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Abstract

The advent of high throughput spatial transcriptomics (HST) has allowed for unprecedented
characterization of spatially distinct cell communities within a tissue sample. While a wide
range of computational tools exist for detecting cell communities in HST data, none allow for
characterization of community connectivity, i.e., the relative similarity of cells within and be-
tween found communities – an analysis task that can elucidate cellular dynamics in important
settings such as the tumor microenvironment. To address this gap, we introduce the concept
of analysis of community connectivity (ACC), which entails not only labeling distinct cell com-
munities within a tissue sample, but understanding the relative similarity of cells within and
between communities. We develop a Bayesian multi-layer network model called BANYAN for
integration of spatial and gene expression information to achieve ACC. We use BANYAN to im-
plement ACC in invasive ductal carcinoma, and uncover distinct community structure relevant
to the interaction of cell types within the tumor microenvironment. Next, we show how ACC
can help clarify ambiguous annotations in a human white adipose tissue sample. Finally, we
demonstrate BANYAN’s ability to recover community connectivity structure via a simulation
study based on real sagittal mouse brain HST data.
Availability: An R package banyan is available at https://github.com/carter-allen/banyan.
Contact: chung.911@osu.edu
Supplementary information: Supplementary data are available online.
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Author Summary

The proliferation of spatial transcriptomics technologies have prompted the development of numer-
ous statistical models for characterizing the makeup of a tissue sample in terms of distinct cell
sub-populations. However, existing methods regard inferred sub-populations as static entities and
do not offer any ability to discover the relative similarity of cells within and between communities,
thereby obfuscating the true interactive nature of cells in a tissue sample. We develop BANYAN:
a statistical model for implementing analysis of community connectivity (ACC), i.e., the process
of inferring the similarity of cells within and between sub-populations. We demonstrate the utility
of ACC through the analysis of a publicly available breast cancer data set, which revealed distinct
community structure between tumor suppressive and invasive cancer sub-populations. We then
showed how ACC may help elucidate ambiguous sub-population annotations in a publicly avail-
able human white adipose tissue data set. Finally, we implement a simulation study to validate
BANYAN’s ability to recover true community connectivity structure in HST data.
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1 Introduction

The advent of spatial transcriptomics has allowed for the unprecedented characterization of tissue
architecture in terms of spatially resolved transcript abundance [Asp et al., 2020]. In particular,
high throughput spatial transcriptomics (HST) technologies such as the 10X Visium platform have
become popular due to their transcriptome-wide sequencing depth. The proliferation of HST data
has lead to the development of several computational tools for discerning cell sub-populations in
HST data, while considering both gene expression and spatial information. The existing tools span
a range of methodological categories, including neural networks [Chang et al., 2021, Hu et al., 2021,
Canozo et al., 2022], graph clustering algorithms [Dries et al., 2019, Hao et al., 2020, Pham et al.,
2020], and Bayesian statistical models [Zhao et al., 2021, Allen et al., 2021].

While each of these methodological categories presents unique advantages, they are fundamen-
tally limited in that they do not explicitly model the interactive nature of cell sub-populations in a
tissue sample [Barresi and Gilbert, 2019]. In other words, the sub-populations derived from existing
methods are considered static, and no information is provided on how they relate to one another.
Meanwhile, it is known that communication within and between groups of cells is a fundamental
driver of healthy and diseased processes in a complex tissue [Armingol et al., 2021]. Moreover,
Canozo et al. [2022] report substantial heterogeneity within traditional mouse olfactory bulb layer
annotations, driven in part by spatial variation in intercellular communication patterns. However,
detecting higher resolution cell sup-populations with existing tools is challenging as there is no
principled methodology for determining which cell sup-populations may be members of a common
broader phenotype (e.g., immune or cancer cell sub-types) based on similar yet distinct gene ex-
pression or spatial location patterns. As a consequence, current tools cannot be used to study the
community connectivity structure of cell sub-populations, i.e., the relative similarity among cells
within and between sub-populations.

By studying community connectivity structure in HST data, we may obtain valuable insights
into the interactive dynamics of cell sup-populations in challenging settings such as the tumor
microenvironment. For example, instead of simply labeling categories of immune cells and cancer
cells in a tumor, we can describe how these important cell sub-populations relate to one another,
and how tertiary intermediate sub-populations may be mediating important dynamics within the
tumor microenvironment. Furthermore, characterizing community connectivity structure may help
inform more biologically informative annotations of ambiguous sub-populations by relating them
to more clearly defined sub-populations. Doing so may allow for a more biologically meaningful
interpretation of all HST cell clusters in the common case when only a few cell clusters correspond
clearly to a known cell type.

To address these gaps, we propose BANYAN (Bayesian ANalysis of communitY connectiv-
ity in spAtial single-cell Networks): a statistical network model capable of discerning community
connectivity structure in HST data. BANYAN draws inspiration from the vast field of biological
network analysis [Guzzi and Roy, 2020], and is built on the supposition that HST data is most
accurately represented as similarity networks that reflect similarity between cell spots in terms of
spatial location and transcriptional profiles. BANYAN introduces the notion of analysis of commu-
nity connectivity (ACC) to HST data analysis through implementation of a Bayesian multi-layered
stochastic block model [Nowicki and Snijders, 2001, Valles-Catala et al., 2016] that infers sub-
populations based on transcriptional and spatial similarity between cell spots. We offer convenient
implementation and interactive visualization functionality via the R package banyan freely available
at https://github.com/carter-allen/banyan.
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Figure 1: Analysis of community connectivity. Spatial transcriptomics platforms yield gene
expression and spatial coordinate matrices, which may be used to derive community labels. analysis
of community connectivity is achieved using BANYAN, which integrates gene expression profiles
with spatial locations to infer the connectivity within and between communities.

2 Results

2.1 BANYAN allows for the analysis of community connectivity in HST data

BANYAN is the first HST computational tool to allow for analysis of community connectivity
(ACC), i.e., the process of inferring the similarity of cells within and between sub-populations. A
graphical representation is given in Figure 1, and the workflow to acheive ACC can be summarized
as follows. First, given cell spot-level gene expression features and spatial coordinate data from
HST platforms such as 10X Visium, we construct two spot-spot nearest neighbors networks. These
networks are then integrated into a multi-layer graph data structure. Then, we fit the Bayesian
multi-layer stochastic block model (MLSBM). The estimated parameters from this model allow us to
(i) characterize community structure using cell spot sub-population labels, (ii) quantify uncertainty
in predicted sub-population labels to identify ambiguous community structure regions, and (iii) infer
the community structure of the tissue sample by quantifying the relative similarity between cell
spots within and between sub-populations.

2.2 Discovering community structure in invasive ductal carcinoma

Accounting for roughly 25% of all non-dermal cancers in women, breast cancer ranks as the most
common non-dermal female-specific cancer type, and narrowly the most common cancer type across
both sexes [WCRF, 2020]. Of all sub-types, invasive ductal carcinoma (IDC) is the most common
and most severe, accounting for roughly 80% of all breast cancers in women [Harris et al., 2012].
While previous authors have used spatial trancriptomics to study IDC samples relative to ductal
carcinoma in situ (DCIS) samples [Yoosuf et al., 2020], IDC has yet to be studied through the lens
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of community structure due to the lack of computational tools available for performing ACC with
HST data.

To illustrate ACC in the tumor microenvironment, we applied BANYAN to a publicly avail-
able IDC sample sequenced with the 10X Visium platform [10x Genomics, 2020]. We identified
five spatially distinct cell spot sub-populations (Figure 2A), with associated uncertainty measures
(Figure 2B). We then identified community structure by computing posterior estimates of within
and between-community connectivity parameters, displayed in Figures 2C and 2D, respectively.
Finally, to interpret each sub-population in terms of IDC biology, we computed the most differen-
tially expressed genes between each sub-population and all others using the Wilcoxon Rank Sum
test (Figure 2E).

Figure 2E displays a clear block structure in the expression of sub-population marker genes,
indicative of strong community structure signal in the data. These marker genes can be used to
obtain a number of interesting biological insights regarding the community structure of the IDC
sample. For instance, the S100A11 gene, a marker for sub-population 1, has been shown to be a
diagnostic marker in breast cancers [Liu et al., 2010] and has been implicated in aggressive tumor
progression [McKiernan et al., 2011]. Further, KRT8 is used to differentiate aggressive grades of
IDCs [Walker et al., 2007]. While outside of the context of IDCs, DEGS2 has been shown to
play a role in the invasion and metastasis of colorectal cancer [Guo et al., 2021]. Taken together,
these marker genes suggest sub-population 1 contains a relatively high abundance of aggressive
and invasive cancer cell types. On the other hand, sub-population 2 featured marker genes such
as MALAT1 that are associated with tumor suppressive behaviors in IDCs [Kim et al., 2018].
Another marker gene for sub-population 2, CCDC80, has been linked with tumor suppressive
functions, albeit not in the context of IDCs [Ferraro et al., 2013].

Given these brief characterizations of sub-populations 1 and 2 available from the existing liter-
ature, we may hypothesize that these groups of cell spots are in some sense opposed in terms of
their role within the tumor based on their transcriptional profiles. Indeed, these sub-populations
also reside spatially at opposite ends of the tumor slice. We may investigate the similarity or dis-
similarity of these sub-populations 1 and 2 using the between-community connectivity parameters
presented in Figure 2D. We find that the estimate of this parameter is near zero (as evidenced
by the black coloring of the entry (1,2) in Figure 2D), supporting our hypothesized dissimilarity
between sub-populations 1 and 2.

In fact, sub-population 1 featured very low between-community connectivity with all other
sub-populations besides sub-population 4, which occupies a heterogeneous “background” position
in the spatial landscape of the tissue sample (Figure 2A) and therefore featured relatively high
connectivity with all other communities. This spatial heterogeneity is accompanied by relatively
low within-community connectivity (Figure 2C), which indicates that spot-spot similarities are less
common between cell spots in sub-population 4 than in other sub-populations. In Figure 2E, it
can be seen that many of the marker genes for sub-population 2 are shared by sub-population 4,
including MALAT1, suggesting a similarity between these two sub-populations in terms of tran-
scriptional profiles. In addition to the marker genes shared with sub-population 2, sub-population 4
features several of its own distinct marker genes, namely the immunoglobulin heavy chain-encoding
RNAs IGHG1 and IGHG3, which have themselves been shown to feature tumor suppressive ten-
dencies via promotion of B cell specific immunoglobulin [Hsu et al., 2019], and have been associated
with increased patient survival [Larsson et al., 2020]. This observation of functional similarity be-
tween sub-populations 2 and 4 is validated by Figure 2D, which clearly shows the highest estimated
between-community connectivity in the data occurring between sub-populations 2 and 4. Taken to-
gether, these observations may lead us to reason that the sub-population 1 vs. 2 dynamic described
previously is linked via the more heterogeneous yet still tumor suppressive-like sub-population 4.
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Figure 2: Community structure in invasive ductal carcinoma. (A) Inferred cell spot sub-
population labels from BANYAN. (B) Relative uncertainty measures distinguish uncertain (dark)
from certain (light) labels. (C) Within-community connectivity parameters reflect the homogeneity
of sub-populations. Higher connectivity values reflect higher homogeneity within sub-populations.
(D) Between-community connectivity parameters reflect the relative similarity of cell spots between
sub-populations. Higher connectivity values reflect more similarity between sub-populations. (E)
Sub-population markers genes.
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While these observations would require further experimental validation to confirm, they showcase
the unique ability of BANYAN to describe community structure in the data.

2.3 Characterizing ambiguous annotations in human white adipose tissue

Next, to demonstrate the application of community connectivity to inform ambiguous sub-populations,
we applied BANYAN to the analysis of a human white adipose tissue (WAT) sample sequenced
with the 10X Visium platform [Bäckdahl et al., 2021]. In contrast to the IDC data set considered in
Section 2.2, WAT samples are characterized by weak histological organization, thus challenging the
manual annotation of cell spots. In Figure 3A, we display the manual annotations from [Bäckdahl
et al., 2021] for an individual WAT sample (ID: ADI24). Of the 2,747 cell spots in the original
sample, 6 were annotated “unknown” and 1,520 were labeled “unspecific.” Hence, over 50% of cell
spots were unable to be clearly annotated due to ambiguous expression profiles or heterogeneous
cell type mixtures within cell spots as a result of the resolution of the 10X Visium platform, a
matter further complicated by the weak histological organization of WAT samples. Since existing
approaches to labeling sub-populations in HST data fail to account for the community structure
of tissue samples, disambiguating unknown cell spots post hoc remains challenging with existing
tools.

In Figure 3B, we show the sub-population labels for the entire WAT sample ADI24 derived
from BANYAN, where the unannotated cell spots (i.e., those classified as either “unknown” or
“unspecific” by [Bäckdahl et al., 2021]) are highlighted in bold. We find that BANYAN identified
residual heterogeneity within the 1,526 unannotated cell spots, with 513 unannotated cell spots
labeled as sub-population 1, 178 unannotated cell spots labeled as sub-population 2, 64 unannotated
cell spots labeled as sub-population 3, 99 unannotated cell spots labeled as sub-population 4, and
672 unannotated cell spots labeled as sub-population 5. We quantified the average uncertainty
measures derived from BANYAN across the original annotation groups, and found the highest
uncertainty occurring in the “unknown” or “unspecific” categories (Figure 3C), further validating
the low signal contained in this subset of cell spots.

In Figure 3D, we present a heatmap depicting differentially expressed marker genes for each
BANYAN sub-population using only the unannotated cell spots. The results from this analysis
suggest that residual heterogeneity exists within the unannotated cell spot subset, with distinct
marker genes present for sub-populations 1 through 4. Meanwhile, BANYAN sub-population 5
lacked clear markers, suggesting this sub-population could be reflective of a smaller ambiguous
subset of cell spots within the original unannotated subset. In particular, as shown in the within-
community structure displayed in Figure 3E, we find sub-population 3 to exhibit the highest within-
community connectivity. This high within-community connectivity is supported by the contiguous
spatial organization of sub-population 3 (Figure 3B) as well as high expression of distinct marker
genes such as VCAN (Figure S1), which are suggestive of veriscan producing adipocytes associated
with the development obesity-related inflammation of adipose tissue [Han et al., 2020].

When assessing the between-community structure of the WAT sample inferred by BANYAN
as shown in Figure 3F, we find additional evidence for sub-population 5 being a heterogeneous
unspecific sub-population (e.g., low within-community connectivity in Figure 3E and high between-
community connectivity in Figure 3F). However, sub-population 5 did feature relatively high con-
nectivity with sub-population 4, as evidenced by the bright coloring of entry (4,5) of Figure 3F.
Sub-population 4 was marked by significant differential expression of adipose-resident immune cell
related genes (Figure S1) such as IGKC [Vijay et al., 2020]. This suggests sub-population 5 may
play an important role in mediating the function of immune cells within body fat compartments
[Vijay et al., 2020]. While additional studies correlating these sub-populations with true single-
cell data such as scRNA-seq would aid in further elucidation of these ambiguous sub-populations,
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Figure 3: Characterization of ambiguous cell spot annotations. (A) Manual annotations.
(B) BANYAN labels of unknown or unspecific (i.e., unannotated) cell spots from (A). (C) Mean
BANYAN uncertainty scores by each annotation group. (D) Differential expression of BANYAN
sub-populations using the unannotated subset. (E) Within-community connectivity between cell
spots belonging to each sub-population. (F) Between-community connectivity between cell sub-
populations.
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leveraging community structure allows for more informative interpretation even in low-resolution
HST data.

2.4 Simulation studies show BANYAN identifies community structure in low-
signal settings

Finally, we designed a simulation study to validate the performance of the Bayesian multi-layer
stochastic block model (SBM) employed by BANYAN, in the sense of identifying cell sub-populations
and recovering community connectivity structure. We adopted a publicly available sagittal mouse
brain data set [10x Genomics, 2019] sequenced with the 10X Visium platform. We manually al-
located the N = 2696 total cell spots in the original sagital mouse brain data set into one of
K = 4 simulated ground truth tissue segments, resulting in 4 spatially contiguous mouse brain
layers (Figure 4A). The result of this was a ground-truth community structure that is reflective of
sub-populations found in real HST data. We then formed the spot-spot spatial neighbors networks,
using R = 51, the closest odd integer to

√
2696. We then simulated the spot-spot gene expression

similarity network from a stochastic block model with community structure given by

Θ =


θ 0.1 0.1 0.1

0.1 θ 0.1 0.1
0.1 0.1 θ 0.1
0.1 0.1 0.1 θ

 , (1)

where the signal to noise ratio (SNR) of the simulated gene expression network is given by SNR =
θ/0.1. SNR values much greater than 1 give rise to a strong community structure in the simulated
data, while SNR values close to 1 result in a weaker community structure. We do not consider
values of SNR below 1, as the resultant dissortative community structure is not reflective of cell type
structure in HST data. We simulated gene expression networks for a range of SNR settings using
θ = (0.105, 0.11, 0.13, 0.15, 0.17, 0.20, 0.22, 0.25) and fit two model variants: (i) a single-layer model
considering gene expression information only, and (ii) the full model using both gene expression
and spatial networks.

Figure 4B displays the average adjusted rand index (ARI) – a measure of accuracy in cell spot
labels relative to the ground truth labels in Figure 4A, for the single-layer non-spatial approach
and the multi-layer spatial approach. We find that at low SNR settings (e.g., below 1.5) the
spatial model outperforms the non-spatial model in recovering ground truth cell spot labels. This
is indicative of BANYAN’s ability to leaverage spatial information to detect community structure
in low-signal data. At higher SNR settings, the strong community structure signal contained in
the simulated gene expression layer is sufficient for accurate community structure recovery, and the
spatial information does not provide any further information.

We showcase the community structure results for one particular simulated data set at a setting
of SNR = 1.3, reflective of a relatively low signal setting. Figure 4C displays the inferred community
structure from the single-layer non-spatial model, while Figure 4D shows the same for the multi-
layer spatial model. We find that at this moderately low signal setting, the non-spatial model
is unable to accurately recover true cell spot labels, while the spatial model predicts cell spot
labels almost perfectly. These results are indicative of the ability for spatial information to aid in
disambiguating community structure in low-signal data settings.

While the simulated HST data generated from the community structure encoded in Equation
(1) features a homogeneous community structure (i.e., uniform within and between-community con-
nectivity parameters), BANYAN is capable of detecting more heterogeneous community structures.
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Figure 4: Segmenting sagittal mouse brain tissue sample to four different clusters.
(A) Ground truth labels. (B) Average adjusted rand index (ARI) vs. signal-to-noise ratio (SNR).
(C) Estimated cluster labels from a single layer (non-spatial). (D) Estimated cluster labels from
corresponding multi layer (spatial). (E) Within-community connectivity estimates. (F) Between-
community connectivity estimates.
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To illustrate this, we generated a simulated mouse brain HST data set from

Θ =


0.30 0.15 0.10 0.10
0.15 0.30 0.10 0.10
0.10 0.10 0.30 0.15
0.10 0.10 0.15 0.30

 , (2)

which features 50% stronger connectivity between sub-population pairs (1,2) and (3,4) than other
between-community pairs. This setting reflects the common real data scenario wherein cliques
of sub-populations form. In Figures 4E and 4F, we display the estimated within and between-
community connectivity parameters, respectively. We find that the BANYAN model correctly
identified the sub-population cliques (1,2) and (3,4) as sharing higher between-community connec-
tivity than the remaining sub-population pairs, showcasing the model’s ability to identify hetero-
geneous community structures. In Figure S2 of the Supplementary Materials, we demonstrate how
the Bayesian information criterion (BIC) identifies the true number of communities in the simulated
data, validating the use of statistical model fit criteria for choosing the number of sub-populations
in the absence of prior knowledge.

3 Discussion

We have proposed BANYAN: a network-based statistical framework for analysis of community
connectivity in HST data. We applied BANYAN to human breast cancer and white adipose
tissue to illustrate its utility in applied settings. In the breast cancer case study, we found a
strong community structure, with sub-populations marked by both invasive cancer and cancer
suppressive marker genes. Using community structure parameters, we also identified an interme-
diate sub-population between these two. In the white adipose tissue case study, we demonstrated
the use of BANYAN to disambiguate unknown or unspecific cell spot labels. In our simulation
study, we validate BANYAN’s ability to accurately identify the tissue architecture, especially in
the low signal setting, and to recover the community connectivity structure. We provide the R

package banyan for convenient implementation of the proposed workflow. The banyan package
efficiently implements Bayesian estimation using custom Gibbs sampling algorithms implemented
in C++ using Rcpp. We have also developed interactive and static visualization functions for inter-
rogation of BANYAN sub-population labels, uncertainty measures, and community structure. The
banyan package interfaces seamlessly with standard Seurat workflows, and is freely available at
https://github.com/carter-allen/banyan.

There a number of ways our work may be extended. First, often the SBM is refined to accommo-
date heterogeneous degree distributions among nodes, i.e., degree correction [Karrer and Newman,
2011]. By making this methodological extension to the multi-layer stochastic block model (MLSBM)
at the core of Banyan, one could relax our assumption that each cell spot features the same number
of neighbors and thereby allow for certain cells spots to feature more connections to the rest of
the tissue than other cell spots, such as those on the periphery of the tissue sample. Learning
the degree of each cell spot would then inform the detection of highly connected “hub” regions, or
weakly connected “satellite” regions of a tissue sample. Second, the inherent complexity of net-
work data structures leads to a heavy computational burden for large HST experiments. While we
implement our proposed MCMC sampling algorithm using efficient Rcpp routines, BANYAN still
requires significantly more computational time than non-network statistical methods Allen et al.
[2021], Zhao et al. [2021]. Further optimization would help to reduce computational burden of
community connectivity analysis. Finally, while BANYAN provides the first statistical framework
for quantifying community connectivity structure in HST data, further extensions could be made to
link BANYAN with methods for predicting cell-cell interactions using data such as ligand-receptor
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pair status of cells. By doing so, one could refine the general notion of cell spot connectivity to cell
spot interaction, which is of major interest in HST data analysis.

4 Methods

4.1 Data pre-processing

To represent the interactive nature of cells and cell types, we adopt two cell-cell similarity networks
as our primary data objects: one for gene expression and another for spatial location. To form the
cell spot-cell spot gene expression similarity network, we first apply standard pre-processing steps
including scaling, removal of technical artifacts, and identification of highly variable genes [Hao
et al., 2020, seu, 2021a,b]. We then embed each of the N total cell spots in a lower-dimensional
space using principal components analysis (PCA) applied to the top 2, 000 most variable genes.
To form the cell spot-cell spot gene expression similarity matrix, we represent each cell as a node
and connect each cell to its R closest neighboring cells in the gene expression principal component
space using a binary edge. We utilize the same approach to construct the spatial cell spot-cell spot
similarity network, where principal components are replaced with 2-dimensional spatial coordinates.
The resultant data structure is two networks with N nodes, each of degree R. By default, we adopt
the widely used heuristic of choosing R as the closet odd integer to

√
N [Stork et al., 2001], which

allows the number of neighboring spots to increase as the size of the tissue sample increases. With
the typical HST experiment yielding a total number of cell spots between 2, 000 and 3, 000, this
heuristic leads to consideration of between third and fourth order neighborhood structures (Fig
5). Overall, we view R as a tuning parameter that may be adjusted depending on the amount of
information sharing desired across a tissue sample.

4.2 Model

We develop the core statistical model within BANYAN as an extension of the widely used stochastic
block model (SBM) [Snijders and Nowicki, 1997], a flexible generative model for network data that
allows for the assessment of community structure based on the frequency of binary edges among
and between subsets nodes. We define A1 as the N × N binary adjacency matrix encoding the
gene expression similarity network, and A2 as the binary adjacency matrix encoding the spatial
similarity network. The matrix elements A1

ij and A2
ij indicate the presence or absence of a binary

un-directed edge between nodes i and j for gene expression and spatial information, respectively.
We define A = {A1,A2} as the multi-layer graph that encodes similarity between cell spots in terms
of both gene expression and spatial information. While we focus on integration of spatial and gene
expression information, our proposed framework may be extended to L layers to incorporate other
sources of information from multiplexed experimental assays.

Given the multi-layer graph data A, we assume that the absence or presence of edges in each
layer between each pair of nodes i and j follows a Bernoulli distribution with probability of an edge
θzi,zj , where zi ∈ {1, ...,K} denotes the latent cell sub-population assignment for cell i. We refer to
such a model as a multi-layer stochastic block model (MLSBM). Formally, we assume for l = 1, 2,

Al
ij |z,Θ

ind∼ Bernoulli(θzi,zj ) for i < j = 1, ..., N, (3)

where z = (z1, ..., zN ), and Θ is a K × K connectivity matrix with diagonal elements θrs for
r = s = 1, ...,K controlling the probability of an edge occurring between two cells in the same
sub-population, and off-diagonal elements θrs for r < s = 1, ...,K controlling the probability of an
edge occurring between two nodes in different cell sub-populations. Importantly, Model 3 implies
that connections among cell spots in the gene expression and spatial layers are governed by a
common set of community structure parameters z and Θ. Given Model 3 and data A, our primary
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Figure 5: Graphical depiction of relationship between number of neighbors and neigh-
bor order. (A) Hexagonal neighborhood structure for an interior cell spot shown with 1st through
4th order neighbors. (B) Suggested relationship between the number of cell spots (N) and the num-
ber of nearest neighbors (R).
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inferential objective is to characterize cell sub-populations and the cell-cell interaction both within
and between them by estimating the parameters z and Θ, which we accomplish using a Bayesian
approach as described below.

4.3 Bayesian Inference

4.3.1 Priors

To achieve a fully Bayesian parameter estimation scheme, we assign prior distributions to all model
parameters. We adopt available conjugate priors to obtain closed-form full conditional distri-
butions of all model parameters, allowing for straightforward Gibbs sampling. For the latent
cell sub-population indicators z1, ..., zN , we assume a conjugate multinomial-Dirichlet prior with

zi
iid∼ Categorical(π) for i = 1, ..., N , and π ∼ Dirichlet(α1, ..., αK), where π = (π1, ..., πK) controls

the relative size of each cell sub-population to allow for a heterogeneous distribution of cell type

abundances. We adopt a conjugate Beta-Bernoulli prior for Θ by assuming θrs
iid∼ Beta(β1, β2) for

r < s = 1, ...K. As a default, we opt for weakly informative priors by setting α1 = α2 = ... = αK = 1
and β1 = β2 = 1 [Gelman et al., 2013].

4.3.2 Markov chain Monte Carlo (MCMC) algorithm

The model proposed in Sections 4.2 and 4.3.1 allows for closed-form full conditional distributions
of all model parameters. Thus, we adopt the following Gibbs sampling algorithm for parameter
estimation. In practice, we recommend initializing the indicators zi, ..., zN using a heuristic graph
clustering method such as the Louvain algorithm [Blondel et al., 2008] applied to A1 to facilitate
timely model convergence.

1. Update π from its full conditional (π|A, z,Θ) ∼ Dirichlet(a1, ..., aN ), where ak = αk+nk, and
nk is the number of nodes assigned to cell sub-population k at the current MCMC iteration,
i.e., nk =

∑N
i=1 Izi=k.

2. For r ≤ s = 1, ...,K, update θrs from

(θrs|A, z,π) ∼ Beta(β1 +A[rs], β2 + nrs −A[rs]) (4)

where A[rs] are the number of observed edges between communities r and s across both
layers, and nrs = 2(nrns−nrI(r = s)) are the number of possible edges between communities
r and s, nr is the number of nodes assigned to cell sup-population r, and I(r = s) is the
indicator function equal to 1 if r = s and 0 otherwise.

3. For i = 1, ..., N , update zi from (zi|z−i,A,π,Θ) ∼ Categorical(ρi), where ρi = (ρi1, ..., ρiK)
and

ρik = πk

 2∏
l=1

∏
j 6=i

θ
Al

ij
zi,zj (1− θzi,zj )

1−Al
ij

 2∏
l=1

∏
h 6=i

θ
Al

ih
zi,zh(1− θzi,zh)1−A

l
ih

 . (5)

4.3.3 Model selection

The choice of number of cell sub-populations K is a critical step in the analysis of HST data. In
some cases, K may be chosen based on a priori biological knowledge of the cell types are expected
to exist in a tissue sample, or the desire to investigate a known number of sub-populations within
a more homogeneous tissue sample. In the absence of such prior information, K may be chosen
using statistical model fit criteria, such as the Bayesian information criterion (BIC) [Schwarz et al.,
1978].
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4.3.4 Label switching

Label switching is a ubiquitous issue faced by models whose likelihood is invariant to permutations
of a latent categorical variable such as z. Consequently, stochastically equivalent permutations of z
may occur over the course of MCMC sampling, causing the estimates of all community-specific pa-
rameters to be conflated, thereby jeopardizing the accuracy of model parameter estimates. Previous
approaches for addressing label switching rely on re-shuffling posterior samples after completion
of the MCMC algorithm [Papastamoulis, 2016]. However, such methods rely on prediction and
thereby are subject to to prediction error. To protect against label switching within the MCMC
sampler, we adopt the canonical projection of z proposed by Peng and Carvalho [2016], who restrict
updates of z to the reduced sample space Z = {z : ord(z) = (1, ...,K)}, wherein label switching is
less likely due to the restricted sample space. In practice, we manually permute z at each MCMC
iteration such that community 1 appears first in z, community 2 appears second in z, et cetera. Fi-
nally, we estimate z using the maximum a posteriori (MAP) estimate across all post-burn MCMC
samples [Gelman et al., 2013].

4.4 Analysis of community connectivity

Estimation of the MLSBM model parameters Θ and z with the corresponding maximum a posteri-
ori estimates Θ̂ and ẑ allow for inference of community connectivity structure in HST data. While
the estimated community labeling vector ẑ is what we use to define communities, the elements of
Θ̂ describe how cell spots within and between communities relate to one another, thereby char-
acterizing community connectivity. Specifically, elements θ̂rs reflect the estimated probability of a
randomly chosen cell spot in community r sharing a nearest neighbors edge in A with a cell spot
in community s. When r = s, θ̂rs reflects the average connectivity within a community, which may
be used to assess the relative homogeneity of a community. Heterogeneous communities tend to
have lower average within-community connectivity, while more homogeneous communities tend to
have higher within-community connectivity. Likewise, when r 6= s, θ̂rs represents the probability of
connection between cell spots in two distinct communities. This between-community connectivity
measurement allows us to discern closely related communities that may contain similar cell types
from more distinct communities. Taken together, these between and within-community connectiv-
ity parameters capacitate analysis of community connectivity.

4.5 Uncertainty quantification

Discrete clustering approaches for community structure identification inherently fail to account
for heterogeneity within each spot cluster by assuming all cell spots within the same cluster are
stochastically equivalent. To address these shortcomings of existing approaches, we utilize the
inferential benefits of Bayesian modeling to derive two biologically relevant measures: (i) continuous
phenotypes and (ii) uncertainty scores. With continuous phenotype measures, we may assess the
propensity of a given cell spot for a cell type other than its most likely cell type, thus allowing
for identification of possible intermediate cell states. Relatedly, uncertainty measures allow us to
distinguish high confidence from low confidence cell type assignments.

Conceptually, we choose cik, the continuous phenotype for cell spot i towards cell sub-population
k, to be proportional to the posterior probability P (zi = k|z−i,A,π,Θ). Considering terms only
related to zi, we define cik as

cik = π̂k

 2∏
l=1

∏
j 6=i

θ̂
Al

ij

k,ẑj
(1− θ̂k,ẑj )

1−Al
ij

 2∏
l=1

∏
h 6=i

θ̂
Al

ih
k,ẑh

(1− θ̂k,ẑh)1−A
l
ih

 , (6)

for i = 1, ..., N and k = 1, ...,K, where π̂k, θ̂zi,zj , and ẑi are the posterior estimates of πk, θzi,zj ,
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and zi, respectively. We define the uncertainty measure for cell spot i as ui = 1− ciẑi , i.e., the sum
of cell spot i continuous phenotypes for all cell types besides ẑi.

Supplementary Information

Figure S1: Differentially expressed markers for BANYAN sub-populations across all
cell spots in WAT sample. Differential expression p-values were computed using the Wilcoxon
Rank-Sum test. Sub-populations 1 through 4 display clear marker genes while sub-population 5
remained more ambiguous.

Figure S2: Identification of true number of communities in simulated data using BIC.
Higher values indicate better model fit.
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