretation of changes in the structure of population-wide shared fluctuations.
Namely, that a change in the dimension of population activity can be due to either a shift of the
internal dynamics within a population or be inherited from shifts in upstream areas. This ambigu-
ity prompts us to next consider how the sender and receiver networks directly communicate their
shared fluctuations.

Inter-area communication is oppositely affected if patterns emerge within
the receiver network or if they are inherited from the sender network

In the previous section we used the participation ratio PR as the metric of within-area neuronal
dynamics. However, as pointed out, its value is dependent on the spatial scale from which neurons
are sampled. To give a distance-independent metric of the structure of population-wide activity
we apply spatio-temporal Fourier analysis to the full receiver population activity (see Methods;
Huang et al. (2022)). This provides the power of the network activity as a function of the temporal
frequency ω and the spatial wavenumber k (Fig. S2). While the spatio-temporal structure is rich,
in what follows we use only the peak power of the receiver population activity (over all ω and k)
as a proxy for the characterization of within-area neuronal dynamics. The larger the peak power,
the more structured are the spatio-temporal dynamics of the population-wide activity.
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Figure 5: Inter-area communication is oppositely affected if patterns emerge within
the receiving population or if they are inherited from the sending population.
(a,b) Schematic for inter-area communication. Population activity in the sender network (S) is
depicted in light blue and population activity in the receiver network (R) is depicted in light red.
The communication subspace is depicted in purple and quantifies how well population activity in S
can linearly predict population activity in R. A low prediction performance of the communication
subspace indicates that little of the activity fluctuations in R can be explained by S (a). In contrast,
if most of the activity fluctuations in R can be predicted by S activity, prediction performance
of the communication subspace is high (b). (c,d) Prediction performance of the communication
subspace between S and R when σI is modified in R (c) or in S (d). (e,f) Prediction performance
of the communication subspace is higher when shared PR in S and R is similarly low, while it is
lower when shared PR in S is much higher than in R, no matter whether spatio-temporal patterns
emerge in R (e) or in S (f). Neurons are sampled from a disc with radius 0.2; errorbars are mean
± SEM.
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To assess the interaction between sending and receiving populations we use a recently developed
measure of area-to-area communication based on reduced-rank regression (Semedo et al., 2019).
Briefly, the activity in the receiver network, R, is predicted from the activity in the sender network,
S, through a linear model: R̂ = SBRRR. The rank of the regression matrix BRRR is constrained to
be a low value m (see Methods). Prediction performance is given by the comparison between R
and R̂, quantifying the ability of the sender population activity in linearly predicting the receiver
population activity through a low-dimensional communication subspace (Fig. 5a,b).

As the peak power of spiking activity in the receiver network increases (by increasing σI locally),
there is a decrease in prediction performance of the communication subspace (Fig. 5c). We note
that the exact value of prediction performance depends on the spatial scale from which neurons are
sampled (Fig. S3): the larger the spatial scale, the lower the prediction performance. When the
E/I balance is instead destabilized in the sender network, the peak power in the receiver network
also increases due to the inheritance of spatio-temporal patterns from the sending area. Indeed,
as mentioned earlier, the structure of the receiver population activity shows the same signatures,
in terms of shared dimensionality (Fig. 4b,c) and peak power (Fig. 5c,d), irrespective of whether
the population-wide activity is generated locally or inherited from the sender network.

Despite similar dynamics in the receiver population regardless of the origin of the E/I desta-
bilization, prediction performance of the communication subspace is unambiguous. On one hand,
if complex spatio-temporal patterns emerge in the receiver network, they disrupt communication
between the sending and receiving areas (Fig. 5c). On the other hand, communication is improved
if spatio-temporal patterns emerge in the sender network. In total, the characteristics of neuronal
dynamics in a single area are not sufficient to predict the quality of communication to that area.

Interestingly, the difference in shared dimensionality in the sender and receiver areas appears to
be a better predictor of the quality of communication between the two. Specifically, a mismatch in
the within-area dimensionality leads to poor communication between sender and receiver networks,
no matter the origin of spatio-temporal patterns of activity (Fig. 5e,f). We note that if the E/I
balance is destabilized temporally by increasing the time constant of inhibitory neurons, τdecayI ,
similar observations are made (Fig. S4). This last result motivates a more thorough analysis of
how the relation between the dimensionality of sender and receiver population dynamics affects
communication.

A misalignment of shared variability is associated with poor communi-
cation between connected areas

As exposed above, destabilization of the E/I balance within a population leads to low-dimensional
shared variability. If the match of the dimension of shared variability is all that is required for
good communication then a combined E/I destabilization in the sender and receiver networks (so
that both have low dimension) should yield a high prediction performance of the communication
subspace. If instead prediction performance is unexpectedly low, this would suggest that the
matching in shared dimensionality is not the only mechanism at play for faithful communication.
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Figure 6: A misalignment of shared variability is associated with poor communication
between connected areas.
(a) The sender layer (S) is destabilized through a slower inhibitory timescale. The receiver layer
(R) is either in the stable regime (top, patterns emerge in S only), or destabilized through broader
recurrent inhibition (bottom, patterns emerge in S and R). (b) The prediction performance of the
communication subspace between S and R is higher when only S is destabilized compared to the
case when both S and R are destabilized. (c) Difference in canonical correlations between the
case when only S is destabilized and the case when S and R are destabilized (see Fig. S5 for the
canonical correlations in each case individually).
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To test this hypothesis we compare the communication across two distinct sender-receiver
networks. Both networks have the sender E/I balance destabilized through a longer inhibitory
time constant. In the first network the receiving population is kept in an intrinsically stable
regime (Fig. 6a, top), while in the second network the receiver E/I balance is destabilized through
a broadening of recurrent inhibition (Fig. 6a, bottom). As expected, both networks have a good
match in the dimensionality of the sender and receiver populations (Fig. S5). However, prediction
performance of the communication subspace is substantially lower when different spatio-temporal
patterns emerge in the sender and receiver networks individually, as compared to the case where
the receiving area inherits its low dimensional nature from the sending area (Fig. 6b). Therefore,
dimensionality matching is not a sufficient condition for good communication.

We then hypothesize that a misalignment of the low-dimensional manifolds of shared variabil-
ity in the sender and receiver populations is the cause of disruption of their communication. We
measure the alignment of shared variability in sender and receiver areas by computing their aligned
canonical correlations (Gallego et al., 2020). We conservatively select a dimensionality of the mani-
fold of 20, which is higher than what was used in previous studies (Gallego et al., 2020). In our case,
the value of the canonical correlation for each eigenmode indicates to what extent the given latent
dimension can be well aligned between the sender and receiver areas through a linear transfor-
mation. We observe that the first eigenmodes can be well aligned and that the larger the spatial
scale from which neurons are sampled, the better the alignment of their eigenmodes (Fig. S5).
Strikingly, we observe larger canonical correlations between the sending and receiving populations
when only the sender network is destabilized, compared to the case when both the sender and
the receiver networks are destabilized (Fig. 6c). Hence a misalignment of the within-area shared
fluctuations between sender and receiver populations causes poor communication.

To summarize, a mismatch in either the dimensionality or the alignment of the manifolds of
shared variability yields poor communication between connected brain areas (Fig. 7). Specifically,
faithful communication, as assessed by a linear measure, is possible if shared dimensionality is
similarly low in sender and receiver networks, and if the manifold of the shared variability of
the receiving population can be well aligned to the one in the sending area (Fig. 7a). If a good
alignment of the shared variability in sending and receiving populations cannot be achieved through
a linear transformation, for example in the case where different spatio-temporal patterns emerge in
both areas independently, communication is disrupted (Fig. 7b). Finally, if the sender population
displays high-dimensional shared variability while the receiver population exhibits low-dimensional
shared variability, such as when spatio-temporal patterns of activity only emerge in the receiving
area, the resulting communication is also poor (Fig. 7c).

Activity in the receiving population is effectively driven by the sending
population activity even when communication is poor

We have shown that communication between sender and receiver networks can be disrupted in
different ways. But what are the implications of a poor communication for the propagation of
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Figure 7: Communication is disrupted if there is a mismatch in the dimensionality or
the alignment of within-area shared fluctuations in the sender and receiver networks.
Schematic of the manifolds of shared fluctuations in the sending and receiving areas. (a) When
shared dimensionality is similarly low-dimensional in the sender and receiver layers and the shared
manifolds can be aligned, communication is faithful. (b) When shared dimensionality is similarly
low-dimensional in the sender and receiver layers, but the manifolds cannot be properly aligned
through a linear transformation, communication is poor. (c) When shared dimensionality is higher
in the sender than in the receiver layer, communication is poor.
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(a) Networks with σ

(S)
I = 0.1 and σ

(R)
I = 0.3 yield poor prediction performance of the communica-

tion subspace (Fig. 5c). Spikes are generated in the input layer and drive the Sender layer, where
spikes are frozen across trials. The membrane potential of neurons in the Receiver (R) is set to two
different initial conditions: V1 or V2. Raster plots at three time points are presented (∆t = 2 ms).
(b) Difference in the Receivers’ excitatory population firing rate (spikes per second) over time
between the two trials with different membrane potential initial conditions. (c) Zoom in the raster
plot of (a) at time 9.930 s. Blue dots are spikes for the first trial, red dots are spikes for the second
trial and purple dots are overlapping spikes of the first and second trials. (d) Same as (a), for the

network where τ
decay(S)
I = 8 ms and τ

decay(R)
I = 24 ms, which yields poor prediction performance of

the communication subspace (Fig. S4). (e) Corresponding difference in the Receiver’s excitatory
population firing rate.
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activity from sending to receiving populations? By design, the architecture of our network in-
volves strong excitatory synaptic connections between the sender and receiver layers. Further, the
input from the sender area is the only one that drives the neurons in the receiver layer. There-
fore, disrupted communication between the sender and receiver networks is not due to a simple
weakening of interactions, or competition from other sources. Rather, the linear regression frame-
work required to measure the communication subspace may be blind to nonlinear sender – receiver
network interactions.

We test this hypothesis by setting the network parameters in a regime with low prediction per-
formance of the communication subspace due to emergence of low-dimensional shared fluctuations
in the receiver network (Fig. 5c). We generate an instance of spikes in the input layer and record
the resulting spike times in the sender layer. We then compare two response trials in the receiving
layer, where the only difference between them is the initial membrane voltage of the excitatory
neurons in the receiving area (Fig. 8a). Despite the receiver network being in a regime where
internally generated patterns occur, the difference in initial states does not affect the macroscopic
pattern of spiking activity across trials. Indeed, the two trials exhibit the same statistical prop-
erties: the difference in population firing rate between the two trials remains low throughout the
network simulations (Fig. 8b). Overall, this shows that the macroscopic population activity in the
receiving area is entrained to the activity in the sending layer. Thus, despite poor communication
between the sender and receiver networks, as measured through linear analysis, there remains a
very strong interaction that dictates receiver population activity.

While the macroscopic network activity is reliable across trials, an analysis of the microscopic
activity shows that it is nevertheless unreliable. The exact spike train sequences across the network
differ significantly between the two trials (Fig. 8c), so that any observer of a single neuron would
easily distinguish the trials. These results agree with previous studies where a weak perturbation
to network activity yields only a transient change in firing rate but a long-lasting decorrelation
of spike sequences in balanced networks, often termed microscopic chaos (London et al., 2010;
Monteforte and Wolf, 2012). Our network architecture involves spatially-organized recurrent and
feedforward connections. Such networks can either be set in an asynchronous regime or a correlated
balanced state, where balance is achieved over the whole spatial domain rather than locally (Rosen-
baum and Doiron, 2014). Similar to disordered recurrent networks, spatially-organized networks
in the asynchronous regime yield microscopic chaos when weakly perturbed (Rosenbaum and Do-
iron, 2014). Here we show that when the network is set in a correlated balanced state, where
macroscopic spatio-temporal patterns emerge, a weak perturbation still only yields microscopic
chaos. Therefore, our results extend our understanding of neuronal dynamics in weakly perturbed
networks with biologically-constrained architecture.

We observe similar results when the E/I balance is destabilized temporally in the receiver
network (Fig. 8d,e), a scenario which also leads to poor communication (Fig. S4). A difference
in the initial membrane voltage of the excitatory neurons in the receiver layer does not affect the
global structure of spatio-temporal patterns of activity (Fig. 8d). The difference in population
firing rate is larger than for the spatial destabilization (compare Fig. 8e to Fig. 8b). Yet it remains
within a relatively narrow range and does not diverge with time.
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In summary, we have shown evidence that the receiver layer is always effectively driven by
the sender layer in our network, even in scenarios with apparently disrupted communication.
Because our communication measure is linear, these results highlight a nonlinear mapping of
activity between sender and receiver layers. Therefore, it points for the need of nonlinear measures
when deciphering between-area communication in neuronal networks with complex spatio-temporal
dynamics.

Discussion

The mechanisms that produce the low-dimensional shared variability across a neuronal population
can be organized into two broad categories. First, shared variability of the neurons in a brain region
may be inherited (in part) from connecting brain areas (Wimmer et al., 2015; Gómez-Laberge et al.,
2016; Semedo et al., 2019). Second, shared variability may be an emergent property of a brain area,
owing to local, complex recurrent interactions between neurons (Darshan et al., 2018; Landau and
Sompolinsky, 2018; Mastrogiuseppe and Ostojic, 2018; Huang et al., 2019). Population recordings
restricted to a single brain area cannot easily disentangle the contributions of each mechanic to
the total shared variability. Rather, multi-area brain recordings will be needed to expose these
separate mechanisms (Urai et al., 2022). In our study, we used computational modeling to explore
signatures of inherited or emergent shared variability within a brain-area by measuring the (linear)
communication between distinct, but connected, brain areas.

A suitable modeling framework to investigate the interplay between inheritance and emer-
gence of neuronal variability in brain circuits has only recently become available. At one extreme
the inheritance of neuronal fluctuations has been extensively studied through the analysis of ac-
tivity propagation in feedforward networks (Abeles, 1991; Diesmann et al., 1999; Reyes, 2003;
Rosenbaum et al., 2011). However, since those circuits explicitly lacked within layer recurrent
connections, they could not model the emergence of rich population dynamics. At the other ex-
treme, within-population recurrent, yet unstructured, excitatory and inhibitory connections were
introduced to model asynchronous activity reminiscent of the baseline state of cortical variabil-
ity (Van Vreeswijk and Sompolinsky, 1998; Amit and Brunel, 1997; Renart et al., 2010; Shadlen
and Newsome, 1998). However, these networks did not produce rich, low dimensional, fluctuations
shared across the population. Over the past few years novel modeling frameworks have included
structure to the within-population recurrent wiring that permits low-dimensional fluctuations to
intrinsically emerge within the network. Different approaches have been taken. On the one hand,
forcing a low-rank structure of the recurrent connectivity matrix yields low-dimensional activ-
ity, revealing a strong relationship between structure and dynamics (Mastrogiuseppe and Ostojic,
2018; Landau and Sompolinsky, 2018). On the other hand, low-dimensional shared fluctuations
can emerge due to a destabilization of the E/I balance despite a connectivity matrix with high
rank (Darshan et al., 2018; Huang et al., 2019). In our work, we leverage those modeling frame-
works to investigate how the emergence and inheritance of low-dimensional neuronal fluctuations
affect between-area interactions in well-controlled settings.
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We assess the interaction between a sender network and a receiver network through a linear
communication subspace measure. Brain recordings are believed to frequently operate in a linear
regime, in particular in early sensory areas (Stringer et al., 2021). Besides, linear methods are
routinely used for the analysis of neuronal dynamics and in many cases have proven successful.
At the single population level, they have unraveled stable low-dimensional manifolds in working
memory networks (Murray et al., 2017) as well as in motor areas (Jiang et al., 2020). In addition,
the suppression of rich spatio-temporal dynamics has been shown to increase the amount of linear
Fisher information that is propagated down layers (Huang et al., 2022). However, cognition arises
through the interaction of distributed brain regions. Recent technological advances have allowed a
glimpse into distributed processing through simultaneous recordings from distinct neuronal pop-
ulations, allowing us to answer the question of how much of the dynamics in a population can
be explained by the activity of another recorded brain area. At this multiple populations level,
linear methods have also been critical. They have exhibited selectivity (Kaufman et al., 2014)
and a low-dimensional subspace (Semedo et al., 2019; Srinath et al., 2021) in the communication
between brain areas. Our work shows that those methods provide a useful lens to investigate
the inheritance of neuronal fluctuations by a receiver displaying linear mapping, in particular in
low-dimensional inheritance settings.

However, when the receiving area is in a nonlinear regime, where complex spatio-temporal
dynamics intrinsically emerge, we show that between-area communication cannot be properly as-
sessed through linear measures. Our results support a recent study revealing that when a network
exhibits strong pairwise correlations, reminiscent of low-dimensional pattern formation, connectiv-
ity inference is biased towards an excess of connectivity between highly correlated neurons (Das
and Fiete, 2020). Therefore, linear inference methods are only appropriate when neuronal dynam-
ics operate in a linear regime, where activity is high-dimensional and unstructured (Das and Fiete,
2020). Even though early sensory areas are believed to mostly operate in a linear regime to faith-
fully encode sensory inputs, brain areas involved in higher-level cognition exhibit low-dimensional
spatio-temporal dynamics (Wang, 2002; Mante et al., 2013; Lara et al., 2018; Chen et al., 2021).
Besides, it has recently been shown that microscopic irregularity can subsist even in the presence
of macroscopic fluctuations (Pyle and Rosenbaum, 2017; Darshan et al., 2018). Accordingly, our
results indicate that even when the receiver network is in the pattern-forming regime it is never-
theless effectively driven by the sender network, as reflected by microscopic chaos upon a weak
perturbation. It is simply that the linear methods of communication that we have used (Semedo
et al., 2019) are blind to this interaction. Therefore, novel nonlinear methods will have to be
developed to accurately assess communication involving brain areas with more complex dynamics,
such as those involved in higher-level cognition.

Finally, the simplicity of our modeling framework is critical to thoroughly study the interplay
between inheritance and emergence of neuronal fluctuations in tightly controlled settings. Indeed,
the use of feedforwardly connected distinct sender and receiver networks, each only involving
local recurrent connections, allows us to observe the differential effects of low-dimensional shared
fluctuations on between-area communication depending on their well-defined origin. However,
brain circuits show recurrent architecture spanning a wide range of spatial scales. Furthermore,
cognition is believed to arise from distributed computational processes. Even in early sensory areas
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historically thought of as mostly feedforward, the importance of feedback interactions in sensory
processing has started to be exposed (Semedo et al., 2022). Therefore, a natural extension of our
work will be the implementation of more complex circuit architectures, starting by the introduction
of feedback connections, to provide novel insights into the mechanistic interplay of inheritance and
emergence of shared fluctuation across spatial scales.

Methods

Network structure

A three-layer spiking network model is implemented similar to previous work (Huang et al., 2019).
The input layer consists of 2,500 excitatory neurons whose spikes are taken from independent
homogeneous (space and time) Poisson processes with a uniform rate of 10 Hz. The sender and
receiver layers each consist of 40,000 excitatory (E) and 10,000 inhibitory (I) neurons which are
arranged on a unit square domain Γ = [0, 1] × [0, 1] with periodic boundary conditions. The
probability of connection between a presynaptic neuron belonging to class β ∈ {E,I} located at
position y⃗ = (y1, y2) and a postsynaptic neuron belonging to class α ∈ {E,I} located at position
x⃗ = (x1, x2) depends on their pairwise distance measured periodically on Γ:

pαβ (x⃗, y⃗) =
Kout

αβ

Nα

g(x1 − y1, σβ)g(x2 − y2, σβ) (1)

where Kout
αβ is the out-degree, so p̄αβ =

Kout
αβ

Nα
is the mean connection probability, and g(u, σ) is a

wrapped Gaussian distribution:

g(u, σ) =
1

σ
√
2π

+∞∑
k=−∞

e(−u+k)2/(2σ2) (2)

Excitatory feedforward connections between layers and recurrent excitatory and inhibitory con-
nections within layers are spatially distributed according to a Gaussian with width σffwd, σE and
σI respectively.

Neuronal dynamics

Excitatory and inhibitory neurons in sender and receiver networks are modeled as conductance-
based exponential integrate-and-fire neurons:

Cm

dV α
j

dt
= −gαL

(
V α
j − VL

)
+ gαL∆

α
T e

(V α
j −VT )/∆α

T + Iαj (3)
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Network connectivity

σffwd = 0.05 σrec = 0.1 σE = 0.1 σI = 0.1

p̄ffwd
E = 0.1 p̄ffwd

I = 0.05 jffwd
E = 240 jffwd

I = 400

p̄recEE = 0.01 p̄recEI = 0.04 p̄recIE = 0.03 p̄recII = 0.04

jrecEE = 80 jrecEI = −240 jrecIE = 40 jrecII = −300

Neuronal dynamics
Cm = 1 ms gEL = 1/15 gIL = 1/10 VL = −60 mV

Vth = −10 mV Vreset = −65 mV tEref = 1.5 ms tIref = 0.5 ms
VT = −50 mV ∆E

T = 2 mV ∆I
T = 0.5 mV

τ riseE = 1 ms τdecayE = 5 ms τ riseI = 1 ms τdecayI = 8 ms

Table 1: Standard parameters for the simulations

with α ∈ {E, I}. A neuron spikes when its membrane voltage V α
j reaches the spiking threshold Vth.

Then its membrane voltage is reset at Vreset for a refractory period tαref. The total current received
by neuron j belonging to class α, Iαj (t), is given by the summation of feedforward and recurrent
input:

Iαj (t)

Cm

=

Nffwd
E∑
k=1

jffwd
jk√
N

∑
n

ηE(t− tkn) +
∑

β∈{E,I}

Nrec
β∑

k=1

jrecjk√
N

∑
n

ηβ(t− tkn) (4)

with N = NE + NI the total number of neurons within the layer of interest. The postsynaptic
current, ηβ(t), is induced by presynaptic spiking and depends on the class (β ∈ {E, I}) of the
presynaptic neuron. Assuming a single presynaptic spike at time t = 0, it is given by the difference
of two exponentials with rise timescale τ riseβ and decay timescale τdecayβ :

ηβ(t) =

 e
−t/τ

decay
β −e

−t/τriseβ

τdecayβ −τ riseβ

, t ⩾ 0

0, t < 0
(5)

Equations are numerically integrated using the forward Euler method with a timestep of
0.05 ms. Unless specified otherwise, all neuronal and connectivity parameters are identical in
the sender and the receiver layers (Table 1).

Shared covariance matrix and within-area shared dimensionality

Shared covariance of within-area neuronal activity x⃗ is assessed through factor analysis (FA):

p(x⃗) = N (µ⃗, Cshared + Cprivate) (6)

where Cprivate is a diagonal matrix whose elements represent the individual neuronal variances and
Cshared represents the shared component of the full covariance matrix (Everitt, 1984; Yu et al.,
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2009). Singular value decomposition is applied to Cshared:

Cshared = UΛUT (7)

where the columns of U are the eigenvectors and the elements of the diagonal matrix Λ, λi, are
the associated eigenvalues ordered from larger to smaller.

The dimensionality of the shared covariance matrix is estimated using participation ratio
(PR) (Mazzucato et al., 2016; Litwin-Kumar et al., 2017):

PR ≡ dim(Cshared) =

(∑N
i=1 λi

)2

∑N
i=1 λ

2
i

(8)

Power spectrum

We estimate the Fourier transform of the excitatory spiking activity (1 ms bins) in space and
time using the Welch’s method with 200 ms timewindows overlapping by 10 ms, as done previ-
ously (Huang et al., 2022). We then compute the corresponding power by taking the average of
the squared absolute value of the single-sided Fourier transform. As order parameter of the degree
of pattern-formation, we use the peak of the power over all temporal frequencies ω and spatial
wavenumbers k (excluding the null frequencies).

Between-area communication

To assess communication between sender and receiver networks, we use a recently developed com-
munication subspace measure based on reduced-rank regression (Semedo et al., 2019):

R̂ = SBRRR, with rank(BRRR) = m (9)

with S the activity in the sender network and R̂ the estimated activity in the receiver network. It
can be shown that BRRR is a low-rank approximation of the ordinary least-squares solution (Semedo
et al., 2019):

BRRR = BOLSΓmΓ
T
m (10)

with BOLS =
(
STS

)−1
STR. We define the optimal rank m as the smallest number of dimensions

for which the predictive performance is within one SEM of the peak performance over 20 cross-
validation folds. The dimensions in activity S that are most predictive of activity R according to
the communication subspace measure are called “predictive dimensions”. It can be shown that
they are the m columns of BOLSΓm. The predictive performance of the communication subspace
is defined as the average Normalized Squared Error over 20 cross-validation folds (Semedo et al.,
2019).
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Alignment of shared variability

To align the simultaneously recorded latent dynamics in the sending and receiving populations,
we use a method based on canonical correlation analysis which has recently been used to align
within-area latent dynamics over several days where a different number of neurons with different
identities were recorded (Gallego et al., 2020). More specifically, we know from equation (7) that
the singular value decomposition of the shared covariance matrix is given by: Cshared = UΛUT .
Hence the columns of U are the eigenvectors of Cshared, ordered from the one which explains the
most shared variance to the one that explains the least. We keep m = 20 shared latent variables,
as they are sufficient to explain most of the shared variance. For the sender and receiver networks
separately, we project the activity of the 50 neurons that were sampled onto the 20 shared latent
variables to obtain anm×T matrix of latent dynamics Lk, where T is the number of timepoints and
k ∈ {S,R}. Then, we compute the QR decomposition of their transpose: LT

k = QkRk, where Qk is
a T×m matrix and Rk an m×m matrix. The singular value decomposition of the covariance of QS

with QR is given by: QT
SQR = Ũ S̃Ṽ T . Canonical correlation analysis finds new latent directions to

maximize the pairwise correlations between the sending and receiving populations. The projection
of the latent dynamics onto these new latent directions is implemented through the corresponding
m ×m matrices: MS = R−1

S Ũ and MR = R−1
R Ṽ . We can then project the latent dynamics onto

those new latent directions: L̃T
k = LT

kMk. Finally, the aligned canonical correlations are given by
the pairwise correlations between the aligned latent dynamics: L̃SL̃

T
R = ŨTQT

SQRṼ = S̃. They
are the elements of the diagonal matrix S̃, which are ordered from larger to lower value (Gallego
et al., 2020).
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Figure S1: The structure of within-area shared fluctuations is spatial-scale dependent.
Shared variance explained by the first five eigenmodes within sender network (S, left) and within
receiver network (R, right) when modifying σI in S. Neurons are randomly sampled from a small
disc (top) or from a large disc (bottom).

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.04.11.487906doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.11.487906
http://creativecommons.org/licenses/by-nc-nd/4.0/


b

a

c

σI
(R) = 0.1

1

6

2

5
4
3

10 20 30 40 50 0

x108

5

σI
(R) = 0.15

0

x108

7

σI
(R) = 0.2

0

x108

9
σI

(R) = 0.25

0

x108

16
σI

(R) = 0.3

0

x108

25

0.30.1

1

σI
(R)

Pe
ak

 o
f p

ow
er

0.15 0.2 0.25

2

x109
3

0
0.30.1

σI
(R)

0.15 0.2 0.25

2

3

1

k m
ax

0.30.1
σI

(R)
0.15 0.2 0.25

40

0

30

20

10ω
m

ax
 (H

z)

Frequency ω (Hz)

W
av

en
um

be
r k

Figure S2: Spatio-temporal power spectrum as the network is spatially destabilized.
(a) Power as a function of temporal frequency ω and spatial wavenumber k when modifying σI

in the receiver network (R). The wavenumber is given by k =
√
x2 + y2, where x and y are the

coordinates in the 2-dimensional grid space. (b) Peak of the power over all temporal frequencies
ω and spatial wavenumbers k. (c) Spatial wavenumber kmax (left) and temporal frequency ωmax

(right) at the location of the peak of power.
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Figure S4: Inter-area communication is oppositely affected if temporal patterns
emerge within the receiver network or if they are inherited from the sender net-
work.
(a) Peak of the power over all temporal frequencies ω and spatial wavenumbers k as a function
of τdecayI in the receiver network (R). (b) Spatial wavenumber kmax (left) and temporal frequency
ωmax (right) at the location of the peak of power. (c,d) Prediction performance of the communi-
cation subspace between S and R when τdecayI is modified in R (c) or in S (d). (e,f) Prediction
performance of the communication subspace is higher when shared dimensionality in S and R is
similarly low, while it is lower when shared dimensionality in S is much higher than in R, no matter
if spatio-temporal patterns emerge in R (e) or in S (f). Neurons are sampled from a disc with
radius 0.2; errorbars are mean ± SEM.
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Figure S5: Emergence of novel spatio-temporal patterns in the receiver network yields
a misalignment of the shared variability in sending and receiving populations.
(a) Shared dimensionality in the sender network (S), the receiver network (R), and the difference
between the two (S-R) in the case where spatio-temporal patterns emerge in S only (Fig. 6a,
top). (b) Same as (a), except that different spatio-temporal patterns emerge in S and R (Fig. 6a,
bottom). (c,d) Canonical correlations between the shared fluctuations in S and R when spatio-
temporal patterns emerge in S only (c), and when different spatio-temporal patterns emerge in S
and R (d).
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