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Abstract 13 

Vector-borne, filarial nematode diseases represent a significant and affecting disease burden in 14 

humans, domestic animals, and livestock worldwide. Parasitic filarial nematodes require both an 15 

intermediate (vector) host and a definitive (mammalian) host during the course of their life cycle. 16 

In either host, the nematode must evade the host elicited immune response in order to develop 17 

and establish infection. There is direct evidence of parasite-derived immunomodulation in 18 

mammals, however, there is less evidence of parasite immunomodulation of the vector host. We 19 

have previously reported that all life stages of Brugia malayi, a causative agent of lymphatic 20 

filariasis, secrete extracellular vesicles (EVs). Here we investigate the immunomodulatory 21 

effects of microfilariae derived EVs on the vector host Aedes aegypti. RNA-seq analysis of an A. 22 

aegypti cell line treated with B. malayi microfilariae EVs showed differential expression of both 23 

mRNAs and miRNAs, some with roles in immune regulation. One downregulated gene, 24 

AAEL002590, identified as a serine protease, was shown to have direct involvement in the 25 

phenoloxidase (PO) cascade through analysis of PO activity. Similarly, injection of adult female 26 

mosquitoes with B. malayi microfilariae EVs validated these results in vivo, eliciting a 27 

downregulation of the AAEL002590 transcript and a significant reduction in PO activity. Our 28 

data indicates that parasite-derived EVs are capable of interfering with critical immune responses 29 

in the vector host, particularly immune responses such as melanization that target extracellular 30 

parasites. In addition, this data provides novel targets for transmission control strategies for LF 31 

and other parasitic diseases. 32 

 33 

 34 
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Author Summary 35 

Vector-borne, filarial nematode diseases represent a significant and affecting disease burden in 36 

humans, domestic animals and livestock worldwide. Parasitic nematodes must evade the elicited 37 

immune response of their hosts in order to develop and establish infection. While there is 38 

evidence for immunomodulation of the mammalian host, the mechanism of this 39 

immunomodulation is not fully clear and there is limited evidence for immunomodulation of the 40 

vector host. Here we have shown that parasite-derived extracellular vesicles are effector 41 

structures for immunomodulation of the vector host. In particular, we have identified that 42 

parasite-derived extracellular vesicles can interfere with critical mosquito immune responses 43 

against parasites. This data provides insight into parasite biology and novel targets for 44 

transmission control strategies for parasitic diseases.  45 

 46 

1. Introduction 47 

Vector-borne, filarial nematode diseases represent a significant and affecting disease burden in 48 

humans, domestic animals, and livestock worldwide. In humans, Lymphatic Filariasis (LF) is 49 

caused by multiple species of filarial nematodes, including Brugia malayi and is endemic in 72 50 

countries with over 860 million people infected or at risk of infection (1). Adult parasites reside 51 

in the lymphatic vasculature and although often asymptomatic, infection can result in extreme 52 

morbidity including lymphangitis, lymphedema (primarily in the extremities), and secondary 53 

bacterial infection/dermatitis (2). Current control strategies rely on mass drug administration 54 

programs that utilize inadequate anthelmintic drugs that do not effectively kill adult parasites or 55 

resolve established infections. The need for new control strategies of filarial nematode diseases is 56 
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necessary, however, progress in developing effective treatments has been stalled by our lack of 57 

understanding of parasite biology and host-parasite interactions. 58 

Parasitic filarial nematodes require both an intermediate (vector) host and a definitive 59 

(mammalian) host during the course of their life cycle. In either host, the nematode must evade 60 

the elicited immune response of the host in order to develop and establish infection. Various 61 

immune evasion strategies have been documented, including manipulation of host immune 62 

responses (3). In mammals, there is direct evidence of parasite-derived immunomodulation. It 63 

has been shown that parasites are capable of expanding regulatory immune cells (4–10), inducing 64 

apoptosis in type 1 immune response cell types (11–14), manipulating pattern recognition 65 

receptors (PRRs) (15–21), and increasing anti-inflammatory cytokines such as IL-4/IL-10 (22–66 

24). However, there is less extensive evidence of parasite immunomodulation of the vector host. 67 

Early studies have shown that filarial nematode parasites can inhibit melanization (25). 68 

Melanotic encapsulation, a crucial mosquito innate immune response to the microscopic larval 69 

stages of the parasite that infect mosquitoes, is a core arthropod defense mechanism that prevents 70 

infecting nematode growth and reproduction, and eventually leads to their death (26). Melanotic 71 

encapsulation involves both the humoral and cellular components of the innate immune response 72 

in mosquitoes. Upon recognition of a pathogen, the cellular arm of insect innate immunity drives 73 

aggregation of hemocytes to form a multicellular layer around the invading pathogen. 74 

Concurrently, the humoral arm of insect innate immunity initiates melanin production in the 75 

hemocytes (27–35). This process is controlled by the phenoloxidase (PO) cascade, which is 76 

initiated when a pathogen associated molecular pattern (PAMP) binds to its pattern recognition 77 

receptor (PRR) to initiate a serine protease cascade. This cascade ultimately leads to the 78 

activation of a pro-phenoloxidase activating factor which in turn will activate phenoloxidase 79 
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(26,36,37). Phenoloxidase can then oxidize phenols to quinones which are further polymerized to 80 

melanin (38). Death of the parasite is believed to be due to nutrient deprivation, asphyxiation, 81 

and/or through the production of toxins such as quinones and other reactive oxygen species 82 

produced during melanin production (39,40). 83 

The mechanistic basis for nematode manipulation of mosquito immune responses is not clear but 84 

recent studies exploring vector host global transcriptomic changes in response to parasite 85 

invasion have identified downregulation of immune-related genes during infection (41–43). A 86 

consensus view is that the cumulative effect of this modulation, be it within the intermediate or 87 

definitive host, is to suppress the host immune response towards a tolerant state in which the 88 

immune response is still present and active, but damage to the parasite is limited. While there is 89 

unequivocal evidence that parasites can directly modulate the host immune response, and 90 

although the concept is broadly accepted, the parasite-derived effectors that drive this 91 

modulation at the cellular and molecular level remain unclear and poorly understood, especially 92 

within the context of the vector host. 93 

Parasite excretory-secretory products (ESP) are a well-established source of potential effector 94 

molecules. Parasite ESP encompass freely secreted proteins and nucleic acids, as well as 95 

extracellular vesicles (EVs), which are membrane-bound structures secreted by both prokaryotic 96 

and eukaryotic cells including filarial nematodes (15,44–47). They contain complex cargo that 97 

can include proteins, small RNA species, and lipids (48,49) and have been shown to be highly 98 

involved in cell-to-cell communication and have roles in various physiological processes (48,50–99 

52). Although EVs are a newly recognized fraction of parasitic nematode ESP, the cargo of some 100 

nematode EVs have been profiled, revealing contents to include protein and small RNA species 101 

with predicted immunomodulatory properties (15,44,46,53–61). There is strong evidence that 102 
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these EVs have direct involvement in immunomodulation of mammalian hosts 103 

(4,15,16,44,53,55,56,60,62,63). 104 

We hypothesize that filarial nematode EVs secreted by infective stages of filarial parasites act as 105 

effectors to modulate the immune response of the vector host mosquito. To test this hypothesis, 106 

we examined the modulatory effects of B. malayi microfilariae (mf) EVs on the global 107 

transcriptomic profile of Aedes aegypti derived Aag2 cells, an established model for mosquito 108 

hemocytes due to their characterized immunocompetence (64). We found that nematode EV 109 

treatment drove differential expression of host genes, including a serine protease gene. This gene 110 

was shown to have direct involvement in the PO pathway as knockdown of the gene lead to a 111 

reduction in PO activity in vitro. The effect of microfilariae EVs was subsequently investigated 112 

in vivo, and it was found that these microfilariae derived EVs inhibited PO activity in adult 113 

female A. aegypti. These findings provide evidence that parasite derived extracellular vesicles 114 

contain cargo that are capable of modulating critical vector host immune responses.  115 

 116 

2. Results 117 

2.1 B. malayi mf derived EVs are internalized by Aag2 cells 118 

To confirm that EVs were being isolated from spent media, EVs were imaged using TEM (Fig. 119 

1A). Particles isolated from spent media exhibited the classic exosome-like deflated soccer ball 120 

morphology under EM but such structures were absent from unconditioned media. Vesicle size 121 

was further validated with nanoparticle tracking analysis using NanoSight LM10 (Malvern 122 

Panalytical, Malvern UK)(Fig. 1B) and showed that the isolated EVs had a mean size and 123 

concentration of 92.2 nm and 2.68 x 109 particles/ml respectively, well within the expected 50-124 
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200nm range. To investigate the potential for parasitic excretory-secretory products to interact 125 

with vector host immune cells, we treated Aag2 cells, an immunocompetent A. aegypti cell line 126 

(64), with PKH67 stained B. malayi mf derived EVs. 24 hours after treatment, cells were 127 

additionally stained with DAPI and phalloidin, and imaged with confocal microscopy. Aag2 cells 128 

were shown to internalize B. malayi mf derived EVs as compared to control cells (Fig. 1C-D). 129 

EVs appeared in punctate areas within the cell and were not found diffused throughout the 130 

cytoplasm. This correlates with previous evidence that EVs are internalized via endocytosis and 131 

thus would be confined to endosomes within the cytoplasm (65). In addition, internalization of 132 

parasite EVs by murine epithelial cells showed a similar punctate appearance (15). However, a 133 

different phenotype was seen by parasite EVs internalized by murine macrophages and human 134 

monocytes where the EVs appeared diffused throughout the cytoplasm (44,46,53). These 135 

differences in internalization appearance may be due to various endocytosis pathways utilized by 136 

the various cell types. To begin to tease apart the endocytic mechanism by which mf EVs are 137 

being internalized, Aag2 cells were treated with the endocytosis inhibitors chlorpromazine (CPZ) 138 

and nystatin. CPZ is an inhibitor of clathrin-mediated endocytosis and has been shown to inhibit 139 

the function of a key clathrin-mediated endocytic adaptor protein AP2 (66,67). Nystatin is 140 

capable of binding cholesterol and thus can inhibit caveolin-mediated endocytosis (68). It was 141 

observed that chlorpromazine, but not nystatin inhibited the endocytosis of B. malayi mf EVs 142 

(Fig. 1E-F), suggesting that the mechanism of endocytosis of parasitic EVs is clathrin-mediated. 143 

EV internalization was quantified using flow cytometry (Supplemental Fig. 1). 51% of Aag2 144 

cells internalized B. malayi mf EVs as compared to untreated cells (p < 0.0001, N = 3). 145 

Treatment with the endocytosis inhibitor chlorpromazine reduced the number of Aag2 cells that 146 

internalized B. malyi mf EVs by 39% as compared to EV only treated cells (p = 0.0003, N = 3). 147 
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However, the endocytosis inhibitor nystatin did not significantly inhibit EV internalization as 148 

compared to EV only treated Aag2 cells. 149 

 150 

2.2 EV Treatment suppresses miRNA expression with Immune Related Targets 151 

Due to the immunomodulatory cargo identified in other B. malayi life stages (44,46), we 152 

hypothesized that Aag2 cell phenotypes would be modulated by treatment with B. malayi mf 153 

EVs. To simulate a naturally occurring infection, Aag2 cells were first treated with LPS 154 

(500ng/ml) to mimic the immune response that would initially occur during the early stages of 155 

infection. 12 hours later, the cells were then treated with either dPBS or B. malayi mf EVs to 156 

examine the modulatory effects of EV treatment on an established response. 16 hours later cells 157 

were collected and processed for miRNA sequencing. Of the 300 miRNAs identified, 196 were 158 

expressed in all three treatment groups (control, LPS only, and LPS + EV). The control treatment 159 

group shared 21 miRNAs with the LPS only treatment group and 12 with LPS + EV while LPS 160 

and LPS + EV shared 10 common miRNAs. The control, LPS and LPS + EV treatment groups 161 

had 40, 19 and two miRNAs that were unique to each treatment group, respectively (Fig 2A). To 162 

investigate the ability of B. malayi EVs to regulate an immune response, we compared miRNA 163 

expression between LPS and LPS + EV treatment groups. Six miRNAs were identified to be 164 

significantly downregulated in LPS+EV as compared to LPS only, including aae-mir-1175, aae-165 

mir-2945, bmo-mir-6497, nlo-mir-275, aae-mir-184, and PC-5p-30141_33 (Fig 2B). Target 166 

prediction was conducted on these differentially expressed miRNA followed by GO analysis of 167 

the predicted gene targets. Targets were identified for five out of the six downregulated miRNAs 168 

with gene targets of these downregulated miRNAs having roles in proteolysis, regulation of 169 

transcription, signal transduction, phagocytosis, and cell differentiation among others (Fig 2C). 170 
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Additionally, KEGG analysis identified that the predicted gene targets are involved in multiple 171 

immune related pathways (Table 1). Gene targets of the downregulated miRNAs are predicted to 172 

be involved in common insect immune signaling pathways such as Toll/IMD, MAPK, TGFβ and 173 

insulin signaling pathways among others. Some of the predicted gene targets include 174 

AAEL008634, a jnk protein; AAEL010433, a transcriptional co-repressor, AAEL003505; a jun 175 

protein; and AAEL013433, a spaetzle-like cytokine. One of these miRNAs, aae-mir-1175, is 176 

conserved in Anopheles gambiae and was shown to be downregulated in plasmodium infected 177 

mosquitoes as compared to non-infected mosquitoes (69). In addition, mir-1175 has been 178 

identified to be solely expressed in the mosquito midgut a critical barrier in parasite development 179 

and transmission in the vector host. A similar phenotype was seen in A. aegypti where aae-mir-180 

1175 was downregulated in mosquitoes infected with dengue virus as compared to non-infected 181 

mosquitoes(70). This provides evidence for a conserved immunomodulation phenotype across 182 

diverse vector pathogens that enables pathogen migration and development. A. aegypti infected 183 

with Wolbachia showed a similar downregulation of aae-mir-2945 when compared to non-184 

infected mosquitoes providing additional support for downregulation of miRNAs to drive 185 

immunomodulation. The direct role that downregulating these miRNAs have on insect immune 186 

cell responses remain unknown, but these data suggest that B. malayi EVs are capable of 187 

modulating post-transcriptional control of host gene expression, including genes potentially 188 

involved in mosquito immune signaling pathways. Additional experimentation needs to be 189 

conducted to determine what specific effector molecule in the EV cargo is driving this 190 

modulation. 191 

 192 

2.3 Microfilariae EVs downregulate predicted immune related genes in vitro 193 
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mRNA-seq analysis was conducted concurrently with miRNA-seq analysis. Many differentially 194 

expressed genes between LPS and LPS + EV treatment groups were identified (Fig. 3A). A 195 

majority of the most highly upregulated or downregulated genes were uncharacterized protein 196 

coding genes with unknown function. Thus, rather than focusing on these most differentially 197 

regulated targets, genes that were significantly differentially expressed but also moderately 198 

annotated were instead chosen for in vitro validation. For example, AAEL024490 is a predicted 199 

cys-loop ligand-gated ion channel (cysLGIC) subunit with high sequence identity to a predicted 200 

gamma-aminobutyric acid (GABA) gated chloride ion channel (CLIC) subunit (this subunit will 201 

be referred to as a CLIC subunit for simplicity). AAEL002590 is a putative serine protease that 202 

has a Culex quinquefasciatus ortholog that has been identified as a pro-phenoloxidase activating 203 

factor (PPAF). Both the CLIC subunit gene and the serine protease gene were significantly 204 

downregulated upon EV treatment by 99% ( p = < 0.0001) and were among the genes chosen for 205 

in vitro validation using RT-qPCR. Aag2 cells were stimulated with LPS to elicit an immune 206 

response and then followed with treatment of serial dilutions of B. malayi mf EVs. The CLIC 207 

subunit was significantly downregulated, expression was reduced by 68% when treated with 208 

1x105 EVs (p = 0.0369, N = 3) (Fig. 3B) as compared to LPS only treated cells. EV treatment 209 

suppressed CLIC expression to basal levels observed in non-LPS treated Aag2 cells (53% of LPS 210 

stimulated value, p = 0.0425, N = 3). The serine protease gene was also significantly 211 

downregulated after treatment with 1x105 B. malayi mf EVs (57%, p = 0.0223, N = 3) (Fig. 3C). 212 

Again, EV treatment completely abrogated the LPS stimulation of expression (p = 0.0271, N = 213 

3). These findings are biologically relevant as 1x105 EVs is within the range of anticipated EVs 214 

that would be present in a mosquito after a blood meal. While the number of mf taken up by a 215 

mosquito during a blood meal varies on the microfilariae density in the blood of the host, it has 216 
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been established that the approximate mean number of mf taken up by a mosquito is between 1-217 

300 mf with most taking up approximately 40 mf (71–73). In addition, it has been shown that B. 218 

malayi mf secrete, on average, 4000 EVs per mf in 24 hours (47). These data provide the 219 

approximate range of EVs that would be present in a mosquito within 24 hours of a blood meal 220 

would be between 1 x 105 – 1 x 106. Since AAEL002590 was identified as a serine protease with 221 

homology to a C. quinquefasciatus PPAF, we next wanted to investigate whether this gene was 222 

involved in the PO pathway. RNAi was used to knockdown AAEL002590 in Aag2 cells with a 223 

time course experiment showing that optimal knockdown occurred at 24 hrs post-RNAi 224 

treatment with 79% suppression of AAEL002590 expression (p = 0.0012, N =3) (Supplemental 225 

Figure 3). To investigate whether AAEL002590 was involved in the PO pathway, Aag2 cells 226 

were treated with duplexed siRNA or scrambled siRNA as a negative control for 24 hrs. 227 

Following RNAi treatment cells were either treated with dPBS to quantify changes in basal PO 228 

activity or challenged with LPS (500ng/ml) for 6 or 24 hours after which cell culture supernatant 229 

was collected and mixed with L-DOPA for the PO activity assay. The assay was incubated 230 

overnight and basal PO activity was measured at 490nm. Basal PO activity was inhibited by 36% 231 

after AAEL002590 RNAi as compared to control cells at 6 hours (p = 0.0002, N = 3) and 232 

inhibited by 54% as compared to control at 24 hours (p = 0.018, N = 3) (Fig 3D). While LPS 233 

treatment has been used to induce an immune response in Aag2 cells previously (64) and was 234 

successful in inducing an immune response in Aag2 cells as evident by our gene expression 235 

experiments, LPS did not sufficiently induce the PO cascade in vitro. However, it is clear from 236 

RNAi-mediated knockdown of basal PO activity that AAEL002590, a target for parasite EV 237 

modulation, is involved in the host PO pathway.  238 

 239 
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GO enrichment analysis was conducted on all significantly (p  0.05) upregulated or 240 

downregulated mRNAs. We found that genes upregulated following EV treatment were enriched 241 

for GO terms associated with metabolic processes and oxidoreductase activity (Fig. 4A). Some 242 

increases in metabolic activity and increases in oxidoreductase activity can be explained by the 243 

vector’s reaction to initial parasite infection. However, increases in steroid and lipid biosynthesis 244 

may be driven by parasite effector molecules. It has been shown that host steroid hormones can 245 

be influenced by development of parasites and dictate their course of infection, with increase 246 

production of steroid hormones leading to more rapid development and longer infections (74,75). 247 

In addition, it has been shown that host lipid biosynthesis is hijacked by parasites and is a 248 

common them in vector-borne diseases(76). 249 

 250 

Genes that were downregulated after EV treatment were enriched for GO terms associated with 251 

signaling and immune responses (Fig. 4B). Signaling GO terms include ligand-gated ion channel 252 

activity, transmembrane ion transporter activity, neurotransmitter release and neurotransmitter 253 

secretion. As mentioned previously, we have already validated that a predicted GABA-gated 254 

chloride ion channel subunit is downregulated after EV treatment. The GABAergic system has 255 

been highly implicated in human immune functions including roles in phagocytosis, cytokine 256 

production, and cell proliferation(77). While the main findings in humans have concluded that 257 

the GABAergic system leads to immunosuppressive phenotypes, the possible role of GABA 258 

receptors in invertebrate immune responses has not been well studied. In insects, the cysLGIC 259 

superfamily is known for its inhibitory roles in neurotransmission and as target sites for 260 

insecticides(78). Dieldrin and endosulfan are organochlorine-based insecticides that function as 261 

GABA receptor antagonists and it has been shown that sub-lethal doses of both dieldrin and 262 
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endosulfan inhibited the encapsulation of Leptopolina boulardi eggs by Drosophila larvae(79). 263 

The strong body of evidence that GABA receptors are involved in mammalian neurohormonal 264 

immune regulation and that certain GABA receptor antagonists in insects can modulate 265 

encapsulation, suggests a potential role for the predicted GABA-gated chloride channel in 266 

neurohormonal regulation of mosquito immune responses. In particular, a role in promoting or 267 

driving the encapsulation process. 268 

2.4 Phenoloxidase activity is inhibited by EV treatment 269 

Having established that parasite EV treatment modulates AAEL002590 in Aag2 cells in vitro, we 270 

next wanted to determine if this phenotype was recapitulated in vivo. Adult female mosquitoes 271 

were injected with LPS (1mg/ml) followed by injection with mf EVs or dPBS 6 hours later. 272 

Mosquitoes were incubated for 24 hours and then AAEL002590 expression was assayed by RT-273 

qPCR. Injection with 1x105 mf EVs significantly downregulated the serine protease gene by 84% 274 

(p = 0.02, N = 3) as compared to LPS only (Fig. 5A). This EV-suppression returned 275 

AAEL002590 expression to basal levels comparable to control mosquitoes in which 276 

AAEL002590 expression was 74% lower than LPS stimulated mosquitoes (p = 0.05, N =4). 277 

Since we had already shown that knockdown of the serine protease gene in Aag2 cells inhibited 278 

PO activity in vitro we wanted to investigate if B. malayi mf EVs could inhibit PO activity in 279 

vivo. Adult female mosquitoes were treated as previously described and hemolymph was 280 

collected by perfusion following the 24-hour incubation. Hemolymph was then mixed with L-281 

DOPA and PO activity was measured by optical density (OD) readings at 490nm every 5 282 

minutes for 30 minutes and a final reading at 60 minutes. PO activity was significantly inhibited 283 

in hemolymph from mosquitoes injected with 1x105 mf EVs at all time points. Specifically, PO 284 

activity was inhibited by 65% (p < 0.05), 81% (p < 0.0001), 80% (p < 0.0001), 78% (p < 285 
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0.0001), 76% (p < 0.0001), 74% (p < 0.0001), 72% (p < 0.0001), and 64% (p < 0.0001) at 0, 5, 286 

10, 15, 20, 25, 30 and 60 minutes respectively (all N = 3) as compared to LPS only treated 287 

mosquitoes. These results indicate that B. malayi mf EVs inhibit PO activity in vivo at 288 

biologically relevant concentrations. While the PO activity induced by LPS treatment may not 289 

have appeared as high as predicted, the pronounced inhibition after EV treatment is compelling. 290 

 291 

3. Discussion 292 

While there is strong evidence for parasite-derived host immunomodulation of the mammalian 293 

host, evidence of immunomodulation of the vector host is lacking. Here we have shown that 294 

parasite-derived extracellular vesicles (EVs) elicit transcriptional changes in an insect immune 295 

cell model, specifically, our data show that B. malayi mf derived EVs can modulate multiple 296 

genes involved in the humoral immune response. The humoral immune response of a mosquito is 297 

comprised of pattern recognition receptors (PRRs), antimicrobial peptides (AMPs) and 298 

components of the phenoloxidase (PO) cascade. Downregulation of genes involved in these 299 

immune responses would be advantageous for any invading pathogen, especially those that must 300 

migrate through the mosquito hemolymph. Melanotic encapsulation is a fundamental mosquito 301 

defense mechanism against parasites that involves the PO cascade and here we have identified a 302 

serine protease with homology to a known prophenoloxidsae activating factor (PPAF) that is 303 

downregulated when mosquito cells are treated with Brugia EVs. Independent RNAi-mediated 304 

knockdown of this serine protease leads to an inhibition in PO activity in an insect cell line. We 305 

were also able to show that this phenotype is recapitulated during Brugia infection of mosquitoes 306 

in vivo. Further experimentation is needed to determine if this serine protease is indeed a true 307 
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PPAF or if it is a serine protease involved in an upstream cascade that activates pro-PPAF. In 308 

either case, however, our data provides evidence that parasite-derived EVs are effector structures 309 

in immunomodulation of vector hosts with the ability to interfere with critical host immune 310 

responses (Fig 6). Modulation of the vector host melanization immune response is logical as it is 311 

the main vector defense mechanism against large, extracellular pathogens such as parasitic 312 

nematodes. While our data provides novel mechanistic evidence for modulation of the host 313 

melanization immune response, this phenomenon seems to be central to parasite-vector host 314 

interactions. Christensen and LaFond (1986) were the first to provide evidence for parasite-315 

derived modulation of the melanization response, showing that B. pahangi infected A. aegypti 316 

had reduced ability to melanize when challenged with intrathoracic inoculation of new B. 317 

pahangi mf (25). In addition, targeting of the melanization and encapsulation immune response 318 

is a common phenotype seen in infections of Galleria mellonella with the parasitic nematode 319 

Steinernema carpocapsae. Studies have shown that a trypsin-like serine protease secreted by S. 320 

carpocapsae can inhibit PO activity in vitro and affects the morphology of S. capocapsae 321 

hemocytes and inhibits their ability to spread, a feature necessary for encapsulation (80). Further, 322 

a secreted chymotrypsin protease from S. carpocapsae has also been shown to inhibit PO activity 323 

and encapsulation of G. mellonella hemocytes both in vitro and in vivo (81). Brugia are known to 324 

actively secrete a number of proteases some of which may be involved in modulating the 325 

melanization response; indeed, a cathepsin L-like protease is abundantly found in the EVs of 326 

infective third stage larvae isolated from A. aegypti (44) that is essential to parasite survival 327 

within the mosquito (82). An important next step will be to characterize the cargo of B. malayi 328 

mf EVs to identify those effector molecules responsible for PO pathway downregulation. As this 329 

work continues, it will be essential to consider that the modulatory molecules may not be 330 
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proteins. We have shown that filarial nematode EVs also contain a diverse miRNA cargo (44) 331 

and secreted EVs represent a way that effector miRNAs can be released from the parasite and 332 

protected during trafficking to host cells, where they might downregulate immune pathways at 333 

the genetic level. 334 

To this end, several transcriptomic studies have looked at the global transcriptional changes that 335 

occur in the mosquito host during parasite infection (41–43,83–85). Many of these studies also 336 

identified parasite-derived downregulation of mosquito host serine proteases at the genetic level. 337 

A study conducted on B. malayi-infected Armigeres subalbatus showed that there was a 338 

significant reduction in expression of multiple serine protease genes during the first 24 hours of 339 

infection (41). This correlates with the time frame that EV-secreting mf would be migrating from 340 

the midgut, through the hemocele and to the thoracic musculature, and the timeframe seen in our 341 

studies. While B. malayi do not effectively develop to infective L3 stage parasites in A. 342 

subalbatus, it still provides evidence for host transcriptional changes during early stages of 343 

infection. Similar trends were observed in B. malayi infected A. aegypti where there was 344 

evidence for parasite derived alteration in expression of genes involved in blood digestion and 345 

immune function including specific downregulation of serine protease genes (43), providing 346 

broad evidence for parasite immunomodulation in a compatible vector model. In addition, a 347 

study looking at transcriptional changes in both B. malayi and A. aegypti during the course of 348 

infection saw that between 2-4 days post infection, the A. aegypti serine protease gene, 349 

AAEL002590, was downregulated in infected mosquitoes (84). This downregulation occurring 350 

2-4 days post infection correlates with our study as 2 days post infection broadly aligns with the 351 

mf to L1 molt within the thoracic muscles but some mf will still be present (43). It is also 352 

important to note that while our data shows downregulation occurring as early as 24 hours post 353 
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treatment, this may be due to the fact that we are injecting isolated EVs and not infecting with 354 

live parasites. Many of these transcriptomic studies also identified downregulation of CLIP 355 

serine proteases or prophenoloxidase enzymes (43,83,85), key components involved in the 356 

prophenoloxidase cascade and melanization immune response, providing additional 357 

corroboration for our observation that B. malayi mf EVs are interfering with this immune 358 

response. While our study provides a mechanism for parasite-derived transcriptional changes of 359 

the host, all these transcriptional studies provide a substrate for further studies aimed at better 360 

understanding mosquito immune responses. Paying particular attention to those mosquito genes 361 

that filarial nematode parasites have been selected to suppress over millions of years of the host-362 

parasite interaction may reveal the most critical pathways and proteins to exploit for insecticides 363 

or novel transmission control strategies.  364 

 365 

Figure 6. B. malayi microfilariae release EVs that interfere with the PO cascade and 366 

melanization 367 

Melanotic encapsulation is a common insect defense mechanism against parasites. Upon 368 

recognition of a parasite, hemocytes aggregate forming a multicellular layer that deposits a 369 

melanin-enriched capsule around the invading parasite. Melanin production is controlled by the 370 

phenoloxidase (PO) cascade, which through a series of interdependent reactions, leads to the 371 

activation of PO that oxidizes phenols to quinones, which are further polymerized to melanin.  372 

Death of the parasite is believed to be due to nutrient deprivation, asphyxiation, or through the 373 

production of toxins such as quinones and other reactive oxygen species produced during 374 

melanin production. B. malayi microfilariae-derived extracellular vesicles downregulate a serine 375 
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protease that functions either at the serine protease cascade or as a PPAF, either way interfering 376 

with the production of PO and thus inhibiting melanization of invading parasites.  377 

 378 

There is a growing body of evidence that host immunomodulation by parasite-derived EVs is a 379 

common motif in parasitic nematode infections. This picture began to emerge with seminal work 380 

from Buck et al. (2014) who showed that EVs released by the murine gastrointestinal nematode, 381 

Heligmosomoides polygyrus suppressed expression of an IL-33 receptor subunit (also known as 382 

ST2) in intestinal epithelial cells (15,16). IL-33 is an alarmin cytokine that plays an important 383 

role in initiation of type 2 immune responses, is critical for driving induction of Th2-associated 384 

cytokines, and is involved in the expulsion of intestinal parasitic nematodes (86). This work was 385 

extended to show that the same EVs elicited similar modulatory phenotypes in macrophages 386 

(16). Further studies have shown that Trichinella spiralis EVs are capable of producing some of 387 

the modified type 2 immune response phenotypes seen in chronic infections. T. spiralis EVs 388 

have been shown to downregulate the pro-inflammatory cytokines IL-1β, TNFα, and IFNγ while 389 

also increasing production of the anti-inflammatory cytokines IL-10 and TGF-β in an induced 390 

colitis mouse model (4). Similarly, Nippostrongylus brasiliensis EVs were able to reduce IL-1β 391 

and increase IL-10 expression in a similar induced colitis mouse model (55). Importantly, our 392 

group and others have shown that the modulation of host biology via EVs is not limited to 393 

gastrointestinal parasitic nematodes but also occurs at the filarial nematode-host interface. We 394 

have previously described how EVs released by infective L3 stage B. malayi drive a phenotype 395 

in murine macrophages that is more consistent with classical activation than alternative 396 

activation (44). More compelling, evidence generated by the Nutman laboratory shows that EVs 397 

secreted by B. malayi mfs inhibit phosphorylation of the mTOR complex in human monocytes 398 
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and point to these EVs as the critical parasite-derived factor eliciting Dendritic cell dysfunction 399 

during filarial disease (53). The data from these various studies collectively show parasite-400 

derived EVs driving diverse but consistent effects in mammalian host, an observation that we 401 

now extend to the vector host. 402 

Our understanding of the filarial nematode-vector interface is incomplete, but the data described 403 

in this paper helps to begin addressing this knowledge gap and may even seed the identification 404 

of novel targets that could contribute to better controlling filarial nematode diseases. Identifying 405 

targets at the vector stage of parasite development may stop transmission of the causative agents 406 

of filarial diseases and may provide insight into control strategies for other non-filarial, vector-407 

borne diseases. Any mechanism that disrupts the vector-parasite interaction and skews the 408 

balance in favor of the vector is likely to prevent infection, parasite development and 409 

transmission.  410 

 411 

4. Materials and Methods 412 

4.1 Cell culture 413 

The immunocompetent Aedes aegypti-derived Aag2 cell line was cultured in Schneider’s 414 

Drosophila medium supplemented with 10% heat-inactivated, fetal bovine serum and 1% 415 

Penicillin/Streptomycin (all Thermo Fisher Scientific, Waltham, MA, USA) at 28°C. 416 

4.2 Parasite Culture and Maintenance  417 

Brugia malayi parasites were obtained from the NIH/NIAID Filariasis Research Reagent 418 

Resource Center (FR3) at the University of Georgia, USA. Persistent B. malayi infections at FR3 419 
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are maintained in domestic short-haired cats. Microfilariae stage B. malayi were obtained from a 420 

lavage of the peritoneal cavity of a euthanized gerbil. Microfilaria were washed according to 421 

FR3 protocols upon arrival at Iowa State University. Briefly, microfilariae were centrifuged at 422 

2000 rpm for 10 minutes at room temperature to pellet parasites. Transport media [RPMI with 423 

Penicillin (2000 U/ml) and Streptomycin (2000 µg/ml)] was aspirated and the parasite pellet 424 

resuspended in dPBS (Thermo Fisher Scientific). The parasite suspension was overlaid onto 10 425 

ml of Histopaque-1077 (Sigma Aldrich, St. Louis, MO, USA) and centrifuged at 2000 rpm for an 426 

additional 15 minutes. The supernatant was aspirated and parasite pellet washed with dPBS twice 427 

for 5 minutes each wash. After washing, the supernatant was aspirated and 3 ml of cell culture 428 

grade water (Cytiva, Marlborough, MA, USA) was added to the remaining pellet to lyse red 429 

blood cells (RBCs). Immediately following RBCs lysis, 10 ml dPBS was added and parasites 430 

centrifuged for an additional 5 minutes then washed one final time in dPBS. Microfilariae were 431 

then resuspended in worm culture media (RPMI with 1% 1 M HEPES, 1% 200mM L-glutamine, 432 

Penicillin (2000 U/ml), Streptomycin (2000 µg/ml), and 1% w/v glucose [all Thermo Fisher 433 

Scientific]) and cultured at 37°C with 5% CO2 for 5-7 days. Parasite motility was used as an 434 

indicator of parasite viability. Parasite viability was checked daily and spent media was collected 435 

every 24 hours and retained for EV isolation as long parasites appeared viable. 436 

4.3 Mosquito Rearing 437 

A. aegypti (Liverpool strain) mosquitoes were reared at 27°C and 80% relative humidity with a 438 

14:10 h light/dark period. Larvae were fed a 50:50 diet of Tetramin ground fish flakes (Tetra, 439 

Melle, Germany) and milk bone dog biscuits. Adults were maintained on a 10% sucrose solution. 440 

All experimental techniques were performed on cohorts of 4–6 days old adult female 441 

mosquitoes.  442 
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4.4 EV Isolation, Quantification & Imaging 443 

EVs were isolated from spent culture media via differential ultracentrifugation as previously 444 

described (44,46,47). Briefly, media was filtered through 0.2 μm PVDF filtered syringes (GE 445 

Healthcare, Chicago, IL, USA) and centrifuged at 120,000 x g for 90 minutes at 4°C. The 446 

supernatant was decanted leaving approximately 1.5 ml media to ensure that the EV pellet was 447 

not disrupted. The retained media and pellet were filtered through a PVDF 0.2 μm syringe filter 448 

and centrifuged at 186,000 x g for a further 2 h at 4°C. The size profile and concentration of EVs 449 

in the isolated sample were quantified using nanoparticle tracking analysis (NTA; NanoSight 450 

LM10, Malvern Instruments, Malvern, UK). EV integrity and morphology were confirmed using 451 

transmission electron microscopy (TEM). Briefly, a 2 µl aliquot of EV preparation was placed 452 

onto a carbon film grid (Electron Microscopy Sciences, Hatfield, PA, USA) for 1 minute. The 453 

drop was wicked to a thin film and 2 µl of uranyl acetate (2% w/v final concentration) was 454 

immediately applied for 30 seconds, wicked, and allowed to dry. Images were taken using a 455 

200kV JEOL 2100 scanning and transmission electron microscope (Japan Electron Optics 456 

Laboratories, LLC, Peabody, MA) with a Gatan OneView camera (Gatan, Inc. Pleasanton, CA). 457 

4.5 EV internalization by Aag2 cells 458 

Methods were based on protocols previously described (46), but modified for optimal imaging of 459 

the Aag2 cell line. 3 x105 Aag2 cells were seeded on an 18 mm, #1 thickness, poly-D-lysine 460 

coverslip (Neuvitro, Vancouver, WA) in a 12-well plate (Thermo Fisher Scientific) and cultured 461 

at 28°C overnight. Between 5x108-1x109 isolated EVs were stained with PKH67 (Sigma Aldrich, 462 

St. Louis, MO) according to manufacturer’s instructions. Confluent Aag2 cells were treated with 463 

3.5x107 stained EVs and incubated for 24 hrs at 28°C. EV uptake was visualized with 464 

immunocytochemistry. Media was removed and cells were washed with 1X dPBS and fixed in 465 
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4% paraformaldehyde (Electron Microscopy Sciences) for 15 minutes at room temperature. 466 

Following three 1X dPBS washes at room temperature, cells were incubated with 1:300 Alexa 467 

Fluor 647 phalloidin (Thermo Fisher Scientific) for 45 minutes at room temperature followed by 468 

three washes of 1x dPBS for 5 minutes each. Cells were incubated with 300 nM DAPI (Thermo 469 

Fisher Scientific) for 5 minutes at room temperature followed by two washes in 1X dPBS. 470 

Coverslips were mounted using Flouromount aqueous mounting media (Sigma Aldrich) and 471 

visualized by a Leica SP5 X MP confocal/multiphoton microscope system (Leica Microsystems 472 

Inc., Buffalo Grove, IL, USA). 473 

Concurrently, EV internalization was quantified using flow cytometry. 3 x105 cells were seeded 474 

per well of a 12-well plate and incubated at 28°C overnight. Cells were incubated with 3.5x107 475 

PKH67 stained EVs for 24 hrs at 28°C. Cells were washed in 1x dPBS and collected into 476 

polystyrene FACS tubes (Thermo Fisher Scientific). Cells were fixed in 4% paraformaldehyde 477 

for 20 minutes and washed with FACS buffer (dPBS supplemented with 1% BSA and 0.1% 478 

NaN3). Cells were resuspended in 400 µl FACS buffer and analyzed with a BD Accuri C6 Flow 479 

Cytometer (BD Biosciences, San Jose, CA). For endocytosis inhibition assays, Aag2 cells were 480 

treated with a final concentration of either 30 µM chlorpromazine or 15 µM nystatin (Thermo 481 

Fisher Scientific). Following a two-hour incubation, media was changed and cells treated with 482 

3.5x107 B. malayi mf EVs, incubated for 24 hours and then collected for confocal microscopy 483 

and flow cytometry as described above.  484 

4.6 mRNA-Seq Analysis 485 

1 x 105 Aag2 cells were seeded in each well of a 96-well plate (Corning Inc, Corning, NY, USA) 486 

and incubated overnight at 28°C. The following day, culture media was changed and cells were 487 

treated with either lipopolysaccharide (LPS) (500 ng/ml) to stimulate an immune response in 488 
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vitro or dPBS as a negative control. Cells were incubated for an additional 12 hours at 28°C after 489 

which, culture media was changed and cells treated with 1.1 x 109 parasite EVs per well. Cells 490 

were then incubated for a further 16 hours at 28°C before collection and storage in Trizol 491 

(Thermo Fisher Scientific) ahead of RNA extraction. Briefly, cells in Trizol were mixed with 492 

chloroform (0.2 ml chloroform per ml Trizol) and shaken vigorously for 20 seconds. Samples 493 

were allowed to sit at room temperature for 3 minutes and then centrifuged at 10,000 x g for 18 494 

minutes at 4°C. The aqueous phase was collected, and an equal volume of 100% ethanol was 495 

added. RNA was then purified and collected using a RNeasy Mini Kit (Qiagen, Hilden, 496 

Germany) according to manufacturer’s instructions. 497 

mRNA-seq was performed by LC Sciences (Houston, TX). Total RNA quantity and purity were 498 

analyzed using an RNA 6000 Nano LabChip Kit and a Bioanalyzer 2100 (Agilent, Santa Clara, 499 

CA). High quality RNA samples with RIN number > 7 were used to construct the sequencing 500 

library. mRNA was purified from total RNA (5µg) using Dynabeads Oligo (dT)(Thermo Fisher 501 

Scientific) with two rounds of purification. Following purification, mRNA was fragmented into 502 

short fragments using a NEB Next Magnesium RNA Fragmentation Module (New England 503 

Biolabs, Ipswich, MA, USA) at 94°C for 5-7 minutes. Cleaved RNA fragments were reverse 504 

transcribed to cDNA by Superscript II Reverse Transcriptase (Thermo Fisher Scientific) and the 505 

resulting cDNA used to generate U-labeled second-stranded DNA using E. coli DNA 506 

polymerase I, RNase H (both New England Biolabs) and dUTP Solution (Thermo Fisher 507 

Scientific). An A-base was added to the blunt ends of each strand, preparing them for ligation to 508 

the indexed adapters. Each adapter contained a T-base overhang for ligating the adapter to the A-509 

tailed fragmented DNA. Dual-index adapters were ligated to the fragments, and size selection 510 

was performed with AMPureXP beads (Beckman Coulter, Brea, CA, USA). U-labeled second-511 
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stranded DNAs were treated with heat-labile UDG enzyme (New England Biolabs), and ligated 512 

products were amplified with PCR by the following conditions: initial denaturation at 95°C for 3 513 

minutes; 8 cycles of denaturation at 98°C for 15 seconds, annealing at 60°C for 15 seconds, and 514 

extension at 72°C for 30 seconds; and final extension at 72°C for 5 minutes. The average insert 515 

size for the paired-end libraries was 300 bp (±50 bp). Paired-end sequencing was performed on 516 

an Illumina Hiseq 4000 (Illumina, San Diego, CA, USA). Reads were adapter and quality 517 

trimmed using Trimmomatic (87). HISAT2 (88) and StringTie (89) were used to align surviving 518 

reads to the B. malayi reference genome (WormBase ParaSite version 12.4) (90,91) and to the A. 519 

aegypti reference genome (VectorBase release 47) (92) to produce raw counts for annotated 520 

genes. The RNA-seq pipeline was implemented using Nextflow (93). DESeq2 (94) and custom R 521 

scripts were used to identify differentially expressed genes (DEGs) across conditions. The R 522 

package topGO (95) was used to assess functional enrichment of differentially expressed genes. 523 

Gene ontology (GO) terms from the A. aegypti LVP transcriptome were retrieved from 524 

VectorBase (92).  525 

4.7 miRNA-Seq Analysis 526 

microRNA (miRNA) sequencing was performed by LC Sciences. The total RNA quality and 527 

quantity were analyzed by Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA) with RIN 528 

number >7.0. Small RNA libraries were prepared using 1 µg of total RNA and the TruSeq Small 529 

RNA Sample Prep Kits (Illumina) according to manufacturer’s instructions. Single-end 530 

sequencing was performed on an Illumina Hiseq 2500 (Illumina) according to manufacturer’s 531 

instructions. Raw reads were subjected to an in-house program, ACGT101-miR (LC Sciences), 532 

to remove adapter dimers and junk, low complexity and common non-target RNA families 533 

(rRNA, tRNA, snRNA, snoRNA) and repeats. Remaining unique sequences with length 18~26 534 
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nucleotides were mapped to specific species precursors in miRBase 22.0 (96–101) and by 535 

BLAST search (102) to identify known miRNAs and novel 3p- and 5p- derived miRNAs with 536 

their genomic location. Length variation at both 3’ and 5’ ends and one mismatch inside of the 537 

sequence were allowed in the alignment. The unique sequences mapping to specific species 538 

mature miRNAs in hairpin arms were identified as known miRNAs. The unique sequences 539 

mapping to the other arm of known specific species precursor hairpin opposite to the annotated 540 

mature miRNA-containing arm were considered to be novel 5p- or 3p derived miRNA 541 

candidates. Hairpin RNA structures of unmapped sequences were predicted from the flanking 80 542 

nucleotide sequences using RNAfold (103). The criteria for secondary structure prediction 543 

included number of nucleotides in one bulge in stem (≤12), number of base pairs in the stem 544 

region of the predicted hairpin (≥16), cutoff of free energy (kCal/mol ≤-15), length of hairpin (up 545 

and down stems + terminal loop ≥50), length of hairpin loop (≤20), number of nucleotides in one 546 

bulge in mature region (≤8), number of biased errors in one bulge in mature region (≤4), number 547 

of biased bulges in mature region (≤2),  number of errors in mature region (≤7), number of base 548 

pairs in the mature region of the predicted hairpin (≥12) and percent of mature sequences in stem 549 

(≥80). To predict the genes targeted by most abundant miRNAs, two computational target 550 

prediction algorithms TargetScan (104–106) and Miranda 3.3a (107) were used to identify 551 

putative miRNA binding sites. Finally, the data predicted by both algorithms were combined and 552 

the overlaps calculated. The R package, enrichplot, was used to visualize GO term enrichment 553 

from the predicted targets of differentially expressed miRNAs.  554 

4.8 RT-qPCR Validation of Gene Expression Levels 555 

1x105 Aag2 cells were seeded in each well of a 96-well plate (Corning Inc, Corning, NY, USA) 556 

and incubated overnight at 28°C. The following day, culture media was changed and cells were 557 
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treated with either LPS (500 ng/ml) to stimulate an immune response in vitro or dPBS as a 558 

negative control. Cells were incubated for an additional 12 hours at 28°C after which, culture 559 

media was changed and cells treated with 10-fold serial dilutions ranging from 1 x 109 to 1 x 102 560 

parasite EVs. This range was used as it allowed us to see the effects of treating cells with more 561 

EVs than would be present in a natural infection, EV levels present during a natural infection (1 562 

x 106 – 1 x 105) and the effects of having less EVs than would occur in a natural infection. Cells 563 

were then incubated for a further 16 hours at 28°C before collection and storage in Trizol 564 

(Thermo Fisher Scientific) ahead of RNA extraction described above. cDNA was synthesized 565 

from sample RNA using Superscript III First-Strand cDNA Synthesis kit (Thermo Fisher 566 

Scientific) according to manufacturer’s instructions. 20 ng of cDNA was used per qPCR reaction 567 

using Powerup SYBR green master mix (Thermo Fisher Scientific) and gene specific primers 568 

according to manufacturer’s instructions on a Quantstudio 3 Real-Time PCR system (Thermo 569 

Fisher Scientific). CT values were averaged across technical replicates and normalized against 570 

RPS17. Primer sequences for AAEL002590 (Serine Protease), AAEL024490 (predicted cys-loop 571 

ligand-gated ion channel [cysLGIC] subunit), and the housekeeping gene (RPS17) can be found 572 

in Supplemental Table 1.  573 

4.9 In vitro RNA Interference 574 

Duplexed siRNA was designed and produced targeting the serine protease gene by Integrated 575 

DNA Technologies (Coralville, IA, USA). Sequences for the duplexed siRNA can be found in 576 

Supplemental Information 3. 4 x 104 Aag2 cells were seeded per well of a 96-well plate and 577 

incubated overnight. 5 pmol of siRNA or scrambled negative control was mixed with 578 

lipofectamine RNAiMAX Reagent (Thermo fisher Scientific) to create a 1 pmol siRNA solution. 579 

10 µl of the 1 pmol siRNA solution was added per well and incubated for 24 hours. To determine 580 
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RNAi efficiency, total RNA was isolated from cells for subsequent RT-qPCR as described 581 

above.  582 

4.10 Aedes aegypti Injections 583 

Four to five-day old A. aegypti (Liverpool strain) female mosquitoes were intrathoracically 584 

injected with 69 nl of LPS (1 mg/ml) [Sigma Aldrich] or dPBS (Thermo Fisher Scientific) using 585 

a Nanoject III injector (Drummond Scientific Company, Broomall, PA, USA) and incubated for 586 

six hours at 27°C prior to EV injection. Mosquitoes were then challenged with serial dilutions of 587 

1x107, 1x106, 1x105 EVs, or dPBS as a control. Total RNA was isolated from 8 mosquitoes per 588 

treatment group 24 hours post-challenge. Mosquitoes were homogenized using a mortar and 589 

pestle in 1 ml of Trizol. The resulting suspension was centrifuged at 12,000 x g for 10 minutes at 590 

4°C to remove debris, the supernatant collected. RNA extraction, cDNA synthesis and qPCR 591 

were performed as previously described.  592 

4.11 Phenoloxidase Activity Assay 593 

Pooled hemolymph was collected from 10 adult female mosquitoes by perfusion and prepared 594 

for PO assay as previously described (108). Briefly, 10 µl of hemolymph was mixed with 90 µl 595 

of 3, 4-Dihydroxy-L-phenylalanine (L-DOPA, 4 mg/ml)(Sigma Aldrich) dissolved in nuclease 596 

free water (Cytiva). After an initial 10 minutes incubation at room temperature, PO activity was 597 

measured at 490 nm every 5 minutes for 30 minutes, then the final activity was measured at 60 598 

minutes using a Synergy HTX Multi-Mode Microplate Reader (Agilent). To determine if 599 

AAEL002590 was directly involved in the PO pathway AAEL002590 was knockdown via 600 

siRNA in Aag2 cells as previously described.  After the 24 hr incubation, Aag2 cells were 601 

challenged with LPS (500ng/ml) for either 6 or 24 hours. 10 µl of either control or siRNA treated 602 
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Aag2 cell culture media was mixed with 90 µl L-DOPA as previously described. PO activity was 603 

allowed to proceed at room temperature overnight after which PO activity was measured at 490 604 

nm. 605 

4.12 Statistical Analysis 606 

 In vitro RT-qPCR validation was analyzed using a repeated measures one-way ANOVA while 607 

in vivo RT-qPCR validation was analyzed using mixed effects one-way ANOVA. Multiple 608 

comparisons were conducted using the Dunnett statistical hypothesis testing method. Enrichment 609 

of functions within the molecular function, biological process, and cellular component GO term 610 

sub-ontologies were analyzed using a Fisher’s exact test. In vivo PO assays were analyzed using 611 

a repeated measures two-way ANOVA with a Šidák multiple comparisons test while in vitro PO 612 

assays were analyzed with multiple T tests with a Holm- Šidák multiple comparison test. For all 613 

significance testing p-values < 0.05 was considered significant. All ANOVAs were completed 614 

using GraphPad prism 9.3.1 (GraphPad Software, San Diego, CA, USA). 615 

 616 
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 905 

Figure 1. B. malayi mf derived EVs are internalized by Aag2 cells 906 

Isolation of B. malayi mf EVs was confirmed by TEM (A) and size profile was further validated 907 

with nanoparticle tracking analysis (B). PKH67 stained B. malayi mf EVs were incubated with 908 
Aag2 cells for 24 hours. Cells were stained with Alexa Fluor 647 Phalloidin and DAPI and 909 
imaged with a Leica SP5 X MP confocal/multiphoton microscope system. 51% of cells 910 
incubated with PKH67 stained EVs showed internalization indicated by the green fluorescence 911 
inside the cell (D) as compared to control cells (C). Cells treated with endocytosis inhibitors 912 

chlorpromazine (E) showed no endocytosis of stained EVs while cells treated with nystatin (F) 913 
showed diffuse uptake of EVs throughout the cytoplasm. Scale bar (A) = 150 nm. Scale bar (C-914 

F) = 10 µM. 915 
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Figure 2. EV Treatment suppresses miRNA expression with Immune Related Targets 938 

miRNA-seq analysis was performed on control, LPS and LPS + EV treated Aag2 cells. All three 939 
treatment groups shared 196 miRNAs while 40, 19 and two miRNAs were unique to control, 940 
LPS only and LPS + EV treatment groups respectively (A). Six significantly, differentially 941 

expressed miRNAs were identified between the LPS and LPS + EV treatment groups (B). 942 
Predicted targets were identified for five out of the six significantly downregulated miRNAs. 943 
Gene ontology (GO) analysis of these predicted gene targets identified their role in various 944 
physiological processes including proteolysis, signal transduction and regulation of transcription 945 
(C). 946 
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Table 1. KEGG Analysis of downregulated miRNA predicted targets 947 

KEGG analysis of the predicted target genes of the significantly, downregulated miRNAs 948 
revealed an enrichment of immune signaling pathways, including common insect immune 949 
signaling pathways such as Toll/IMD, MAPK, TGFβ and insulin signaling.  950 

 951 
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Figure 3. EVs released by B. malayi microfilariae downregulate predicted immune related 954 
genes in vitro 955 

Multiple genes were differentially expressed between LPS and LPS + EV treatment groups (A). 956 
Two moderately annotated and significantly downregulated genes were chosen for further in 957 

vitro validation by RT-qPCR. Both the CLIC subunit gene (B) and the serine protease gene (C) 958 
were significantly downregulated when treated with 1x105 B. malayi mf EVs as compared to 959 
control. RNAi knockdown of the serine protease gene in Aag2 cells inhibited phenoloxidase 960 
activity as compared to control at both 6 and 24 hrs post treatment (D) indicating that the serine 961 

protease gene is involved in the PO pathway. N = 3 (minimum). Mean ± SEM. * P < 0.05, ***P 962 

< 0.001. 963 
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 968 

Figure 4. Downregulated mRNAs are involved in signaling and immune responses 969 

GO analysis on significantly upregulated genes (A) shows that these genes are enriched in GO 970 
terms associated with metabolic processes and oxidoreductase activity while downregulated 971 

genes (B) are enriched for GO terms associated with signaling and immune responses.  972 
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Figure 5. Phenoloxidase activity is inhibited by EV treatment 977 

Validation of the downregulation of the serine protease gene in vivo was investigated by 978 
injection of adult female mosquitoes with serial dilutions of B. malayi mf EVs after initial 979 

treatment with LPS.  1x105 EVs significantly downregulated the serine protease gene as 980 
compared to LPS only (A). Hemolymph of injected mosquitoes was collected to test for 981 
phenoloxidase activity. Treatment of adult female mosquitoes with 1x105 mf EVs inhibited PO 982 

activity as compared to LPS only at all time points (B). N = 3 (minimum). Mean ± SEM. *P < 983 

0.05, ****P < 0.0001. 984 
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 988 

Figure 6. B. malayi microfilariae release EVs that interfere with the PO cascade and 989 

melanization 990 

Melanotic encapsulation is a common insect defense mechanism against parasites. Upon 991 
recognition of a parasite, hemocytes aggregate forming a multicellular layer that deposits a 992 
melanin-enriched capsule around the invading parasite. Melanin production is controlled by the 993 

phenoloxidase (PO) cascade, which through a series of interdependent reactions, leads to the 994 
activation of PO that oxidizes phenols to quinones, which are further polymerized to melanin.  995 

Death of the parasite is believed to be due to nutrient deprivation, asphyxiation, or through the 996 
production of toxins such as quinones and other reactive oxygen species produced during 997 
melanin production. B. malayi microfilariae-derived extracellular vesicles downregulate a serine 998 
protease that functions either at the serine protease cascade or as a PPAF, either way interfering 999 
with the production of PO and thus inhibiting melanization of invading parasites.  1000 
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