
  

 
 

Abstract - Computer vision can be used in robotic exoskeleton 
control to improve transitions between different locomotion 
modes through the prediction of future environmental states. 
Here we present the development of a large-scale automated 
stair recognition system powered by convolutional neural net-
works to recognize indoor and outdoor real-world stair environ-
ments. Building on the ExoNet database - the largest and most 
diverse open-source dataset of wearable camera images of walk-
ing environments – we designed a new computer vision dataset, 
called StairNet, specifically for stair recognition with over 
515,000 images. We then developed and optimized an efficient 
deep learning model for automatic feature engineering and im-
age classification. Our system was able to accurately predict 
complex stair environments with 98.4% classification accuracy. 
These promising results present an opportunity to increase the 
autonomy and safety of human-exoskeleton locomotion for real-
world community mobility. Future work will explore the mobile 
deployment of our automated stair recognition system for 
onboard real-time inference. 

I. INTRODUCTION 

Human locomotion follows a biological system feedback 
loop [1], [2], which can be described by four main processes: 
1) recognition of the physical environment using the human 
visual system; 2) cognitive processing of the environmental 
states and locomotor intent via neural control; 3) translation of 
the locomotor intent to movement through the musculoskeletal 
(MSK) system; and 4) physical environment response (i.e., the 
new walking environment that the human interacts with). 
However, if this feedback loop is disrupted by limitations to 
the musculoskeletal system due to aging and/or physical disa-
bilities such as osteoarthritis, or communication limitations to 
the central nervous system due to stroke or spinal cord injury, 
this can affect one’s ability to perform daily locomotor activi-
ties and navigate new challenging environments safely and ef-
fectively [3]. 

Robotic lower-limb exoskeletons may help address these 
limitations and allow users to regain mobility and independ-
ence through powered locomotor assistance via motorized 
joints [4]. Similar to the biological vision-locomotor feedback 
loop, automated high-level control of human-exoskeleton lo-
comotion for real-world mobility requires continuous assess-
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ment of future environmental states for seamless transitions 
between different locomotion modes, each of which include 
individual control parameters. Accurate classification of stair 
environments can be particularly important due to the safety 
implications and the greater theoretical risk of serious injuries 
if the environment is misclassified during stair ascent. 

Although stair recognition systems have been developed 
for wearable robotics [5]–[13], especially powered prosthetic 
legs, these systems have mainly been limited to statistical pat-
tern recognition and machine learning algorithms that require 
manual feature engineering and/or have involved relatively 
small image datasets, which can restrict their real-world appli-
cation and generalizability to complex environments [14]. Mo-
tivated by these limitations, here we present the development 
of a large-scale automated stair recognition system powered 
by computer vision and deep learning to recognize indoor and 
outdoor real-world stair environments (Figure 1). The long-
term objective of this research is to develop next-generation 
environment-adaptive control systems for robotic exoskele-
tons and other mobility assistive technologies.    

II. METHODS 

A. Image Dataset 

A customized image dataset was created using the manu-
ally annotated videos from the ExoNet database [15] – the 
largest and most diverse open-source dataset of wearable 
camera images of walking environments. Images from six of 
the twelve original ExoNet classes were used, which included 
environments that an exoskeleton user would encounter when 
ascending stairs. The initial dataset included ~543,000 RGB 
images. The “level ground” and “incline stairs” steady-state 
classes in the ExoNet database included separate classes for 
images that contained doors/walls and those that did not. This 
differentiation was not applied to our study such that the six 
ExoNet classes were combined into four. The final four envi-
ronment classes in our dataset included: level ground (LG), 
which included both ExoNet classes “level ground steady 
state” and “level ground transition to door/wall”; level ground 
– incline stairs (LG-IS), which consisted of the ExoNet class 
“level ground transition to incline stairs”; incline stairs (IS), 
which included both ExoNet classes “incline stairs steady 
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state” and “incline stairs transition to door/wall”; and incline 
stairs – level ground (LG-IS), which consisted of the ExoNet 
class “incline stairs transition to level ground.” The dataset 
was randomly split into training (89.5%), validation (3.5%), 
and testing (7%) sets, matching the subset distribution values 
from Laschowski and colleagues [16], while maintaining the 
class distributions– i.e., 85.8% for LG, 9.3% for IS, 3.1% for 
LG-IS, and 1.8% for IS-LG.  

B. Convolutional Neural Network 

A convolutional neural network (CNN) model was devel-
oped using the base model of MobileNetV2 [17], [18] (Table 
1). MobileNetV2 is a CNN architecture based on depthwise 
separable convolutions. The model uses width and resolution 
multipliers to create a lightweight framework that trades a 
small amount of accuracy for reduced computational require-
ments. The model was chosen for its efficient and lightweight 
design, allowing for future consideration for onboard compu-
tations and robotic exoskeleton control. The MobileNetV2-
based model was created in TensorFlow 2.7 [19]. Different 
model parameters were tested using a Google Cloud Tensor 
Processing Unit (TPU), a hardware accelerator optimized for 
efficient machine learning through large matrix operations, in 
order to optimize the system performance. An initial model 
was developed using the parameter ranges from Laschowski 
and colleagues [20], [21], who trained MobileNetV2 and 
more than a dozen other deep learning models on the entire 
ExoNet database. Our initial model design included the base 
model of MobileNetV2; the Adam optimizer [22]; four clas-
ses with randomly initialized weights; ~2.3 million parame-

ters; a base learning rate of 0.001; a batch size of 128; and a 
cosine weight decay learning rate policy. 

C. Performance Evaluation  

We used the following metrics to quantitatively evaluate the 
model performance: accuracy (A), f1 score, precision (P), and 
recall value (R).  
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D. StairNet Dataset  

Initial experimentation was performed on the validation set 
using a preliminary optimized CNN model. Low categorical 
accuracies of 53.6% and 66.4% were found for the transition 
classes IS-LG and LG-IS, respectively. An investigation into 
the cause of low accuracy revealed a number of misclassified 
images and images with significant obstructions in the Ex-
oNet database. The number of images with significant ob-
structions were most abundant in the LG class. We manually 
resorted the images and created a new dataset named StairNet. 
This dataset was developed to be used for future research in 
automated stair recognition and to prevent the misclassifica-
tion of environments in real-world applications due to auto-

 

Figure 1. Schematic showing the application of computer vision and deep learning for sensing and classification of real-world stair environments during 
human-exoskeleton locomotion. 
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matic feature extraction of misclassified images or images 
with significant obstructions presented during model training. 
Table 2 outlines the new class definitions that were developed 
to outline a more precise cut-off point between the different 
environment classes when re-sorting the images. After three 
manual annotation passes of the dataset, images that were 
considered out of scope (e.g., an image of a wall without level 
ground visible) and images that had significant obstructions 
were discarded, therein reducing the total number of images 
in our new dataset to ~515,000. After completing the dataset 
revision, the deep learning model was retested on the valida-
tion set with the same parameters as previously used. The low 
categorical accuracies improved from 53.6% to 84.4% for the 
IS-LG class and from 66.4% to 87.5% for the LG-IS class. 
We then randomly split the dataset into training (89.5%), val-
idation (3.5%), and testing (7%) sets while maintaining the 
class distributions (Table 3). The StairNet dataset was up-
loaded to IEEE DataPort and is available for download 
https://ieee-dataport.org/documents/stairnet-computer-
vision-dataset-stair-recognition [23].  

E. Model Optimization 

The model parameters were tuned with the StairNet dataset 
and tested using different model designs to optimize the vali-
dation accuracy and loss. We first developed a model using 
transfer learning with pre-trained weights from ImageNet 
[24]. We also added a global average pooling 2D layer and a 
softmax dense prediction layer, which decreased the number 
of trainable parameters, thus reducing the time and computa-
tional requirements to optimize the model. Five freeze layer 
combinations were tested to evaluate the use of transfer learn-
ing at 141, 100, 50, 25, and 5 frozen layers. The different com-

binations were run for 60 epochs. The optimal freeze layer 
combination for the model was 5 frozen layers with ~2.2 mil-
lion parameters, which resulted in the highest validation ac-
curacy and lowest validation loss. 

We then optimized the model for different batch sizes (64, 
128, 256) and base learning rates (0.0001, 0.00001, 
0.000001). Each model design was run for 60 epochs. The op-
timal combination was a batch size of 256 and a base learning 
rate of 0.0001. We then compared the optimized pre-trained 
model to the equivalent non-pretrained model with randomly 
initialized weights. After 60 epochs, both models started to 
plateau. The pre-trained model had a higher overall validation 
accuracy (~98%) compared to the non-pre-trained model 
(~97%) while having similar final validation loss values. Af-
ter 60 epochs, the pre-trained model exhibited characteristics 
of overfitting such that an increase in the validation loss was 
observed as the models approached 60 epochs. We compared 
the optimized pre-trained model to variations with an addi-
tional dropout layer. The model variations included dropout 
rates of 0.01, 0.02, and 0.05. The additional dropout layer 
with a dropout rate of 0.02 resulted in the highest validation 
accuracy and lowest validation loss. We then compared the 
previous model to a variation that used L2 weight regulariza-
tion. The models were run for 60 epochs, and the validation 
loss and accuracy were compared, which showed no addi-
tional performance benefit of weight regularization. 

We also explored oversampling of underrepresented classes 
(e.g., IS-LG and LG-IS) to reduce overfitting. The model was 
oversampled by randomly resampling and augmenting im-
ages previously presented to the model during training. Five 
model designs were compared, which included different val-

Table 1. The design of the MobileNetV2 convolutional neural network [18], which was used for automatic feature engineering and image classification 
of real-world stair environments. The network has ~2.3 million total parameters. 

Network Stage Operator Input Resolution Output Channels Number of Layers Number of Parameters 
1 Conv2d 224x224x3 32 1 992 
2 Bottleneck 112x112x32 16 1 932 
3 Bottleneck 112x112x16 24 6 5,568 
4 Bottleneck 56x56x24 32 6 20,096 
5 Bottleneck 28x28x32 64 6 53,372 
6 Bottleneck 14x14x64 96 6 236,160 
7 Bottleneck 14x14x96 160 6 399,424 
8 Bottleneck 7x7x160 320 6 1,126,720 
9 Conv2d 7x7x320 1280 1 414,720 
10 Avgpool 7x7 7x7x1280 1 1 0 
11 Dropout 1280 1 1 0 
12 Dense 1280 1 1 5124 

 

Table 2. Description of the environment classes, which were used to manually label our new computer vision dataset called StairNet. 

Class Image Description 
LG An image that contains a level ground environment where incline stairs are not clearly visible. 
LG-IS An image with incline stairs where the horizontal surface area of the bottom step or landing is clearly greater than the surface area of other 

steps apparent in the image (i.e., the surface area or depth is approximately 1.5x the size of subsequent steps). 
IS An image with multiple incline stairs where the horizontal surface area of the top and bottom step or landing are not clearly greater than 

one another. 
IS-LG An image with incline stairs where the horizontal surface area of the top step or landing is clearly greater than that of other steps or landings 

apparent in the image (i.e., the surface area or depth is approximately 1.5x the size of subsequent steps). For an incline stair to be included 
in the IS-LG class, the horizontal face of the last step prior to the level ground must be visible. 
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ues for the minimum number of images per class required for 
model training - i.e., 25,000; 40,000; 60,000; 200,000; and 
400,000. There was a decrease in the overall validation accu-
racy as the minimum value increased. However, the categori-
cal accuracy for the underrepresented classes increased as the 
minimum value increased, thereby creating a more even cate-
gorical accuracy throughout the different classes (Tables 4 
and 5). Since there could be more significant consequences 
resulting from a false negative than a false positive in the de-
tection of stairs for robotic exoskeleton control, we decided to 
select the deep learning model that oversampled with a mini-
mum value of 400,000 images per class since this model had 
an even categorical accuracy distribution and the lowest prob-
ability of false negatives as seen in the reduced probability of 
misclassification as LG in class IS (0.3%) and IS-LG (2.2%). 

We then fine-tuned the oversampled model with different 
batch sizes and base learning rates on a high epoch run to fur-
ther increase the categorical and overall validation accuracies. 
By comparing the validation accuracy and loss as well as the 

confusion matrices, the final model design was selected with 
a reduced base learning rate of 0.00001, a batch size of 128, 
and a cosine weight decay learning policy. The final Mo-
bileNetV2-based model included the use of pretrained 
weights, 5 frozen layers, and ~2.2 million parameters. The 
model was oversampled with a minimum categorical image 
count of 400,000 images and contained an additional dropout 
layer with a dropout rate of 0.02. The final model was run for 
60 epochs (Figure 2).  

III. RESULTS 

The image classification accuracies on the training and val-
idation sets were 99.3% and 98.5%, respectively. When eval-
uated on the testing set, the deep learning model achieved an 
overall classification accuracy (A) of 98.4%, a weighted f1 
score of 98.4%, a weighted precision value (P) of 98.5%, and 
a weighted recall value (R) of 98.4%. Here, the classification 
accuracy is defined as the number of true positives identified 
by the neural network (35,507 images) out of the total number 
of images in the testing set (36,085). 

The image classification accuracy on the testing set varied 
between the different environment classes with a categorical 
accuracy of 99.0% for LG, 91.7% for LG-IS, 96.9% for IS, 

Table 4. Normalized confusion matrix of the environment predictions 
for the validation set using the oversampled model with a minimum 
value of 25,000 images per class. The horizontal and vertical axes are 
the predicted and labelled classes, respectively. 

IS 96.3 1.8 0.4 1.5 
IS-LG 6.4 86.0 6.7 1.0 
LG 0.1 0.1 99.6 0.3 
LG-IS 3.2 0.0 3.8 92.3 
 IS IS-LG LG LG-IS 

 

Table 5. Normalized confusion matrix of the environment predictions 
for the validation set using the oversampled model with a minimum 
value of 400,000 images per class. The horizontal and vertical axes are 
the predicted and labelled classes, respectively. 

IS 96.6 1.3 0.3 1.8 
IS-LG 5.7 90.8 1.9 1.6 
LG 0.1 0.3 99.0 0.6 
LG-IS 3.2 0.4 2.2 94.2 
 IS IS-LG LG LG-IS 

 
Table 6. Normalized confusion matrix of the environment predictions 
for the testing set. The horizontal and vertical axes are the predicted and 
labelled classes, respectively. 

IS 96.9 1.5 0.3 1.3 
IS-LG 6.5 90.5 2.4 0.6 
LG 0.1 0.3 99.0 0.7 
LG-IS 4.3 0.5 3.4 91.7 
 IS IS-LG LG LG-IS 

 

Table 3. Distribution of the environment classes in the ExoNet database 
[15] and our new computer vision dataset - StairNet. The number of 
images (#) and the percent of the dataset (%) are reported for each class. 

Class  ExoNet (#) ExoNet 
(%) 

StairNet (#) StairNet 
(%) 

LG 456,775 84.14 442,360 85.82 
LG-IS 26,067 4.80 15,888 3.08 
IS 48,986 9.02 48,179 9.35 
IS-LG 11,040 2.03 9,025 1.75 

 

 

 

Figure 2. The image classification accuracy and loss for the training and 
validation sets over 60 epochs with the optimized deep learning model 
parameters. 
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and 90.5% for IS-LG. Table 6 shows the normalized confu-
sion matrix, which illustrates the classification performance 
distribution during inference. The two transition classes (i.e., 
LG-IS and IS-LG) achieved the lowest categorical accuracies, 
which can likely be attributed to having the smallest class dis-
tributions in the dataset, comprising only ~3.1% and ~1.8% 
of the total number of images, respectively. 

Figure 3 shows several examples of failure cases. The first 
row contains images from the LG class that were incorrectly 
classified as LG-IS. The images contain features common 
within the LG-IS class such as strong horizontal lines in the 
top section of the images. These horizontal line features were 
likely extracted by the neural network and confused as transi-
tions to incline stairs. The second row contains LG images 
that were incorrectly classified as IS. The images contain 
strong horizontal lines resulting from surface textures (e.g., 
brick flooring in the second column). These horizontal line 
features are present throughout the image and were likely con-
fused for steady-state incline stairs. The bottom row contains 
images from the stair classes that were misclassified as LG; 
these misclassifications pose the most significant safety risk 
to exoskeleton users. The images contain unique stair charac-
teristics like unusual materials (e.g., wood) or angles, which 
rotate the horizontal features to a diagonal or vertical axis. 

IV. DISCUSSION 

Here we developed a large-scale automated stair recognition 
system powered by computer vision and deep convolutional 
neural networks to recognize indoor and outdoor real-world 
stair environments. These classification predictions could be 
used to develop environment-adaptive control systems for ro-
botic exoskeletons and other mobility assistive technologies. 

Building on the ExoNet database [15] – the largest and most 
diverse open-source dataset of wearable camera images of 
walking environments - we designed a new computer vision 
dataset named StairNet, specifically for stair recognition. We 
then optimized an efficient deep learning model [17], [18] for 
automatic feature engineering and image classification. Our 
stair recognition system was able to accurately predict com-
plex stair environments with 98.4% overall classification ac-
curacy. These promising results present an opportunity to in-
crease the autonomy and safety of human-exoskeleton loco-
motion for real-world community mobility. 

Compared to the classification results for the stair classes in 
the original ExoNet database [16], [20], [21], we achieved sig-
nificantly higher prediction accuracies (Appendix 1). First, we 
discovered a number of ambiguous labelled images in the Ex-
oNet classes LG-S, LG-T-DW, LG-T-IS, IS-S, IS-T-DW, and 
IS-T-LG. We manually re-sorted these images into four clas-
ses (i.e., LG, LG-IS, IS, and IS-LG) using new definitions to 
increase the precision of the cut-off points between class tran-
sitions. Prior to the dataset revision, a preliminary stair recog-
nition model was developed, which achieved validation accu-
racies of 53.6% and 66.4% for the transition classes IS-LG and 
LG-IS, respectively; these results are similar to previous re-
search [20]. We then retested the same model on the StairNet 
dataset and the prediction accuracies significantly increased to 
84.4% for IS-LG and 87.5% for LG-IS. Our new computer vi-
sion dataset for stair recognition contains ~515,000 images 
distributed across four classes. 

Compared to previous stair recognition systems for weara-
ble robotics [5]–[13], our classification system has several ad-
vantages (Appendix 1). Many researchers have used statistical 
pattern recognition and machine learning algorithms that re-
quire time-consuming and suboptimal hand engineering. In 
contrast, our deep learning model replaces hand-designed fea-
tures with multilayer networks that can automatically and effi-
ciently learn the optimal image features from training data. 
Furthermore, compared to other CNN-based stair recognition 
systems, our system is significantly larger. For instance, 
Laschowski and colleagues [6] developed one of the first au-
tomated stair recognition systems using convolutional neural 
networks. However, their dataset included only ~34,000 la-
belled images. In comparison, StairNet includes over 515,000 
labelled images. These differences can have important practi-
cal implications since deep learning often requires significant 
and diverse training data to facilitate generalization to complex 
real-world applications [14]. 

Despite these advances, our study has several limitations. 
We used a high-performance Google Cloud TPU for training 
and testing our deep learning model. This additional compu-
ting power supported the large-scale hyperparameter optimi-
zation and the resulting predictive capabilities of the model de-
sign. However, it is relatively unknown how the classification 
performance on these AI accelerator application-specific inte-
grated circuits will translate to mobile and embedded compu-
ting devices for robotic exoskeletons. Although we used an ef-
ficient, lightweight convolutional neural network [17], [18] 
with low computational requirements to increase the potential 

   

   

   

Figure 3. Examples of incorrect environment predictions by the convo-
lutional neural network. The first row contains level ground images that 
were misclassified as level ground – incline stairs (LG-IS). The second 
row contains level ground images that were misclassified as incline 
stairs (IS). The third row contains images from the stair classes that were 
misclassified as level ground (LG).   
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for onboard real-time inference, the feasibility of model de-
ployment was not evaluated in this study. Further investigation 
is needed to assess the computing performance of this light-
weight CNN model on mobile devices. We plan to address 
these limitations in future work. 

Overall, the promising results of our automated stair recog-
nition system using computer vision and deep learning demon-
strate the potential for applications in robotic exoskeleton con-
trol to increase user safety and autonomy during locomotion 
through the highly accurate prediction of future environmental 
states. 
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Appendix 1. Summary of vision-based stair recognition systems for wearable robotics. Note that the dataset size (i.e., number of images) and test accuracy 
are only for the environment classes related to level-ground walking and stair ascent.   

Reference Camera Position Dataset Size Classifier  Computing Device Test Accuracy  
[5] RGB Head 5 Hough transform with Gabor filtering Intel Core i5 N/A 
[6] RGB Chest 34,254 Convolutional neural network NVIDIA TITAN Xp 94.9% 
[7] RGB Waist 7,284 Convolutional neural network NVIDIA Titan X 99.6% 
[8] Depth Chest 170 Heuristic thresholding and edge detector Intel Core i5 98.8% 
[9] Depth Leg 109,699 Cubic kernel support vector machine Intel Core i7-2640M 95.6% 
[10] Depth Leg 8,455 Support vector machine Intel Core i7-2640M 98.5% 
[11] RGB Head 123,979 Bayesian deep neural network NVIDIA Jetson TX2 93.2% 
[12] RGB Leg 123,954 Bayesian deep neural network NVIDIA Jetson TX2 92.4% 
[13] Depth Leg 3,000 Convolutional neural network NVIDIA Quadro P400 96.8% 
[20], [21] RGB Chest 542,868 Convolutional neural network Google Cloud TPU 70.8% 
Our System RGB Chest 515,452 Convolutional neural network Google Cloud TPU 98.4% 
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